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Abstract

Agents need to know the effects of their actions. Strong
associations between actions and effects can be found by
counting how often they co-occur. We present an algorithm
that learns temporal patterns expressed asfluents, propo-
sitions with temporal extent. The fluent-learning algorithm
is hierarchical and unsupervised. It works by maintaining
co-occurrence statistics on pairs of fluents. In experiments
on a mobile robot, the fluent-learning algorithm found tem-
poral associations that correspond to effects of the robot’s
actions.

1. Introduction

Temporal associations are useful things. Embedded
agents are particularly concerned with associations among
their activities: for example, when one moves forward,
things get closer; when a robot closes its gripper, it may find
itself holding an object. Learning such associations without
supervision is especially desirable, so humans do not need
to decide which associations are important, and so agents
can respond to changes in the environment simply by learn-
ing different patterns.

We express temporal patterns usingfluents[7]. A flu-
ent is a proposition with temporal extent. For example,
“drinking-coffee” can be defined as a fluent that is true
whenever I am drinking coffee. This fluent can be repre-
sented as a binary time seriesx, wherext is 1 if and only if
I am drinking coffee at timet.

FLUENT-LEARNING [3] is an unsupervised algorithm
that finds associations between fluents, that is, it finds pat-
terns in multivariate time series of binary variables. We ap-
ply FLUENT-LEARNING to learn patterns in the observa-
tions and actions of a mobile robot. Many of the patterns
correspond to effects of the robot’s actions, for example,
moving forward often leads to change in the front sonar.

The method is statistical: For a possible association be-
tween A and B, the algorithm maintains a contingency table
that measures how much the presence of A affects the fre-
quency of B. Since we use Allen’s [1] interval calculus, the
learned patterns are both hierarchical and propositional.

In the first section, we describe the Allen temporal rela-
tions and how we use contingency tables to judge whether
a candidate pattern is statistically significant. Then, we
describe the FLUENT-LEARNING algorithm that constructs
these contingency tables. Third, we briefly describe how
fluents correspond to operator models, that is, effects and
initial conditions of actions. Fourth, we report fluents
learned from the experiences of a mobile robot. Finally,
we discuss related and future work.

2. Fluents and Temporal Relationships

Fluents have beginnings and ends. During the time in
which a fluent holds, we say that it isopen. Allen [1] gave a
logic for relationships between the beginnings and ends of
fluents. We use a nearly identical set of relationships:

SBEB(A,B) A starts before B, ends before B;
Allen’s “overlap”

SWEB(A,B) B starts with A, ends before A;
Allen’s “starts”

SAEW(A,B) B starts after A, ends with A;
Allen’s “finishes”

SAEB(A,B) B starts after A, ends before A;
Allen’s “during”

SWEW(A,B) B starts with A, ends with A;
Allen’s “equal”

ES(A,B) B starts after A ends; amalgamating
Allen’s “meets” and “before”

Although a proper subset of Allen’s relations, this list is
exhaustive: any two fluents are in exactly one of these rela-
tions.

A composite fluentis a temporal relationship between
fluents, writtenρ(A,B), whereA andB are fluents, and
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ρ is one of the six relationships above. The relationship is
itself a fluent that begins with its first constituent and ends
with its second constituent.

For example, suppose the robot begins pushing an object
and then stalls, diagrammed like this:

stall
push
touch

Three temporal relationships are displayed:
SWEB(touch,push),SAEW(touch,stall) andES(push, stall).
But there are six other ways to describe this situation using
composite fluents, e.g.,SAEW(stall,SWEB(touch,push))
says, “the relationship between touch and push begins
before and ends with their relationship with stall.”

Let ρ ∈[SBEB,SWEB,SAEW,SAEB,SWEW,ES], and letP
be a proposition (e.g.,MOVING-FORWARD). Composite flu-
ents have the form:

F ← P or CF

CF ← ρ(F, F )

That is, a fluent F may be a proposition or a temporal rela-
tionship between fluents. Propositions are also calledbase
fluents, to distinguish them from composite fluents.

A significant composite fluentis a statistically significant
temporal relationship between fluents. That is, we will ac-
ceptρ(A,B) as a pattern if and only if the constituent fluents
are statistically associated, if they “go together.” We can in-
terpret a significant composite fluentρ(A,B) as “When I see
A, I tend to see a B such thatρ(A,B).”

For example, suppose we are considering the composite
fluentES(coffee,jitters), that is, jitters begin after the end of
having coffee. Four frequencies are relevant:

jitters no-jitters
coffee a b

not-coffee c d

Herea is the number of “coffee” fluents that are followed
by “jitters”, b the number of “coffee” fluents that are not
followed by “jitters”, c the number of “not-coffee” fluents
that are followed by “jitters”, andd the number of “not-
coffee” fluents that are not followed by “jitters.” A “not-
coffee” fluent is defined simply to be true at a time step if
and only if “coffee” is false.

For the composite fluent to be significant, certainlya
should be bigger thanb, that is, I should get the jitters more
often than not after drinking coffee. Suppose this is true,
so a = kb for somek > 1. If the relative frequency of
jitters is no different after I drink, say, orange juice, or talk
on the phone (e.g., ifc ≈ kd) then clearly there’s no spe-
cial relationship between coffee and jitters. Thus, to ac-
cept ES(coffee,jitters), I’d wanta = kb andc = md, and

k >> m. In other words, whether we see coffee or not
affects the distribution of when we see jitters.

To test the hypothesis that the start of the jitters fluent is
independent of the end of the drinking coffee fluent, we use
Cramer’s statistic, which for a2 × 2 contingency table is
defined as

φc =

√
χ2

N
,

whereN is the table total. Cramer’s statistic ranges between
0 and 1 and is interpreted like a correlation coefficient. If
Cramer’s statistic exceeds a predefined thresholdφcrit, we
say that the fluent is significant.

This statistic also serves to test hypotheses about the
other five temporal relationships between fluents. Consider
a composite fluent likeSBEB(brake,clutch): When I ap-
proach a stop light in my standard transmission car, I start to
brake, then depress the clutch to stop the car stalling; later I
release the brake to start accelerating, and then I release the
clutch. To see whether this fluent—SBEB(brake,clutch)—is
statistically significant, we use a contingency table to test
whether “clutch” is more likely to start when “brake” is
open than when any other fluent is open:

clutch non-clutch
brake a b

non-brake c d

where

• a is the number of times we seeSBEB(brake,clutch),
• b is the number of times we see “brake” but not

“clutch,” i.e., SBEB(brake,B) for any B that is not
“clutch”
• c is the number of times we see “clutch” but not

“brake,” i.e.,SBEB(A,clutch) where A is not “brake”
• d is the number of times we seeSBEB(A,B) where A is

not “brake” and B is not “clutch”

Imagine some representative numbers here: Only rarely
do I start something other than braking and then depress the
clutch, soc is small. Only rarely do I start braking with-
out depressing the clutch (otherwise the car would stall),
so b is also small. Clearly,a is relatively large, andd big-
ger still, so the table has most of its frequencies on a di-
agonal, producing a significant statistic. This means that
SBEB(brake,clutch) is a significant composite fluent.

There is a difference between the tables given forES

andSBEB: in the ES table, the rows are “coffee” and “not-
coffee”, while in theSBEB table, the rows are “brake” and
“anything but brake”. For example, suppose that fluents
“morning news,” “eating grapefruit,” and “starting car” hap-
pen after I finish my coffee. These fluents count as three
instances of “anything but coffee,” for they are three flu-
ents that are not coffee, but they are subsumed by only one



FLUENT-LEARNING(data)
n← table to record number of occurrences of each fluent,

initially empty
I ← table to record intervals during which each fluent

is open, initially empty
for t from 0 to length(data)

fluents← NEWLY-CLOSED-FLUENTS (t)
for eachf in fluents

incrementnf

push (start (f ), end (f )) ontoIf

if f is now significant
add to list of significant fluents

return list of significant fluents

NEWLY-CLOSED-FLUENTS(t)
open← list of base fluents that end at timet
closed← empty list
for eachfluentf in open

for eachfluentg that ends within the short-term memory
ρ← the temporal relation betweenf andg
if ρ(f, g) is significant

pushρ(f, g) ontoopen
elsepushρ(f, g) ontoclosed

pushf ontoclosed
return closed

Figure 1. The FLUENT-LEARNING algorithm

“not-coffee” fluent, which persists until the next time I have
coffee. The choice of which counting method to use is sub-
tle, and we do not understand it fully. In the results here,ES

andSAEB use the not-A counting method, while the other
four relations use the anything-but method.

However we count, the hypothesis test allows us to find
rare patterns: I might not drive my car very often, and so
I rarely use the brake, but when I do, I always depress the
clutch. Also, we avoid patterns that involve fluents that oc-
cur frequently in any context: for example, every time I
open the refrigerator, I am still breathing.

We have described the fluent relations and how con-
tingency tables are used to decide if fluents are signifi-
cant. Next we describe how the contingency tables are con-
structed.

3. Fluent Learning Algorithm

The fluent learning algorithm incrementally constructs
contingency tables for fluents. It processes a time seriesx

of binary vectors. Each vectorxt has one boolean value
for each base fluentf—for example, “moving-forward” or
“gripper-closed”—that indicates whetherf is true at timet.

The idea is to record the number of occurrences of every
fluent that occurs in the input. Since there is an enormous
number of possible patterns, we reduce the number of pat-
ternsρ(A,B) that we consider in two ways.

First, we require that A and B occur within ashort-term
memory, that is, a sliding window over the time series which
records when fluents start and end. A time step on which
no fluent starts or ends does not occupy space in memory.
For example, the fluent given in Section 2 requires a short-
term memory of length 3: one time step when “touch” and
“push” start, one when “push” ends and “stall” starts, and
one when “stall” and “touch” end. The short-term memory
is inspired by animal learning, because animals do not learn
associations between events that occur far apart.

Second, we record information about a composite fluent
ρ(A,B) only if A and B are either base fluents or are already
significant. This heuristic assumes that significant fluents
are likely to be important in the environment, and therefore
fruitful for exploring further.

The fluent-learning algorithm is given formally in Fig-
ure 1. The algorithm records the intervals and counts of all
fluents observed that meet the above two constraints. With
this information, one can calculate the contingency tables
described in the previous section. Note that when a base
fluent ends, many composite fluents end as well; the pro-
cedure NEWLY-CLOSED-FLUENTS calculates them all by
looking backward through the short-term memory.

FLUENT-LEARNING is unsupervised and multivariate. It
is also incremental because new composite fluents become
available for inclusion in other fluents as they become sig-
nificant.

4. Fluents as Operator Models

Significant fluents can correspond to initial conditions
and effects of an agent’s actions. For example, a significant
fluentES(move-forward,F) could be interpreted as “The ac-
tion move-forward tends to result in F.”

Learning initial conditions is more difficult. If the initial
condition is I, the action A, and the effect E, then a sig-
nificant fluentρ1(ρ2(I,A),E) might be interpreted to mean
that in the presence of I, action A leads to E. But com-
posite fluents can be significant when their constituents are
not. In this example, if all actions may be attempted in all
states,ρ2(I,A) is unlikely to be significant, but the compos-
ite fluentρ1(ρ2(I,A),E) is significant. Recall that FLUENT-
LEARNING does not keep statistics on a composite fluent
unless both of its constituents are already significant. Be-
cause of this, FLUENT-LEARNING will never learn the flu-
entρ1(ρ2(I,A),E), for its constituent is not significant.



The problem is that planning operators such as
ρ1(ρ2(I,A),E) may be significant when none of their pair-
wise constituents are; essentially, they are ternary relations
between initial condition, action, and effect. This would
not be a problem if FLUENT-LEARNING worked with three-
way tables instead of bivariate relationships. One way to
achieve the effect of learning three-way relations, without
paying a prohibitive price in combinatorics, is to allow a
fluent of the formρ(B,A), where B is a base fluent and A an
action, to participate in higher-level fluents. That is, in the
if statement in NEWLY-CLOSED-FLUENTS (Figure 1), we
would expandρ(B,A) as if it were significant.

5. Experiments

We tested FLUENT-LEARNING on data generated using
a Pioneer II robot in a walled playpen. A small styrofoam
block was in front of the robot. The robot could perform
four actions: move forward, move backward, open gripper
and close gripper. At each time step its perceptual system
output six propositions about the environment: four about
its relative location measured using sonar—closer front, far-
ther front, closer rear and farther rear—and two about the
gripper—object in gripper, meaning that an object was be-
tween the gripper paddles, and holding object, meaning that
the gripper was closed on an object.

In other experiments, we also included the negations of
these base fluents, such as “not-holding-object,” but in this
experiment we did not, because composite fluents that con-
tain negations tend to be harder for humans to interpret.

The data contained 2707 binary vectors of length 10:
six elements recorded the sensory propositions, and four
recorded whether each action had been initiated. The robot
initiated actions on 604 of the time steps. Of the 1024 possi-
ble binary vectors, some combinations were impossible, for
example moving forward and moving backward at the same
time. In all, 36 unique states occurred in the data. We hy-
pothesized that many significant fluents would correspond
to the effects and initial conditions of the robot’s actions.

At the confidence levelφcrit = 0.8, the algorithm found
61 significant fluents. By hand, we classified these into
three categories: good, marginal, and bad. Good fluents
were those that in our judgment reflected dynamics of the
environment, or the effects of robot actions, for example,
ES(move-forward,closer-front), shown in Figure 2.

Some significant fluents indicate initial conditions of
actions. For example, the fluentSAEB(SAEB(object-
in-gripper,close-gripper),holding-object), displayed in Fig-
ure 3, could be interpreted, “During an object-in-gripper
fluent that contains a close-gripper fluent, one tends to see
a holding-object fluent.” This pattern leaves the order of
“close-gripper” and “holding-object” unspecified; we have
diagrammed the relation in the order found in the data.

Move Forward

Closer Front

ES(move-forward,closer-front)

Figure 2. A significant fluent returned by the
algorithm

Close gripper

Holding object

Object in gripper

SAEB(SAEB(object-in-gripper,close-gripper),holding-object)

Figure 3. A learned fluent that indicates an
action’s initial condition

The constituent fluentSAEB(object-in-gripper,close-
gripper) was not significant; only about half the time that an
object was between the gripper paddles did the robot hap-
pen to close the gripper.

Marginal fluents were generally those that combined two
good fluents inappropriately. For example, consider the flu-
ent in Figure 4. Certainly moving backward while an ob-
ject is between the gripper paddles will lead to things being
closer in the rear, but that is only because moving backward
always leads to closer rear. Marginal fluents are thus not
spurious; they reflect regularities in the environment, but
they do not correspond to accurate operator models. An au-
tomatic pruning procedure could probably remove such a
fluent, given thatES(move-backward,closer-rear) is already
significant.

Bad fluents were those that seemed completely implausi-
ble. An example of a bad fluent the algorithm found is given
in Figure 5. While the association betweenSAEB(object-
in-gripper,move-backward) and closer-rear is significant, it
does not correspond to anycausalrule in the environment.

Move backward

Closer rear

Object in gripper

ES(SAEB(object-in-gripper,move-backward),closer-rear)

Figure 4. A marginal fluent returned by the
algorithm



Closer rear

Close gripper

Object in gripper

ES(SAEB(object-in-gripper,close-gripper),closer-rear)

Figure 5. A bad fluent returned by the algo-
rithm

The relationship between the clauses is accidental.
Out of the 61 fluents the algorithm returned, we classi-

fied 15 as good, 25 marginal, and 21 bad. In other words,
about two-thirds of the significant fluents reflect some reg-
ularity in the environment, but less than one-third corre-
spond to accurate operator models. Of course, by raising
the significance thresholdφcrit, we can reduce the number
of marginal and bad fluents, at the expense of some good
fluents. Apart from that, exploring different ways of count-
ing fluents in the contingency tables, as discussed in the sec-
ond section, may help to reduce the number of marginal and
bad fluents. Because we use hypothesis testing, in general
we expect that a small percentage of significant fluents are
due simply to chance.

We have also run experiments to learn the effects of turn-
ing. In this case, the playpen contained two large trash cans
that are detectable by sonar. The robot could perform two
actions: turn left45◦ and turn right45◦. Very few good
fluents were found, mainly because sonar is difficult to cor-
relate with turning. For example, after the robot turns left,
anything could happen to the front sonar: a wall in front
could become closer or farther, depending on the angle be-
tween wall and robot, which sonar cannot sense. We may
attain better results using a vision system, tracking how ob-
jects move across the visual field, instead of sonar.

6. Related Work

The fluent-learning algorithm was first presented by Co-
hen[3]. There, the task was to partition robot experience
into episodes; here, we focus on learning the outcomes of
controllers. This application of fluent learning was inspired
by previous work that used the MSDD algorithm to learn
planning operators [8].

Some other recent work finds patterns expressed using
Allen relations. One technique [5, 6] measures the strength
of a pattern by its total duration, rather than by counts of
open and close events. Associations between patterns are
learned using rules whose antecedent and consequent are
patterns. The consequent of a rule always temporally fol-
lows the antecedent.

Association rule learning, a technique from knowledge
discovery, has been adapted to find temporal associations
[12]. This algorithm works on a database of tuples whose
elements are propositions with temporal extent. First as-
sociations are learned within the tuples by using standard
knowledge discovery algorithms that ignore time, and then
temporal relations are learned for each association.

In general, our approach differs from both of these in
that, for a patternρ(A,B), we consider not only the fre-
quency of B given A but also the background frequency of
B without A. We would most likely treat a temporal rule A
→ B as a composite fluentES(A,B).

Witkowski et al. [16] describe using temporal inference
for robot control. Given a domain theory of an environment
written in predicate logic and the event calculus, they use
abductive reasoning for tasks like map-making and motion
planning. The domain theory is not learned.

Fluent learning is based on the idea that random coinci-
dences of events are rare, so the structure of a time series
can be discovered by counting these coincidences. Thus, it
accords with psychological literature on neonatal abilities
to detect coincidences [15], and it has a strong statistical
connection to causal induction algorithms [10], though we
do not claim that the algorithm discovers causal patterns.
In discovering patterns, it differs from techniques that elu-
cidate only probabilistic structure, such as autoregressive
models [4], HMMs [11, 2], and markov-chain methods such
as MBCD [13]. Clustering by dynamics and time-warping
also discover patterns [9, 14], but require the user to first
identify episode boundaries in time series.

7. Conclusion

Fluent learning works for multivariate time series in
which all the variables are binary. It does not attend to
the durations of fluents, only the temporal relationships be-
tween open and close events. This is an advantage in do-
mains where the same episode can take different amounts
of time, and a disadvantage in domains where duration mat-
ters. The algorithm uses hypothesis testing; thus, we accept
a fluentρ(A,B) not because of the absolute number of times
ρ(A,B) occurs, but because of how much A affects the ob-
served distribution of B.

Because it is a statistical technique, fluent learning finds
common patterns, not all patterns; it is easily biased to find
more or fewer patterns by adjusting the threshold value of
the statistic and varying the size of the short-term memory.

We applied the algorithm to data from a mobile robot
to find effects and initial conditions of its actions. In fu-
ture work, we hope to use these as planning operators for
robot control. Also, it would be intriguing for an algorithm
to construct experiments to determine whether a significant
fluent in fact reflects a causal relation. FLUENT-LEARNING



does not learn causal models—causal induction is computa-
tionally much more challenging, and our approach to learn-
ing causal rules is not to induce what we can from obser-
vational data but rather to use fluents as hypotheses about
causal rules to be learned by the robot in true experiments.
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