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Abstract. Unwanted behaviours, such as interception and forwarding
of incoming messages, have been repeatedly seen in Android malware.
We study the problem of learning unwanted behaviours from malware
instances and verifying the application in question to deny these be-
haviours. We approximate an application’s behaviours by an automaton,
i.e., finite control-sequences of events, actions, and annotated API calls,
and develop an e�cient machine-learning-centred method to construct
and choose abstract sub-automata, to characterise unwanted behaviours
exhibited in hundreds and thousands of malware instances. By taking
the verification results against unwanted behaviours as input features,
we show that the performance of detecting new malware is improved
dramatically, in particular, the precision and recall are respectively 8%
and 51% better than those using API calls and permissions, which are
the best performing features known so far. This is the first automatic
approach to generate unwanted behaviours for machine-learning-based
Android malware detection. We also demonstrate unwanted behaviours
constructed for well-known malware families. They compare well to those
described in human-authorised descriptions of these families.

Keywords: mobile security, static analysis, software verification, ma-
chine learning, malware detection

1 Introduction

Android malware, including trojans, spyware and other kinds of unwanted soft-
ware, has been increasingly seen in the wild and even on o�cial app stores [2,
4, 22, 45]. Researchers and malware analysts have organised malware instances
into hundreds of families [37, 45], e.g., Basebridge, Geinimi, Ginmaster, Spitmo,
Zitmo, etc. These malware instances share certain unwanted behaviours, for ex-
ample, sending premium messages constantly, collecting personal information,
loading classes from hidden payloads then executing commands from remote
servers, and so on. Except some inaccurate online analysis reports [1, 3, 5, 6, 32]
of identified malware families, however, people have no idea of what exactly
happens in these malware instances.
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We want to learn unwanted behaviours from hundreds and thousands of
malware instances and verify the application in question to deny them. We will
show that these unwanted behaviours can improve the classification performance
of detecting new malware. Our approach is outlined as follows.

• Formalisation. We approximate an Android application’s behaviours by a
finite-state automaton, that is, finite control-sequences of events, actions, and
annotated API calls. Since di↵erent API calls might indicate the same be-
haviour, we abstract the automaton by aggregating API calls into permission-
like phrases. We call it a behaviour automaton.

• Learning. An unwanted behaviour is a common behaviour which is shared
by malware instances and has been rarely seen in benign applications. We
develop a machine-learning-centred method to infer unwanted behaviours, by
e�ciently constructing and selecting sub-automata from behaviour automata
of malware instances. This process is guided by the behavioural di↵erence
between malware and benign applications.

• Refinement. To purify unwanted behaviours, we exploit the family names
of malware instances to help figure out the most informative unwanted be-
haviours. We compare unwanted behaviours with the human-authorised de-
scriptions for malware families, to ensure that they match well with patterns
described in these descriptions.

• Verification. We check whether the application in question has any security
fault by verifying whether the intersection between its behaviour automaton
and an unwanted behaviour is not empty.

To simulate new malware detection, we take malware instances released in
di↵erent years and collected from di↵erent sources respectively as training, vali-
dation and testing sets. We use a group of malware and benign applications re-
leased before 2014 as the training and validation sets. Malware instances in these
sets were collected from Malware Genome Project [45] and Mobile-Sandbox [37].
We take a collection of malware and benign applications released in 2014 as the
testing set. They were supplied by Intel Security. We use API calls, permissions,
and the verification results against unwanted behaviours as input features; then
apply L1-Regularized Linear Regression [30, 39] to train classifiers. The evalu-
ation on the testing set shows that the precision and recall of using unwanted
behaviours are respectively 8% and 51% better than those of using API calls
and permissions, which are the best performing input features known so far for
machine-learning-based Android malware detectors. As shown in Table 2, using
API calls and permissions as input features, can achieve very good precision and
recall on the validation set, however, its classification performance on the testing
set is poor. That is, unwanted behaviours are more general than API calls and
permissions. This is needed in practice, to mitigate over-fitting and improve the
robustness of malware classifiers.

Our approach is the first to automatically generate unwanted behaviours for
Android malware classification. The main contributions of this paper are:

• We show that it is hard to detect new malware for classifiers trained on
identified malware. We demonstrate that by using semantics-based features
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like unwanted behaviours, the classification performance of detecting new
malware is dramatically improved.

• We have designed and implemented a static analysis tool to construct be-
haviour automata from the byte-code of Android applications, with regard
to a broad range of features of the Android framework.

• The complexity of constructing all sub-automata is exponential in the num-
ber of malware instances. We propose and apply a new machine-learning-
centred algorithm to combat this.

• We develop a refinement approach to look up the most informative unwanted
behaviours, by making use of the family names of malware instances.

2 An Example Unwanted Behaviour

Let us consider a malware family called Ggtracker. A brief description of this
family, which was produced by Symantec [6], is as follows.

It sends SMS messages to a premium-rate number. It monitors received

SMS messages and intercepts SMS messages. It may also steal informa-

tion from the device.

One of unwanted behaviours we have learned from malware instances in this fam-
ily can be expressed as the regular expression: SMS RECEIVED . SEND SMS.
The approach to learn these unwanted behaviours will be elaborated in Sections 4
and 5. It denotes the behaviour of sending an SMS message out immediately af-
ter an incoming SMS message is received. We generalise from this unwanted
behaviour and construct the following automaton.

 : // q0
SMS RECEIVED //

⌃�{click}

  
q1

SEND SMS //

⌃�{click}

  
q2

⌃�{click}

  

Here, we use the symbol ⌃ to denote the collection of events, actions, and
permission-like phrases and the word “click” to denote that there is no inter-
action from the user. This automaton formalises the unwanted behaviour of
sending an SMS message out after an incoming SMS message is received with no
interaction from the user. It is actually a set of super-sequences of the sequence
SMS RECEIVED . SEND SMS.

We now want to verify whether a target application has the above unwanted
behaviour. Let us consider the following behaviour automaton A. It is con-
structed from the byte-code of an Android application. Its source code and the
method to construct behaviour automata will be given in Section 3.

A :

// q0
MAIN //

SMS RECEIVED

✏✏

q1
SEND SMS //

click

  
q2

SEND SMS

  

q3
READ PHONE STATE

// q4

READ PHONE STATE

OO
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It tells us: this application has two entries which are respectively specified by
actions MAIN and SMS RECEIVED; it will collect information like your phone
state, then send SMS messages out; the behaviour of sending SMS messages can
also be triggered by a user interaction, e.g., click a button, touch the screen,
long-press a picture, etc., which is denoted by the word “click”. All states in this
automaton are accepting states since any prefix of an application’s behaviours
is one of its behaviours as well.

Because the intersection between A and  is not empty, we consider this
application is unsafe with respect to the unwanted behaviour  . In Section 6,
we will show that this verification against unwanted behaviours can improve the
classification performance of new malware detecting.

3 Behaviour Automata

We use a simplified synthetic application to illustrate the construction of be-
haviour automata. This application will constantly send out the device ID and
the phone number by SMS messages on background when an incoming SMS
message is received. Its source code and part of its manifest file are as follows.

/* Main.java */

public class Main extends
Activity implements View.OnClickListener {
private static String info = "";
protected void onCreate(Bundle savedInstanceState) {

Intent intent = getIntent ();
info = intent.getStringExtra("DEVICE_ID");
info += intent.getStringExtra("TEL_NUM");
Task task = new Task ();
task.execute (); }

public void onClick (View v) {
Task task = new Task ();
task.execute (); }

private class Task extends AsyncTask <Void , Void , Void > {
protected Void doInBackground(Void ... params) {

while (true) {
SmsManager sms = SmsManager.getDefault ();
sms.sendTextMessage("1234", null , info , null , null); }

return null; }}}

/* Receiver.java */

public class Receiver extends BroadcastReceiver {
public void onReceive(Context context , Intent intent) {

Intent intent = new Intent ();
intent.setAction("com.main.intent");
TelephonyManager tm = (TelephonyManager)
getBaseContext (). getSystemService(Context.TELEPHONY_SERVICE );
intent.putExtra("DEVICE_ID", tm.getDeviceId ());
intent.putExtra("TEL_NUM", tm.getLine1Number ());
sendBroadcast(intent ); }}

/* AndroidManifest .xml */

<activity android:name="com.example.Main" >
<intent -filter >

<action android:name="android.intent.action.MAIN" />
<action android:name="com.main.intent" />

</intent -filter >
</activity >
<receiver android:name="com.example.Receiver" >

<intent -filter >
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<action android:name="android.provider.Telephony.SMS_RECEIVED" />
</intent -filter >

</receiver >

As specified in AndroidManifest.xml, the Main activity can handle a specific
Intent called “com.main.intent” and the Receiver will be triggered by an incom-
ing SMS message (SMS RECEIVED). After the Receiver collects the device ID
and the phone number, it will send them out by a broadcast with the intent
“com.main.intent”. This broadcast is then handled by the Main activity in the
method onCreate. Afterwards, SMS messages containing the device ID and the
phone number are sent out on background in an AsyncTask.

We compile this application. From its byte-code we construct the following
automaton.

// q0
MAIN //

SMS RECEIVED

✏✏

q1
AsyncTask: sendTextMessage //

click

  
q2

AsyncTask: sendTextMessage

  

q3
Receiver: getDeviceId

// q4

Receiver: getLine1Number

OO

This automaton is a collection of finite control-sequences of actions, events, and
annotated API calls. Actions reflect what happens in the environment and what
kind of service an application requests for, e.g., an incoming message is received,
the device finishes booting, the application wants to send an email by using the
service supplied by an email-client, etc. Events denote the interaction from the
user, e.g., clicking a picture, pressing a button, scrolling down the screen, etc.
Annotated API calls tell us whether the application is doing anything we are
interested in. For instance, getDeviceID, getLine1Number, and sendTextMessage
are annotated API calls in the above example.

Notice that for a single behaviour there are often several related API meth-
ods. For example, getDeviceId, getLine1Number, and getSimSerialNumber are
all related to the behaviour of reading phone state. We want to categorise API
methods into a set of phrases, which describe behaviours of applications, so as
to remove redundancy caused by API calls which indicate the same behaviour.
This results in an abstract automaton, so-called a behaviour automaton. It has
several advantages, including: more resilient to variants of behaviours, such as
swapping two API calls related to the same behaviour; more compact than the
original automata, which is good for human-understanding and further analy-
sis, by reducing the number of labels on the edges. For instance, the behaviour
automaton for the above example is the automaton A depicted in Section 2.

To construct such a behaviour automaton directly from an Android applica-
tion, we have modelled complex real-world features of the Android framework,
including: inter-procedural calls, callbacks, component life-cycles, permissions,
actions, events, inter-component communications, multiple threads, multiple en-
tries, nested classes, interfaces, and runtime-registered listeners. We don’t model
registers, fields, assignments, operators, comparison, pointer-aliases, arrays or
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exceptions. The choice of which features to model is a trade-o↵ between ef-
ficiency and precision. Automata are much more accurate than the manifest
information, e.g., permissions and actions, which were often used as input fea-
tures for malware detection or mitigation [12, 23, 25]. Compared with a simple
list of API calls appearing in code, an automaton can capture more sophisti-
cated behaviours. This is needed in practice, because: API calls appearing in
code contain “noise” caused by dead code and libraries [7]; and, some unwanted
behaviours only arise when some API methods are called in certain orders [17, 31,
43]. On the other hand, automata are less accurate than models which capture
data-flows. However, it is much easier to generate behaviour automata using our
tool for applications en masse than generating data-flows using tools like Flow-
Droid [10] or Amandroid [41]. In particular, people can annotate appealing API
methods to generate compact behaviour automata more e�ciently, rather than
considering all data-dependence between statements.

In our implementation, we use an extension of permission-governed API
methods generated by PScout [11] as annotations. The Android platform tools
aapt and dexdump are respectively used to extract the manifest information and
to decompile byte-code into assembly code, from which we construct the automa-
ton. It took around two weeks to generate automata for 10, 000 applications using
a multi-core desktop computer.

4 Learning Unwanted Behaviours

Once a behaviour automaton has been constructed for each malware instance, we
want to capture the common behaviour shared by malware, which is rarely seen
in benign applications, so-called an unwanted behaviour. The space of candidate
behaviours, which consists of the intersection and di↵erence between behaviour
automata, in theory, is exponential in the number of sample applications. To
combat this, we approximate this space by searching for a “salient” subspace.
The searching process is guided by the behavioural di↵erence between malware
and benign applications. We formalise this process as the following algorithm.

Function: construct features (G,↵)
Input: G – a group of behaviour automata

↵ – the lower bound on the classification accuracy
Output: salient sub-automata and their weights
1: Gi2[0..N�1]  divide the set G into N groups
2: for i 2 [0..N � 1]
3: Fi  merge features (Gi, ;)
4: s 2
5: while s  N
6: for i 2 [0..N � 1]
7: j  i� (s/2)
8: if (i+ 1)%s = 0 then
9: (Fi, ), (Fj , ) di↵ features (Fi,↵), di↵ features (Fj ,↵)
10: Fi  merge features (Fi, Fj)
11: elif (i+ 1) > (N/s)⇥ s and (i+ 1)%(s/2) = 0 then
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12: (Fi, ), (Fj , ) di↵ features (Fi,↵), di↵ features (Fj ,↵)
13: s s⇥ 2
14: return di↵ features (Fs/2�1,↵)

Function: merge features (E,F )
1: for e 2 E
2: for f 2 F
3: if f � e 6= ; then F  F [ {f � e}
4: if f \ e 6= ; then F  F [ {f \ e}
5: if f � e 6= f and f \ e 6= f then F  F � {f}
6: e e� f
7: if e 6= ; then F  F [ {e}
8: return F

Function: diff features(F,↵)
1: D  add an equal number of randomly-chosen benign applications

2: into the set of malware instances from which F was collected

3: W,acc train (D,F )
4: if acc > ↵ then F  {f 2 F | Wf 6= 0}
5: return F,W

The main process construct features takes a collection G of behaviour automata
as input and outputs a set F of salient sub-automata with their weights W .
Here, a sub-automaton is salient if it is actually used in a linear classifier, i.e.,
its weight is not zero.

We randomly divide G into N groups: G0, . . . , Gi, . . . , GN�1. For each group,
we construct sub-automata by computing the intersection and di↵erence between
automata within this group, i.e., merge features (Gi, ;). This results in N feature
sets F0, . . . , Fi, . . . , FN�1. The sub-automata in each set are disjoint. Then, we
merge sub-automata from di↵erent groups, i.e., merge features (Gi, Gj). This
process stops until all groups have been merged into a single group.

Before merging sub-automata from two di↵erent groups, for each group, we
train a linear classifier, i.e., train (D,F ), using a training set D and a feature set
F . This training set consists of behaviour automata of malware instances in the
group and an equal number of behaviour automata of randomly-chosen benign
applications. The input feature set F consists of disjoint sub-automata, which are
constructed from behaviour automata of malware instances in the group. Then,
if the classification accuracy acc on the training set is above a lower bound ↵, we
return sub-automata with non-zero weights. Otherwise, we return all features in
F . This process di↵erentiates salient features by adding benign applications. It
is formalised as the function di↵ features.

In our implementation, we adopt L1-Regularized Logistic Regression [30, 39]
as the training method. This is because this method is specially designed to use
fewer features. We set the lower bound ↵ on the classification accuracy to 90%.
We have also designed and implemented a multi-process program to accelerate
the construction, i.e., construct sub-automata for each group simultaneously. It
took around one week to process 4, 000 malware instances using a multi-core
desktop computer. At the end of the computation, we produced around 1, 000
salient sub-automata.
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We will use these salient sub-automata to characterise unwanted behaviours.
A straightforward way is to choose automata by their weights, for example, those
with negative weights, i.e., {f 2 F | Wf < 0}. More complex methods to capture
unwanted behaviours will be discussed in next section.

5 Refining Unwanted Behaviours

To purify unwanted behaviours, we want to exploit the family names of malware
instances to figure out the most informative ones, that is, to choose a small set of
salient sub-automata to characterise unwanted behaviours for each family. Here
are several candidate methods:

� Top-n-negative. For a linear classifier, intuitively, a feature with a negative
weight more likely indicates an unwanted behaviour, and a feature with a
positive weight more likely indicates a normal behaviour. This observation
leads us to refine unwanted behaviours by using sub-automata with negative
weights, i.e., choose the top-n features from the set {f 2 F | Wf < 0} by
ranking the absolute values of their weights.

� Subset-search. For each malware family, we choose a subset X of salient
sub-automata, such that it largely covers and is strongly associated with
malware instances in this family. Formally, we use Pr(f |X) to denote the
probability of a malware instance belonging to a family f if all automata
in X are sub-automata of the behaviour automaton of this instance, and
Pr(X|f) to denote the probability of all automata in X are sub-automata
of the behaviour automaton of a malware instance if this instance belongs
to f . We use F1-measure as the evaluation function to look up subsets. i.e.,
2Pr(f |X)Pr(X|f)
Pr(f |X)+Pr(X|f) . Since exhaustively searching a power-set space is expensive,

we adopt Beam Search [33, Chapter 6] to approximate the best K-subsets.
� TF-IDF. Another method is to consider features as terms, features from

malware instances in a family as a document, and the multi-set of features
as the corpus. We rank features by their TF-IDF (term frequency and inverse
document frequency) and choose a maximum of m features to characterise
unwanted behaviours of each family.

We collected more than 4, 000 malware instances from Malware Genome
Project [1, 45] and Mobile-Sandbox [9, 37]. They have been manually investi-
gated and organised into around 200 families by third-party researchers and
malware analysts. We collected human-authorised descriptions for these families
from their online analysis reports [1, 3, 5, 6, 32].

We then produce salient sub-automata from these malware instances by ap-
plying the algorithm in previous section and construct unwanted behaviours for
each family by combining all methods discussed earlier. We list manual descrip-
tions and learned unwanted behaviours of 10 prevalent families in Table 1.

A subjective comparison shows that these learned unwanted behaviours com-
pare well to their manual descriptions. Also, they reveal trigger conditions of
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manual description
learned unwanted behaviours
in regular expressions

Arspam. Sends spam SMS messages to
contacts on the compromised device [6].

1. BOOT COMPLETED . SEND SMS

Anserverbot. Downloads, installs, and exe-
cutes payloads [1].

1. UMS CONNECTED .LOAD CLASS⇤ .
(ACCESS NETWORK STATE |READ
PHONE STATE | INTERNET) . (ACCE
SS NETWORK STATE |READ PHONE
STATE | INTERNET |LOAD CLASS)⇤

Basebridge. Forwards confidential details
(SMS, IMSI, IMEI) to a remote server [3].
Downloads and installs payloads [1, 6].

1. UMS CONNECTED . (INTERNET |
LOAD CLASS |READ PHONE STATE |
ACCESS NETWORK STATE)+

Cosha. Monitors and sends certain infor-
mation to a remote location [6].

1. MAIN . click . (click |ACCESS FINE
LOCATION |DIAL)⇤ . DIAL . (click |
ACCESS FINE LOCATION |DIAL)⇤ .
(INTERNET | ✏)

2. SMS RECEIVED . (INTERNET |
ACCESS FINE LOCATION)+

Droiddream. Gains root access, gathers in-
formation (device ID, IMEI, IMSI) from
an infected mobile phone and connects
to several URLs in order to upload this
data [1, 3].

1. PHONE STATE . (ACCESS NETWORK
STATE |READ PHONE STATE+ .
INTERNET) . (ACCESS NETWORK
STATE | INTERNET)⇤

Geinimi. Monitors and sends certain in-
formation to a remote location [6]. Intro-
duces botnet capabilities with clear indi-
cations that command and control (C&C)
functionality could be a part of the Geinimi
code base [5].

1. ✏ |MAIN . click+ . VIBRATE . (click |
VIBRATE)⇤ . RESTART PACKAGES .
(MAIN . (click |VIBRATE)⇤ . RESTART
PACKAGES)⇤

2. BOOT COMPLETED . (ACCESS
NETWORK STATE | click | INTERNET |
RESTART PACKAGES |ACCESS FINE
LOCATION)+

Ggtracker. Monitors received SMS mes-
sages and intercepts SMS messages [3]

1. MAIN .READ PHONE STATE
2. SMS RECEIVED . SEND SMS

Ginmaster. Sends received SMS messages
to a remote server [32]. Downloads and
installs applications without user con-
cern [32].

1. BOOT COMPLETED .LOAD CLASS
2. MAIN . SEND SMS

Spitmo. Filters SMS messages to steal
banking confirmation codes [6].

1. NEW OUTGOING CALL .READ PHO
NE STATE . INTERNET . (INTERNET | ✏)

Zitmo. Opens a backdoor that allows a re-
mote attacker to steal information from
SMS messages received on the compro-
mised device [6].

1. SMS RECEIVED . SEND SMS
2. MAIN .READ PHONE STATE
3. MAIN . SEND SMS

Table 1. Learned unwanted behaviours versus manual descriptions.
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some behaviours, which were often lacking in manual descriptions. For exam-
ple, the expression BOOT COMPLETED.SEND SMS denotes that after the
device finishes booting, this application will send a message out; the expression
UMS CONNECTED.LOAD CLASS means that when a USB mass storage is
connected to the device, this application will load some code from a library or a
hidden payload; and the unwanted behaviour for Droiddream shows that if the
phone state changes (PHONE STATE), this application will collect information
then access Internet. Within manual descriptions displayed in Table 1, only two
behaviours are not captured by learned unwanted behaviours: “gain root access”
for Droiddream and the behaviour of Spitmo.

6 Evaluation: Detecting New Malware

We are concerned with whether unwanted behaviours can help improve the ro-
bustness of malware classification. As we will show in Table 2, a linear classifier
using API calls and permissions as input features, which are popular input fea-
tures for Android malware detectors [7, 9, 12, 15, 29, 44], performs badly on new
malware instances (the testing set), although it has a very good classification
performance on the validation set. In this section, we will show that unwanted
behaviours improve the classification performance of new malware detection.

We collected 3, 000 malware instances, which have been discovered before
2014, and 3, 000 randomly-chosen benign applications. They include some fa-
mous benign applications, such as Google Talk, Amazon Kindle, and Youtube,
and so on; and all malware instances from Malware Genome Project [1, 45] and
most malware instances from Mobile-Sandbox [9, 37]. These malware instances
have been manually investigated and organised into around 200 families by third-
party researchers and malware analysts. By reading their online malware analysis
reports [1, 3, 5, 6, 32], we learned what bad things would happen in these mal-
ware instances. We divided them into a training set and a validation set. Each
of them consists of 1, 500 malware instances across all families and 1, 500 benign
applications.

We test using a collection of 1, 500 malware instances, which were released in
2014, and 1, 500 randomly-chosen benign applications. These malware instances
were from Intel Security and have been investigated by malware analysts. But,
there is no family information or online analysis report about them. We have no
idea of unwanted behaviours of these malware instances.

Permissions and lists of API calls appearing in code are extracted from these
applications as input features to train classifiers as baselines.

We construct behaviour automata for all applications, then apply methods
discussed in Sections 4 and 5 to learn unwanted behaviours from malware in-
stances in the training set. Some behaviours of the application in question are not
the same as unwanted behaviours, but, they often have unwanted behaviours as
sub-sequences. For example, although the word SMS RECEIVED.SEND SMS
is not accepted by the automaton A in Section 2, A accepts some sequences
containing this word as a subsequence, i.e., SMS RECEIVED.READ PHONE
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STATE.READ PHONE STATE.SEND SMS+. To capture behaviours sharing
the same patterns with unwanted behaviours, if a behaviour contains an un-
wanted behaviour as a sub-sequence, we consider this behaviour as unwanted
as well. We call them extended unwanted behaviours. We check whether the in-
tersection between the behaviour automaton of the application in question and
an (extended) unwanted behaviour is not empty. We collect these verification
results as input features to train the target classifiers.

For both baselines and target classifiers, we use L1-Regularized Logistic Re-
gression [30, 39] as the training method.

feature validation ( 2011–13) testing (2014)

#salient/#feature
training (2011–13) precision recall precision recall

signature-based features (baselines)

permissions 89% 99% 53% 21% 59/175

apis 91% 98% 61% 15% 1443/52432

apis & permissions

93% 98% 65% 15% 735/52607

semantics-based features (targets)

unwanted
66% 91% 53% 74% 634/886

behaviours

ext. unwanted 75% 87% 69% 66% 581/886

ext. unwanted for

72% 72% 73% 66% 131/131
families

mixed features

all 95% 99.5% 65% 7.5% 870/61149

Table 2. Classification performance using di↵erent features.

The classification performance is reported in Table 2. It confirms that:

� Unwanted behaviours dramatically improve the classification performance
on new malware instances. The classification performance using API calls
and permissions as input features is very good on the validation set, i.e.,
the precision and recall are respectively 93% and 98%. However, this is just
over-fitting to the training set, since its performance on the testing set is
bad, in particular, the precision is 65% and recall is 15%. This means that
a lot of new unwanted behaviours cannot be captured by API calls and
permissions. By using the verification results against unwanted behaviours
as input features, we improve the precision to 73% and the recall to 66%, as
shown in the row of “ext. unwanted for families”.

� Refining unwanted behaviours using the family names helps improve the
classification performance of detecting new malware. The precision is in-
creased from 69% (in the row of “ext. unwanted”) to 73% (in the row of
“ext. unwanted for families”), while maintaining the same recall. This re-
finement also helps reduce the number of features which are actually used in
a linear classifier, in particular, totally 131 features were used, rather than
581 features.
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7 Related Work

Our approach is close to the methodology proposed by Fredrikson et al. to
synthesize malware specification [27]. In their work, a data dependence graph
with logic constraints on nodes and edges was used to characterise an app’s be-
haviours. From graphs of malware instances and benign apps they constructed
so-called significant subgraphs that maximise the information gain. Then, sev-
eral optimal collections of subgraphs were selected as specifications by using the
formal concept analysis. They produced 19 specifications using 166 subgraphs
constructed from 534 malware instances in 6 families and 39 benign apps. The
evaluation was done on a collection consisting of 378 new malware instances and
28 benign apps. The main drawback of this method is its scalability. Also, the
training and testing sets are very unbalanced, i.e., the number of benign apps is
much less than that of malware instances.

Our approach is more scalable by using behaviour automata rather than
data-flow models to approximate the behaviours of apps. Instead of using graph
mining and formal concept analysis, we explore the weights assigned by the linear
classifiers to accelerate the searching for salient sub-automata and refine the
learned unwanted behaviours by exploiting the family names. These techniques
enable our approach to deal with hundreds and thousands of malware instances
spread in hundreds of families. Also, we tested on balanced datasets with equal
numbers of malware instances and benign apps. By doing this the precision and
recall are more comparable and convincing.

Machine learning methods have been applied to automatically detect An-
droid malware [7, 9, 12, 15, 20, 28, 29, 38, 44]. DroidAPIMiner [7] uses refined API
calls as features and relies on the KNN (k-nearest neighbours) algorithm. The
method Drebin [9] extracts a broad range of features, such as permissions, com-
ponents, API calls, and intents, from the manifest file and disassembled code,
then trains a SVM classifier. The classifier produced by Yerima et al. [44] ex-
tracts permissions, API calls, and commands as features. Another interesting
tool is CHABADA [29] which detects outliers (abnormal API usage) within
clusters of applications by exploiting OC-SVM (one-class SVM). These clusters
were grouped by descriptions of applications using LDA (Latent Dirichlet Allo-
cation). Among others, the tool Dendroid [38] uses the cosine similarity between
vectors of call graphs of malware to help group unknown malware samples into
identified families. Similar ideas were applied in DroidLegacy [20] to detect pig-
gybacking by exploiting the di↵erence between API sets of modules in malware
instances belonging to di↵erent families. Another interesting tool MAST [15] ex-
ploits MCA (Multiple Correspondence Analysis) to figure out indicative features.
All of these tools and methods were trying to obtain good fits to a dataset by
using di↵erent methods and variant kinds of features. The robustness of malware
classification, in particular, the classifier specifically designed for new malware
detection, has received much less consideration.

Aside from machine learning methods, static and dynamic analysis were ap-
plied to help malware detection in Android applications. Enck et al. [23] ex-
plored combinations of permissions to mitigate malware. Felt et al. [25] detected
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over-privilege of permissions. Tools like TaintDroid [21], CopperDroid [34], and
MonitorMe [31] are able to monitor dynamic behaviours of applications. The tool
ComDroid [18] was designed for the detection of intent-based vulnerabilities. The
tool Apposcopy extracts the weighted API dependency graphs to improve the
classification performance [26]. More sophisticated tools like FlowDroid [10] and
Amandroid [41] can identify paths from sources to sinks of sensitive information.
All of these tools were designed to identify (or eliminate) malware (or unwanted
behaviours) without learning or summarising useful properties for verification
from their analysis results.

The idea of characterising applications’ behaviours as automata is simi-
lar with the behaviour abstraction in [13, 42]. The behaviour automata are
close to permission-event graphs [17], embedded call graphs [28], and behaviour
graphs [43]. But, none of them has been exploited to automatically generate
verifiable properties.

The unwanted behaviours can be considered as instances of security au-
tomata [35]. Our verification approach is the same as the automata-theoretic
model checking [40]. More sophisticated approaches and finer formalisations can
be found in the study of LTL model checking, e.g., Song et. al.’s work [36]. To-
tally 19 malicious properties for Android applications were manually constructed
and specified as the first-order LTL formulae in [31]. Some benign and malicious
properties specified in LTL were verified against hundreds of Android applica-
tions in [17]. But, none of these properties was automatically constructed.

Among others, Angluin’s [8] and Biermann’s [14] algorithms were developed
to learn regular expressions from sample finite strings. To apply similar ideas in
unwanted behaviour construction, we have to extract enough finite strings from
applications. Comparing with the construction of behaviour automata, this will
be more expensive.

8 Conclusion and Further Work

To learn compact, natural, and verifiable unwanted behaviours from Android
malware instances is challenging and has not yet been considered. Compared
with manually-composed properties, unwanted behaviours, which are automati-
cally constructed from malware instances, will be much easier to be updated on
the changes of behaviours exhibited in new malware instances. To the best of our
knowledge, our approach is the first to automatically construct temporal prop-
erties from Android malware instances. We show that unwanted behaviours help
improve the classification performance, in particular, they dramatically increase
the precision and recall of detecting new malware. These unwanted behaviours
can not only be used to eliminate potentially new instances of known malware
families but also help people’s understanding of unwanted behaviours exhibited
in these families.

Some unwanted behaviours cannot be captured by our formalisation, e.g.,
gain root access, and some are not captured precisely enough, e.g., botnet con-
trols. In further work, we want to extend the current formalisation to capture
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more sophisticated behaviours precisely. We will also try to combine the out-
put of dynamic analysis, e.g., traces produced by CopperDroid [34] or Moni-
torMe [31], with that of static analysis to approximate applications’ behaviours.
We will explore whether properties expressed in LTL are needed in the practice
of malware detection and whether it is possible to learn them from malware
instances. The verification method adopted in this paper is straightforward and
simple. More e�cient and complex methods, e.g., the method discussed in [36]
and model checking pushdown systems [24], will be considered in future. Except
unwanted behaviours, we will investigate whether other methods can help im-
prove the robustness of malware classifiers, e.g., semi-supervised learning [16].
On the other hand, since unwanted behaviours are context-sensitive, i.e., an un-
wanted behaviour in a group of applications might be normal in another, we
want to organise applications into groups sharing similar behaviours and con-
struct unwanted behaviours for each group. Also, in practice, many malware
instances have no family information. We will explore methods to organise mal-
ware instances when the family information is unavailable, e.g., clustering by
compression [19]. It is also interesting to study whether unwanted behaviours
can convince people of the automatic malware detection.
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