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Abstract

Cross-validation is an essential tool in ma-
chine learning and statistics. The typical pro-
cedure, in which data points are randomly
assigned to one of the test sets, makes an im-
plicit assumption that the data are exchange-
able. A common case in which this does not
hold is when the data come from multiple
sources, in the sense used in transfer learn-
ing. In this case it is common to arrange
the cross-validation procedure in a way that
takes the source structure into account. Al-
though common in practice, this procedure
does not appear to have been theoretically
analysed. We present new estimators of the
variance of the cross-validation, both in the
multiple-source setting and in the standard
iid setting. These new estimators allow for
much more accurate confidence intervals and
hypothesis tests to compare algorithms.

1. Introduction

Cross-validation is an essential tool in machine learn-
ing and statistics. The procedure estimates the ex-
pected error of a learning algorithm by running a train-
ing and testing procedure repeatedly on different par-
titions of the data. In the most common setting, data
items are assigned to a test partition uniformly at ran-
dom. This scheme is appropriate when the data are in-
dependent and identically distributed, but in modern
applications this iid assumption often does not hold.

One common situation is when the data arise from
multiple sources, each of which has a characteristic
generating process. For example, in document classifi-
cation, text that is produced by different authors, dif-
ferent organisations or of different genres will have dif-
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ferent characteristics that affect classification (Blitzer
et al., 2007; Craven et al., 1998). As another exam-
ple, in biomedical data, such as EEG data (Mitchell
et al., 2004), data items are associated with particular
subjects, with large variation across subjects.

For data of this nature, a common procedure is to ar-
range the cross-validation procedure by source, rather
than assigning the data points to test blocks randomly.
The idea behind this procedure is to estimate the per-
formance of the learning algorithm when it is faced
with data that arise from a new source that has not
occurred in the training data. We call this procedure
multiple-source cross-validation. Although it is com-
monly used in applications, we are unaware of theo-
retical analysis of this cross-validation procedure.

This paper focuses on the estimate of the predic-
tion error that arises from the multiple-source cross-
validation procedure. We show that this procedure
provides an unbiased estimate of the performance of
the learning algorithm on a new source that was un-
seen in the training data, which is in contrast to the
standard cross-validation procedure. We also analyse
the variance of the estimate of the prediction error,
inspired by the work of Bengio & Grandvalet (2003).
Estimating the variance enables the construction of ap-
proximate confidence intervals on the prediction error,
and hypothesis tests to compare learning algorithms.

We find that estimators of the variance based on the
standard cross-validation setting (Grandvalet & Ben-
gio, 2006) perform extremely poorly in the multiple-
source setting, in some cases, even failing to be con-
sistent if allowed infinite data. Instead, we propose a
new family of estimators of the variance based on a
simple characterisation of the space of possible biases
that can be achieved by a class of reasonable estima-
tors. This viewpoint yields a new estimator not only
for the variance of the multiple-source cross-validation
but for that of standard cross-validation as well.

On a real-world text data set that is commonly used for
studies in domain adaptation (Blitzer et al., 2007), we
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demonstrate that the new estimators are much more
accurate than previous estimators.

2. Background

Cross-validation (CV) is a common means of assess-
ing the performance of learning algorithms (Stone,
1974). Given a loss function L(y, ŷ) and a learn-
ing algorithm A that maps a data set D to a pre-
dictor AD : x 7→ y, CV can be interpreted as a
procedure to estimate the expected prediction error
µ = EPE(A) = E[L(AD(x), y)]. The expectation is
taken over training sets D and test instances (x, y).

In this paper we focus on k-fold CV. We introduce
some notation to compactly describe the procedure.
Denote the training set by D = {(xi, yi)}Ni=1 and par-
tition the data as D = D1∪. . .∪DK with |Dk| = M for
all k. This means that N = KM . Let HO(A,D1, D2)
denote the average loss incurred when training on set
D1, and testing on set D2.

In k-fold cross-validation, we first compute the average
loss, HO(A,D\Dk, Dk), when trainingA onD\Dk and
testing on Dk, for each k ∈ {1, . . . ,K}. We average
these to get the final error estimate

µ̂ = CV(A,D1:K) =
1
K

K∑
k=1

HO(A,D\Dk, Dk). (1)

If (D1, . . . , DK) is a random partition of D, we will
refer to this procedure as random cross-validation
(CVR) to differentiate it from the multiple-source
cross-validation (CVS) that is the principal focus of
this paper.

Notice that every instance in D is a test instance ex-
actly once. For (xm, ym) ∈ Dk, denote this test er-
ror by the random variable ekm = L(ym, AD\Dk(xm)).
Using this notation, µ̂ = 1

KM

∑
k

∑
m ekm, so the CV

estimate is a mean of correlated random variables. For
CVR, the ekm’s have a special exchangeability struc-
ture: For each k, the sequence ek = (ek1, . . . , ekM )
is exchangeable, and the sequence of vectors e =
(e1, . . . , eK) is also exchangeable.

Our goal will be to estimate the variance θCVR =
V[µ̂CVR] of this and related CV estimators. If the ex-
amples in D are iid, Bengio & Grandvalet (2003) show
that the variance θCVR can be decomposed into a sum
of three terms. The exchangeability structure of the
ekm implies that there are only three distinct entries
in their covariance matrix: σ2, ω and γ, where

V [eki] = σ
2
, ∀i ∈ {1, . . . ,M}, ∀k ∈ {1, . . . , K},

Cov [eki, ekj ] = ω, ∀i, j ∈ {1, . . . ,M}, i 6= j, ∀k ∈ {1, . . . , K},
Cov [eki, e`j ] = γ, ∀i, j ∈ {1, . . . ,M}, ∀k, ` ∈ {1, . . . , K}, k 6= `.

Applying the formula for the variance of the sum of
correlated variables yields

θCVR = V[µ̂CVR] =
1

KM
σ2 +

M − 1
KM

ω+
K − 1
K

γ. (2)

This decomposition can be used to show that an unbi-
ased estimator of θCVR does not exist. The reasoning
behind this is the following. Because θCVR has only
second order terms in eki’s, so would an unbiased es-
timator. Thus, if there existed such an estimator, it
would be of the form θ̂ =

∑
k,`

∑
ij wk`ekie`j . Coeffi-

cients wk` would be found by equating coefficients of
σ2, ω and γ in E

[
θ̂
]

and in θCVR. Unfortunately, the
resulting system of equations has no solution, unless
some assumptions about σ2, ω or γ are made. In later
work, Grandvalet & Bengio (2006) suggested several
biased estimators of θCVR based on this variance de-
composition and simplifying assumptions on σ2, ω and
γ. These are described in Table 2.

3. Multiple-source cross-validation

In many practical problems, the data arise from a num-
ber of different sources that have different generating
processes. Examples of sources include different gen-
res in document classification, or different patients in a
biomedical domain. In these cases, often the primary
interest is in the performance of a classifier on a new
source, rather than over only the sources in the train-
ing data. This is essentially the same setting used in
domain adaptation and transfer learning, except that
we are interested in estimating the error of a predic-
tion procedure rather than in developing the prediction
procedure itself.

This situation can be modelled by a simple hierarchi-
cal generative process. We assume that each source
k ∈ {1, . . . ,K} has a set of parameters βk that de-
fine its generative process and that the parameters
β1, . . . , βK for each source are iid according to an un-
known distribution. We assume that the source of each
datum in the training set is known, i.e., each training
example is of the form (ym, xm, km), where km is the
index of the source of data item m. The data are then
modelled as arising from a distribution p(ym, xm|βkm)
that is different for each source.

The goal of cross-validation in this setting is to esti-
mate the out-of-source error, i.e., the error on data
that arises from a new source that does not occur in
the training data. This error is

OSE = E[L(AD(x), y)], (3)

where the expectation is taken with respect to training
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sets D and testing examples (y, x) that are drawn from
a new source, that is, p(y, x) =

∫
p(y, x|β)p(β)dβ.

In the multiple-source setting, it is intuitively obvi-
ous that the standard cross-validation estimator of (1)
is inappropriate. (We shall make this intuition pre-
cise in the next section.) Instead it is common prac-
tice to modify the CV procedure so that no source is
split across test blocks, a procedure that we will call
multiple-source cross-validation. Let Sk denote the set
of all training points that were sampled from source
k. Multiple-source cross-validation works exactly as
standard CV, except that we partition the data as
D = S1 ∪ . . . ∪ SK instead of assigning the training
instances to blocks randomly. The resulting estimate
of the error, which we denote by CVS, is

µ̂CVS = CVS(A,S1:K) =
1
K

K∑
k=1

HO(A,D\Sk, Sk).

The idea behind this procedure is that it accounts for
the fact that we expect to be surprised by the new
source in the test data, by using the information in the
training data to simulate the effect of predicting on an
unseen source. Although this estimator is commonly
used in practice, we are unaware of previous work con-
cerning its asymptotic or finite sample behaviour.

4. Analysis of multiple-source
cross-validation

We give the mean (Section 4.1) and variance (Sec-
tion 4.2) of the CVS estimator. The variance has an
analogous decomposition to the CVR estimator, but
the individual terms in the CVS variance behave dif-
ferently from those in CVR, in a way that has a large
impact on effective estimators of the variance. Finally,
we present novel estimators of the variance of the CVS
error estimate (Section 4.2).

4.1. Mean of the error estimate

First, we consider the expected value of both the CVS
and the CVR error estimates, in the case where the
data was in fact generated from the multiple-source
process described in the previous section. The idea is
to make clear what µ̂CVS is estimating, and to provide
a more careful justification for the common use of µ̂CVS

on multiple-source data.

Let D = S1 ∪ . . . ∪ SK . Then it is easy to show using
the exchangeability of S1, . . . , SK that the expected
value of the estimate µ̂CVS is

E [µ̂CVS] = E(S1:K)

[
HO(A,S1:(K−1), SK)

]
= E(S1:(K−1),X,Y )

[
L(AS1:(K−1)(X), Y )

]
, (4)

Figure 1. Diagram of the covariance matrix of the error
variables for CVS. Blocks of the same colour represent
blocks of variables with identical covariance.

where this notation indicates that the expectation is
taken over S1:(K−1), X and Y . This is the expected
error when the algorithm A is trained with data com-
ing from K − 1 sources and the test point is going to
come from a newly sampled source. This is the out-of-
source error (3), but on a slightly smaller training set
than D.

On the other hand, consider the CVR estimate on the
same data set D. Let D1 ∪ . . .∪DK = D be a random
partition of D with |Dk| = M for all k. The same
symmetry argument which was used in (4) yields

E [µ̂CVR] = E(D1:K)

[
HO(A,D1:(K−1), DK)

]
= E(D1:(K−1),X,Y )

[
L(AD1:(K−1)(X), Y )

]
, (5)

which is formally similar to the above, but has the
crucial difference that D1:(K−1), X, Y have a different
joint distribution. Here X and Y are drawn from
the same family of K sources as the training data
D1:(K−1). So E [µ̂CVR] is the expected error of an al-
gorithm trained with M(K − 1) data items from K
sources, when the test point arises from one of the
training sources.

Neither (4) or (5) is exactly the same as the out-of-
sample error (3) that we want to estimate. Looking at
the above, we see that µ̂CVS is biased for (3) because
µ̂CVS uses slightly fewer training sources than OSE.
On the other hand, µ̂CVR is biased for OSE because
the training sets are slightly smaller and also because
in µ̂CVR the training and test data are drawn from
the same set of sources. However, if it is important
to have a conservative estimate of the error, µ̂CVR has
the advantage that its bias will tend to be negative,
based on the expected effect of a smaller training set.
(We verify this intuition experimentally in Section 6.)

4.2. Variance of the error estimate

Now we consider the variance of µ̂CVS. The key dif-
ference between this case and the CVR case is that
error variables eki and e`j are no longer identically
distributed if k 6= `, as the corresponding data points
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arise from different sources. There is still a block struc-
ture to the covariance matrix of e, but it is more com-
plex. Namely, the error variables have identical co-
variance structure within each source but not across
sources. More formally,

V [eki] = σ2
k, ∀i ∈ {1, . . . ,M},

Cov [eki, ekj ] = ωk, ∀i, j ∈ {1, . . . ,M}, i 6= j,

Cov [eki, e`j ] = γk`, ∀i, j ∈ {1, . . . ,M}, k 6= `.

(6)

This covariance structure follows from the generating
process described in Section 3, and is depicted graphi-
cally in Figure 1. The means of the error variables have
an analogous structure, that is, E [eki] = E [ekj ] := µk,
which follows because the data points within each
source are exchangeable.

This allows us to obtain a decomposition of the vari-
ance θCVS = V[µ̂CVS] of the CVS error estimate. This
decomposition is

θCVS =
1

K2M

∑
k

σ2
k+

M − 1
K2M

∑
k

ωk+
1
K2

∑
k 6=l

γkl, (7)

which again follows because θCVS is the variance of a
sum of correlated random variables. Notice the differ-
ence to decomposition of θCVR in (2).

In the rest of this section we consider various estimates
of θCVS. As θCVS depends quadratically on the vari-
ables ekl, we will restrict our attention to estimators
of the form θ̂ =

∑
k,`

∑
i,j wk`ekie`j . That is, the

estimator is a quadratic function of the variables e,
and as the error variables ek within a single source
k are exchangeable, we require such variables to be
weighted equally. We refer to an estimator of this form
as quadratic.

Every quadratic estimator can be written as a function
of the empirical second moments of the error variables.
If θ̂ is quadratic,

θ̂ =
∑
k

aks
σ2

k +
∑
k

bks
ω
k +

∑
k 6=l

ckls
γ
kl,

where the sσ
2

k , sωk and sγkl, are empirical moments

sσ
2

k =
1
M

∑
i

e2ki, s
ω
k =

1
M(M − 1)

∑
i 6=j

ekiekj ,

sγkl =
1
M2

∑
i,j

ekielj .

4.2.1. No Unbiased Estimator

Using the decomposition (7), we can now follow the
same reasoning as Bengio & Grandvalet (2003) to show

that there is no unbiased estimator of θCVS. First, be-
cause θCVS = 1

(KM)2

∑
k,`

∑
i,j Cov [ekie`j ], an unbi-

ased estimator must also be quadratic. The expecta-
tion of a quadratic estimator has the form

E[θ̂] =
X
k

ak(σ2
k+µ2

k)+
X
k

bk(ωk+µ2
k)+

X
k 6=l

ckl(γkl+µkµl).

(8)

To get E[θ̂] = θCVS, we need to match the coefficients
in the equations (7) and (8), including the coefficients
of the µ2

k and µkµ` terms that need to equal zero, since
there clearly exist distributions such that µkµl > 0.
This yields the system of equations

ak =
1

K2M
, bk =

M − 1

K2M
, ak + bk = 0, ckl =

1

K2
, ckl = 0.

(9)
Clearly, these equations are unsatisfiable, so no unbi-
ased estimator of θCVS exists.

4.2.2. Naive Estimators

We can derive new estimators of the variance θCVS by
following the reasoning used in the standard CV set-
ting by Grandvalet & Bengio (2006). Unfortunately,
as we will see, the resulting estimators perform poorly.

The idea is rather than attempting to define an estima-
tor that is unbiased for all data distributions, instead
define an estimator that is unbiased for a restricted
class of data distributions, defined by assumptions on
µk, σ2

k, ωk and γkl.

First, we restrict our attention to cases in which the
mean prediction error across sources is the same, i.e.,
µk = µl := µ. A quadratic estimator which is unbi-
ased for this class of data distributions must satisfy
the equations

ak =
1

K2M
, bk =

M − 1
K2M

, ckl =
1
K2

,∑
k

ak +
∑
k

bk +
∑
k 6=l

ckl = 0.
(10)

These equations also have no solution. However, if we
further assume (following the reasoning of Grandvalet
& Bengio (2006), even though it is unlikely to be a
good assumption) that one of the sources k̃ has ωk̃ =
0, then we no longer have to match the value of the
coefficient bk̃, removing one of the constraints. Solving
the remaining equations yields

ak =
1

K2M
, ckl =

1
K2

,

bk̃ =
M − 1
K2M

− 1, bk =
M − 1
K2M

,∀k 6= k̃.

The corresponding estimator and its bias are shown in
the first line of Table 1. Similarly, instead of assuming
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ωk̃ = 0, we could restrict ourselves to have a single
γk̃l̃, or to have all of the ωk’s or γkl’s equal zero. This
yields the remaining estimators in Table 1.

These estimators are appealingly simple, but, unfor-
tunately, they have serious problems. The main prob-
lem is that their biases depend on the mean error µk
of the sources. This is often an order of magnitude
larger than the true variance θCVS that we are trying
to predict. In particular, θ̂γ , which is an analog of θ̂3,
the preferred estimator in the original CVR setting
in the work of Grandvalet & Bengio (2006), is poor
in this regard. Unlike the true variance, it does not
even converge to 0 as N → ∞, because the second
term 1

K2

(∑K
k=1 µ

2
k −

P
k 6=l µkµl
(K−1)

)
in its bias does not

converge to 0 in general.

The end result is that we can attempt to follow a simi-
lar strategy as in standard cross-validation to estimate
the error variance, but doing so leads to extremely
poor estimators. Instead, we will introduce new esti-
mators that are specific to the multiple-source cross-
validation setting.

4.2.3. Design of new estimators

Instead of the naive estimators from the previous sec-
tion, we can derive better estimators by taking a differ-
ent perspective. Instead of trying to design estimators
that are unbiased for a restrictive set of scenarios, we
consider the asymptotic behaviour of the bias decom-
position of the quadratic variance estimator.

In the last section we saw that every quadratic esti-
mator θ̂ has a bias of the form

E[θ̂ − θCVS] =
X
k

„
ak −

1

K2M

«
σ

2
k +

X
k

„
bk −

M − 1

K2M

«
ωk+

X
k 6=l

„
ckl −

1

K2

«
γkl +

X
k

(ak + bk)µ
2
k +

X
k 6=l

cklµkµl.

Choosing the coefficients ak, bk, ckl uniquely deter-
mines an estimator θ̂. Let us consider the relative
magnitude of the terms in the bias decomposition. The
error means µ2

k are usually a few of orders of magni-
tude larger than 1

K2M σ2
k, M−1

K2M ωk and 1
K2 γkl as long

as M is not too small. (We check this intuition exper-
imentally in Section 6.) Therefore it seems sensible to
require that all of the µk terms vanish. This implies
that ak + bk = 0 and ckl = 0 for all k, l.

Next, usually σ2
k is larger than ωk or γkl, which sug-

gests choosing ak = (K2M)−1 so that the σ2
k term

vanishes as well. This yields the estimator

θ̂A =
1

K2M

(∑
k

sσ
2

k −
∑
k

sωk

)
. (11)

The bias of this estimator is

E[θ̂A − θCVS] = − 1

K2

X
k

ωk −
1

K2

X
k 6=l

γkl.

However, we can do better than this. Instead of requir-
ing that the σ2

k term vanish, which is a very stringent
requirement, we could instead require its coefficient to
be (KN)−1 = (K2M)−1, so that it becomes negligi-
ble for large N . This amounts to the requirment that
ak = 2(K2M)−1, which results in the estimator

θ̂B =
2

K2M

(∑
k

sσ
2

k −
∑
k

sωk

)
. (12)

This estimator is especially appealing because of the
form of its bias, which is

E[θ̂B − θCVS] =
1

K2M

0@X
k

σ
2
k − (M + 1)

X
k

ωk −M
X
k 6=l

γkl

1A .

Now σ2
k’s and ωk’s are positive, and in practice γkl’s

are almost always positive if M is not small. So what is
appealing about this estimator is that the three terms
have differing signs. In many situations, the difference
between the first term and the second two will be of
smaller magnitude than either of the three terms alone,
causing θ̂B to be significantly less biased than the es-
timators in Table 1. We show this experimentally in
Section 6.

5. New estimators of θ for CVR

It is actually possible to apply the same viewpoint from
the previous section in order to provide new estima-
tors for the variance of the standard cross-validation
procedure. Previously known estimators of the vari-
ance θCVR (Table 2) were designed to be unbiased for
a subclass of generating processes. By considering the
bias decomposition directly, as in the previous section,
we can design better estimators.

First, we give a proposition that describes the space
of possible biases for quadratic estimators of θCVR.

Proposition 1. Let θ̂ =
∑
k,`

∑
ij wk`ekie`j be a

quadratic estimator. Then the bias E
[
θ̂ − θCVR

]
has

the form α1σ
2 +α2ω+α3γ+α4µ. Also α1 +α2 +α3−

α4 = −1. Conversely, for every α1, α2, α3, α4 such
that α1 + α2 + α3 − α4 = −1, there exists a quadratic
estimator θ̂ with bias

E
[
θ̂ − θCVR

]
= α1σ

2 + α2ω + α3γ + α4µ
2.

Proof. For a quadratic estimator θ̂, let a = M
∑
k wkk,

let b = M(M − 1)
∑
k wkk and c = M2

∑
k

∑
l 6=k wkl.
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Table 1. Naive estimators of θCVS coming from solutions of simplified system of equations (10).
Unbiased if Estimator Bias

ωk̃ = 0 θ̂ω
k̃

= 1
K2M

P
k s

σ2

k + M−1
K2M

P
k s

ω
k + 1

K2

P
k 6=l s

γ
kl − s

ω
k̃

−ωk̃ + 1
K2

P
k,l µkµl − µ

2
k̃

γk̃l̃ = 0 θ̂γ
k̃,l̃

= 1
K2M

P
k s

σ2

k + M−1
K2M

P
k s

ω
k + 1

K2

P
k 6=l s

γ
kl −

„
s
γ

k̃l̃
+s
γ

l̃k̃
2

«
−γk̃l̃ + 1

K2

P
k,l µkµl − µl̃µk̃

∀k ωk = 0 θ̂ω = 1
K2M

P
k s

σ2

k + M−1−KM
K2M

P
k s

ω
k + 1

K2

P
k 6=l s

γ
kl −

P
k ωk
K

+ 1−K
K2

“P
k µ

2
k −

P
k 6=l µkµl
(K−1)

”
∀k,l γkl = 0 θ̂γ = 1

K2M

P
k s

σ2

k + M−1
K2M

P
k s

ω
k − 1

K2(K−1)

P
k 6=l s

γ
kl −

P
k 6=l γkl

K(K−1)
+ 1

K2

“P
k µ

2
k −

P
k 6=l µkµl
(K−1)

”

Table 2. Estimators of θ for CVR suggested by Grandvalet & Bengio (2006).
Unbiased if Estimator Bias

µ = 0 θ̂1 = 1
N
s1 + M−1

N
s2 + N−M

N
s3 µ2

ω = 0 θ̂2 = 1
N
s1 − N+1−M

N
s2 + N−M

N
s3 −ω

γ = 0 θ̂3 = 1
N
s1 + M−1

N
s2 − M

N
s3 −γ

γ = − M
N−M ω θ̂4 = 1

N
s1 − 1

N
s2 −M

N
ω − N−M

N
γ

Taking expectations, we have

E
[
θ̂
]

= aσ2 + bω + cγ + (a+ b+ c)µ2.

Therefore the bias has the form

E
h
θ̂ − θCVR

i
=

„
a− 1

KM

«
σ2 +

„
b− M − 1

KM

«
ω+„

c− K − 1

K

«
γ + (a+ b+ c)µ2.

So the bias has the required form, with α1 +α2 +α3−
α4 = −1. Conversely, let α1+α2+α3−α4 = −1. Then
we can obtain an estimator θ̂ by setting a = α1 + 1

KM ,
b = α2 + M−1

KM , c = α3 + K−1
K , and d = a+b+c+1.

All of the existing estimators of θCVR (Table 2) have
similar biases in the sense that the coefficients α1, α2,
and α3 are non-positive. But from the previous propo-
sition, we know that there is a much larger set of co-
efficients available.

To design a new estimator, we observe that both in
the results of Grandvalet & Bengio (2006) and our own
results in Section 6, typically ω > γ and ω and γ are of
similar magnitude. Therefore an estimator with bias
of ω − 2γ will have smaller bias than the estimators
from Table 2. Applying the previous result, this bias
is achieved by the estimator

θ̂5 =
1
N
s1 +

N +M − 1
N

s2 −
N +M

N
s3,

where s1, s2 and s3 are the empirical moments

s1 =
1

K

X
k

sσ
2

k , s2 =
1

K

X
k

sωk , s3 =
1

K(K − 1)

X
k 6=l

sγkl.

In the next section we show that its performance is
superior in practice to the best previous estimator θ̂3
given by Grandvalet & Bengio (2006).

6. Experiments

We evaluate the usefulness of µ̂CVR and µ̂CVS as es-
timators of out-of-source error and the estimators of
θCVR and θCVS on a data set of product reviews from
Amazon (Blitzer et al., 2007), which is frequently used
as a benchmark data set in domain adaptation. The
data contains reviews of products from 25 diverse do-
mains corresponding to high-level categories on Ama-
zon.com. The goal is to classify whether a review is
positive or negative based on the review text. We take
each product domain as being a separate source.

We experiment with the version of the data set which
contains ten domains, each with 1000 positive and
1000 negative examples. We will use CV to estimate
the prediction error of a simple naive Bayes classifier.
(We have replicated these results with an SVM with a
linear kernel.)

6.1. Bias and variance

First we measure the bias of µ̂CVR and µ̂CVS and com-
pare them to the out-of-source error. To estimate this,
we average over the set of training domains, the set of
training instances, the test domain and the test in-
stances. To get this, we first sample without replace-
ment a given number of domains, keeping all of them
but one as training domains and using the remain-
ing one as a test domain. Given this, we sample 100
pairs consisting of training and test data sets, sampling
data points from empirical distribution of the respec-
tive domains. Having these, we run CVR and CVS on
the training domains, comparing the cross-validation
estimate to the prediction on the out-of-source test
set. Figure 2 shows this comparison as a function of
the number of training sources K (left panel) and the
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Figure 2. Values of µ̂CVR and µ̂CVS averaged over draws of training
and test domains, compared to the true out-of-source error. Both
plots were generated drawing domains 200 times.
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Figure 3. Standard deviation of µ̂CVR and
µ̂CVS averaged draws of training and test
domains. Experiment was done drawing
domains 200 times.
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Figure 4. Decomposition of θCVR (right panel) and θCVS (left panel).
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number of points M per source (right panel). It can be
clearly seen that CVS yields a better estimate of the
out-of-source error than CVR. It is worth noting what
happens when the number of training domains or the
number of training data items gets larger. While CVS
converges to the true out-of-source error, CVR con-
verges to a different value. This confirms the analysis
from Section 4.1. From these results, we can see that
CVR yields an optimistic estimate of out-of-source er-
ror, even though the training set in each iteration of
CV is smaller than the full training set. This is in con-
trast to CVS, which yields a more desirable pessimistic
estimate.

Figure 3 shows the standard deviation of µ̂CVS and
µ̂CVR averaged over the choice of training domains.
To get this estimate, we have performed a similar pro-
cedure to Figure 2, i.e., for each draw of training do-
mains, we sample 100 data sets, sampling data points
from expirical distribution of the respective domains.
Although the CVS estimate has higher variance, the
variances are of the same order of magnitude and both
tend to 0 for large data sets.

6.2. Variance decompositions and estimators
of variance

In this section, we evaluate our new estimators of the
variances θCVR and θCVS. To obtain these results, we
used all domains as training domains. Estimating both
θCVR and θCVS unbiasedly requires more than one inde-
pendently sampled data set. To get them, we sample
1000 data sets, sampling from empirical distributions
of each domain.

In the first experiment we estimated components of
the decomposition of θCVR and θCVS (Figure 4). The
quantities 1

KM σ2, M−1
KM ω, K−1

K γ and corresponding to
them 1

K2M

∑
k σ

2
k, M−1

K2M

∑
k ωk, 1

K2

∑
k 6=l γkl have dif-

ferent magnitudes. Notice that M−1
KM ω is much larger

than M−1
K2M

∑
k ωk. It is not a surprise that CVS yields

a strong positive correlation between errors made on
points belonging to the same test block, which is not
observed in CVR, where the test blocks are chosen
randomly.

Secondly, we looked at V[e] to see how much ωk’s and
γkl’s vary (Figure 5). It can be seen that variation
within γkl’s diminishes when M gets larger but varia-
tion within ωk’s does not change much.

Finally, we have tested estimators of θCVR and θCVS,
which we have suggested in the earlier sections. The
results are in Figure 6. For CVS, we compare θ̂γ , θ̂A
and θ̂B . As expected, θ̂γ does not converge to 0 and
grossly overestimates θCVS for large values of M . The

new estimator θ̂A is closer to θCVS than θ̂γ for large
values of M but its bias is consistently optimistic. On
the other hand, for small M , θ̂B is not more optimistic
than θ̂γ and for large M , while θ̂γ becomes very pes-
simistic, θ̂B has a negligible bias. Similarly, for the
standard CVR setting, our new estimator θ̂5 has lower
bias than the previous estimators suggested by Grand-
valet & Bengio (2006), being almost unbiased even for
small M .

7. Related work

Various different versions of cross-validation have been
analysed previously (Bengio & Grandvalet, 2003; Ar-
lot & Celisse, 2010; Nadeau & Bengio, 2003; Marka-
tou et al., 2005), but to our knowledge multiple-source
cross-validation has not been previously analysed.

The idea of learning from a number of sources dates
back to Caruana (1997) and Thrun (1996). A related
issue in the context of covariate shift was suggested
by Sugiyama et al. (2007), however, the resulting im-
portance weights are difficult to estimate in practice
(but see Gretton et al. (2009) for some work in this
direction).

Rakotomalala et al. (2006) investigate the multiple-
source cross-validation procedure empirically, but they
do not perform theoretical analysis or present any es-
timators of θCVS. Work in domain adaptation also has
considered the problem of bounding the prediction er-
ror when the training and test distribution have a dif-
ferent source (Ben-David et al., 2010). Unfortunately,
the resulting bounds are too loose to be used for con-
fidence intervals.

8. Conclusions

We have considered a cross-validation procedure for
the multiple-source setting. We show that the bias
of this procedure is better suited to this setting. We
have presented several new estimates of the variance
of the error estimate, both for the multiple-source
cross-validation procedure and for the standard cross-
validations setting, which perform well empirically.
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