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Abstract. As developers often use third-party libraries to facilitate soft-
ware development, the lack of proper API documentation for these li-
braries undermines their reuse potential. And although several approach-
es extract usage examples for libraries, they are usually tied to specific
language implementations, while their produced examples are often re-
dundant and are not presented as concise and readable snippets. In this
work, we propose a novel approach that extracts API call sequences from
client source code and clusters them to produce a diverse set of source
code snippets that effectively covers the target API. We further construct
a summarization algorithm to present concise and readable snippets to
the users. Upon evaluating our system on software libraries, we indi-
cate that it achieves high coverage in API methods, while the produced
snippets are of high quality and closely match handwritten examples.

Keywords: API Usage Mining, Documentation, Source Code Reuse,
Code Summarization, Mining Software Repositories

1 Introduction

Third-party libraries and frameworks are an integral part of current software
systems. Access to the functionality of a library is typically offered by its API,
which may consist of numerous classes and methods. However, as noted by mul-
tiple studies [24, 30], APIs often lack proper examples and documentation and,
in general, sufficient explanation on how to be used. Thus, developers often
use general-purpose or specialized code search engines (CSEs), and Question-
Answering (QA) communities, such as Stack Overflow, in order to find possible
API usages. However, the search process in these services can be time consum-
ing [13], while the source code snippets provided in web sites and QA commu-
nities might be difficult to recognise, ambiguous, or incomplete [28,29].

As a result, several researchers have studied the problem of API usage min-
ing, which can be described as automatically identifying a set of patterns that
characterize how an API is typically used from a corpus of client code [11]. There
are two main types of API mining methods. First are methods that return API
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call sequences, using techniques such as frequent sequence mining [31–33], clus-
tering [25, 31, 33], and probabilistic modeling [9]. Though interesting, API call
sequences do not always describe important information like method arguments
and control flow, and their output cannot be directly included in one’s code.

A second class of approaches automatically produces source code snippets
which, compared to API call sequences, provide more information to the de-
veloper, and are more similar to human-written examples. Methods for mining
snippets, however, tend to rely on detailed semantic analysis, including program
slicing [5,13–15] and symbolic execution [5], which can make them more difficult
to deploy to new languages. Furthermore, certain approaches do not use any
clustering techniques, thus resulting to a redundant and non-diverse set of API
soure code snippets [20], which is not representative as it only uses a few API
methods as noted by Fowkes and Sutton [9]. On the other hand, approaches
that do use clustering techniques are usually limited to their choice of clustering
algorithms [34] and/or use feature sets that are language-specific [13–15].

In this paper, we propose CLAMS (Clustering for API Mining of Snippets),
an approach for mining API usage examples that lies between snippet and se-
quence mining methods, which ensures lower complexity and thus could apply
more readily to other languages. The basic idea is to cluster a large set of usage
examples based on their API calls, generate summarized versions for the top
snippets of each cluster, and then select the most representative snippet from
each cluster, using a tree edit distance metric on the ASTs. This results in a
diverse set of examples in the form of concise and readable source code snippets.
Our method is entirely data-driven, requiring only syntactic information from
the source code, and so could be easily applied to other programming languages.
We evaluate CLAMS on a set of popular libraries, where we illustrate how its
results are more diverse in terms of API methods than those of other approaches,
and assess to what extent the snippets match human-written examples.

2 Related Work

Several studies have pointed out the importance of API documentation in the
form of examples when investigating API usability [18,22] and API adoption in
cases of highly evolving APIs [16]. Different approaches have thus been presented
to find or create such examples; from systems that search for examples on web
pages [28], to ones that mine such examples from client code located in source
code repositories [5], or even from video tutorials [23]. Mining examples from
client source code has been a typical approach for Source Code-Based Recom-
mendation Systems (SCoReS ) [19]. Such methods are distinguished according
to their output which can be either source code snippets or API call sequences.

2.1 Systems that Output API Call Sequences

One of the first systems to mine API usage patterns is MAPO [32] which employs
frequent sequence mining [10] to identify common usage patterns. Although the
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latest version of the system outputs the API call sequences along with their asso-
ciated snippets [33], it is still more of a sequence-based approach, as it presents
the code of the client method without performing any summarization, while it
also does not consider the structure of the source code snippets.

Wang et al. [31] argue that MAPO outputs a large number of usage patterns,
many of which are redundant. The authors therefore define scalability, succinct-
ness and high-coverage as the required characteristics of an API miner and
construct UP-Miner, a system that mines probabilistic graphs of API method
calls and extracts more useful patterns than MAPO. However, the presentation
of such graphs can be overwhelming when compared to ranked lists.

Recently, Fowkes and Sutton [9] proposed a method for mining API usage
patterns called PAM, which uses probabilistic machine learning to mine a less re-
dundant and more representative set of patterns than MAPO or UP-Miner. This
paper also introduced an automated evaluation framework, using handwritten
library usage examples from Github, which we adapt in the present work.

2.2 Systems that Output Source Code Snippets

A typical snippet mining system is eXoaDocs [13–15] that employs slicing tech-
niques to summarize snippets retrieved from online sources into useful documen-
tation examples, which are further organized using clustering techniques. How-
ever, clustering is performed using semantic feature vectors approximated by the
Deckard tool [12], and such features are not straightforward to get extracted for
different programming languages. Furthermore, eXoaDocs only targets usage ex-
amples of single API methods, as its feature vectors do not include information
for mining frequent patterns with multiple API method calls.

APIMiner [20] introduces a summarization algorithm that uses slicing to
preserve only the API-relevant statements of the source code. Further work by
the same authors [4] incorporates association rule techniques, and employs an
improved version of the summarization algorithm, with the aim of resolving
variable types and adding descriptive comments. Yet the system does not cluster
similar examples, while most examples show the usage of a single API method.

Even when slicing is employed in the aforementioned systems, the examples
often contain extraneous statements (i.e. statements that could be removed as
they are not related to the API), as noted by Buse and Weimer [5]. Hence,
the authors introduce a system that synthesizes representative and well-typed
usage examples using path-sensitive data flow analysis, clustering, and pattern
abstraction. The snippets are complete and abstract, including abstract naming
and helpful code, such as try/catch statements. However, the sophistication of
their program analysis makes the system more complex [31], and increases the
required effort for applying it to new programming languages.

Allamanis and Sutton [1] present a system for mining syntactic idioms, which
are syntactic patterns that recur frequently and are closely related to snippets,
and thus many of their mined patterns are API snippets. That method is lan-
guage agnostic, as it relies only on ASTs, but uses a sophisticated statistical
method based on Bayesian probabilistic grammars, which limits its scalability.
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Although the aforementioned approaches can be effective in certain scenarios,
they also have several drawbacks. First, most systems output API call sequences
or other representations (e.g. call graphs), which may not be as helpful as snip-
pets, both in terms of understanding and from a reuse perspective (e.g. adapting
an example to fit one’s own code). Several of the systems that output snippets
do not group them into clusters and thus they do not provide a diverse set of
usage examples, and even when clustering is employed, the set of features may
not allow extending the approaches in other programming languages. Finally,
certain systems do not provide concise and readable snippets as their source
code summarization capabilities are limited.

In this work, we present a novel API usage mining system, CLAMS, to over-
come the above limitations. CLAMS employs clustering to group similar snippets
and the output examples are subsequently improved using a summarization algo-
rithm. The algorithm performs heuristic transformations, such as variable type
resolution and replacement of literals, while it also removes non-API statements,
in order to output concise and readable snippets. Finally, the snippets are ranked
in descending order of support and given along with comprehensive comments.

3 Methodology

3.1 System Overview

The architecture of the system is shown in Figure 1. The input for each library is
a set of Client Files and the API of the library. The API Call Extractor generates
a list of API call sequences from each method. The Clustering Preprocessor
computes a distance matrix of the sequences, which is used by the Clustering
Engine to cluster them. After that, the top (most representative) sequences from
each cluster are selected (Clustering Postprocessor). The source code and the
ASTs (from the AST Extractor) of these top snippets are given to the Snippet
Generator that generates a summarized snippet for each of them. Finally, the
Snippet Selector selects a single snippet from each cluster, and the output is
given by the Ranker that ranks the examples in descending order of support.

JAVA
JAVAJAVA
JAVAJAVA
JAVA

Clustering
Preprocessor

AST
Extractor

Snippet
Generator

Snippet
Selector

Ranker

JAVA
JAVA

JAVA
JAVA

JAVA
JAVA

API Call
Extractor

ARFF

JAVA
JAVA

JAVA
JAVA

JAVA
JAVA

Client
Files

Snippets

Clustering
Engine

Clustering
Postprocessor

Clustering ModulePreprocessing
Module

API

API call
sequences

distance
matrix

clustered
sequences

most representative sequences

ASTs
summarized

snippets

most
representative 

snippets
ranked

snippets

Fig. 1. Overview of the proposed system.
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3.2 Preprocessing Module

The Preprocessing Module receives as input the client source code files and
extracts their ASTs and their API call sequences. The AST Extractor employs
srcML [8] to convert source code to an XML AST format, while the API Call
Extractor extracts the API call sequences using the extractor provided by Fowkes
and Sutton [9] which uses the Eclipse JDT parser to extract method calls using
depth-first AST traversal.

3.3 Clustering Module

We perform clustering at sequence-level, instead of source code-level, this way
considering all useful API information contained in the snippets. As an example,
the snippets in Figures 2a and 2b, would be clustered together by our Cluster-
ing Engine as they contain the same API call sequence. Given the large number
and the diversity of the files, our approach is more effective than a clustering
that would consider the structure of the client code, while such a decision makes
the deployment to new languages easier. Note however that we take into con-
sideration the structure of clustered snippets at a later stage (see Section 3.5).

editor.putString("", tkn.getToken());
editor.putString("", tkn.getTokenSecret());

(a)

if (token != null) {
 editor.putString("", token.getToken());
 editor.putString("", token.getTokenSecret());

}

(b)

Fig. 2. The sample client code on the left side contains the same API calls with the
client code on the right side, which are encircled in both snippets.

Our clustering methodology involves first generating a distance matrix and
then clustering the sequences using this matrix. The Clustering Preprocessor
uses the Longest Common Subsequence (LCS) between any two sequences in
order to compute their distance and then create the distance matrix. Given two
sequences S1 and S2, their LCS distance is defined as:

LCS dist (S1, S2) = 1− 2 · |LCS (S1, S2)|
|S1|+ |S2|

(1)

where |S1| and |S2| are the lengths of S1 and S2, and |LCS (S1, S2)| is the length
of their LCS. Given the distance matrix, the Clustering Engine explores the k-
medoids algorithm which is based on the implementation provided by Bauckhage
[3], and the hierarchical version of DBSCAN, known as HDBSCAN [7], which
makes use of the implementation provided by McInnes et al. [17].

The next step is to retrieve the source code associated with the most rep-
resentative sequence of each cluster (Clustering Postprocessor). Given, however,
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if (t.getCreatedAt().getTime() + number < mTime) {
   breakPaging = char;
} else {
   userName = t.getFromUser().toLowerCase();
   JUser user = userMap.get(userName);
   if (user == null) {
      user = new JUser(userName).init(t);
      userMap.put(userName, user);
   }
}

Step 1: Preprocess comments and literals

if (t.getCreatedAt().getTime() + number < mTime) {
   breakPaging = char;
} else {
   userName = t.getFromUser().toLowerCase();
   JUser user = userMap.get(userName);
   if (user == null) {
      user = new JUser(userName).init(t);
      userMap.put(userName, user);
   }
}

Step 3: Retrieve local scope variables

if (t.getCreatedAt().getTime() + number < mTime) {
} else {
   userName = t.getFromUser().toLowerCase();
}

long mTime;
Tweet t;
String userName;

if (t.getCreatedAt().getTime() + number < mTime) {
  // Do something
} else {
  userName = t.getFromUser().toLowerCase();
  // Do something with userName
}

Step 6: Add declaration statements and comments

Summarizer Input

if (t.getCreatedAt().getTime() + 1000 < mTime) {
  breakPaging = 'y';
  //TODO

} else {
  userName = t.getFromUser().toLowerCase();
  JUser user = userMap.get(userName);
  if (user == null) {
     user = new JUser(userName).init(t);
     userMap.put(userName, user);
  }

}

Step 2: Identify API statements

if (t.getCreatedAt().getTime() + number < mTime) {
   breakPaging = char;
} else {
   userName = t.getFromUser().toLowerCase();
   JUser user = userMap.get(userName);
   if (user == null) {
      user = new JUser(userName).init(t);
      userMap.put(userName, user);
   }
}

Step 4: Remove non-API statements

if (t.getCreatedAt().getTime() + number < mTime) {
} else {
   userName = t.getFromUser().toLowerCase();
}

Step 5: Filtering variables

Fig. 3. Example summarization of source code snippet.

that each cluster may contain several snippets that are identical with respect to
their sequences, we select multiple snippets for each cluster, this way retaining
source code structure information, which shall be useful for selecting a single
snippet (see Section 3.5). Our analysis showed that selecting all possible snip-
pets did not further improve the results, thus we select n snippets and set n to
5 for our experiments, as trying higher values would not affect the results.

3.4 Snippet Generator

The Snippet Generator generates a summarized version for the top snippets.
Our summarization method, a static, flow-insensitive, intra-procedural slicing
approach, is presented in Figure 3. The input (Figure 3, top left) is the snippet
source code, the list of its invoked API calls and a set of variables defined in its
outer scope (encircled and highlighted in bold respectively).

At first, any comments are removed and literals are replaced by their srcML
type, i.e. string, char, number or boolean (Step 1 ). In Step 2, the algorithm
creates two lists, one for API and one for non-API statements (highlighted in
bold), based on whether an API method is invoked or not in each statement.
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Any control flow statements that include API statements in their code block
are also retained (e.g. the else statement in Figure 3). In Step 3, the algorithm
creates a list with all the variables that reside in the local scope of the snippet
(highlighted in bold). This is followed by the removal of all non-API statements
(Step 4 ), by traversing the AST in reverse (bottom-up) order.

In Step 5, the list of declared variables is filtered, and only those used in
the summarized tree are retained (highlighted in bold). Moreover, the algorithm
creates a list with all the variables that are declared in API statements and used
only in non-API statements (encircled). In Step 6, the algorithm adds declara-
tions (encircled) for the variables retrieved in Step 5. Furthermore, descriptive
comments of the form “Do something with variable” (highlighted in bold) are
added for the variables that are declared in API statements and used in non-API
statements (retrieved also in Step 5). Finally, the algorithm adds “Do something”
comments in any empty blocks (highlighted in italics).

Finally, note that our approach is quite simpler than static, syntax preserving
slicing. E.g., static slicing would not remove any of the statements inside the
else block, as the call to the getFromUser API method is assigned to a variable
(userName), which is then used in the assignment of user. Our approach, on the
other hand, performs a single pass over the AST, thus ensuring lower complexity,
which in its turn reduces the overall complexity of our system.

3.5 Snippet Selector

The next step is to select a single snippet for each cluster. Given that the selected
snippet has to be the most representative of the cluster, we select the one that
is most similar to the other top snippets. The score between any two snippets is
defined as the tree edit distance between their ASTs, computed using the AP-
TED algorithm [21]. Given this metric, we create a matrix for each cluster, which
contains the distance between any two top snippets of the cluster. Finally, we
select the snippet with the minimum sum of distances in each cluster’s matrix.

3.6 Ranker

We rank the snippets according to the support of their API call sequences, as
in [9]. In specific, if the API call sequence of a snippet is a subsequence of the se-
quence of a file in the repository, then we claim that the file supports the snippet.
For example, the snippet with API call sequence [twitter4j.Status.getUser, twit-
ter4j.Status.getText], is supported by a file with sequence [twitter4j.Paging.<init>,
twitter4j.Status.getUser, twitter4j.Status.getId, twitter4j.Status.getText, twitter4j.
Status.getUser]. In this way, we compute the support for each snippet and create
a complete ordering. Upon ordering the snippets, the AStyle formatter [2] is also
used to fix the indentation and spacing.

3.7 Deploying to New Languages

Our methodology can be easily applied on different programming languages. The
Preprocessing Module and the Snippet Selector make use of the source code’s
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AST, which is straightforward to extract in different languages. The Clustering
Module and the Ranker use API call sequences and not any semantic features
that are language-specific, while our summarization algorithm relies on state-
ments and their control flow, a fundamental concept of imperative languages.
Thus, extending our methodology to additional programming languages requires
only the extraction of the AST of the source code, which can be done using appro-
priate tools (e.g. srcML), and possibly a minor adjustment on our summarization
algorithm to conform to the AST schema extracted from different tools.

4 Evaluation

4.1 Evaluation Framework

We evaluate CLAMS on the APIs (all public methods) of 6 popular Java libraries,
which were selected as they are popular (based on their GitHub stars and forks),
cover various domains, and have handwritten examples to compare our snippets
with. The libraries are shown in Table 1, along with certain statistics concerning
the lines of code of their examples’ directories (Example LOC) and the lines of
code considered from GitHub as using their API methods (Client LOC).

Table 1. Summary of the evaluation dataset.

Project Package Name Client LOC Example LOC

Apache Camel org.apache.camel 141,454 15,256
Drools org.drools 187,809 15,390
Restlet Framework org.restlet 208,395 41,078
Twitter4j twitter4j 96,020 6,560
Project Wonder com.webobjects 375,064 37,181
Apache Wicket org.apache.wicket 564,418 33,025

To further strengthen our hypothesis, we also employ an automated method
for evaluating our system, to allow quantitative comparison of its different vari-
ants. To assess whether the snippets of CLAMS are representative, we look for
“gold standard” examples online, as writing our own examples would be time-
consuming and lead to subjective results.

We focus our evaluation on the 4 research questions of Figure 4. RQ1 and RQ2
refer to summarization and clustering respectively and will be evaluated with
respect to handwritten examples. For RQ3 we assess the API coverage achieved
by CLAMS versus the ones achieved by the API mining systems MAPO [32,33]
and UP-Miner [31]. RQ4 will determine whether the extra information of source
code snippets when compared to API call sequences is useful to developers.

We consider four configurations for our system: NaiveNoSum, NaiveSum,
KMedoidsSum, and HDBSCANSum. To reveal the effect of clustering sequences,
the first two configurations do not use any clustering and only group identical
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RQ1: How much more concise, readable, and precise with respect to handwritten
examples are the snippets after summarization?

RQ2: Do more powerful clustering techniques, that cluster similar rather than identi-
cal sequences, lead to snippets that more closely match handwritten examples?

RQ3: Does our tool mine more diverse patterns than other existing approaches?

RQ4: Do snippets match handwritten examples more than API call sequences?

Fig. 4. Research Questions (RQs) to be evaluated.

sequences together, while the last two use the k-medoids and the HDBSCAN
algorithms, respectively. Also the first configuration (NaiveNoSum) does not
employ our summarizer, while all others do, so that we can measure its effect.

We define metrics to assess the readability, conciseness, and quality of the re-
turned snippets. For readability, we use the metric defined by Buse and Weimer
[6] which is based on human studies and agrees with a large set of human anno-
tators. Given a Java source code file, the tool provided by Buse and Weimer [27]
outputs a value in the range [0.0, 1.0], where a higher value indicates a more
readable snippet. For conciseness, we use the number of Physical Lines of Code
(PLOCs). Both metrics have already been used for the evaluation of similar
systems [5]. For quality, as a proxy measure we use the similarity of the set of
returned snippets to a set of handwritten examples from the module’s developers.

We define the similarity of a snippet s given a set of examples E as snippet
precision. First, we define a set Es with all the examples in E that have exactly
the same API calls with snippet s. After that, we compute the similarity of s
with all matching examples e ∈ Es by splitting the code into sets of tokens and
applying set similarity metrics4. Tokenization is performed using a Java code
tokenizer and the tokens are cleaned by removing symbols (e.g. brackets, etc.)
and comments, and by replacing literals (i.e. numbers, etc.) with their respective
types. The precision of s is the maximum of its similarities with all e ∈ Es:

Prec(s) = maxe∈Es

{
|Ts ∩ Te|
|Ts|

}
(2)

where Ts and Te are the set of tokens of the snippet s and of the example e,
respectively. Finally, if no example has exactly the same API calls as the snippet
(i.e. Es = ∅), then snippet precision is set to zero. Given the snippet precision,
we also define the average snippet precision for n snippets s1, s2, . . . , sn as:

AvgPrec(n) =
1

n

n∑
i=1

Prec(si) (3)

4 Our decision to apply set similarity metrics instead of an edit distance metric is
based on the fact that the latter one is heavily affected and can be easily skewed
by the order of the statements in the source code (e.g. nested levels, etc.), while it
would not provide a fair comparison between snippets and sequences.
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Similarly, average snippet precision at top k can be defined as:

AvgPrec@k =
1

k

k∑
j=1

Prec@j where Prec@j =
1

j

j∑
i=1

Prec(si) (4)

This metric is useful for evaluating our system which outputs ordered results, as
it allows us to illustrate and draw conclusions for precision at different levels.

We also define coverage at k as the number of unique API methods contained
in the top k snippets. This metric has already been defined in a similar manner by
Fowkes and Sutton [9], who claim that a list of patterns with identical methods
would be redundant, non-diverse, and thus not representative of the target API.

Finally, we measure additional information provided in source code snippets
when compared with API call sequences. For each snippet we extract its snippet-
tokens Ts, as defined in (2), and its sequence-tokens Ts

′, which are extracted by
the underlying API call sequence of the snippet, where each token is the name
of an API method. Based on these sets, we define the additional info metric as:

AdditInfo =
1

m

m∑
i=1

maxe∈Es{|Tsi ∩ Te|}
maxe∈Es{|Tsi

′ ∩ Te|}
(5)

where m is the number of snippets that match to at least one example.

4.2 Evaluation Results

RQ1: How much more concise, readable, and precise with respect to
handwritten examples are the snippets after summarization? We eval-
uate how much reduction in the size of the snippets is achieved by the summa-
rization algorithm, and the effect of summarization on the precision with respect
to handwritten examples. If snippets have high or higher precision after summa-
rization, then this indicates that the tokens removed by summarization are ones
that do not typically appear in handwritten examples, and thus are possibly less
relevant. For this purpose, we use the first two versions of our system, namely the
NaiveSum and the NaiveNoSum versions. Both of them use the naive cluster-
ing technique, where only identical sequences are clustered together. Figures 5a
and 5b depict the average readability of the snippets mined for each library and
the average PLOCs, respectively. The readability of the mined snippets is almost
doubled when performing summarization, while the snippets generated by the
NaiveSum version are clearly smaller than those mined by NaiveNoSum. In fact,
the majority of the snippets of NaiveSum contain less than 10 PLOCs, owing
mainly to the non-API statements removal of the algorithm. On average, the
summarization algorithm leads to 40% fewer PLOCS. Thus, we may argue that
the snippets provided by our summarizer are readable and concise.

Apart from readability and conciseness, which are both regarded as highly
desirable features [26], we further assess whether the summarizer produces snip-
pets that closely match handwritten examples. Therefore, we plot the snippet
precision at top k, in Figure 6a. The plot indicates a downward trend in precision
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Fig. 5. Figures of (a) the average readability, and (b) the average PLOCs of the snip-
pets, for each library, with (NaiveSum) and without (NaiveNoSum) summarization.

for both configurations, which is explained by the fact that the snippets of lower
positions are more complex, as they normally contain a large number of API
calls. In any case, it is clear that the version that uses the summarizer mines
more precise snippets than the one not using it, for any value of k. E.g., for
k = 10, the summarizer increases snippet precision from 0.27 to 0.35, indicating
that no useful statements are removed and no irrelevant statements are added.

RQ2: Do more powerful clustering techniques, that cluster similar
rather than identical sequences, lead to snippets that more closely
match handwritten examples? In this experiment we compare NaiveSum,
KMedoidsSum, and HDBSCANSum to assess the effect of applying different
clustering techniques on the snippets. In order for the comparison to be fair, we
use the same number of clusters for both k-medoids and HDBSCAN. Therefore,
we first run HDBSCAN (setting its min cluster size parameter to 2), and then
use the number of clusters generated by the algorithm for k-medoids. After that,
we consider the top k results of the three versions, so that the comparison with
the Naive method (that cannot be tuned) is also fair. Hence, we plot precision
against coverage, in a similar manner to precision versus recall graphs. For this
we use the snippet precision at k and coverage at k, while we make use of an
interpolated version of the curve, where the precision value at each point is the
maximum for the corresponding coverage value. Figure 6b depicts the curve for
the top 100 snippets, where the areas under the curves are shaded. Area A2
reveals the additional coverage in API methods achieved by HDBSCANSum,
when compared to NaiveSum (A1 ), while A3 shows the corresponding additional
coverage of KMedoidsSum, when compared to HDBSCANSum (A2 ).

NaiveSum achieves slightly better precision than the versions using cluster-
ing, which is expected as most of its top snippets use the same API calls, and
contain only a few API methods. As a consequence, however, its coverage is



12 Nikolaos Katirtzis, Themistoklis Diamantopoulos, and Charles Sutton

10 20 30 40 50
top k

0.0

0.1

0.2

0.3

0.4

Pr
ec

is
io

n

NaiveSum
NaiveNoSum

(a)

20 40 60 80 100 120
No. API methods covered

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sn
ip

pe
t P

re
ci

si
on

A1

A2
A3

NaiveSum
HDBSCANSum
KMedoidsSum

(b)

Fig. 6. Figures of (a) precision at top k, with (NaiveSum) or without (NaiveNoSum)
summarization, and (b) the average interpolated snippet precision versus API coverage
for three system versions (clustering algorithms), using the top 100 mined snippets.

quite low, due to the fact that only identical sequences are grouped together.
Given that coverage is considered quite important when mining API usage ex-
amples [31], and that precision among all three configurations is similar, we may
argue that KMedoidsSum and HDBSCANSum produce sufficiently precise and
also more varying results for the developer. The differences between these two
methods are mostly related to the separation among the clusters; the clusters
created by KMedoidsSum are more separated and thus it achieves higher cover-
age, whereas HDBSCANSum has slightly higher precision. To achieve a trade-off
between precision and coverage, we select HDBSCANSum for the last two RQs.

RQ3: Does our tool mine more diverse patterns than other existing
approaches? For this research question, we evaluate the diversity of the ex-
amples of CLAMS to that of two API mining approaches, MAPO [32, 33] and
UP-Miner [31], which were deemed most similar to our approach from a mining
perspective (as it also works at sequence level)5. We measure diversity using the
coverage at k. Figure 7a depicts the coverage in API methods for each approach
and each library, while Figure 7b shows the average number of API methods
covered at top k, using the top 100 examples of each approach.

The coverage by MAPO and UP-Miner is quite low, which is expected since
both tools perform frequent sequence mining, thus generating several redun-
dant patterns, a limitation noted also by Fowkes and Sutton [9]. On the other
hand, our system integrates clustering techniques to reduce redundancy which
is further eliminated by the fact that we select a single snippet from each cluster
(Snippet Selector). Finally, the average coverage trend (Figure 7b) indicates that
our tool mines more diverse sequences than the other two tools, regardless of
the number of examples.

5 Comparing with other tools was also hard, as most are unavailable, such as, e.g.,
the eXoaDocs web app (http://exoa.postech.ac.kr/) or the APIMiner website
(http://java.labsoft.dcc.ufmg.br/apimineride/resources/docs/reference/).

http://exoa.postech.ac.kr/
http://java.labsoft.dcc.ufmg.br/apimineride/resources/docs/reference/
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Fig. 7. Graphs of the coverage in API methods achieved by CLAMS, MAPO, and UP-
Miner, (a) for each project, and (b) on average, at top k, using the top 100 examples.

RQ4: Do source code snippets match handwritten examples more than
API call sequences? Obviously source code snippets contain more tokens than
API call sequences, but the additional tokens might not be useful. Therefore, we
measure specifically whether the additional tokens that appear in snippets rather
than sequences also appear in handwritten examples. Computing the average of
the additional info metric for each library, we find that the average ratio be-
tween snippets-tokens and sequence-tokens, that are shared between snippets
and corresponding examples, is 2.75. This means that presenting snippets in-
stead of sequences leads to 2.75 times more information. By further plotting the
additional information of the snippets for each library in Figure 8, we observe
that snippets almost always provide at least twice as much valuable information.
To further illustrate the contrast between snippets and sequences, we present an
indicative snippet mined by CLAMS in Figure 9. Note, e.g., how the try/catch
tokens are important, however not included in the sequence tokens.
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Fig. 8. Additional information revealed when mining snippets instead of sequences.



14 Nikolaos Katirtzis, Themistoklis Diamantopoulos, and Charles Sutton

AccessToken accessToken;
String oauthToken;
String oAuthVerifier;
Twitter twitter;
try {
 accessToken = twitter.getOAuthAccessToken(oauthToken,oAuthVerifier);
 // Do something with accessToken

} catch (TwitterException e) {
 e.printStackTrace();

}

Fig. 9. Example snippet matched to handwritten example. Sequence-tokens are encir-
cled and additional snippet-tokens are highlighted in bold.

Finally, we present the top 5 usage examples mined by CLAMS, MAPO and
UP-Miner, in Figure 10. As one may observe, snippets provide useful information
that is missing from sequences, including identifiers (e.g. String secret), control
flow statements (e.g. if-then-else statements), etc. Moreover, snippets are easier
to integrate into the source code of the developer, and thus facilitate reuse.

Interestingly, the snippet ranked second by CLAMS has not been matched to
any handwritten example, although it has high support in the dataset. In fact,
there is no example for the setOauthConsumer method of Twitter4J, which is one
of its most popular methods. This illustrates how CLAMS can also extract snip-
pets beyond those of the examples directory, which are valuable to developers.

Twitter mTwitter;
mTwitter = new TwitterFactory().getInstance();
// Do something with mTwitter

Twitter mTwitter;
final String CONSUMER_KEY;
final String CONSUMER_SECRET;
mTwitter = new TwitterFactory().getInstance();
mTwitter.setOAuthConsumer(CONSUMER_KEY,
       CONSUMER_SECRET);

BasicDBObject tweet;
Status status;
tweet.put(string, status.getUser().getScreenName());
tweet.put(string, status.getText());

String mConsumerKey;
Twitter mTwitter;
AccessToken mAccessToken;
String mSecretKey;
if (mAccessToken != null) {
  mTwitter.setOAuthConsumer(mConsumerKey, mSecretKey);
  mTwitter.setOAuthAccessToken(mAccessToken);
}

Twitter mTwitter;
String token;
String secret;
AccessToken at = new AccessToken(token, secret); 
mTwitter.setOAuthAccessToken(at);

(a)

TwitterFactory.<init>
TwitterFactory.getInstance

Status.getUser
Status.getText

ConfigurationBuilder.<init>
ConfiguratiorBuilder.build

ConfigurationBuilder.<init>
TwitterFactory.<init>

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey

(b)

TwitterFactory.getInstance
Twitter.setOAuthConsumer

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthConsumer

Status.getUser
Status.getUser

ConfigurationBuilder.<init>
ConfigurationBuilder.build
TwitterFactory.<init>

ConfigurationBuilder.<init>
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

(c)

Fig. 10. Top 5 usage examples mined by (a) CLAMS, (b) MAPO, and (c) UP-Miner.
The API methods for the examples of our system are highlighted.
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5 Threats to Validity

The main threats to validity of our approach involve the choice of the evaluation
metrics and the lack of comparison with snippet-based approaches. Concerning
the metrics, snippet API coverage is typical when comparing API usage mining
approaches. On the other hand, the choice of metrics for measuring snippet
quality is indeed a subjective criterion. To address this threat, we have employed
three metrics, for the conciseness (PLOCs), readability, and quality (similarity to
real examples). Our evaluation indicates that CLAMS is effective on all of these
axes. In addition, as these metrics are applied on snippets, computing them
for sequence-based systems such as MAPO and UP-Miner was not possible.
Finally, to evaluate whether CLAMS can be practically useful when developing
software, we plan to conduct a developer survey. To this end, we have already
performed a preliminary study on a team of 5 Java developers of Hotels.com, the
results of which were encouraging. More details about the study can be found
at https://mast-group.github.io/clams/user-survey/ (omitted here due
to space limitations).

Concerning the comparison with current approaches, we chose to compare
CLAMS against sequence-based approaches (MAPO and UP-Miner), as the min-
ing methodology is actually performed at sequence level. Nevertheless, compar-
ing with snippet-based approaches would also be useful, not only as a proof of
concept but also because it would allow us to comparatively evaluate CLAMS
with regard to the snippet quality metrics mentioned in the previous para-
graph. However, such a comparison was troublesome, as most current tools
(including e.g., eXoaDocs, APIMiner, etc.) are currently unavailable (see RQ3
of Section 4.2). We may however note this comparison as an important point
for future work, while we also choose to upload our code and findings online
(https://mast-group.github.io/clams/) to facilitate future researchers that
may face similar challenges.

6 Conclusion

In this paper we have proposed a novel approach for mining API usage examples
in the form of source code snippets, from client code. Our system uses clustering
techniques, as well as a summarization algorithm to mine useful, concise, and
readable snippets. Our evaluation shows that snippet clustering leads to better
precision versus coverage rate, while the summarization algorithm effectively
increases the readability and decreases the size of the snippets. Finally, our tool
offers diverse snippets that match handwritten examples better than sequences.

In future work, we plan to extend the approach used to retrieve the top mined
sequences from each cluster. We could use a two-stage clustering approach where,
after clustering the API call sequences, we could further cluster the snippets of
the formed clusters, using a tree edit distance metric. This would allow retrieving
snippets that use the same API call sequence, but differ in their structure.

https://mast-group.github.io/clams/user-survey/
https://mast-group.github.io/clams/
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