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Abstract

Blind source separation problems are difficult because they are inherently uniden-
tifiable, yet the entire goal is to identify meaningful sources. We introduce a way
of incorporating domain knowledge into this problem, called signal aggregate
constraints (SACs). SACs encourage the total signal for each of the unknown
sources to be close to a specified value. This is based on the observation that the
total signal often varies widely across the unknown sources, and we often have a
good idea of what total values to expect. We incorporate SACs into an additive
factorial hidden Markov model (AFHMM) to formulate the energy disaggregation
problems where only one mixture signal is assumed to be observed. A convex
quadratic program for approximate inference is employed for recovering those
source signals. On a real-world energy disaggregation data set, we show that the
use of SACs dramatically improves the original AFHMM, and significantly im-
proves over a recent state-of-the-art approach.

1 Introduction

Many learning tasks require separating a time series into a linear combination of a larger number of
“source” signals. This general problem of blind source separation (BSS) arises in many application
domains, including audio processing [17, 2], computational biology [1], and modelling electricity
usage [8, 12]. This problem is difficult because it is inherently underdetermined and unidentifiable,
as there are many more sources than dimensions in the original time series. The unidentifiability
problem is especially serious because often the main goal of interest is for people to interpret the
resulting source signals.

For example, consider the application of energy disaggregation. In this application, the goal is to
help people understand what appliances in their home use the most energy; the time at which the
appliance is used is of less importance. To place an electricity monitor on every appliance in a
household is expensive and intrusive, so instead researchers have proposed performing BSS on the
total household electricity usage [8, 22, 15]. If this is to be effective, we must deal with the issue
of identifiability: it will not engender confidence to show the householder a “franken-appliance”
whose electricity usage looks like a toaster from 8am to 10am, a hot water heater until 12pm, and a
television until midnight.

To address this problem, we need to incorporate domain knowledge regarding what sorts of sources
we are hoping to find. Recently a number of general frameworks have been proposed for incor-
porating prior constraints into general-purpose probabilistic models. These include posterior reg-
ularization [4], the generalized expectation criterion [14], and measurement-based learning [13].
However, all of these approaches leave open the question of what types of domain knowledge we
should include. This paper considers precisely that research issue, namely, how to identify classes
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of constraints for which we often have prior knowledge, which are general across a wide variety of
domains, and for which we can perform efficient computation.

In this paper we observe that in many applications of BSS, the total signal often varies widely across
the different unknown sources, and we often have a good idea of what total values to expect. We
introduce signal aggregate constraints (SACs) that encourage the aggregate values, such as the sums,
of the source signals to be close to some specified values. For example, in the energy disaggregation
problem, we know in advance that a toaster might use 50 Wh in a day and will be most unlikely to
use as much as 1000 Wh. We incorporate these constraints into an additive factorial hidden Markov
model (AFHMM), a commonly used model for BSS [17].

SACs raise difficult inference issues, because each constraint is a function of the entire state se-
quence of one chain of the AFHMM, and does not decompose according to the Markov structure
of the model. We instead solve a relaxed problem and transform the optimization problem into a
convex quadratic program which is computationally efficient.

On real-world data from the electricity disaggregation domain (Section 7.2.2), we show that the use
of SACs significantly improves performance, resulting in a 45% decrease in normalized disaggrega-
tion error compared to the original AFHMM, and a significant improvement (29%) in performance
compared to a recent state-of-the-art approach to the disaggregation problem [12].

To summarize, the contributions of this paper are: (a) introducing signal aggregate constraints
for blind source separation problems (Section 4), (b) a convex quadratic program for the relaxed
AFHMM with SACs (Section 5), and (c) an evaluation (Section 7) of the use of SACs on a real-
world problem in energy disaggregation.

2 Related Work

The problem of energy disaggregation, also called non-intrusive load monitoring, was introduced
by [8] and has since been the subject of intense research interest. Reviews on energy disaggregation
can be found in [22] and [24].

Various approaches have been proposed to improve the basic AFHMM by constraining the states
of the HMMs. The additive factorial approximate maximum a posteriori (AFAMAP) algorithm in
[12] introduces the constraint that at most one chain can change state at any one time point. Another
approach [21] proposed non-homogeneous HMMs combining with the constraint of changing at
most one chain at a time. Alternately, semi-Markov models represent duration distributions on the
hidden states and are another approach to constrain the hidden states. These have been applied to
the disaggregation problems by [11] and [10]. Both [12] and [16] employ other kinds of additional
information to improve the AFHMM. Other approaches could also be applicable for constraining the
AFHMM, e.g., the k-segment constraints introduced for HMMs [19]. Some work in probabilistic
databases has considered aggregate constraints [20], but that work considers only models with very
simple graphical structure, namely, independent discrete variables.

3 Problem Setting

Suppose we have observed a time series of sensor readings, for example the energy measured in
watt hours by an electricity meter, denoted by Y = (Y1, Y2, · · · , YT ) where Yt ∈ R+. It is assumed
that this signal was aggregated from some component signals, for example the energy consumption
of individual appliances used by the household. Suppose there were I components, and for each
component, the signal is represented as Xi = (xi1, xi2, · · · , xiT ) where xit ∈ R+. Therefore, the
observation signal could be represented as the summation of the component signals as follows

Yt =
I∑
i=1

xit + εt (1)

where εt is assumed Gaussian noise with zero mean and variance σ2
t . The disaggregation problem

is then to recover the unknown time series Xi given only the observed data Y . This is essentially
the BSS problem [3] where only one mixture signal was observed. As discussed earlier, there is no
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unique solution for this model, due to the identifiability problem: component signals are exchange-
able.

4 Models

Our models in this paper will assume that the component signals Xi can be modelled by a hidden
Markov chain, in common with much work in BSS. For simplicity, each Markov chain is assumed to
have a finite set of states such that for the chain i, xit ≈ µit for some µit ∈ {µi1, · · · , µiKi

} where
Ki denotes the number of the states in chain i. The idea of the SAC is fairly general, however, and
could be easily incorporated into other models of the hidden sources.

4.1 The Additive Factorial HMM

Our baseline model will be the AFHMM. The AFHMM is a natural model for generation of an
aggregated signal Y where the component signalsXi are assumed each to be a hidden Markov chain
with states Zit ∈ {1, 2, · · · ,Ki} over time t. In the AFHMM, and variants such as AFAMAP, the
model parameters, denoted by θ, are unknown. These parameters are the µik; the initial probabilities
πi = (πi1, · · · , πiKi)

T for each chain where πik = P (Zi1 = k); and the transition probabilities
p
(i)
jk = P (Zit = j|Zi,t−1 = k). Those parameters can be estimated by using approximation methods

such as the structured variational approximation [5].

In this paper we focus on inferring the sequence over time of hidden states Zit for each hidden
Markov chain; θ are assumed known. We are interested in maximum a posteriori (MAP) inference,
and the posterior distribution has the following form

P (Z|Y ) ∝
I∏
i=1

P (Zi1)
T∏
t=1

p(Yt|Zt)
T∏
t=2

I∏
i=1

P (Zit|Zi,t−1) (2)

where p(Yt|Zt) = N(
∑I
i=1 µi,zit

, σ2
t ) is a Gaussian distribution. An alternative way to represent

the posterior distibution would use a binary vector Sit = (Sit1, Sit2, · · · , SitKi
)T to represent the

discrete variable Zit such that Sitk = 1 when Zit = k and for all Sitj = 0 when j 6= k. The
logarithm of posterior distribution over S then has the following form

logP (S|Y ) ∝
I∑
i=1

STi1 log πi +
T∑
t=2

I∑
i=1

STit

(
logP (i)

)
Si,t−1−

1
2

T∑
t=1

1
σ2
t

(
Yt −

I∑
i=1

STitµi

)2

(3)

where P (i) = (p(i)
jk ) is the transition probability matrix and µi = (µi1, µi2, · · · , µiKi

)T . Exact
inference is not tractable as the numbers of chains and states increase. A MAP value can be con-
veniently found by using the chainwise Viterbi algorithm [18], which optimizes jointly over each
chain Si1 . . . SiT in sequence, holding the other chains constant. However, the chainwise Viterbi
algorithm can get stuck in local optima. Instead, in this paper we solve a convex quadratic program
for a relaxed version of the MAP problem (see Section 5). However, this solution is not guaranteed
optimal due to the identifiability problem. Many efforts have been made to provide tractable solu-
tions to this problem by constraining the states of the hidden Markov chains. In the next section we
introduce signal aggregate constraints, which will help to address this problem.

4.2 The Additive Factorial HMM with Signal Aggregate Constraints

Now we add Signal Aggregate Constraints to the AFHMM, yielding a new model AFHMM+SAC.
The AFHMM+SAC assumes that the aggregate value of each component signal i over the entire
sequence is expected to be a certain value µi0, which is known in advance. In other words, the
SAC assumes

∑T
t=1 xit ≈ µi0. The constraint values µi0 (i = 1, 2, · · · , I) could be obtained from

expert knowledge or by experiments. For example, in the energy disaggregation domain, extensive
research has been undertaken to estimate the average national consumption of different appliances
[23].
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Incorporating this constraint into the AFHMM, using the formulation from (3), results in the follow-
ing optimization problem for MAP inference

maximize
S

logP (S|Y )

subject to

(
T∑
t=1

µTi Sit − µi0

)2

≤ δi, i = 1, 2, · · · , I,
(4)

where µi0 (i = 1, 2, · · · , I) are assumed known, and δi ≥ 0 is a tuning parameter which has the
similar role as the ones used in ridge regression and LASSO [9]. Instead of solving this optimization
problem directly, we equivalently solve the penalized objective function

maximize
S

L(S) = logP (S|Y )−
I∑
i=1

λi

(
T∑
t=1

µTi Sit − µi0

)2

, (5)

where λi ≥ 0 is a complexity parameter which has a one-to-one correspondence with the tuning
parameter δi. In the Bayesian point of view, the constraint terms could be viewed as the logarithm
of the prior distributions over the states S. Therefore, the objective can be viewed as a log posterior
distribution over S. Now the Viterbi algorithm is not applicable directly since at any time t, the
state Sit depends on all the states at all time steps, because of the regularization terms which
are non-Markovian inherently. Therefore, in the following section we transform the optimization
problem (5) into a convex quadratic program which can be efficiently solved.

Note that the constraints in equation (4) could be generalised. Rather than making only one con-
straint on each chain in the time period [0, T ] (as described above), a series of constraints could be
made. We could define J constraints such that, for j = 1, 2, · · · , J , the jth constraint for chain i is:(∑tbij

τ
(i)
j =taij

µTi Si,τ(i)
j
− µji0

)2

≤ δij where [taij , t
b
ij ] denotes the time period for the constraint. This

could be reasonable particularly in household energy data to represent the fact that some appliances
are commonly used during the daytime and are unlikely to be used between 2am and 5am. This is a
straightforward extension that does not complicate the algorithms, so for presentational simplicity,
we only use a single constraint per chain, as shown in (4), in the rest of this paper.

5 Convex Quadratic Programming for AFHMM+SAC

In this section we derive a convex quadratic program (CQP) for the relaxed problem for (5). The
problem (5) is not convex even if the constraint Sitk ∈ {0, 1} is relaxed, because logP (S|Y ) is not
convex. By adding an additional set of variables, we obtain a convex problem.

Similar to [12], we define a new Ki × Ki variable matrix Hit = (hitjk) such that hitjk = 1 when
Si,t−1,k = 1 and Sitj = 1, and otherwise hitjk = 0. In order to present a CQP problem, we define
the following notation. Denote 1T as a column vector of size T × 1 with all the elements being 1.
Denote µ∗i = 1T ⊗ µi with size TKi × 1, where ⊗ is Kronecker product, then Λi = λiµ

∗
iµ

∗T
i and

µ̃i = 2λiµi0µ∗i . Denote eT as a T × 1 vector with the first element being 1 and all the others being
zero. Denote π̃i = eT ⊗ log πi with size TKi×1. We represent−→µ = (µT1 , µ

T
2 , · · · , µTI )T with size∑

iKi × 1, and denote Vt = σ−2
t
−→µ−→µ T and ut = σ−2

t Yt
−→µ . We also denote Si = (STi1, · · · , STiT )T

with size TKi × 1 and St = (ST1t, · · · , STIt)T with size
∑
iKi × 1. Denote Hit

.l and Hit
l. as the

column and row vectors of the matrix Hit, respectively.

The objective function in equation (5) can then be equivalently represented as

L(S,H) =

IX
i=1

ST
i π̃i +

X
i,t,k,j

hit
jk log p

(i)
jk −

IX
i=1

“
ST

i ΛiSi − ST
i µ̃i

”
− 1

2

TX
t=1

“
ST

t VtSt − 2uT
t St

”
+ C

=
X

i,t,k,j

hit
jk log p

(i)
jk −

IX
i=1

“
ST

i ΛiSi − ST
i (µ̃i + π̃i)

”
− 1

2

TX
t=1

“
ST

t VtSt − 2uT
t St

”
+ C
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where C is constant. Our aim is to optimize the problem

maximize
S,H

L(S,H)

subject to
Ki∑
k=1

Sitk = 1, Sitk ∈ {0, 1}, i = 1, 2, · · · , I; t = 1, 2, · · · , T,

Ki∑
l=1

Hit
l. = STi,t−1,

Ki∑
l=1

Hit
.l = Sit, h

it
jk ∈ {0, 1}.

(6)

This problem is equavalent to the problem in equation (5). It should be noted that the matrices Λi
and Vt are positive semidefinite (PSD). Therefore, the problem is an integer quadratic program (IQP)
which is hard to solve. Instead we solve the relaxed problem where Sitk ∈ [0, 1] and hitjk ∈ [0, 1].
The problem is thus a CQP. To solve this problem we used CVX, a package for specifying and
solving convex programs [7, 6]. Note that a relaxed problem for AFHMM could also be obtained
by setting λi = 0, which is also a CQP. Concerning the computational complexity, the CQP for
AFHMM+SAC has polynomial time in the number of time steps times the total number of states
of the HMMs. In practice, our implementations of AFHMM, AFAMAP, and AFHMM+SAC scale
similarly (see Section 7.2).

6 Relation to Posterior Regularization

In this section we show that the objective function in (5) can also be derived from the posterior
regularization framework [4]. The posterior regularization framework guides the model to approach
desired behavior by constraining the space of the model posteriors. The distribution defined in
(3) is the model posterior distribution for the AFHMM. However, the desired distribution P̃ we
are interested in is defined in the constrained space

{
P̃ |E eP (ϕi(S, Y )) ≤ δi

}
where ϕi(S, Y ) =(∑T

t=1 µ
T
i Sit − µi0

)2

. To ensure P̃ is a valid distribution, it is required to optimize

minimizeeP KL(P̃ (S)|P (S|Y ))

subject to E eP (ϕi(S, Y )) ≤ δi, i = 1, 2, · · · , I,
(7)

where KL(·|·) denotes the KL-divergence. According to [4], the unique optimal solution for the de-
sired distribution is P̃ ∗(S) = 1

ZP (S|Y ) exp
{
−
∑I
i=1 λiϕi(S, Y )

}
. This is exactly the distribution

in equation (5).

7 Results

In this section, the AFHMM+SAC is evaluated by applying it to the disaggregation problems of a
toy data set and energy data, and comparing with AFHMM and AFAMAP performance.

7.1 Toy Data

In this section the AFHMM+SAC was applied to a toy data set to evaluate the robustness of the
method. Two chains were generated with state values µ1 = (0, 24, 280)T and µ2 = (0, 300, 500)T .
The initial and transition probabilities were randomly generated. Suppose the generated chains were
xi = xi1, xi2, · · · , xiT (i = 1, 2), with T = 100. The aggregated data were generated by the
equation Yt = x1t + x2t + εt where εt follows a Gaussian distribution with zero mean and variance
σ2 = 0.01. The AFHMM+SAC was applied to this data to disaggregate Y into component signals.
Note that we simply set λi = 1 for all the experiments including the energy data, though in practice
these hyper-parameters could be tuned using cross validation. Denote x̂i as the estimated signal for
xi. The disaggregation performance was evaluated by the normalized disaggregation error (NDE)

NDE =

∑
i,t(x̂it − xit)2∑

i,t x
2
it

. (8)
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For the energy data we are also particularly interested in recovering the total energy used by each
appliance [16, 10]. Therefore, another objective of the disaggregation is to estimate the total energy
consumed by each appliance over a period of time. To measure this, we employ the following signal
aggregate error (SAE)

SAE =
1
I

I∑
i=1

|
∑T
t=1 x̂it −

∑T
t′=1 xit′ |∑T

t=1 Yt
. (9)

In order to assess how the SAC regularizer affects the results, various values for µ0 = (µ10, µ20)T
were used for the AFHMM+SAC algorithm. Figure 1 shows the NDE and SAE results. It shows
that as the Euclidean distance between the input vector µ0 and the true signal aggregate vector(∑T

t=1 x1t,
∑T
t=1 x2t

)
increases, both the NDE and SAE increase. This shows how the SACs

affect the performance of AFHMM+SAC.
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Figure 1: Normalized disaggregation error and signal aggregate error computed by AFHMM+SAC
using various input vectors µi0. The x-axis shows the Euclidean distance between the input vector

(µ10, µ20)T and the true signal aggregate vector
(∑T

t=1 x1t,
∑T
t=1 x2t

)T
.

7.2 Energy Disaggregation

In this section, the AFHMM, AFAMAP, and AFHMM+SAC were applied to electrical energy disag-
gregation problems. We use the Household Electricity Survey (HES) data. HES was a recent study
commissioned by the UK Department of Food and Rural Affairs, which monitored a total of 251
owner-occupied households across England from May 2010 to July 2011 [23]. The study monitored
26 households for an entire year, while the remaining 225 were monitored for one month during the
year with periods selected to be representative of the different seasons. Individual appliances as well
as the overall electricity consumption were monitored. The households were carefully selected to be
representative of the overall population. The data were recorded every 2 or 10 minutes, depending
on the household. This ultra-low frequency data presents a challenge for disaggregation techniques;
typically studies rely on much higher data rates, e.g., the REDD data [12]. Both the data measured
without and with a mains reading were used to compare those models. The model parameters θ
defined in AFHMM, AFAMAP and AFHMM+SAC for every appliance were estimated by using
15-30 days’ data for each household. We simply assume 3 states for all the appliances, though we
could assume more states which requires more computational costs. The µi was estimated by using
k-means clustering on each appliance’s signals in the training data.

7.2.1 Energy Data without Mains Readings

In the first experiment, we generated the aggregate data by adding up the appliance signals, since
no mains reading had been measured for most of the households. One-hundred households were
studied, and one day’s usage was used as test data for each household. The model parameters were
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Table 1: Normalized disaggregation error (NDE), signal aggregate error (SAE), and computing time
obtained by AFHMM, AFAMAP, and AFHMM+SAC on the energy data for 100 houses without
mains. Shown are the mean±std values over days. NTC: National total consumption which was
the average consumption of each appliance over the training days; TTC: True total consumption for
each appliance for that day and household in the test data.

METHODS NDE SAE TIME (SECOND)
AFHMM 0.98± 0.68 0.144± 0.067 206±114
AFAMAP [12] 0.96± 0.42 0.083± 0.004 325±177
AFHMM+SAC (NTC) 0.64± 0.37 0.069± 0.004 356±262
AFHMM+SAC (TTC) 0.36± 0.28 0.0015± 0.0089 260±108

estimated by using 15-26 days’ data as the training data. In future work, it would be straightforward
to incorporate the SAC into unsupervised disaggregation approaches [11], by using prior informa-
tion such as national surveys to estimate µ0. The AFHMM, AFAMAP and AFHMM+SAC were
applied to the aggregated signal to recover the component appliances. For the AFHMM+SAC, two
kinds of total consumption vectors were used as the vector µ0. The first, the national total con-
sumption (NTC), was the average consumption of each appliance over the training days across all
households in the data set. The second, for comparison, was the true total consumption (TTC) for
each appliance for that day and household. Obviously, TTC is the optimal value for the regularizer
in AFHMM+SAC, so this gives us an oracle result which indicates the largest possible benefit from
including this kind of SAC.

Table 1 shows the NDE and SAE when the three methods were applied to one day’s data for 100
households. We see that AFHMM+SAC outperformed the AFHMM in terms of both NDE and
SAE. The AFAMAP outperformed the AFHMM in terms of SAE, and otherwise they performed
similar in terms of NDE. Unsurprisingly, the AFHMM+SAC using TTC performs the best among
these methods. This shows the difference the constraints made, even though we would never be able
to obtain the TTC in reality. By looking at the mean values in the Table 1, we also conclude that
AFHMM+SAC using NTC had improved 33% and 16% over state-of-the-art AFAMAP in terms
of NDE and SAE, respectively. This was also verified by computing the paired t-test to show that
the mean NDE and SAE obtained by AFHMM+SAC and AFAMAP were different at the 5% sig-
nificance level. To demonstrate the computational efficiency, the computing time is also shown in
the Table 1. It indicates that AFHMM, AFAMAP and AFHMM+SAC consumed similar time for
inference.

7.2.2 Energy Data with Mains Readings

We studied 9 houses in which the mains as well as the appliances were measured. In this experiment
we applied the models directly to the measured mains signal. This scenario is more difficult than that
of the previous section, because the mains power will also include the demand of some appliances
which are not included in the training data, but it is also the most realistic. The summary of the 9
houses is shown in Table 2. The training data were used to estimate the model parameters. The num-
ber of appliances corresponds to the number of the HMMs in the model. The mains measured in the
test days are inputted into the models to recover the consumption of those appliances. We computed
the NTC by using the training data for the AFHMM+SAC. The NDE and SAE were computed for
every house and each method. The results are shown in Figure 2. For each house we also com-
puted the paired t-test for the NDE and SAE computed by AFAMAP and AFHMM+SAC(NTC),
which shows that the mean errors are different at the 5% significance level. This indicates that
across all the houses AFHMM+SAC has improved over AFAMAP. The overall results for all the
test days are shown in Table 3, which shows that AFHMM+SAC has improved over both AFHMM
and AFAMAP. In terms of computing time, however, AFHMM+SAC is similar to AFHMM and
AFAMAP. It should be noted that, by looking at Tables 1 and 3, all the three methods require more
time for the data with mains than those without mains. This is because the algorithms take more
time to converge for realistic data. These results indicate the value of signal aggregate constraints
for this problem.
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Table 2: Summary of the 9 houses with mains

HOUSE 1 2 3 4 5 6 7 8 9
NUMBERS OF TRAINING DAYS 17 16 15 29 27 28 27 15 30
NUMBERS OF TEST DAYS 9 9 10 8 9 9 9 10 10
NUMBERS OF APPLIANCES 21 25 24 15 24 22 23 20 25

Table 3: The normalized disaggregation error (NDE), signal aggregate error (SAE), and computing
time obtained by AFHMM, AFAMAP, and AFHMM+SAC using mains as the input. Shown are the
mean±std values computed from all the test days of the 9 houses. NTC: National total consump-
tion which was the average consumption of each appliance over the training days; TTC: True total
consumption for each appliance for that day and household in the test data.

METHODS NDE SAE TIME (SECOND)
AFHMM 1.36± 0.75 0.069± 0.039 1008±269
AFAMAP [12] 1.05± 0.29 0.043± 0.012 1327±453
AFHMM+SAC (NTC) 0.74± 0.34 0.030± 0.014 1101±342
AFHMM+SAC (TTC) 0.57± 0.28 0.001± 0.0048 1276±410
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Figure 2: Mean and std plots for NDE and SAE computed by AFHMM, AFAMAP and
AFHMM+SAC using mains as the input for 9 houses.

8 Conclusions

In this paper, we have proposed an additive factorial HMM with signal aggregate constraints. The
regularizer was derived from a prior distribution over the chain states. We also showed that the
objective function can be derived in the framework of posterior regularization. We focused on
finding the MAP configuration for the posterior distribution with the constraints. Since dynamic
programming is not directly applicable, we pose the optimization problem as a convex quadratic
program and solve the relaxed problem. On simulated data, we showed that the AFHMM+SAC
is robust to errors in specification of the constraint value. On real world data from the energy
disaggregation problem, we showed that the AFHMM+SAC performed better both than a simple
AFHMM and than previously published research.
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