
DRAFT: Version 0.1, 28 October 2005. Do not distribute.

Expectation Propagation in Factor Graphs: A Tutorial

Charles Sutton

October 28, 2005

Abstract

Expectation propagation is an important variational inference algorithm for graphical mod-
els, especially if some of the variables are continuous. This tutorial presents two views EP: as
repeatedly projecting into an approximating family, and as a message-passing algorithm. We
present EP in terms of factor graphs, which simplifies some of the presentation and provides
concreteness, while remaining completely general. We give special emphasis to explaining
why belief propagation is a special case of EP, and how EP can be used to approximate a factor
graph’s partition function.

1 Introduction

Expectation propagation [4] is an interesting variational inference algorithm for graphical models,
especially if some of the variables are continuous. It can be viewed as a a generalization of belief
propagation, a well-known message-passing algorithm that is exact if the model is a tree.

In continuous distributions, however, belief propagation can be problematic even for trees, be-
cause messages can be complicated continuous functions that are impossible to represent efficiently.
(For example, in the clutter problem, mentioned in Section ??, an exact message is a mixture of 2n

Gaussians, where n is the number of data points. [TODO: This discussion doesn’t exist yet.])
Expectation propagation extends BP in two different ways. First, instead of sending an entire

message, EP sends only a small number of expected sufficient statistics of the message, which is
especially useful for continuous exponential families. Second, EP allows for structured approxima-
tions, so that regions of the graph send messages to each other, rather than just nodes and edges.

2 Factor Graphs

Factor graphs [1] are a generalization of Bayesian networks and Markov random fields that are es-
pecially useful for describing and implementing inference algorithms. Often, inference algorithms
don’t care about the pecularities of local versus global normalization that separate directed from
undirected models. Most inference algorithms exploit only the fact that you have a function over
many variables that factorizes into a product of local functions over only a few variables. Fac-
tor graphs are so useful because they encapsulate this insight. In this section, we provide a brief
overview and notation for factor graphs.



fa

fb

fc

fd

1

4 3

2

f̃d

f̃c

f̃b

f̃a

1

4 3

2

f̃d

f̃c

f̃b

fa

(a) (b) (c)

Figure 1: (a) An example factor graph with four variables and four pairwise factors. (b) A fully-
factorized factor graph for approximating (a). This is the approximating factor graph used by BP.
(c) A factor graph generated from (b) after one refinement step on factor fa.

Factor graphs represent a multivariate distribution p(x) by a product of local factors. A factor
graph is a bipartite graph with two kinds of nodes: variable nodes, which correspond to components
of x, and factor nodes, which correspond to local functions over subsets of the variables. A variable
node is connected to a factor node if that variable is a argument to the factor. The joint distribution
corresponding to a factor graph F is defined by:

p(x) =
1
Z

∏
α

fα(xα) (1)

where α indexes the factor nodes in F , xα are the components of x adjacent to α, and Z is called
the partition function and is defined as

Z =
∑
x

∏
α

fα(xα). (2)

If x is discrete, Z is a simple summation, but over an exponential number of assignments x, so that
computing it can be quite difficult. Indeed, computing Z is intractable in general. It should be easy
to see how Markov random fields and Bayesian networks can be converted into factor graphs. For a
Bayesian network, e.g., each local CPT is a factor, and Z = 1 if there is no evidence; otherwise Z
is the probability of the evidence variables.

We will restrict the local factors to have a log-linear form

fα(xα) = exp {< θ, φ(xα) >} (3)

so that the factor graph defines an exponential family with sufficient statistics. In most of this
tutorial, we will assume that x is discrete. But our discussion generalizes to exponential families of
continuous distributions, and indeed this generalization is one of the chief advantages of EP.

This tutorial also assumes familiarity with belief propagation in factor graphs, also known as the
sum-product algorithm. For discussion of BP, and more details on factor graphs, see [1]. TODO:
Provide some background on BP.

2



3 Two views of EP

EP follows the following general approach: Given a factor graph whose marginal are difficult to
compute, approximate it by a simpler graph whose marginals are easy to compute. This is done by
replacing each of the factors fα by an approximate factor f̃α, so the the approximation has a whole
can be described by a graph with factors {f̃α}. You specify the parametric form of each f̃α when
designing an EP algorithm. In so doing, you define a family of possible approximating distribu-
tions, and EP selects a particular distribution from this family to approximate a given intractable
distribution.

Typically, each of the f̃α factorize further. For example, Figure 1(a) shows a grid shaped factor
graph with pairwise factors fst(xs, xt), and Figure 1(b) shows an approximation where each factor
fst is replaced by two single-variable factors, i.e.,

fst(xs, xt) ≈ f̃st(xs, xt)
def= f̃st;1(xs)f̃st;2(xt) (4)

In the next two sections, we describe two different views of EP, the first in which EP repeatedly
projects complex distribution down to the approximating family, and the second view, in which
EP is a message-passing algorithm that sends expected sufficient statistics between regions—thus
explaining the name “Expectation Propagation”. It is this second view that explains why BP is a
special case of EP.

3.1 EP as Projection

Once the form of the approximating distribution is chosen, choosing the best approximating distri-
bution is no small task. Naively, one could do this by independently choosing each approximate
factor f̃α to most closely match fα, e.g., by squared loss. This approximation tends to be bad, how-
ever; after all, if it were any good, then we shouldn’t have bothered with the intractable model in
the first place.

We can do better by making each of the term approximations depend on each other, so that later
term approximations can adjust for errors in earlier ones. Perhaps the simplest way to do this is to
approximate each of the factors one at a time. That is, start with an empty factor graph for each
factor fα, incorporate it into the current approximating distribution q by multiplication. This yields
some new distribution q+α that is not in the approximating family, so project it into the set of all
approximating distributions using KL divergence. This procedure is illustrated in Figure ??. This
idea has arisen in the control, statistics, and artificial intelligence literatures; in control, it is called
assumed-density filtering. The algorithm is:

function ADF ()
Initialize. Set q0(x) to uniform.
For each factor fα,

1. Refinement. Incorporate exact factor fα into the approximation:
q+α ∝ qi−1fα

3



2. Projection. Compute the new approximate distribution by projecting q+α

into the approximating family:

qi = arg min
q

KL(q+α‖q). (5)

The disadvantage of this algorithm is that the quality of the approximation depends on the
order in which factors are introduced, and in practice different choices of order have very different
accuracy. To fix this, we can loop through the factors repeatedly, removing the previous factor
approximating, incorporating the exact factor, and projecting down to the approximating family.
This yields expectation propagation. The algorithm is as follows. For completeness, we also include
an approximation of the partition function. We will explain this in Section 4.

algorithm EP

1. Initialize. Set q0(x) to uniform.

2. Repeat until converged:

(a) Choose a factor fα to refine.

(b) Refinement. Remove the previous approximation f̃α from F̃ , and replace it with the
corresponding exact factor fα. Graphically, this operation is depicted in Figure 1(b-c).
Mathematically, we write this in two steps:

q\α(x) ∝ qi−1(x)
f̃α(xα)

(6)

q+α(x) ∝ fα(xα)q\α(x) (7)

The distribution q\α is sometimes called the cavity distribution. The distribution q+α

does not have a standard name, so we will refer to it as the refined distribution.

(c) Projection. Compute the new approximate distribution by projecting q+α into the ap-
proximating family:

qi = arg min
q

KL(q+α‖q). (8)

Also, estimate a scale factor as:

Cα =

∫
x fα(x)

∏
β\α f̃α(x)∫

x f̃α(x)
∏

β\α f̃β(x)
. (9)

If desired, approximate the partition function as:

Z ≈
∑
x

∏
α

Cαf̃α(xα) (10)

4



If the approximating factors are restricted to an exponential family, then the projection step is
moment matching, i.e., at the minimizer qi, we have

Eqi [φα;k(x)] = Eq+α [(φα;k(x)], (11)

for all sufficient statistics φα;k. This fact can be demonstrated by setting to 0 the gradient of the KL
divergence in Equation 8.

The projection step can be confusing, because it might not be clear whether to understand the
projection globally or locally. We have written the projection globally, meaning that during the
refinement of f̃α, all factors in the approximation can potentially be modified. In the literature, the
projection step is often written as:

f̃ new
α (xα) = arg min

f̃α

KL(q\αfα‖q\αf̃α), (12)

meaning that the factor f̃α that is currently being refined is the only approximating factor that can
be modified during the projection step.

This confusion arises because the approximating model typically has special structure such that
the single-factor optimizer of Equation 12 is also a optimizer of the global optimization problem
in Equation 8. For example, this happens when all the approximating terms f̃α belong to the same
exponential family, that is, all are defined over the entire space x, with the same sufficient statis-
tics. For example, this situation can arise when approximating distributions of a single continuous
variable, such as a multimodal continuous distribution approximated by a single Gaussian.

In general, by our choice of approximating factors, we can usually ensure that they all belong to
the same exponential family. For example, suppose we are using the fully-factorized approximation
of Figure 1(b). Then, instead of approximating fα(x1, x2) by two univariate factors, we approximate
it by a factor f̃α(x) defined over the whole space but constrained to a fully-factorized:

f̃α(x) def=
∏
s∈V

f̃α;s(xs). (13)

This constraint is readily enforced in the exponential family representation by choosing sufficient
statistics that depend only on single variables.

3.2 EP as Message-Passing

To illustrate how EP can be viewed as a message-passing algorithm, we begin with an example.
Suppose we are approximating the graph of 1(a) using a fully factorized approximation, as in Fig-
ure 1(b). All variables are discrete. However, we don’t want to just use the four factors in Figure 1(b)
directly, because then we’d have to assign those four univariate approximate factors to the four pair-
wise exact factors. Trying to approximate a pairwise factor by a univariate factor would be bad.

Instead, we use the approximating factor graph of Figure 1(b), in which each pairwise factor is
approximated as a product of two univariate factors:

f̃α(xs, xt)
def= mst(xt)mts(xs), (14)

5



for all exact factors α over pairs (s, t). We name the univariate approximating factors mst(xt) to
suggest that they correspond to messages in a BP algorithm, which we will see.

Let’s look at the EP algorithm for this case:

1. Initialize. Set q0(x) to uniform, i.e., set all mst(xt) to 1.

2. Repeat until converged:

(a) Choose a factor f̃α(xs, xt) = mst(xt)mts(xs) to refine.

(b) Refinement. Replace the previous approximation f̃α with the exact factor fα, yielding
the cavity distribution

q\α(x) ∝ qi−1

f̃α

=
∏

(u,v)\(s,t)

muv(xv)mvu(xu) (15)

and the refined distribution

q+α(x) = fα(xs, xt)
∏

(u,v)\(s,t)

muv(xv)mvu(xu), (16)

which is illustrated in Figure 1(c).

(c) Projection. Compute the new approximate distribution by projecting q+α into the ap-
proximating family:

qi = arg min
q

KL(q+α‖q). (17)

The main idea is that the projection step can be implemented by two BP message passes, even
though we wrote the projection as minimizing KL-divergence between two global distributions.
This is demonstrated in the following lemma.

Lemma 1. The KL divergence KL(q+α‖q) is minimized at:

mnew
st (xt) =

∑
xs

fα(xs, xt)
∏

u∈N(s)\t

mus(xs) (18)

mnew
ts (xs) =

∑
xt

fα(xs, xt)
∏

u∈N(t)\s

mut(xt) (19)

mnew
uv(xv) = muv(xv) for all other (u, v) (20)

Proof. It is sufficient to ensure that the moment-matching constraints of Equation 11 are satisfied.
We have assumed that each message muv(xv) are discrete multinomials, so their sufficient statistics
are indicator functions of the form 1Xv=xv . This means that the moment-matching constraints
amount to matching the marginal distributions of each variable:

q+α(xu) = q(xu) for all u, xu. (21)

6



For variables u that are not connected to the exact factor fα, it is clear that leaving the messages
unchanged preserves the marginal distribution, because the approximating factor graph is discon-
nected.

So all that remains is to show that q+α(xu) = q(xu). But the message

mnew
st (xt) =

∑
xs

fα(xs, xt)
∏

u∈N(s)\t

mus(xs) (22)

is exactly the marginal distribution of Xt with respect to q+α (as if calculated by direct summation)
because it sums over all variables and factors of q+α except for those that are disconnected from Xt

in the factor graph. A similar argument holds for Xs, completing the proof.

To summarize, we have seen why BP can be readily represented as an EP algorithm. Although
our example used only pairwise factors, it is easy to generalize to factors of larger cardinality.

TODO: As another example, let’s take the same graphical structure in Figure 1, but assume the
exact factors are all Gaussian.

TODO: This message-passing view can be applied to any EP algorithm, not just special cases
like BP [7].

TODO: As a more complex example, let us consider tree-structured EP [3].

4 Approximating the Partition Function

Often, we want an approximation not only of the marginals, but also the partition function. For
example, in a directed model, the partition function corresponds to the probability of the observed
evidence. In this section, we discuss three different ways to do this, of increasing sophistication.

To get intuition, it helps to think of a univariate continuous distribution p(x) ∝
∏

i fi(x). The
partition function is the area underneath the function

I(x) =
∏

i

fi(x). (23)

Since EP provides an approximation to each term fi, it seems reasonable to approximate the area∫
x I(x) as

Z ≈
∫
x

Ĩ(x) =
∫
x

∏
α

f̃α(x). (24)

The problem with this first approximation is that in EP, we selecting the f̃i to match the refined
distribution once normalized, not to match its scale (and hence its integral) before normalization.
To fix this, we estimate a scaling constant Cα whenever we refine a factor fα. We choose C so that
the area under the refined distribution equals the area under new approximation, i.e., so that∫

x
fα(x)

∏
β\α

f̃α(x) = Cα

∫
x

f̃α(x)
∏
β\α

f̃β(x). (25)

7



All of these integrals are over the approximating distributions, so they should be readily computable.
Essentially, this amounts to including the function φ(x) = 1 as a sufficient statistic in all approxi-
mating factors, and running EP as usual.

A third approximation arises from the EP free energy. EP can be viewed as optimizing a par-
ticular cost function on probability distributions, called a free energy. There is an exact version of
the free energy whose optimum is − log Z; optimizing this is clearly intractable, because comput-
ing Z is. The EP free energy is an approximation to the exact free energy, so when EP converges,
we can take the value of the EP free energy as an approximation to − log Z. This is especially
useful when the model parameters are themselves being estimated outside of EP, for just as the par-
tial derivatives of log Z yield expected sufficient statistics, the partial derivatives of the free energy
yield expected sufficient statistics, where the expectation is taken with respect to the approximate
marginal distribution. We will not go into this in detail (at least in this version of the tutorial).

TODO: Compare these on the clutter problem.

Related Work

EP was originally introduced by Minka [4, 2]. A detailed derivation of EP for a Gaussian mixture
problem is given in an unpublished note by Murphy [5]. Another tutorial on EP focusing on the
exponential family perspective appears in Seeger’s thesis [6].

References

[1] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory, 47(2):498–519, 2001.

[2] Thomas Minka. Expectation propagation for approximate bayesian inference. In 17th Confer-
ence on Uncertainty in Artificial Intelligence (UAI), pages 362–369, 2001.

[3] Thomas Minka and Yuan Qi. Tree-structured approximations by expectation propagation. In
Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Infor-
mation Processing Systems 16. MIT Press, Cambridge, MA, 2004.

[4] Tom Minka. A family of algorithms for approximate Bayesian inference. PhD thesis, MIT,
2001.

[5] Kevin Murphy. From belief propagation to expectation propagation. Available at http://
www.cs.ubc.ca/∼murphyk/Papers/EP.ps.gz, September 2001.

[6] Matthias Seeger. Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error
Bounds and Sparse Approximations. PhD thesis, University of Edinburgh, 2003.

[7] Max Welling, Tom Minka, and Yee Whye Teh. Structured region graphs: Morphing EP into
GBP. In 21st Conference on Uncertainty in Artificial Intelligence (UAI), 2005.

8


