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1 Introduction

In this note we present a discriminative framework for learning distributions over parse
trees of context-free languages, which we callconditional probabilistic context-free
grammars (CPCFGs). The best-performing approaches to learning statistical parsing
models are generative, in that they estimate the joint distributionp(t,x) over parse trees
t and stringsx. But often we are not interested in generating stringsx. Rather, we are
given a stringx—a sentence from a newspaper, say—and want to find the most likely
parset∗ = arg maxt p(t|x). To solve this problem, it suffices to estimate the condi-
tional distributionp(t|x), in what is called a discriminative model. Generative models
often have difficulty incorporating arbitrary, overlapping features of the input, for ex-
ample, including capitalization, word suffixes, and semantic features from WordNet. In
a discriminative model, incorporating such features is easier, because we do not have to
model their distribution. For this reason, discriminatively-trained models have outper-
formed generatively-trained models in several tasks, including part-of-speech tagging
[12, 9] and noun-phrase segmentation [14].

Also, in generative models much effort is spent on smoothing—combining proba-
bilities from distributions that use different evidence—with the best-performing tech-
niques often using complex interpolation or backoff schemes that require hand tuning.
In the log-linear model we present, smoothing is accomplished simply by adding fea-
tures of various specificity, and the weights are determined in the course of the maxi-
mum likelihood estimation.

Previous work has aimed to achieve the advantages of discriminative parsing by
training a chain of classifiers to make the decisions needed by a parser [13, 7]. How-
ever, these have the disadvantage that Lafferty, McCallum, and Pereira [9] calllabel
bias: Because each classifier in the chain is trained separately, earlier classifiers can-
not adjust their weights to avoid mistakes that become apparent later in the sequence.
Random fields avoid this difficulty because their training takes into account a global
normalization factor, which implicitly causes weights for earlier decisions to be af-
fected by later decisions.

Another possibility is to use a discriminative algorithm to rerank the top results of
a generatively-trained model. Collins [4] reports a large increase in parsing accuracy .
If the generative model is inaccurate, however, then the best parse might not be among
the top ranked, so that reranking does not help. Using the rich features allowed by a
discriminative model could more likely that the correct parse is among the top-ranked.
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Figure 1: Parse tree that illustrates the arguments tofk(Np, NqNr, x, i, j).

CPCFGs correspond to Stochastic Unification-Based Grammars [6], where the un-
derlying grammar is restricted to be context-free. In the remainder of the document,
we introduce CPCFGs, describing algorithms for parameter estimation and inference,
outline some potential advantages of CPCFGs, and give a plan for future work.

2 PCFGs

The most well-known way of defining a distribution over parse trees is aprobabilistic
context-free grammars (PCFG)[10]. CPCFGs can be seen as conditionally-trained
PCFGs, and the inference algorithms for CPCFGs closely follows those for PCFGs.

3 CPCFGs

3.1 Definition

In this section, we formally define conditional probabilitstic context-free grammars
(CPCFGs). Intuitively, a CPCFG is a context-free grammar annotated with features and
weights on each production. Then, given a parse treet, every nodev ∈ t is assigned a
weight, computed both from the features and weights of the production used to expand
v, and from the terminal sequence thatv spans. The weight of the entire treet is simply
the product of the weight of all its nodes, and the tree’s probabilityp(t|x) is its weight,
normalized over all legal parse trees forx.

Now, in a CPCFG, each productionNp → NsN t is annotated with a set of feature
functions{fk(Np, NsN t,x, i, j)} with associated real-valued weights{λk}. In other
words, eachfk takes as input a production and a segment of the sentence, and returns
some feature of the parse tree that spansxi:j using the productionNp → NsN t,
illustrated in figure 1. The weightλk is a real number that indicates how much the
featurefk should contribute to the weight of the production as a whole. High weights
mean that a production is more likely. For example, one feature function might return
1 if and only ifNs equals NP andxi:j contains a capitalized word.

More specifically, the weight of a nodev ∈ t with childrench(v) is computed from
the features and weights as

w(v, t) = exp

{∑
k

λkfk(v, ch(v), span(v))

}
, (1)
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wherespan(v) represents the portion ofx spanned byv. Such a model is sometimes
calledlog-linear, for log w(v, t) is a linear function of the features{fk}.

Another way of thinking about a CPCFG is to imagine the derivation for a string.
Recall that the derivation for a stringw is a stringN1 ⇒ α0 ⇒ · · · ⇒ αm ⇒ w such
that (a)αi ∈ (V ∪ Σ)? for all i, and (b) eachαi+1 is a rewrite ofαi using exactly one
production inP . Now, imagine that you are writing a derivation for a CFG, except that
each time you use a rewrite rule, you pay a cost, equal to the negative of the logarithm
of weight (calculated as above). Then the most likely tree in the CPCFG is simply one
that corresponds to the minimum cost derivation.

More formally, the probability assigned to a parse treet given a stringx in a CPCFG
G is given by

p(t|x) =
1

Z(x)

∏
v∈t

exp

{∑
k

λkfk(v, ch(v), span(v))

}
(2)

whereZ(x) is a constant (that is, it depends only on the string, not the parse tree) that
ensures thatp(t|x) is a valid probability distribution. It is defined as

Z(x) =
∑

t

∏
v∈t

exp

{∑
k

λkfk(v, ch(v), span(v))

}
, (3)

where the summationt ranges over all parse trees that yieldx.

3.2 Features

One of the main potential advantages of CPCFGs is their potential to include arbitrary
features of the current context and the input string. Incorporating new features into a
generative parser is often more complex, for then one has to take care that the parsing
model is a correct generative model.

Here are some potentially useful features for a productionNp → NsN t:

1. Many features of the formfk(Np, NsN t,x, i, j) = 1 if and only if xi:j contains
a specific wordw.

2. fk(Np, NsN t,x, i, j) = 1 if and only if Np = PP andxi = with. A large
number of features like these provide the benefits oflexicalization, namely that
the distribution of words in phrase is largely dependent on the phrase’s head.
Although a plain CPCFG does not attempt to determine heads directly, features
that are correlated with headedness can provide some of the benefit.

More complicated heuristics for determining heads can be used as well, for ex-
ample, a feature that indicates the last word in a phrase that is not punctuation or
a possessive marker (’s) can be useful in finding heads of noun phrases. In fact,
one could train a classifier to choose the head of a long phrase given its words,
and use the classifier’s output as a feature.

3. Features that indicate whether certain word bigrams appear in the span. For
example the bigram ”to run” is more likely to appear in a verb phrase than a
prepositional phrase.
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4. Features that indicate membership in various domain-specific lexicons. For ex-
ample, if a word not seen in training appears in a list of proper names extracted
from the Web,

5. Deciding what tags to assign words that weren’t seen in training can be incorpo-
rate directly into the models, using features that indicate capitalization and word
prefixes and suffixes.

6. Length of the phrasexi:j . A high weight on this can be used to prefer right-
branching structures in English.

7. Semantically-motivated features. For example, including features for hypernyms
in WordNet can allow the grammar to learn generalizations over words with
similar semantic characteristics.

4 Inference

There are two main algorithmic problems for CPCFGs: finding the most likely parse
of a stringx, and computing the partition functionZ(x). So far, we have described
both of these as being computed over all possible parse trees, but both theoretically
and in practice, there are far too many possible parse trees for this to be efficient if
done naively. In this section, we describe algorithms for these two problems that re-
quire polynomial time in the lengthm of x. It turns out that both of these algorithms
are straightforward extensions of the standard algorithms for probabilistic context-free
grammars (PCFGs) [10].

4.1 Parsing

The parsing problem for CPCFGs is, given a sentencex, to find the most likely parse
tree t∗ = arg maxt p(t|x). In this section, we describe how to compute the weight
w(t∗) of the most likely parse; computing the actual tree can be done with only a bit
more bookkeeping.

DefineT (p, i, j) as the set of all parse trees for the subsequencexi:j that start with
the nonterminalNp. What we do is to compute, for every nonterminalNp and every
subsequencexi:j , the weight of the most likely treeNp ?⇒ xi:j . We will call this
weightbp(i, j), thus

bp(i, j)
def= max

t∈T (p,i,j)

∏
v∈t

exp

{∑
k

λkfk(v, ch(v), span(v))

}
. (4)

Observe thatb1(1,m) = w(t∗), so that if we can computeb efficiently, then we’re
done. Consider expandingNp using some productionNp → NqNr, as in figure 1.
Then the weight of the entire tree would be the cost for using that production times the
weight of the subtrees. So we can maximize over all possible expansions in turn, first
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maximizing over all possible expansionsNqNr, and then maximizing over all possible
boundaries̀ between the two children:

bp(i, j)
def= max

t∈T (p,i,j)

∏
v∈t

exp

{∑
k

λkfk(v, ch(v), span(v))

}
(5)

= max
qr

max
`∈[i,j−1]

max
tq∈T (q,i,`)

max
tr∈T (r,`,j)

exp

{∑
k

λkfk(Np, NqNr,x, i, j)

}
w(tq)w(tr)

(6)

= max
qr

max
`∈[i,j−1]

exp

{∑
k

λkfk(Np, NqNr,x, i, j)

}(
max

tq∈T (q,i,`)
w(tq)

) (
max

tr∈T (r,`,j)
w(tr)

)
(7)

= max
qr

max
`∈[i,j−1]

exp

{∑
k

λkfk(Np, NqNr,x, i, j)

}
b(q, i, `)b(r, ` + 1, j)

(8)

But this means we can computeb(1, 1,m) recursively, by maintaining a table of all
possiblebs. This takes time proportional tom3.

We would like to emphasize that although we assumed that the grammar was in
Chomsky normal form, this was just to simplify notation, and that these quantities can
be computed for general CFGs using a chart.

4.2 ComputingZ(x)

If we want to know the actual probability of a tree, which we will need in Section 5,
then we need to be able to compute the normalizing factorZ(x). Essentially, this can
be computed using all the equations of the previous section, except that every max is
replaced with a sum.

First, we define theinside costβp(i, j) for a nonterminalNp which spans the se-
quencexi:j . We do this as

βp(i, j)
def=

∑
t∈T (p,i,j)

exp

{∑
k

λkfk(v, ch(v), span(v))

}
(9)

Observe thatZ(x) = β1(1,m). We can calculateβ recursively as in the last section:

βp(i, j) =
∑
qr

j−1∑
k=i

exp

{∑
k

λkfk(Np, NqNr,x, i, j)

}
βq(i, k)βr(k + 1, j) (10)

This gives us one way to calculateZ(x). There is another way, using what we
will call the outside costs. It is perhaps easier to understand the outside cost in terms of
derivations instead of parse trees. Define the set of outside derivations for a nonterminal
Np and subsequencexi:j as

Op(i, j)
def= {leftmost derivationsN1

?⇒ x1:i−1Nrxj+1:m} (11)
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We can think ofOp(i, j) as being the set of all derivations ofx that haveNr spanxi:j

without specifying how. The outside costαp(i, j) is defined as a sum over all outside
derivations:

αp(i, j)
def=

∑
d∈Op(i,j)

w(d), (12)

wherew(d) is the weight of the derivationd.
We can computeα recursively, essentially because any outside derivation of a non-

terminal also contains outside derivations for its ancestors. Thus, whileβ was com-
puted by recursing down the tree, we computeα by recursing higher up the tree. We
will show how to computeαr(i.j) for a nodeNr that spansxi:j . We will use the nota-
tion ϕi to refer to the production used in stepi of a derivationd. Since we are working
upward, we do recursion on all rulesNp → NqNr, but now there are two cases: either
Nq, the sibling ofNr, occurs either beforeNr or afterwards. We sum over both cases,
being careful not to count twice the case where the sibling ofNr is also labeledNr:

αr(i, j)
def=

∑
d∈Or(i,j)

∏
ϕi∈d

exp

{∑
k

λkfk(lhs(ϕi), rhs(ϕi), span(ϕi))

}
(13)

=
∑

p6=r,q

j−1∑
`=i

exp

{∑
k

λkfk(Np, NqNr,x, i, j)

}

×

 ∑
tq∈T (q,`,i−1)

w(tq)

  ∑
dp∈Op(`,j)

w(dp)


+

∑
pq

m∑
`=j+1

exp

{∑
k

λkfk(Np, NrNq,x, i, j)

}

×

 ∑
tq∈T (q,j+1,`)

w(tq)

  ∑
dp∈Op(i,`)

w(dp)

 (14)

=
∑

p6=r,q

i−1∑
`=1

αp(`, j)βq(`, i− 1) exp

{∑
k

λkfk(Np, NqNr,x, i, j)

}

+
∑
pq

m∑
`=j+1

αp(i, `)βq(j + 1, `) exp

{∑
k

λkfk(Np, NrNq,x, i, j)

}
(15)

(Understanding these formulas really requires an illustration. Please imagine some
illustration much like the one on page 395 of Manning & Schütze [10].)

There is little reason to useα to computeZ(x), because we can getZ(x) from
β, and we would needβ to computeα anyway. Butα is necessary to do parameter
estimation, to which we now turn.
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5 Parameter Estimation

The parametersΛ = {λk} of a CPCFG can be estimated by maximum likelihood.
Suppose that we have a corpus of sentencesX = {x(i)} which have been labeled with
their correct parse treesT = {t(i)}. Thelikelihoodof a parameter vectorΛ is given by

L(Λ) = log p(T |X ,Λ) (16)

= log
∏

i

p(t(i)|x(i),Λ) (17)

= log
∏

i

1
Z(x(i))

∏
v∈t(i)

exp

{∑
k

λkfk(v, ch(v), span(v))

}
(18)

=
∑

i

∑
v∈t(i)

∑
k

λkfk(v, ch(v), span(v))−
∑

i

log Z(x(i)). (19)

Then we choose the parameter vectorΛML that maximizes the likelihoodL(Λ). This
maximization can be done using standard algorithms as long as we can calculate the
partial derivative∂L/∂λk of L with respect to each parameterλk. This derivative is
given by

∂L
∂λk

=
∑

i

∑
v∈t(i)

fk(v, ch(v), span(v))−
∑

i

∑
t

p(t|x(i))
∑
v∈t

fk(v, ch(v), span(v)).

(20)
As written, this requires summing over all parse treest, which is infeasible. But we
can use the algorithms from the last section to compute this in polynomial time. To
simplify the discussion, define

Efk
def=

∑
t

p(t|x(i))
∑
v∈t

fk(v, ch(v), span(v)). (21)

First, we rewrite the sum over all parse trees to enumerate the parse trees differently.
Let R = Np → NqNr be the production associated with the parameterλk, and
T (R, i, j) be the set of all trees whereNp spansxi:j , andNp is expanded using rule
R. Now we can rewriteEfk as:

Efk =
∑

t

p(t|x(i))
∑
v∈t

fk(v, ch(v), span(v)) (22)

=
∑
ij

∑
t∈T (R,i,j)

p(t|x(i))fk(lhs(R), rhs(R),x, i, j) (23)

=
∑
ij

fk(lhs(R), rhs(R),x, i, j)
∑

t∈T (R,i,j)

p(t|x(i)). (24)

Now, consider a derivation fort, with the steps arranged so thatN1 ?⇒ x1:i−1N
pxj+1:m

?⇒
x. Note that such a derivation is always possible. Writing the derivation in this way
shows that it first contains an outside derivation forNp, followed by the expansion
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Np → NqNr, and finally inside derivations forNq andNr. This means that the sum∑
t p(t|x(i)) can be factorized as

∑
t

p(t|x(i)) =
1

Z(x)
αp(i, j)βq(i, k)βr(k, j) exp

{∑
k

λkfk(Np, NqNr,x, i, j)

}
.

(25)
Since this requires three summations over the length of the string, i.e., the summations
over i, j, andk, computing this probability requires cubic time in the length of the
string.

Using equation 25, we have

Efk =
∑
ij

fk(lhs(R), rhs(R),x, i, j)
j−1∑
`=i

αp(i, j)βq(i, `)βr(`, j) exp

{∑
k

λkfk(Np, NqNr,x, i, j)

}
,

(26)
and the gradient is calculated as

∂L
∂λk

=
∑

i

∑
v∈t(i)

fk(v, ch(v), span(v))

−
∑

i

∑
ij

fk(lhs(R), rhs(R),x, i, j)
j−1∑
`=i

αp(i, j)βq(i, `)βr(`, j) exp

{∑
k

λkfk(Np, NqNr,x, i, j)

}
.

(27)

6 Efficient Training

CPCFGs can be evaluated on the Penn Treebank [11], a large collection of sentences
hand-annotated with parse trees. The productions can be learned by reading them off
the human-constructed parse trees [2], and then learning weights as in section 5. The
difficulty here is in efficient training: Reading productions of the parse trees results in
thousands of productions, which makes it expensive to parse 36 000 training sentences.

Exact training for CPCFGs (Section 5) requires parsing every training sentence.1

This can be expensive with thousands of productions and tens of thousands of training
sentences. For this reason, approximate methods for training are desirable.

1. Training on random subsets of training data at each iteration.

2. The number of iterations used by gradient descent can be reduced by good ini-
tialization of parameters. For example, the weightsλk could be initialized the
feature’s frequency in the training set, or to its probability if the model were
trained generatively.

3. Pseudolikelihood training [1] can be used to train based on local constraints
rather than global constraints. However, it can potentially suffer from label bias.

1A naive implementation would also require reparsing every training sentence at each iteration of the
gradient descent algorithm, but the charts can be saved between iterations.
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4. Pruning infrequent rules when the grammar is being constructed (e.g., from a
treebank), or pruning low-weight edges in the chart while the inside and outside
values are being computed.

5. Perhaps a perceptron-based training algorithm (e.g., [5]) could train more effi-
ciently than the approach in Section 5, because much more pruning of the chart
is possible.

6. Probabilistic parsing can be viewed as inference in a suitably-constructed graph-
ical model, i.e., withO(m2) nodes. It is possible that approximate inference
methods from graphical models could be applied.

7 Conclusions

I am currently implementing CPCFGs so that I can compare their performance to other
statistical parsers on the Penn Treebank. They may also have application to tasks like
information extraction, semantic role labeling, relation extraction, and citation match-
ing, with a suitably task-specific grammar. Within information extraction, grammars
of this sort are likely to be useful in many domains with natural hierarchical structure,
such as citations in research papers and address blocks in email and the Web. For
example, the hierarchical HMMs of Skounakis et al. [15] are essentially conditionally-
trained fixed-depth grammars for information extraction from biomedical abstracts.

Previous statistical parsers, e.g., [3], have achieved high accuracy in two ways: by
conditioning statistics on more history in the derivation, and bylexicalization, which
is conditioning statistics for a phrase on its head word. We believe that the rich feature
sets possible with CPCFGs, as described in Section 3.2, can incorporate some of the
benefits of lexicalization with lower computational cost: full lexicalized parsing takes
O(m5) time, while parsing with a plain PCFG or a CPCFG takesO(m3) time.

Including more of the derivation history, however, may be worthwhile. Johnson
[8] finds that great improvement in the performance of plain PCFGs is possible if one
conditions statistics on the grandparent node as well as the parent node. In a CPCFG,
this would correspond to havingfk depend also on the parent ofNp in Figure 1. It is
highly likely that this change would lead to better CPCFG performance as well.
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