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ABSTRACT
Word clouds are popular for visualizing documents, but are
not as useful for comparing documents, because identical
words are not presented consistently across different clouds.
We introduce the concept of word storms, a visualization
tool for analyzing corpora of documents. A word storm is a
group of word clouds, in which each cloud represents a single
document, juxtaposed to allow the viewer to compare and
contrast the documents. We present a novel algorithm that
creates a coordinated word storm, in which words that ap-
pear in multiple documents are placed in the same location,
using the same color and orientation, across clouds. This
ensures that similar documents are represented by similar-
looking word clouds, making them easier to compare and
contrast visually. We evaluate the algorithm using an au-
tomatic evaluation based on document classification, and a
user study. The results confirm that a coordinated word
storm allows for better visual comparison of documents.

Categories and Subject Descriptors
H.5 [Information Search and Retrieval]: Information
Interfaces and Presentation

1. INTRODUCTION
Because of the vast number of text documents on the Web,

there is a demand for ways to allow people to scan large
numbers of documents quickly. A natural approach is vi-
sualization, under the hope that visually scanning a picture
may be easier for people than reading text. One of the most
popular visualization methods for text documents are word
clouds. A word cloud is a graphical presentation of a doc-
ument, usually generated by plotting the document’s most
common words in two dimensional space, with the word’s
frequency indicated by its font size. Word clouds can be
easy for naive users to interpret and can be aesthetically
surprising and pleasing. One of the most popular cloud gen-
erators, Wordle, has generated over 1.4 million clouds that
have been publicly posted [8].
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Despite their popularity for visualizing single documents,
word clouds are not as useful for navigating groups of docu-
ments, such as blogs or Web sites. The key problem is that
word clouds are difficult to compare visually. For example,
say that we want to compare two documents, so we build a
word cloud separately for each document. Even if the two
documents are topically similar, the resulting clouds can be
very different visually, because the shared words between
the documents are usually scrambled, appearing in different
locations in each of the two clouds. The effect, as we confirm
in a small user study (Section 5.3), is that it is difficult to
see by eye which words are shared between the documents.

In this paper, we introduce the concept of word storms to
afford visual comparison of groups of documents. Just as a
storm is a group of clouds, a word storm is a group of word
clouds. Each cloud in the storm represents a subset of the
corpus. For example, a storm might contain one cloud per
document, one cloud to represent all the documents written
in each year, or one cloud to represent each track of an aca-
demic conference. Effective storms make it easy to compare
and contrast documents visually. We propose several princi-
ples behind effective storms, the most important of which is
that similar documents should be represented by visually sim-
ilar clouds. To achieve this, algorithms for generating storms
should coordinate the layout of their constituent clouds.

We present a novel algorithm for generating coordinated
word storms that follow this principle. The goal is to gener-
ate a set of visually appealing clouds, under the constraint
that if the same word appears in more than one cloud in
the storm, it appears in a similar location. Interestingly,
this also allows a user to see when a word is not in a cloud:
simply find the desired word in one cloud and check the cor-
responding locations in all the other clouds. At a technical
level, our algorithm combines the greedy randomized layout
strategy of Wordle, which generates aesthetically pleasing
layouts, with an optimization-based approach to maintain
coordination between the clouds. The objective function in
the optimization measures the amount of coordination in the
storm, inspired by multidimensional scaling.

We evaluate this algorithm on several text corpora, includ-
ing academic papers and research grant proposals. First,
we present a novel automatic evaluation method for word
storms based on how well the clouds, represented as vectors
of pixels, serve as features for document classification. The
automatic evaluation allows us to rapidly compare different
layout algorithms, and may be of independent interest as a
framework for comparing visualizations. Second, we present
a user study in which users are asked to examine and com-



pare the clouds in a storm. Both experiments demonstrate
that a coordinated word storm is dramatically better than
independent word clouds at allowing users to visually com-
pare and contrast documents.

2. DESIGN PRINCIPLES
A word storm is a group of word clouds constructed to

visualize a corpus of documents. In the simplest type of
storm, each cloud represents a single document by creating
a summary of its content; hence, by looking at the clouds
a user can form a quick impression of the corpus’s content
and analyse the relations among the different documents.
Our work builds on word clouds because they are popular,

easy for users to understand, and are often visually appeal-
ing. By building a storm based on word clouds, we create
an accessible tool that can be readily understood without
requiring a background in statistics or text processing. The
aim of a word storm is to extend the capabilities of a word
cloud: instead of visualizing just one document, it is used to
visualize an entire corpus.
There are two design motivations behind the concept of

word storms. The first is to visualize high-dimensional data
in a high-dimensional space. Many classical visualization
techniques are based on dimensionality reduction, i.e., map-
ping high-dimensional data into a low dimensional space.
Word storms take an alternative strategy, of mapping high
dimensional data into a different high dimensional space,
but one which is tailored for human visual processing. The
second design motivation is the principle of small multiples
[16, 17], in which similar visualizations are presented to-
gether in a table so that the eye is drawn to the similarities
and differences between them. A word storm is a small mul-
tiple of word clouds. This motivation strongly influences the
design of effective clouds, as described in Section 2.3.

2.1 Types of Storms
Different types of storms can be constructed for different

data analysis tasks. In general, the individual clouds in a
storm can represent a group of documents rather than a
single document. For example, a cloud could represent all
the documents written in a particular month, or that appear
on a particular section of a web site. It would be typical to do
this by simply merging all of the documents in each group,
and then generating the storm with one cloud per merged
document. This makes the storm a flexible tool that can be
used for different types of analysis, and it is possible to create
different storms from the same corpus and obtain different
insights. Here are some example scenarios:
1. Comparing Individual Documents. If the goal is

to compare and contrast individual documents in a corpus,
then we can build a storm in which each word cloud repre-
sents a single document.
2. Temporal Evolution of Documents. If we have a

set of documents that have been written over a long period,
such as news articles, blog posts, or scientific documents,
we may want to understand trends in the corpus over time.
This can be achieved using a word storm in which each cloud
represents a time period, e.g., one week or one month. By
looking at the clouds sequentially, the user can see the ap-
pearance and disappearance of words and how their impor-
tance changes over time.
3. Hierarchies of Documents. If the corpus is ar-

ranged in a hierarchy of categories, we can create a set of

storms, one for each category, each of which contains one
cloud for each subcategory. For instance, this structure can
be useful in a corpus of scientific papers. At the top level,
we would first have a storm that contains one cloud for each
scientific field (e.g., chemistry, physics, engineering), then
for each field, we also have a separate storm that includes
one cloud for each subfield (such as organic chemistry, inor-
ganic chemistry) and so on until arriving at the articles. An
example is shown in Figures 2 and 3. For large document
collections, it is infeasible for a user to visually scan a large
number of clouds. In this setting, a hierarchical approach
seems particularly appropriate.

Hereafter we use the term “document” to refer to the text
represented by a single cloud, with the understanding that
the “document” may have been created by concatenating a
set of smaller documents.

2.2 Levels of Analysis of Storms
A word storm allows the user to analyse the corpus at a

variety of different levels:
1. Overall Impression of Corpus. By scanning the

largest terms across all the clouds, the user can form a quick
impression of the topics in the corpus.

2. Comparison of Documents. The user can visually
compare clouds in the storm in order to compare and con-
trast documents. For example, the user can look for words
that are much more common in one document than in an-
other. Also the user can compare whether two clouds have
similar shapes, to gauge the overall similarity of the corre-
sponding documents.

3. Analysis of Single Documents. Finally, the clouds
in the storm have meaning in themselves. Just as with a
single word cloud, the user can analyze an individual cloud
to get an impression of a single document.

2.3 Principles of Effective Word Storms
Because they support additional types of analysis, princi-

ples for effective word storms are different than those for in-
dividual clouds. This section describes some desirable prop-
erties of effective word storms.

First of all, each cloud should be a good representation
of its document. That is, each cloud ought to emphasize
the most important words so that the information that it
transmits is faithful to its content. Each cloud in a storm
should be an effective visualization in its own right.

Furthermore, the clouds should integrate harmoniously
into a complete storm. In particular, clouds should be de-
signed so that they are effective as small multiples [16, 17],
that is, they should be easy to compare and contrast. This
has several implications. First, clouds should be similar so
that they look like multiples of the same thing, making the
storm a cohesive unit. Because the same structure is main-
tained across the different clouds, they are easier to compare,
so that the viewer’s attention is focused on the differences
among them. A related implication is that the clouds ought
to be small enough that viewers can analyze multiple clouds
at the same time without undue effort.

The way the clouds are arranged and organised on the
canvas can also play an important role, because clouds can
be more easily compared to their neighbors than to more
distant clouds. This suggests the principle that clouds in
a storm should be arranged to facilitate the most important
comparisons. In the current paper, we simply arrange the
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Figure 1: Visualization of eight papers from the ICML 2012 conference in a coordinated word storm. These papers
appeared in a track about optimization algorithms. A larger version of this storm, which included all accepted ICML
papers, was deployed on the official conference Web site during the meeting.

clouds in a grid, but future work could consider methods of
organizing the clouds on the canvas.
A final, and perhaps the most important, principle is the

coordination of similarity principle. In an effective storm,
visual comparisons between clouds should reflect the un-
derlying relationships between documents, so that similar
documents should have similar clouds, and dissimilar doc-
uments should have visually distinct clouds. This principle
has particularly strong implications. For instance, words
should appear in a similar font and similar colors when they
appear in multiple clouds. More ambitiously, words should
also have approximately the same position when they appear
in multiple clouds. The coordination of similarity principle
can significantly enhance the usefulness of the storm. For
example, to compare the most common words in two doc-
uments, one can visually check if a word in one cloud also
appears in another cloud. Displaying shared words in the
same color and position across clouds makes this task much
easier, especially when checking for words that appear in
one cloud but not in another. This principle furthermore
tends to encourage the overall shape of the clouds of similar
documents to appear visually similar, allowing the viewer to
assess document similarity by quickly scanning the clouds.
These principles present new algorithmic challenges. Ex-

isting algorithms for single clouds do not consider relation-
ships between multiple clouds in a storm. In the next sec-
tions we propose new algorithms for building effective storms.

3. CREATING A SINGLE CLOUD
In this section, we describe the layout algorithm for single

clouds. The method is based on that of Wordle [8], because
it tends to produce aesthetically pleasing clouds. Formally,
we define a word cloud as a set of words W = {w1, . . . , wM},
where each word w ∈W is assigned a position pw = (xw, yw)
and visual attributes that include its font size sw, color cw
and orientation ow (horizontal or vertical).
To select the words in a cloud, we need a measure of the

importance of a word to the document, which we call its
weight. Typically term frequency (tf ) is used for this, but

alternatives could include idf with respect to a document
collection, or mutual information with respect to document
metadata. We select the words in the cloud by choosing the
top M words from the document by weight after removing
stop words. The font size is set proportionally to the term’s
weight, and the color and orientation are selected randomly.
Choosing the word positions is more complex, because words
must not overlap on the canvas. We use the layout algorithm
from Wordle [8], which we will call the spiral algorithm.

The spiral algorithm (Algorithm 1) is greedy and incre-
mental; it sets the location of each word in order of size. At
the beginning of the i-th step, the algorithm has generated
a partial word cloud containing the i − 1 words of largest
weight. To add a word w to the cloud, the algorithm places
it at an initial desired position pw (e.g., chosen randomly).
If at that position, w does not intersect any previous words
and is entirely within the frame, we go on to the next word.
Otherwise, w is moved outwards along a spiral path until it
reaches a valid position, that is, a position inside the frame
with no overlaps. This is repeated for all words in the cloud.

As the algorithm assumes that the size of the frame is
given, we estimate the necessary width and the height to fit
M words. Similarly, if the initial desired positions are not
given, we sample them from a Gaussian distribution with
mean at the frame’s center. This distribution is truncated
so that the desired position is always sampled within the
frame. Notice in line 4 of the algorithm that a maximum
number of iterations is used to prevent words from looping
forever, which can happen if the word cannot be fit into the
frame. If the maximum number of iterations is reached for
any word, we assume that the current frame is too small and
restart the algorithm with a larger frame.

It is better to check if two words intersect at the glyph
level, rather than using a bounding box around the word, to
ensure a compact result. However, checking the intersection
of two glyphs can be expensive, so instead we use a tree of
rectangular bounding boxes that closely follows the shape
of the glyph, as in [8]. We use the implementation from the
open source library WordCram (http://wordcram.org).



(a) Chemistry (b) Engineering (c) Information Communication
and Technology

(d) Physical Sciences (e) Complexity (f) Mathematical Sciences

Figure 2: A word storm describing the grants funded by six EPSRC Scientific Programs. Each cloud represents the
set of all grant abstracts in the respective program.

(a) (b) (c)

(d) (e) (f)

Figure 3: A word storm containing six randomly sampled grants from the Complexity Programme (Cloud (e) in Figure
2). The word “complex”, which only appeared in one cloud in Figure 2, appears in all clouds in this figure. This word
conveys little information here, in contrast to the previous figure, so in this figure the word is more transparent.



Algorithm 1 Spiral Algorithm

Require: Words W , optionally positions p = {pw}w∈W

Ensure: Final positions p = {pw}w∈W

1: for all words w ∈ {w1, . . . , wM} do
2: if initial position pw unsupplied, sample from Gaussian
3: count ← 0
4: while pw not valid ∧ count < Max Iteration do
5: Move pw one step along a spiral path
6: count ← count + 1
7: end while
8: if pw not valid then
9: Restart with a larger frame
10: end if
11: end for

4. CREATING A STORM
In this section, we present novel algorithms to build a

storm. The simplest method would of course be to simply
run the single-cloud algorithm of Section 3 independently for
each document, but the resulting storms would typically vi-
olate the principle of coordination of similarity (Section 2.3)
because words will tend to have different colors, orientations,
and layouts even when they are shared between documents.
Instead, our algorithms will coordinate the layout of differ-
ent clouds, so that when words appear in more than one
cloud, they have the same color, orientation, and position.
In this way, if the viewer finds a word in one of the clouds,
it is easy to check if it appears in any other clouds.
We represent each document as a vector ui, where uiw is

the count of word w in document i. A word cloud vi is a
tuple vi = (Wi, {piw}, {ciw}, {siw}), where Wi is the set of
words that are to be displayed in cloud i, and for any word
w ∈ Wi, we define piw = (xiw, yiw) as the position of w in
the cloud vi, ciw the color, and siw the font size. We write
pi = {piw |w ∈Wi} for the set of all word locations in vi.
Our algorithms will focus on coordinating word locations

and attributes of words that are shared in multiple clouds in
a storm. However, it is also possible to select the words that
are displayed in each cloud in a coordinated way that con-
siders the entire corpus. For example, instead of selecting
words by their frequency in the current document, we could
use global measures, such as tf ∗ idf , that could emphasize
the differences among clouds and would deal naturally with
stop words. In preliminary experiments, however, we sub-
jectively preferred storms produced using tf alone.

4.1 Coordinated Attribute Selection
A simple way to improve the coordination of a storm is to

ensure that words that appear in more than one cloud are
displayed with the same color and orientation across clouds.
We can go a bit farther than this, however, by encoding in-
formation in the words’ color and orientation. In our case,
we decided to use color as an additional way of encoding the
relevance of a term in the document. Rather than encoding
this information in the hue, which would require a model of
color saliency, instead we control the color transparency. We
choose the alpha channel of the color to correspond to the
inverse document frequency idf of the word in the corpus.
In this way, words that appear in a small number of doc-
uments will have opaque colors, while words that occur in
many documents will be more transparent. In this way the

Algorithm 2 Iterative Layout Algorithm

Require: Storm vi = (Wi, {ciw}, {siw}) without positions
Ensure: Word storm {v1, . . . , vN} with positions
1: for i ∈ {1, . . . , N} do
2: pi ← SpiralAlgorithm(Wi)
3: end for
4: while Not Converged ∧ count < Max Iteration do
5: for i ∈ {1, . . . , N} do
6: p′iw ← 1

|Vw|
∑

vj∈Vw
pjw, ∀w ∈Wi

7: pi ← SpiralAlgorithm(Wi, p
′
i)

8: end for
9: count = count + 1
10: end while

color choice emphasizes differences among the documents,
by making more informative words more noticeable.

4.2 Coordinated Layout: Iterative Algorithm
Coordinating the positions of shared words is much more

difficult than coordinating the visual attributes. In this sec-
tion we present the first of three algorithms for coordinat-
ing word positions. In the same manner that we have set
the color and the orientation, we want to set the position
pwi = pwj ∀vi, vj ∈ Vw, where Vw is the set of clouds that
contain word w. The task is more challenging because it
adds an additional constraint to the layout algorithm. In-
stead of only avoiding overlaps, now we have the constraint
of placing the words in the same position across the clouds.
In order to do so, we present a layout algorithm that itera-
tively generates valid word clouds changing the location of
the shared words to make them converge to the same po-
sition in all clouds. We will refer to this procedure as the
iterative layout algorithm, which is shown in Algorithm 2.

In particular, the iterative layout algorithm works by re-
peatedly calling the spiral algorithm (Section 3) with dif-
ferent desired locations for the shared words. At the first
iteration, the desired locations are set randomly. Subse-
quently, the new desired locations are chosen by averag-
ing the previous final locations of the word in the differ-
ent clouds. That is, the new desired location for word w is
p′w = |Vw|−1 ∑

vj∈Vw
pwj . Thus, the new desired location

for word w is the same for all clouds vj ∈ Vw. Changing the
locations of shared words might introduce new overlaps, so
we run the spiral algorithm again to remove any overlaps.

Ideally this process would be iterated until the word loca-
tions converge, that is, when the spiral algorithm does not
modify the given positions. At that point all shared words
will be in precisely identical positions across the clouds.
However, this process does not always converge, so in prac-
tice, we stop after a fixed number of iterations.

In practice we find a serious problem with the iterative
algorithm. It tends to move words far away from the center,
because this makes it easier to place shared words in the
same position across clouds. This results in sparse layouts
with excessive white space that are visually unappealing.

4.3 Coordinated Layout: Gradient Approach
In this section, we present a new method to build a storm

by solving an optimization problem. This will provide us
with additional flexibility to incorporate aesthetic constraints
into storm construction, because we can incorporate them



as additional terms in the objective function. This will allow
us to avoid the unsightly sparse layouts which are sometimes
produced by the iterative algorithm.
We call the objective function the Discrepancy Between

Similarities (DBS). The DBS is a function of the set of
clouds v1:N = {v1, . . . , vN} and the set of documents u1:N =
{u1, . . . , uN}, and measures how well the storm fits the doc-
ument corpus. It is:

fu1:N (v1:N ) =
∑

1≤i<j≤N

(du(ui, uj)−dv(vi, vj))
2+

∑
1≤i≤N

c(ui, vi),

where du is a distance metric between documents and dv a
metric between clouds. The DBS is to be minimized as a
function of {vi}. The first summand, which we call stress,
formalizes the idea that similar documents should have sim-
ilar clouds and different documents, different clouds. The
second summand uses a function that we call the correspon-
dence function c(·, ·), which should be chosen to ensure that
each cloud vi is a good representation of its document ui.
The stress term of the objective function is inspired by

multidimensional scaling (MDS), a classical method for di-
mensionality reduction [2]. Our use of the stress function
is slightly unusual, because instead of projecting the doc-
uments onto a low-dimensional space, such as R2, we are
mapping documents to the space of word clouds. The space
of word clouds is itself high-dimensional, and indeed, might
have greater dimension than the original space. Addition-
ally, the space of word clouds is not Euclidean because of
the non-overlapping constraints.
For the metric du among documents, we use Euclidean

distance. The dissimilarity function dv between clouds is

dv(vi, vj) =
∑
w∈W

(siw−sjw)2+κ
∑

w∈Wi∩Wj

(xiw−xjw)
2+(yiw−yjw)2,

where κ ≥ 0 determines the weight given to differences in
font size versus differences in location. Note that the first
summand considers all words in either cloud, and the second
only the words that appear in both clouds. (If a word does
not appear in a cloud, we treat its size as zero.) The intuition
is that clouds are similar if their words have similar sizes and
locations. In contrast to the previous layout algorithm, by
optimizing this function also determines the words’ sizes.
The difference between the objective functions for MDS

and DBS is that the DBS adds the correspondence function
c(ui, vi). In MDS, the position of a single data point in
the target space is not interpretable on its own, whereas
in our case each word cloud must accurately represent its
document. Ensuring this is the role of the correspondence
function. In this work we use c(ui, vi) =

∑
w∈Wi

(uiw−siw)2,
where uiw is the tf of word w.
We also need to ensure that words do not overlap, and

to favor compact configurations. We introduce these con-
straints as two penalty terms. When two words overlap, we
add a penalty proportional to the square of the the mini-
mum distance required to separate them; call this distance
Oi;w,w′ . We favor compactness by adding a penalty propor-
tional to the the squared distance from each word towards
the center of the image, which by convention is the origin.
Incorporating these two penalties, the final objective func-

tion is g(v1:N ) = fu1:N (v1:N ) + r(v1:N ), where r is

r(v1:N ) = λ
N∑
i=1

∑
w,w′∈Wi

O2
i;w,w′ + µ

N∑
i=1

∑
w∈Wi

||piw||2,

where λ and µ are parameters that determine the strength
of the overlap and compactness penalties, respectively.

We optimize this by solving a sequence of optimization
problems for increasing values λ0 < λ1 < λ2 < . . . of the
overlap penalty. We increase λ exponentially until no words
overlap in the final solution. Each subproblem is minimized
using gradient descent starting from the previous solution.

4.4 Coordinated Layout: Combined Algorithm
The iterative and gradient algorithms are complementary.

The iterative algorithm is fast, but it does not enforce that
clouds stay compact. The gradient method can create com-
pact clouds, but requires many iterations to converge, and
the layout strongly depends on the initialization. There-
fore we combine the two methods, using the final result of
the iterative algorithm as the starting point for the gradi-
ent method. From this initialization, the gradient method
converges much faster, because it starts off without over-
lapping words. The gradient method tends to improve the
initial layout significantly, because it pulls words closer to
the center, creating a more compact layout. Also, the gra-
dient method tends to pull together the locations of shared
words for which the iterative method was not able to con-
verge to a single position. The above steps are run only for
words that appear in multiple clouds. We lay out the re-
maining words that are unique to single clouds at the end
using the spiral algorithm. This leads to improvements in
the running time, since we deal with fewer words during the
first phase, and it results in more compact clouds, because
the unique words, being less constrained, can fit into odd
patches of whitespace. By default, all clouds in this paper
are created using this combined algorithm.

5. EVALUATION
The evaluation is divided in three parts: a qualitative

analysis, an automatic analysis, and a user study. We use
two different data sets. First, we use the scientific papers
presented in the ICML 2012 conference, where we deployed
a storm on the main conference Web site to compare the
presented papers and help people decide among sessions1.

Second, we use a data set provided by the Research Per-
spectives project2 [10], which aims to offer a visualization of
the research portfolios of funding agencies. The data con-
tains 2358 abstracts of funded research grants from the UK’s
Engineering and Physical Sciences Research Council (EP-
SRC). Each grant belongs to exactly one of the following
programmes: Information and Communications Technology
(626 grants), Physical Sciences (533), Mathematical Sciences
(331), Engineering (317), User-Led Research (291) and Ma-
terials, Mechanical and Medical Engineering (264).

5.1 Qualitative Analysis
This section discusses coordinated word storms in quali-

tative fashion, describing the additional information about
a corpus that they make apparent.

First, we consider a storm that displays six research pro-
grammes from EPSRC programmes, five of which are differ-
ent subprogrammes of material sciences and the sixth one
is the mathematical sciences programme. For this data set
we present both a set of independent clouds (Figure 4) and

1http://icml.cc/2012/whatson/
2Also see http://www.researchperspectives.org



(a) Electronic Materials (b) Metals and Alloys (c) Photonic Materials

(d) Structural Ceramics and Inor-
ganics

(e) Structural Polymers and
Composites

(f) Mathematical Sciences

Figure 4: Independent Clouds representing six EPSRC Scientific Programmes. These programmes are also represented
as a coordinated storm in Figure 5.

(a) Electronic Materials (b) Metals and Alloys (c) Photonic Materials

(d) Structural Ceramics and Inor-
ganics

(e) Structural Polymers and
Composites

(f) Mathematical Sciences

Figure 5: Coordinated storm representing six EPSRC Scientific Programmes. These programmes are also represented
as independent clouds in Figure 4. Compared to that figure, here it is much easier to see the differences between clouds.



Time (s) Compactness (%) Accuracy (%)
Lower Bound - - 26.5 ± 3.9

Independent Clouds 143.3 35.12 23.4 ± 3.8

Coordinated Storm (Iterative) 250.9 20.39 54.7 ± 4.5

Coordinated Storm (Combined) 2658.5 33.71 54.2 ± 4.5

Upper Bound - - 67.9 ± 4.2

Table 1: Automatic evaluation of word storm algorithms. The small numbers indicate 95% confidence intervals.

a storm generated by the combined algorithm (Figure 5).
From either set of clouds, we can get a superficial idea of
the corpus. We can see the most important words such
as “materials”, which appears in the first five clouds, and
some other words like “alloys”, “polymer” and “mathemati-
cal”. However, it is hard to get more information than this
from the independent clouds.
On the other hand, by looking at the coordinated storm

we can obtain more information. First, it is instantly clear
that the first five documents are similar and that the sixth
one is different from the others. This is because the storm
reveals the shared structure in the documents, formed by
shared words such as “materials”, “properties” and “applica-
tions”. Second, we can easily tell the presence or absence
of words across clouds because of the consistent attributes
and locations. For example, we can quickly see that “prop-
erties” does not appear in the sixth cloud or that “coatings”
only occurs in two of the six. Finally, the transparency of
the words allows us to spot the informative terms quickly,
such as “electron” (a), “metal” (b), “light” (c), “crack” (d),
“composite” (e) and “problems” (f). All of these terms are
informative of the document content but are difficult to spot
in the independent clouds of Figure 4. Overall, the coordi-
nated storm seems to afford deeper analysis than the inde-
pendently generated clouds.
Similarly, from the ICML 2012 data set, Figure 1 shows

a storm containing all the papers from a single conference
session. It is immediately apparent from the clouds that the
session discusses optimization algorithms. It is also clear
that the papers (c) and (d) are very related since they share
a lot of words such as “sgd”, “stochastic” and“convex”which
results in two similar layouts. The fact that shared words
take similar positions can force unique words into similar
positions as well, which can make it easy to find terms that
differentiate the clouds. For example, we can see how“herd-
ing” (f), “coordinated” (g) and “similarity” (h) are in the
same location or “semidefinite” (a), “quasi-newton” (b) and
“nonsmooth” (d) are in the same location.

Finally, Figures 2 and 3 show an example of a hierar-
chical set of storms generated from the EPSRC grant ab-
stracts. Figure 2 presents a storm created by grouping all
abstracts by their top level scientific program. There we
can see two pairs of similar programmes: Chemistry and
Physical Sciences; and Engineering and Information Com-
munication and Technology. In Figure 3, we show a second
storm composed of six individual grants from the Complex-
ity programme (Cloud (e) in Figure 2). It is interesting to
see how big words in the top level such as “complex”, “sys-
tems”, “network”and“models”appear with different weights
in the grant level. In particular, the term “complex”, that
it is rare when looking at the top level, appears everywhere
inside the complexity programme. Because of our use of

transparency, this term is therefore prominent in the top
level storm but less noticeable in the lower level storm.

5.2 Automatic Evaluation
We propose a novel automatic method to evaluate word

storm algorithms. The objective is to assess how well the
relations among documents are represented in the clouds.
The motivation is similar in spirit to the celebrated BLEU
measure in machine translation [12]: Automatic evaluation,
rather than a user study, allows rapid and inexpensive com-
parison of algorithms. Our automatic evaluation requires a
corpus of labelled documents, e.g., with a class label that
indicates their topic. The main idea is: If the visualization
is faithful to the documents, then it should be possible to
classify the documents using the pixels in the visualization
rather than the words in the documents. So we use classifi-
cation accuracy as a proxy measure for visualization fidelity.

In the context of word storms, the automatic evaluation
consists of: (a) generating a storm from a labelled corpus
with one cloud per document, (b) training a document clas-
sifier using the pixels of the clouds as attributes and (c)
testing the classifier on a held out set to obtain the classi-
fication accuracy. More faithful visualizations are expected
to have better classification accuracy.

We use the Research Perspectives EPSRC data set with
the research programme as the class label. Thus, we have a
single-label classification problem with 6 classes. The data
was randomly split into a training and test set using an
80/20 split. We use the word storm algorithms to create
one cloud per abstract, so there are 2358 clouds in total.
We compare three layout algorithms: (a) creating the clouds
independently using the spiral algorithm, which is our base-
line; (b) the iterative algorithm with 5 iterations and (c)
the combined algorithm, using 5 iterations of the iterative
algorithm to initialize the gradient method.

We represent each cloud by a vector of the RGB values of
its pixels. We perform feature selection, discarding features
with zero information gain. We classify the clouds by using
support vector machines with normalized quadratic kernel
and an all-pairs method. As a lower bound, classifying all in-
stances as the most common class (ICT) yields an accuracy
of 26.5%. To obtain an upper bound, we classify the doc-
uments directly using bag-of-words features from the text,
which should perform better than transforming the text into
a visualization. Using a support vector machine with nor-
malized quadratic kernel and an all-pairs method, this yields
an accuracy of 67.9%.

Apart from the classification accuracy, we also report the
running time of the layout algorithm (in seconds),3 and the
compactness of the word clouds. We use this measure be-

3All experiments were run on a 3.1 GHz Intel Core i5 server
with 8GB of RAM.



cause informally we noticed that more compact clouds tend
to be more visually appealing. We compute the compact-
ness by taking the minimum bounding box of the cloud and
calculating the percentage of non-background pixels.
The results are shown in Table 1. Creating the clouds

independently is faster than any coordinated algorithm and
also produces very compact clouds. However, for classifica-
tion, this method is no better than random. The algorithms
to create coordinated clouds, the iterative and the combined
algorithm, each achieve a 54% classification accuracy, which
is significantly higher than the lower bound. This confirms
the intuition that by coordinating the clouds, the relations
among documents are better represented. We also report
the 95% confidence intervals for the accuracy, which indi-
cate that the difference in accuracy between either of the
coordinated storm methods and the independent word cloud
method is statistically significant. The difference in accuracy
between the two coordinated methods is not significant.
It is worth noting that this is a difficult classification prob-

lem even given the textual features. We speculate that this
may be due to the degree of textual overlap between the
abstracts in the different research programmes. It is less
surprising that the accuracy of the classifier using indepen-
dent clouds is low, because for these clouds, the color values
of individual pixels have no semantics individually.
The differences between the coordinated methods can be

seen in the running time and in the compactness. Although
the iterative algorithm achieves much better classification
accuracy than the baseline, it produces much less compact
clouds. The combined algorithm, on the other hand, matches
both the compactness of independently built clouds (33.71%
combined and 35.12% independent) and the classification ac-
curacy of the iterative algorithm. The combined algorithm is
significantly more expensive in computation time, although
this is still only 1.1s for each cloud in the storm. There-
fore, although the combined algorithm requires more time,
it seems the best option, because the resulting storm offers
good classification accuracy without losing compactness.
A potential pitfall with automatic evaluations is that algo-

rithms can game the system, producing visualizations that
score better but look worse. It is arguable that this may have
happened in machine translation, in which BLEU has been
optimized by the research community for many years. We
attempt to avoid this by choosing an measure for the auto-
matic evaluation (classification accuracy) that is not directly
optimized by the algorithms. But the concern of “research
community overfitting” could become more serious if auto-
mated evaluation of visualization is widely adopted.

5.3 User Study
In order to confirm our results using the automatic evalu-

ation, we conducted a pilot user study comparing the stan-
dard independent word clouds with coordinated storms cre-
ated by the combined algorithm. The study consisted of 5
multiple choice questions. In each of them, the users were
presented with six clouds and were asked to perform a sim-
ple task. The tasks were of two kinds: checking the presence
of words and comparing documents. The clouds for each
question were generated either as independent clouds or a
coordinated storm. In every question, the user received one
of the two versions randomly.4 Although users were told in

4The random process ensured that we would have the same
number of answers for each method.

the beginning that word clouds had been built using different
methods, the number of different methods was not revealed,
the characteristics of the methods were not explained and
they did not know which method was used for each ques-
tion. Moreover, in order to reduce the effect of possible bias
factors, the tasks were presented in a random order and the
6 clouds in each question were also sorted randomly. The
study was taken by 20 people, so each question was answered
10 times using the independent clouds and 10 times using a
coordinated storm.

Table 2 presents the results of the study. The first three
questions asked the users to select the clouds that contained
or lacked certain words. We manually chose words that were
prominent in both sets of clouds. We report the mean preci-
sion and recall across users, as well as the time required for
users to answer. The results show that although the preci-
sion and recall are high in both cases and the differences are
small, the coordinated storm always has a higher score than
the independent clouds. Although this result is not statis-
tically significant, it is still remarkable because we did not
explain the concept of coordinated word storm to the users,
so they would not have known to look for the same words in
the same locations. This might be because the structured
layout helped the users to find words, even though the users
did not know how the storms were laid out.

The last two questions asked the users to compare the doc-
uments and to select “the cloud that is most different from
all the others” and “the most similar pair of clouds”. As co-
ordinated word storms are designed to highlight similarities
and differences between documents, these are the questions
in which we expect to see the greatest difference between
methods. For question 4, the clouds had a cosine similar-
ity5 lower than 0.3 with all the others, while all others pairs
had a similarity higher than 0.5. In the last question, the
most similar pair of clouds had a cosine similarity of 0.71,
while the score of the second most similar was 0.48. As
these questions have exactly one correct answer, we report
the accuracy, instead of the precision and recall.

The results for the last two questions show that the coordi-
nated storm is much more effective than independent clouds
in allowing users to compare and contrast documents. Of the
users presented with the coordinated storms, 90% answered
question 4 correctly and 70% answered question 5 correctly,
whereas only 30% and 10% of users, respectively, answered
correctly when shown the independent version. This dif-
ference is highly significant (t-test; p < 0.005). This con-
firms that coordinated storms allow the users to contrast
the clouds and understand their relations, while indepen-
dent clouds are misleading in these tasks.

Although the sample size is small, results favour the co-
ordinated storm. In particular, when the users are asked
to compare clouds, the differences in user accuracy are ex-
tremely large. Regarding the answering time, the differences
between the two conditions are not significant.

6. RELATED WORK
Word clouds were inspired by tag clouds, which were intro-

duced to summarize and browse a user-specified folksonomy.

5The documents were taken using the bag of words represen-
tation with frequencies. The cosine similarity was computed
twice: considering all words in the document and only con-
sidering the top 25 words included in the cloud.



Question Independent clouds Coordinated Storm

1 Select clouds with the word “technology”
Precision (%) 90 100
Recall (%) 65 85
Time (s) 51 ± 23 36 ± 10

2 Select clouds without the word “energy”
Precision (%) 90 93
Recall (%) 85 95
Time (s) 56 ± 18 40 ± 14

3
Select clouds with the words
“models”, “network” and “system”

Precision (%) 75 90
Recall (%) 90 100
Time (s) 87 ± 35 124 ± 46

4 Select the single most unusual cloud
Accuracy (%) 30 90 *
Time (s) 36 ± 12 23 ± 10

5 Select the most similar pair of clouds
Accuracy (%) 10 70 *
Time (s) 54 ± 23 75 ± 19

Table 2: Results of the user study. Users are more effective at comparing documents when shown coordinated storms.
The“time” rows report the mean and standard deviation across users. Stars indicate statistical significance (p < 0.005).

Originally, the tags were organized in horizontal lines and
sorted by alphabetical order, a layout that is still used in
many websites such as Flickr and Delicious. Word clouds,
such as those generated by Wordle [8, 19], extend this idea
to document visualization. However, the topic of visualizing
corpora using word clouds has received much less attention.
Researchers have proposed creating the clouds using differ-
ent importance measures, such as tf∗idf [9] or by the relative
frequency when only the relations of a single document have
to be analysed [14, 4]. Nevertheless, it can still be difficult
to compare the resulting clouds and find shared words.
Collins et al. [5] presented Parallel Tag Clouds, a method

that aims to make comparisons easier by representing the
documents as lists. Although alphabetical lists are informa-
tive and easy to understand, our work aims to retain the
aesthetic appeal of word clouds while improving their infor-
mativeness. The closest work to ours is Cui et al. [6], which
was later improved by Wu et al. [20]. This work proposes
using a sequence of word clouds along with a trend chart
to show the evolution of a corpus over time. They present
a new layout algorithm with the goal of keeping semanti-
cally similar words close to each other in each cloud. This
is a different goal from ours: Preserving semantic relations
between words within a cloud is different than coordinating
similarities across clouds, and does not necessarily result in
similar documents being represented by similar clouds.
Our approach, in common with Wordle and many other

text visualization methods, does not attempt to resolve cases
of synonymy and polysemy. One can imagine potential ex-
tensions to our method to handle this, e.g., by incorporat-
ing word sense disambiguation [11] to visually distinguish
different word senses, or by incorporating topic modelling
methods [1] to visually conflate words that are semantically
similar. These extensions are left to future work.
An alternative general approach to visualization of docu-

ment collections is to employ dimensionality reduction meth-
ods, for which there is an extensive literature [7, 1, 13, 15,
18]. These methods can be used to assign each document to
a single point in a low-dimensional latent space that can be
explored visually. Indeed, topic models have previously been
applied to the grant proposals data set [10]. Word clouds
and their ilk take an alternative approach. Instead of map-
ping documents into a low-dimensional space, documents are

mapped into a high dimensional space, but one that is well
suited to the human visual system. One advantage of this
is that the high dimensional representation, e.g., the word
cloud, can convey some information about the document on
its own. Another advantage is aesthetic. Word clouds are
extremely popular among users — to give a crude indica-
tion, the query “word cloud” currently returns 357 million
hits on Google, whereas “latent Dirichlet allocation” returns
157 thousand. This indicates the potential value of work
that aims to increase the statistical informativeness of pop-
ular visualization methods that have clear aesthetic appeal.

7. CONCLUSIONS
We have introduced the concept of word storms, which

is a group of word clouds designed for the visualization of
a corpus of documents. We presented a series of princi-
ples for effective storms, arguing that the clouds in a storm
should be built in a coordinated fashion, so that similar doc-
uments have similar clouds. We presented a novel algorithm
that builds coordinated word storms, placing shared words
in a similar location across clouds. Using both an auto-
matic evaluation and a user study, we showed that coordi-
nated storms were markedly superior to independent word
clouds for comparing and contrasting documents. Future
work could explore ways of organizing hierarchical storms
for large collections for which it is impossible to view all of
the clouds at once, and informative ways of arranging the
clouds within a storm. Source code implementing the algo-
rithms in this paper is available [3].
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