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Recent work in hierarchical priors for language mod-
eling [MacKay and Peto, 1994, Teh, 2006, Goldwa-
ter et al., 2006] has shown significant advantages to
Bayesian methods in NLP. But the issue of sparse
conditioning contexts is ubiquitous in NLP, and these
smoothing ideas can be applied more broadly to ex-
tend the reach of Bayesian modeling in natural lan-
guage. For example, a useful representation of higher-
level syntactic structure is given by dependency graphs
are one such representation of this kind of higher-
level structure. Specifically, dependency graphs en-
code relationships between words and their sentence-
level, syntactic modifiers by representing each sentence
in a corpus as a directed graph with nodes consisting
of the part-of-speech-tagged words in that sentence.

In this paper, we describe two Bayesian models over
dependency trees. First, we show that a classic genera-
tive dependency model can be substantially improved
by (a) using a hierarchical Pitman-Yor process as a
prior over the distribution over dependents of a word,
and (b) sampling the hyperparameters of the prior.
Remarkably, these changes alone yield a significant in-
crease in parse accuracy over the standard model. Sec-
ond, we present a Bayesian dependency parsing model
in which latent state variables mediate the relation-
ships between words and their dependents. The model
clusters bilexical dependencies into states using a simi-
lar approach to that employed by Bayesian topic mod-
els when clustering words into topics. It discovers word
clusters with a fine-grained syntactic character.

1. Supervised Bayesian Dependency
Parsing

The best-known generative modelling framework for
dependency trees is that of Eisner [1996]. This model

generates a tagged sentence and its corresponding de-
pendency graph using a parent-outward process. In
this model, each parent generates a sequence of chil-
dren starting in the centre and moving outward to the
left and then similarly to the right. Generation of each
child is conditioned upon the identity of the tagged
parent, the direction of the child in relation to the
parent (left or right) and the most recently generated
sibling child. That is, conditioned on the parent, the
sequence of children in each direction is a first order
Markov chain.

The probability of a sentence w with corresponding
part-of-speech tags s,and tree t, generated according
to this process, is

P (w, s, t) =
∏
n

P (wn, sn, |wπ(n), sπ(n), sσ(n), dn)

where dn is the direction of wn with respect to its par-
ent, π(n) is the position of wn’s parent, and σ(n) the
position of wn’s immediately preceding sibling (mov-
ing outward from wn’s parent in direction dn).

Estimating each of the parent-child distributions can
be difficult because of the sparse conditioning con-
text. Therefore, the estimates are interpolated with
estimates of probabilities that depend on a reduced
conditioning context, in a manner similar to language
modeling.

The interpolation method used by Eisner can be in-
terpreted as a hierarchical Dirichlet Bayesian model,
analogously to MacKay and Peto [1994]. A Bayesian
reinterpretation has three advantages: firstly, the con-
centration parameters may be sampled, rather than
fixed to some particular value, as is done by Eisner.
Secondly, the counts need not correspond to the raw
observation counts, as is the case when using the max-



imal restaurant assumption; the minimal restaurant
assumption and Gibbs sampling both give rise to other
count values.1 Finally, it is also possible to use priors
other than the hierarchical Dirichlet distribution. In
this work, we show that a large improvement in per-
formance can be obtained by using a Pitman-Yor prior
instead.

We measure the parse accuracy when trained on parse
trees generated from the Penn Treebank. Inference
consists of two tasks: sampling model hyperparame-
ters given the training data, and inferring trees for un-
seen test sentences. For the trees, the parents for all
words in a sentence can be jointly sampled using an al-
gorithm that combines dynamic programming with the
Metropolis-Hastings method. The algorithm is similar
to that of Johnson et al. [2007a,b] for unlexicalised
probabilistic context-free grammars. The concentra-
tion and discount parameters of the Pitman-Yor priors
are sampled using slice sampling.

Results are shown in table 1. Using a hierarchi-
cal Pitman-Yor prior and sampling hyperparameters
both give considerable improvements over a hierarchi-
cal Dirichlet model with fixed concentration parame-
ters and the maximal restaurant assumption (equiv-
alent to Eisner’s original model). In the hierarchical
Dirichlet variant of the model, sampling hyperparam-
eters gives an accuracy improvement of approximately
4%. Using a hierarchical Pitman-Yor prior improves
accuracy over the hierarchical Dirichlet variant by ap-
proximately 3%. Sampling the hyperparameters of
the Pitman-Yor prior gives an accuracy improvement
of 5% over the Eisner-equivalent hierarchical Dirichlet
model. This corresponds to a 26% reduction in error.

2. “Syntactic Topic” Dependency
Models

One advantage of a generative approach to modelling
dependency trees is that other latent variables may be
incorporated into the model. To demonstrate this, we
also present a dependency parsing model with latent
variables that mediate the relationships between words
and their modifiers, resulting in a clustering of bilexical
dependencies.

This model can be considered to be a dependency-
based analogue of the syntactic component from the
syntax-based topic model of Griffiths et al. [2005]. The
models differ in their underlying structure, however:

1In the chinese restaurant metaphor, the restaurant as-
sumptions deal with the issue of how many tables at each
level serve the same dish. For a discussion of this issue, see
????.

In the model presented in this section, the underlying
structure is a tree that combines both words and unob-
served syntactic states; in Griffiths et al.’s model, the
structure is a simply a chain over latent states. This
difference means that there are two kinds of latent in-
formation that must be inferred in the dependency-
based model: The structure of each dependency tree
and the identities of the latent states. In Griffiths et
al.’s model, only the latter need be inferred.

The generative process underlying the model in this
section is similar to that of the model presented in the
previous section, with the key difference that latent
state variables s mediate the relationships between
parents and children. The probability of an untagged
sentence w with latent states s and tree t is therefore
given by

P (w, s, t) =
∏
n

θsn|wπ(n)
φwn|sn

where the vector θw′ is the distribution over latent
states for parent word w′ and the vector φs is the
distribution over child words for latent state s. (Note
that sibling words are ignored in this model, making
it a first order dependency model.) In other words,
parent words are collapsed down to the latent state
space and children are generated on the basis of these
states. As a result, the clusters induced by the latent
states are expected to exhibit syntactic properties and
can be thought of as “syntactic topics”—specialised
distributions over words with a syntactic flavour.

Penn Treebank sections 2–21 were used as training
data. The true dependency trees and words were used
to obtain a single sample of states. These states, trees
and words were then used to sample states and trees
for Penn Treebank section 23.

Some example states or “syntactic topics” are shown
in table 3. Each column in each row consists of the ten
words most likely to be generated by a particular state.
The states exhibit a good correspondence with parts-
of-speech, but are more finely grained. For example,
the states in the first and third columns in the top
row both correspond to nouns. However, the first con-
tains job titles, while the third contains place names.
Similarly, the states in the fourth and fifth columns in
the top row both correspond to verbs. However, the
fourth contains transitive past-tense verbs, while the
fifth contains present-tense verbs. The state shown
in the final column in the bottom row is particularly
interesting because the top words are entirely plural
nouns. This kind of specificity indicates that these
states are likely to be beneficial in other tasks where
part-of-speech tags are typically used, such as named
entity recognition.



A more detailed description of this work is avail-
able online at http://www.cs.umass.edu/~wallach/
parsing.pdf.
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Restaurant assumption
Maximal Minimal

Dirichlet fixed α values [Eisner, 1996] 80.7 80.2
Dirichlet sampled α values 84.3 84.1
Pitman-Yor fixed α and d values 83.6 83.7
Pitman-Yor sampled α and d values 85.4 85.7

Table 1. Parse accuracy of the hierarchical Pitman-Yor dependency model on Penn Treebank data. Results are computed
using the maximum probability tree.

Model Accuracy (sampled trees) Accuracy (most probable tree)
50 states 59.2 63.8
100 states 60.0 64.1
150 states 60.5 64.7
200 states 60.4 64.5
POS tags 55.3 63.1

Table 2. Parse accuracy of the “syntactic topic” dependency model on the Penn Treebank (standard train/test split). As
a baseline, the latent states are fixed to part-of-speech tags. Results for sampled trees are averaged over 10 samples.

president year u.s. made is in
director years california offered are on
officer months washington filed was ,

chairman quarter texas put has for
executive example york asked have at

head days london approved were with
attorney time japan announced will and
manager weeks canada left had as

chief period france held ’s by
secretary week britain bought would up

10 would more his ms. sales
8 will most their mrs. issues
1 could very ’s who prices
50 should so her van earnings
2 can too and mary results
15 might than my lee stocks
20 had less your dorrance rates
30 may and own linda costs
25 must enough ’ carol terms
3 owns about old hart figures

Table 3. The top ten words most likely to be generated as children by twelve of the states inferred from the true dependency
trees for Penn Treebank sections 2–21. These examples are taken from a model with 150 states.


