
Mining Idioms from Source Code
Miltiadis Allamanis, Charles Sutton

School of Informatics, University of Edinburgh
Edinburgh EH8 9AB, UK

{m.allamanis,csutton}@ed.ac.uk

ABSTRACT
We present the first method for automatically mining code idioms
from a corpus of previously written, idiomatic software projects.
We take the view that a code idiom is a syntactic fragment that
recurs across projects and has a single semantic purpose. Idioms
may have metavariables, such as the body of a for loop. Modern
IDEs commonly provide facilities for manually defining idioms
and inserting them on demand, but this does not help programmers
to write idiomatic code in languages or using libraries with which
they are unfamiliar. We present Haggis, a system for mining code
idioms that builds on recent advanced techniques from statistical
natural language processing, namely, nonparametric Bayesian prob-
abilistic tree substitution grammars. We apply Haggis to several of
the most popular open source projects from GitHub. We present a
wide range of evidence that the resulting idioms are semantically
meaningful, demonstrating that they do indeed recur across soft-
ware projects and that they occur more frequently in illustrative
code examples collected from a Q&A site. Manual examination
of the most common idioms indicate that they describe important
program concepts, including object creation, exception handling,
and resource management.
Categories and Subject Descriptors: D.2.3 [Software Engineer-
ing]:Coding Tools and Techniques
General Terms: Documentation, Languages, Algorithms
Keywords: syntactic code patterns, code idioms, naturalness of
source code

1. INTRODUCTION
Programming language text is a means of human communication.

Programmers write code not simply to be executed by a computer,
but also to communicate the precise details of the code’s operation
to later developers who will adapt, update, test and maintain the
code. It is perhaps for this reason that source code is natural in the
sense described by Hindle et al. [18]. Programmers themselves use
the term idiomatic to refer to code that is written in a manner that
other experienced developers find natural. Programmers believe that
it is important to write idiomatic code, as evidenced by the amount
of relevant resources available: For example, Wikibooks has a book
devoted to C++ idioms [52], and similar guides are available for
Java [22] and JavaScript [9, 50]. A guide on GitHub for idiomatic
JavaScript [50] has more 6,644 stars and 877 forks. A search for the
keyword “idiomatic” on Stack Overflow yields over 49,000 hits; all
but one of the first 100 hits are questions about what the idiomatic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE ’14 Hong Kong, China
Copyright 2014 ACM /14/11 ...$15.00.

method is for performing a given task.
The notion of code idiom is one that is commonly used but sel-

dom defined. We take the view that an idiom is a syntactic fragment
that recurs frequently across software projects and has a single
semantic purpose. Idioms may have metavariables that abstract
over identifier names and code blocks. For example, in Java the
loop for(int i=0;i<n;i++) { ... } is a common idiom for
iterating over an array. It is possible to express this operation in
many other ways, such as a do-while loop or using recursion, but
as experienced Java programmers ourselves, we would find those
alternatives alien and more difficult to understand. Idioms differ sig-
nificantly from previous notions of textual patterns in software, such
as code clones [44] and API patterns [56]. Unlike clones, idioms
commonly recur across projects, even ones from different domains,
and unlike API patterns, idioms commonly involve syntactic con-
structs, such as iteration and exception handling. A large number
of example idioms, all of which are automatically identified by our
system, are shown in Figures 6 and 7.

Major IDEs currently support idioms by including features that
allow programmers to define idioms and easily reuse them. Eclipse’s
SnipMatch [43] and IntelliJ IDEA’s live templates [23] allow the
user to define custom snippets of code that can be inserted on de-
mand. NetBeans includes a similar “Code Templates” feature in
its editor. Recently, Microsoft created Bing Code Search [36] that
allows users to search and add snippets to their code, by retrieving
code from popular coding websites, such as Stack Overflow. The
fact that all major IDEs include features that allow programmers to
manually define and use idioms attests to their importance.

We are unaware, however, of methods for automatically iden-
tifying code idioms. This is a major gap in tooling for software
development. Software developers cannot use manual IDE tools for
idioms without significant effort to organize the idioms of interest
and then manually add them to the tool. This is especially an ob-
stacle for less experienced programmers who do not know which
idioms they should be using. Indeed, as we demonstrate later, many
idioms are library-specific, so even an experienced programmer will
not be familiar with the code idioms for a library that is new to
them. Although in theory this cost could be amortized if the users
of each library were to manually create an idiom guide, in practice
even expert developers will have difficulty exhaustively listing all
of the idioms that they use daily, just as a native speaker of En-
glish would have difficulty exhaustively listing all of the words that
they know. Perhaps for this reason, although IDEs have included
features for manually specifying idioms for many years,1 we are
unaware of large-scale efforts by developers to list and categorize
library-specific idioms. The ability to automatically identify idioms
is needed.

In this paper, we present the first method for automatically min-
ing code idioms from an existing corpus of idiomatic code. At
first, this might seem to be a simple proposition: simply search for
subtrees that occur often in a syntactically parsed corpus. How-

1See, e.g., http://bit.ly/1nN4hz6

http://bit.ly/1nN4hz6

ever, this naive method does not work well, for the simple reason
that frequent trees are not necessarily interesting trees. To return
to our previous example, for loops occur more commonly than
for(int i=0;i<n;i++) {...}, but one would be hard pressed
to argue that for(...) {...} on its own (that is, with no expres-
sions or body) is an interesting pattern.

Instead, we rely on a different principle: interesting patterns are
those that help to explain the code that programmers write. As a
measure of “explanation quality”, we use a probabilistic model of
the source code, and retain those idioms that make the training cor-
pus more likely under the model. These ideas can be formalized in
a single, theoretically principled framework using a nonparametric
Bayesian analysis. Nonparametric Bayesian methods have become
enormously popular in statistics, machine learning, and natural lan-
guage processing because they provide a flexible and principled way
of automatically inducing a “sweet spot” of model complexity based
on the amount of data that is available [41, 16, 48]. In particular,
we employ a nonparametric Bayesian tree substitution grammar,
which has recently been developed for natural language [10, 42],
but which has not been applied to source code.

Because our method is primarily statistical in nature, it is language
agnostic, and can be applied to any programming language for which
one can collect a corpus of previously-written idiomatic code. Our
major contributions are:
• We introduce the idiom mining problem (Section 2);
• We present Haggis, a method for automatically mining code

idioms based on nonparametric Bayesian tree substitution gram-
mars (Section 3);
• We demonstrate that Haggis successfully identifies cross-project

idioms (Section 5), for example, 67% of idioms that we identify
from one set of open source projects also appear in an indepen-
dent set of snippets of example code from the popular Q&A site
Stack Overflow;
• Examining the idioms that Haggis identifies (Figure 6), we find

that they describe important program concepts, including object
creation, exception handling, and resource management;
• To further demonstrate that the idioms identified by Haggis

are semantically meaningful, we first examine the relationship
between idioms and code libraries (Section 5.4), finding that
many idioms are strongly connected to package imports in a
way that can support suggestion.

We submitted a small set of idioms from Haggis to the Eclipse
Snipmatch project (Section 5.3) for inclusion into its presupplied
library of snippets. Several of these snippets have already been
accepted.

2. PROBLEM DEFINITION
A code idiom is a syntactic fragment that recurs across software

projects and serves a single semantic purpose. An example of an
idiom is shown in Figure 1(b). This is an idiom which is used for
manipulating objects of type android.database.Cursor, which
ensures that the cursor is closed after use. (This idiom is indeed
discovered by our method.) As in this example, typically idioms
have parameters, which we will call metavariables, such as the name
of the Cursor variable, and a code block describing what should
be done if the moveToFirst operation is successful. An Android
programmer who is unfamiliar with this idiom might make bad
mistakes, like not calling the close method or not using a finally
block, causing subtle memory leaks.

Many idioms, like the close example or those in Figure 6, are
specific to particular software libraries. Other idioms are general

across projects of the same programming language, such as those in
Figure 7, including an idiom for looping over an array or an idiom
defining a String constant. (All of the idioms in these figures are
discovered by our method.) Idioms concerning exception handling
and resource management are especially important because they help
to ensure correctness properties. As these examples show, idioms
are usually parametrized and the parameters often have syntactic
structure, such as expressions and code blocks.

We define idioms formally as fragments of abstract syntax trees,
which allows us to naturally represent the syntactic structure of an
idiom. More formally, an idiom is a fragment T = (V,E) of an
abstract syntax tree (AST). By fragment, we mean the following.
LetG be the context-free grammar2 of the programming language in
question. Then a fragment T is a tree of terminals and nonterminal
from G that is a subgraph of some valid parse tree from G.

An idiom T can have as leaves both terminals and non-terminals.
Non-terminals correspond to metavariables which must be filled in
when instantiating the idiom. For example, in Figure 1(c), the shaded
lines represent the fragment for an example idiom; notice how the
Block node of the AST, which is a non-terminal, corresponds to a
$BODY$ metavariable in the pattern.

Idiom mining Current IDEs provide tools for manually defining
idioms and inserting them when required, but this requires that
the developer incur the required setup cost, and that the developer
know the idioms in the first place. To eliminate these difficulties,
we introduce the idiom mining problem, namely, to identify a set
of idioms automatically given only a corpus of previously-written
idiomatic code. More formally, given a training set of source files
with abstract syntax trees D = {T1, T2, . . . TN}, the idiom mining
problem is to identify a set of idioms I = {Ti} that occur in the
training set. This is an unsupervised learning problem, as we do
not assume that we are provided with any example idioms that are
explicitly identified. Each fragment Ti should occur as a subgraph
of every tree in some subset D(Ti) ⊆ D of the training corpus.

What Idioms are Not Idioms are not clones. Code clones [44, 45,
5, 6, 24, 29] are pieces of code that are used verbatim (or nearly so)
in different code locations due to copy paste operations. By contrast,
idioms are used verbatim (or nearly so) in different code locations
because programmers find them natural for performing a particular
task. Essentially, idioms have a semantic purpose that developers
are consciously aware of. Indeed, unlike clones we suggest that
idioms are not typically entered by copy-paste — speaking for
ourselves, we do not need copy-paste to enter something as simple
as for(int i=0;i<n;i++). Rather, we suggest that programmers
treat idioms as mental chunks, which they often type directly by
hand when needed, although we leave this conjecture to future work.

Because methods for clone detection work by finding repeated
regions of code, existing clone detection methods could also be ap-
plied to find idioms. However, in our experiments (Section 5.2), this
does not prove to be an effective approach. We argue that this high-
lights a conceptual difference between clone detection and idiom
detection: Clone detection methods attempt to find the largest frag-
ment that is copied, whereas methods for idiom detection need to
search for fragments that seem “natural” to programmers, which re-
quires a trade off between the size of the fragment and the frequency
with which programmers use it.

Also, idiom mining is not API mining. API mining [38, 51, 56] is
an active research area that focuses on mining groups of library func-
tions from the same API that are commonly used together. These

2Programming language grammars typically describe parse trees
rather than ASTs, but since there is a 1:1 mapping between the two,
we assume a CFG that directly describes ASTs is available.

...
if (c != null) {
try {
if (c.moveToFirst()) {
number = c.getString(

c.getColumnIndex(
phoneColumn));

}
} finally {
c.close();
}
}
...

IfStatement

expression:

c!=null

then:Block

TryStatement

body:IfStatement

expr:MethodInvocation

expr:var%android.database.Cursor%

name:c

name:moveToFirst

then:Block

number = c.getString(c.getColumnIndex(phoneColumn));

finally:Block

ExpressionStatement

MethodInvocation

expr:var%android.database.Cursor%

name:c

name:close

E → E

T

F * F

(E

T + T

)

(prob 0.5)

(d)
(a)

try {
if ($(Cursor).moveToFirst()) {
$BODY$

}
} finally {
$(Cursor).close();

}

(b) (c)

Figure 1: Example of code idiom extraction: (a) A snippet from PhoneNumberUtils in android.telephony. (b) A common idiom when
handling android.database.Cursor objects, successfully mined by Haggis. (c) Eclipse JDT’s AST for the code in (a). Shaded nodes are
those included in the idiom. (d) An example of a pTSG rule for a simple expression grammar. See text for more details.

types of patterns that are inferred are essentially sequences, or some-
times finite state machines, of method invocations. Although API
patterns are valuable, idiom mining is markedly different, because
idioms have syntactic structure. For example, current API mining
approaches cannot find patterns such as a library with a Tree class
that requires special iteration logic, or a Java library that requires the
developer to free resources within a finally block. This is exactly
the type of pattern that Haggis identifies.

3. MINING CODE IDIOMS
In this section, we introduce the technical framework that is

required for Haggis,3 our proposed method for the idiom mining
problem. At a high level, we approach the problem of mining source
code idioms as that of inferring of commonly reoccurring fragments
in ASTs. We apply recent advanced techniques from statistical NLP
[10, 42], but we need to explain them in some detail to justify why
they are appropriate for this software engineering task, and why
simpler methods would not be effective.

We will build up step by step. First, we will describe our represen-
tation of idioms. In particular, we describe a family of probability
distributions over ASTs which are called probabilistic tree substi-
tution grammars (pTSGs). A pTSG is essentially a probabilistic
context free grammar (PCFG) with the addition of special rules that
insert a tree fragment all at once.

Second, we describe how we discover idioms. We do this by
learning a pTSG that best explains a large quantity of existing
source code. We consider as idioms the tree fragments that appear
in the learned pTSG. We learn the pTSG using a powerful general
framework called nonparametric Bayesian methods. Nonparametric
Bayes provides a principled theoretical framework for automatically
inferring how complex a model should be from data. Every time we
add a new fragment rule to the pTSG, we are adding a new parameter
to the model (the rule’s probability of appearing), and the number
of potential fragments that we could add is infinite. This creates a
3Holistic, Automatic Gathering of Grammatical Idioms from Soft-
ware.

risk that by adding a large number a fragments we could construct a
model with too many parameters, which would be likely to overfit
the training data. Nonparametric Bayesian methods provide a way
to tradeoff the model’s fit to the training set with the model’s size
when the maximum size of the model is unbounded.

It is also worth explaining why we employ probabilistic models
here, rather than a standard deterministic CFG. Probabilities provide
a natural quantitative measure of the quality of a proposed idiom:
A proposed idiom is worthwhile only if, when we include it into
a pTSG, it increases the probability that the pTSG assigns to the
training corpus. This encourages the method to avoid identifying
idioms that are frequent but boring.

At first, it may seem odd that we apply grammar learning methods
here, when of course the grammar of the programming language is
already known. We clarify that our aim is not to re-learn the known
grammar, but rather to learn probability distributions over parse
trees from the known grammar. These distributions will represent
which rules from the grammar are used more often, and, crucially,
which sets of rules tend to be used contiguously.

3.1 Probabilistic Grammars
A probabilistic context free grammar (PCFG) is a simple way

to define a distribution over the strings of a context-free language.
A PCFG is defined as G = (Σ, N, S,R,Π), where Σ is a set of
terminal symbols, N a set of nonterminals, S ∈ N is the root
nonterminal symbol and R is a set of productions. Each production
in R has the form X → Y , where X ∈ N and Y ∈ (Σ∪N)∗. The
set Π is a set of distributions P (r|c),where c ∈ N is a non-terminal,
and r ∈ R is a rule with c on its left-hand side. To sample a tree
from a PCFG, we recursively expand the tree, beginning at S, and
each time we add a non-terminal c to the tree, we expand c using
a production r that is sampled from the corresponding distribution
P (r|c). The probability of generating a particular tree T from this
procedure is the product over all rules that are required to generate
T . The probability P (x) of a string x ∈ Σ∗ is the sum of the
probabilities of the trees T that yield x, that is, we simply consider
P (x) as a marginal distribution of P (T).

Tree Substitution Grammars A tree substitution grammar (TSG)
is a simple extension to a CFG, in which productions expand into
tree fragments rather than simply into a list of symbols. Formally, a
TSG is also a tupleG = (Σ, N, S,R), where Σ, N, S are exactly as
in a CFG, but now each production r ∈ R takes the form X → TX ,
where TX is a fragment. To produce a string from a TSG, we begin
with a tree containing only S, and recursively expand the tree in a
manner exactly analogous to a CFG — the only difference is that
some rules can increase the height of the tree by more than 1. A
probabilistic tree substitution grammar (pTSG)G [10, 42] augments
a TSG with probabilities, in an analogous way to a PCFG. A pTSG
is defined as G = (Σ, N, S,R,Π) where Σ is a set of terminal
symbols, N a set of non terminal symbols, S ∈ N is the root non-
terminal symbol, R is a set of tree fragment productions. Finally,
Π is a set of distributions PTSG(TX |X), for all X ∈ N , each of
which is a distribution over the set of all rules X → TX in R that
have left-hand side X .

The key reason that we use pTSGs for idiom mining is that each
tree fragment TX can be thought of as describing a set of context-
free rules that are typically used in sequence. This is exactly what we
are trying to discover in the idiom mining problem. In other words,
our goal will be to induce a pTSG in which every tree fragment
represents a code idiom if the fragment has depth greater than 1, or
a rule from the language’s original grammar if the depth equals 1.
As a simple example, consider the PCFG

E → E + E (prob 0.7) T → F ∗ F (prob 0.6)
E → T (prob 0.3) T → F (prob 0.4)
F → (E) (prob 0.1) F → id (prob 0.9),

where E, T , and F are non-terminals, and E the start symbol. Now,
suppose that we are presented with a corpus of strings from this
language that include many instances of expressions like id∗(id+id)
and id ∗ (id+ (id+ id)) (perhaps generated by a group of students
who are practicing the distributive law). Then, we might choose to
add a single pTSG rule to this grammar, displayed in Figure 1(d),
adjusting the probabilities for that rule and the E → T + T and
E → T rules so that the three probabilities sum to 1. Essentially,
this allows us to a represent a correlation between the rules E →
T + T and T → F ∗ F .

Finally, note that every CFG can be written as a TSG where all
productions expand to trees of depth 1. Conversely, every TSG can
be converted into an equivalent CFG by adding extra non-terminals
(one for each TSG rule X → TX). So TSGs are, in some sense,
fancy notation for CFGs. This notation will prove very useful,
however, when we describe the learning problem next.

3.2 Learning TSGs
Now we define the learning problem for TSGs that we will con-

sider. First, we say that a pTSG G1 = (Σ1, N1, S1, R1, P1) ex-
tends a CFG G0 if every tree with positive probability under G1

is grammatically valid according to G0. Given any set T of tree
fragments from G0, we can define a pTSG G1 that extends G0

as follows. First, set (Σ1, N1, S1) = (Σ0, N0, S0). Then, set
R1 = RCFG ∪ RFRAG, where RCFG is the set of all rules from
R0, expressed in the TSG form, i.e., with right-hand sides as trees
of depth 1, and RFRAG is a set of fragment rules Xi → Ti, for all
Ti ∈ T and where Xi is the root of Ti.

The grammar learning problem that we consider can be called
the CFG extension problem. The input is a set of trees T1 . . . TN

from a context-free grammar G0 = (Σ0, N0, S0, R0). The CFG
extension problem is to learn a pTSG G1 that extends G0 and
is good at explaining the training set T1 . . . TN . The notion of
“good” is deliberately vague; formalizing it is part of the problem. It

should also be clear that we are not trying to learn the CFG for the
original programming language — instead, we are trying to identify
sequences of CFG rules that commonly co-occur contiguously.

3.2.1 Why Not Just Count Common Trees?
A natural first approach to the CFG extension problem is to

mine frequent patterns, for example, to return the set of all AST
fragments that occur more than a user-specified parameter M times
in the training set. This task is called frequent tree mining, and has
been the subject of some work in the data mining literature [25, 49,
54, 55]. Unfortunately, preliminary investigation [31] found that
these approaches do not yield good idioms. Instead, the fragments
that are returned tend to be small and generic, omitting many details
that, to a human eye, are central to the idiom. For example, given
the idiom in Figure 1(c), it would be typical for tree mining methods
to return a fragment containing the try, if, and finally nodes but
not the crucial method call to Cursor.close().

The reason for this is simple: Given a fragment T that represents
a true idiom, it can always be made more frequent by removing
one of the leaves, even if that leaf co-occurs often with the rest
of the tree. So tree mining algorithms tend to return these shorter
trees, resulting in incomplete idioms. This is a general problem with
frequent pattern mining: frequent patterns can be boring patterns.
To avoid this problem, we need to penalize the method when it
chooses not to extend a pattern to include a node that co-occurs
frequently. This is what is provided by our probabilistic approach.

A different idea is to use the maximum likelihood principle, that is,
to find the pTSG G1 that extends G0 and maximizes the probability
that G1 assigns to T1 . . . TN . This also does not work. The reason
is that a trivial solution is simply to add a fragment rule E → Ti for
every training tree Ti. This will assign a probability of 1/N to each
training tree, which in practice will often be optimal. What is going
on here is that the maximum likelihood grammar is overfitting. It
is not surprising that this happens: there are an infinite number of
potential trees that could be used to extendG0, so if a model is given
such a large amount of flexibility, overfitting becomes inevitable.
What we need is a strong method of controlling overfitting, which
the next section provides.

3.2.2 Nonparametric Bayesian Methods
At the heart of any application of machine learning is the need to

control the complexity of the model. For example, in a clustering
task, many standard clustering methods, such as K-means, require
the user to pre-specify the number of clusters K in advance. If K is
too small, then each cluster will be very large and not contain useful
information about the data. If K is too large, then each cluster will
only contain a few data points, so the again, the cluster centroid will
not tell us much about the data set. For the CFG extension problem,
the key factor that determines model complexity is the number of
fragment rules that we allow for each non-terminal. If we allow the
model to assign too many fragments to each non-terminal, then it
can simply memorize the training set. But if we allow too few, then
the model will be unable to find useful patterns. Nonparametric
Bayesian methods provide a powerful and theoretically principled
method for managing this trade-off. Although powerful, these meth-
ods can be difficult to understand at first. We will not give a detailed
tutorial due to space; for a gentle introduction, see Gershman and
Blei [16].

To begin, we must first explain Bayesian statistics. Bayesian
statistics [15, 37] is alternative general framework to classical fre-
quentist statistical methods, such as confidence intervals and hy-
pothesis testing, that allows the analyst to encode prior knowledge
about the quantity of interest. The idea behind Bayesian statistics

is that whenever one wants to estimate an unknown parameter θ
from a data set x1, x2, . . . xN , the analyst should not only treat
the data x1 . . . xN as random variables — as in classical statistics
— but also θ as well. To do this, the analyst must choose a prior
distribution P (θ) that encodes any prior knowledge about θ (if little
is known, this distribution can be vague), and then a likelihood
P (x1 . . . xN | θ) that describes a model of how the data is generated
given θ. To be clear, the prior and the likelihood are mathematical
models of the data, that is, they are mathematical approximations to
reality that are designed by the data analyst. Some models are better
approximations than others, and more accurate models will yield
more accurate inferences about θ.

Once we define a prior and a likelihood, the laws of probability
provide only one choice for how to infer θ, namely, via the con-
ditional distribution P (θ|x1 . . . xN) which is uniquely defined by
Bayes’ rule. This distribution is called the posterior distribution
and encapsulates all of the information that we have about θ from
the data. We can compute summaries of the posterior to make in-
ferences about θ, for example, if we want to estimate θ by a single
vector, we might compute the mean of P (θ|x1 . . . xN). Although
mathematically the posterior distribution is a simple function of the
prior and likelihood, in practice it can be very difficult to compute,
and approximations are often necessary. To summarize, applica-
tions of Bayesian statistics have three steps: first, choose a prior
p(θ); second, choose a likelihood p(x1 . . . xN | θ), finally, compute
p(θ|x1 . . . xN) using Bayes’s rule.

As a simple example, suppose the data x1...xN are real numbers,
which we believe to be distributed independently according a Gaus-
sian distribution with variance 1 but unknown mean θ. Then we
might choose a prior p(θ) to be Gaussian with mean 0 and a large
variance, to represent the fact that we do not know much about θ be-
fore we see the data. Our beliefs about the data indicate that p(xi|θ)
is Gaussian with mean θ and variance 1. By applying Bayes’s rule,
it is easy to show that P (θ|x1 . . . xN) is also Gaussian, whose mean
is approximately4 equal to N−1 ∑

i xi and whose variance is ap-
proximately 1/N . This distribution represents a Bayesian’s belief
about the unknown mean θ, after seeing the data.

Nonparametric Bayesian methods handle the more complex case
where the number of parameters is unknown as well. For example,
consider a clustering model where, conditioned on the cluster iden-
tity, the data is Gaussian, but the number of clusters is unknown. In
this case, θ would be a vector containing the centroid for each clus-
ter, but then, because before we see the data the number of clusters
could be arbitrarily large, θ has unbounded dimension. Nonpara-
metric Bayesian methods focus on developing prior distributions
over such infinite dimensional objects, which are then used within
Bayesian statistical inference. Bayesian nonparametrics have been
the subject of intense research in statistics and in machine learning,
with popular models including the Dirichlet process [19] and the
Gaussian process [53].

Applying this discussion to the CFG extension problem, what we
are trying to infer is a pTSG T . So, to apply Bayesian inference,
our prior distribution must be a probability distribution over proba-
bilistic grammars. In order to define this distribution, we will need
to take a brief digression and define first a distribution P0(T) over
fragments from a CFG. Let G0 be the known CFG for the program-
ming language in question. We will assume that we have available
a PCFG for G0, because this can be easily estimated by maximum
likelihood from a training corpus; call this distribution PML. Now,
PML gives us a distribution over full trees. To get a distribution over

4The exact value depends on precisely what variance we choose in
p(θ), but the formula is simple.

fragments, we include a distribution over tree sizes, yielding

P0(T) = Pgeom (|T |, p$)
∏
r∈T

PML(r), (1)

where |T | is the size of the fragment T , Pgeom is a geometric distribu-
tion with parameter p$, and r ranges over the multiset of productions
that are used within T .

Now we can define a prior distribution over pTSGs. Recall that
we can define a pTSGG1 that extendsG0 by specifying a set of tree
fragments FX for each non-terminal X . So, to define a distribution
over pTSGs, we will define a distribution P (FX) over the set of tree
fragments rooted at X . We need P (FX) to have several important
properties. First, we need P (FX) to have infinite support, that is, it
must assign positive probability to all possible fragments. This is
because if we do not assign a fragment positive probability in the
prior distribution, we will never be able to infer it as an idiom, no
matter how often it appears. Second, we want P (FX) to exhibit
a “rich-get-richer” effect, namely, once we have observed that a
fragment TX occurs many times, we want to be able to predict that
it will occur more often in the future.

A natural distribution with these properties is the Dirichlet process
(DP). The Dirichlet process has two parameters: a base measure,5 in
our case, the fragment distributionP0, and a concentration parameter
α ∈ R+, which controls the strength of the rich-get-richer effect.
Following the stick-breaking representation [46], a Dirichlet process
defines a prior distribution over FX as

Pr[T ∈ FX] =

∞∑
k=1

πkδ{T=Tk} Tk ∼ P0 (2)

πk = uk

k−1∏
j=1

(1− uj) uk ∼ Beta(1, α). (3)

To interpret this, recall that the symbol ∼ is read “is distributed as,”
the Beta distribution is a standard distribution over the set [0, 1],
and δ{T=Tk} is a delta function, i.e., a probability distribution over
T that generates Tk with probability 1. Intuitively, what is going
on here is that a sample from the DP is a distribution over a count-
ably infinite number of fragments T1, T2, Each one of these
fragments is sampled independently from the fragment distribution
P0. To assign a probability to each fragment, we recursively split
the interval [0, 1] into a countable number of sticks π1, π2, The
value (1 − uk) defines what proportion of the remaining stick is
assigned to the current sample Tk, and the remainder is assigned
to the infinite number of remaining trees Tk+1, Tk+2, This pro-
cess defines a distribution over fragments FX for each non-terminal
X , and hence a distribution P (G1) over the set of all pTSGs that
extend G0. We will refer to this distribution as a Dirichlet process
probabilistic tree substitution grammar (DPpTSG) [42, 10].

This process may seem odd for two reasons: (a) each sample from
P (G1) is infinitely large, so we cannot store it exactly on a computer,
(b) the fragments from G1 are sampled randomly from a PCFG,
so there is no reason to think that they should match real idioms.
Fortunately, the answer to both these concerns is simple. We are not
interested in the fragments that exist in the prior distribution, but
rather of those in the posterior distribution. More formally, the DP
provides us with a prior distribution G1 over pTSGs. But G1 itself,
like any pTSG, defines a distribution P (T1, T2, . . . TN |G1) over the
training set. So, just as in the parametric case, we can apply Bayes’s
rule to obtain a posterior distribution P (G1|T1, T2, . . . TN). It can
be shown that this distribution is also a DPpTSG, and, amazingly,

5The base measure will be a probability measure, so for our pur-
poses, we can think of this as a fancy word for “base distribution”.

s

Tt

Ts

Figure 2: Sampling an AST. Dots show the points where the tree is
split (i.e., zt = 1). Terminal nodes have double border.

that this posterior DPpTSG can be characterized by a finite set of
fragments F ′X for each non-terminal. It is these fragments that we
will identify as code idioms (Section 4).

3.2.3 Inference
Now that we have defined a posterior distribution over proba-

bilistic grammars, we now need to describe how to compute this
distribution. Unfortunately, the posterior distribution cannot be com-
puted exactly, so we resort to approximations. The most commonly
used approximations in the literature are based on Markov chain
Monte Carlo (MCMC), which we explain below. But first, we make
one more observation about pTSGs. All of the pTSGs that we con-
sider are extensions of an unambiguous base CFG G0. This means
that given a source file F , we can separate the pTSG parsing task
into two steps: first, parse F using G0, resulting in a CFG tree T ;
second, group the nodes in T according to which fragment rule in
the pTSG was used to generated them. We can represent this second
task as a tree of binary variables zs for each node s. These variables
indicate whether s is the root of a new fragment (zs = 1), or if
s is part of the same fragment as its parent (zs = 0). Essentially,
the variables zs show the boundaries of the inferred tree patterns;
see Figure 2 for an example. Conversely, even if we don’t know
what fragments are in the grammar, given a training corpus that has
been parsed in this way, we can use the zs variables to read off what
fragments must have been in the pTSG.

With this representation in hand, we are now ready to present an
MCMC method for sampling from the posterior distribution over
grammars, using a particular method called Gibbs sampling. Gibbs
sampling is an iterative method, which starts with an initial value for
all of the z variables, and then updates them one at a time. At each
iteration, the sampler visits every tree node t of every tree in the
training corpus, and samples a new value for zt. Let s be the parent
of t. If we choose zt = 1, we can examine the current values of the
z variables to determine the tree fragment Tt that contains t and the
fragment Ts for s, which must be disjoint. On the other hand, if we
set zt = 0, then s and t will belong to the same fragment, which
will be exactly Tjoin = Ts ∪ Tt. Now, we set zt to 0 with probability

P(zt = 0) =
Ppost(Tjoin)

Ppost(Tjoin) + Ppost(Ts)Ppost(Tt)
. (4)

where

Ppost(T) =
count(T) + αP0(T)

count(h(T)) + α
, (5)

h returns the root of the fragment, and count returns the number of
times that a tree occurs as a fragment in the corpus, as determined
by the current values of z. Intuitively, what is happening here is that
if the fragments Ts and Tt occur very often together in the corpus,

relative to the number of times that they occur independently, then
we are more likely to join them into a single fragment.

It can be shown that if we repeat this process for a large number
of iterations, eventually the resulting distribution over fragments
will converge to the posterior distribution over fragments defined by
the DPpTSG. It is these fragments that we return as idioms.

We present the Gibbs sampler because it is a useful illustration of
MCMC, but in practice we find that it converges too slowly to scale
to large code bases. Instead we use the type-based MCMC sampler
of Liang et al. [33] (details omitted).

4. SAMPLING A TSG FOR CODE
In this section, we describe a set of necessary transformations to

ASTs and pTSGs to adapt these general methods specifically to the
task of inferring code idioms.

AST Transformation For each .java file we use the Eclipse
JDT [12] to extract its AST — a tree structure of ASTNode objects.
Each ASTNode object contains two sets of properties: simple prop-
erties — such as the type of the operator, if ASTNode is an infix
expression — and structural properties that contain zero or more
child ASTNode objects. First, we construct the grammar symbols by
mapping each ASTNode’s type and simple properties into a single
(terminal or non-terminal) symbol. The transformed tree is then
constructed by mapping the original AST into a tree whose nodes
are annotated with the symbols. Each node’s children are grouped
by property. The transformed trees may contain nodes that have
more than two children for a single property (e.g. Block). This
induces unnecessary sparsity in the CFG and TSG rules. To reduce
this, we perform tree binarization. This process — common in NLP
— transforms the original tree into a binary tree by adding dummy
nodes, making the data less sparse. It also helps us capture idioms
in sequential statements. Note that binarization is performed per
structural property only when it contains more than two children,
while a node will generally have more than two children across all
its structural properties.

One final hurdle for learning meaningful code idioms are variable
names. Since variable names are mostly project or class specific
we abstract them introducing an intermediate MetaVariable node
between the SimpleName node containing the string representation
of the variable name and its parent node. MetaVariable nodes
are also annotated with the type of the variable they are abstracting.
This provides the pTSG with the flexibility to either exclude or
include variable names as appropriate. For example, in the snippet
of Figure 1(a) by using metavariables, we are able to learn the idiom
in Figure 1(b) without specifying the name of the Cursor object by
excluding the SimpleName nodes from the fragment. Alternatively,
if a specific variable name is common and idiomatic, such as the i
in a for loop, the pTSG can choose to include SimpleName in the
extracted idiom, by merging it with its parent MetaVariable node.

Training TSGs and Extracting Code Idioms Training a pTSG
happens offline, during a separate training phase. After training
the pTSG, we then extract the mined code idioms which then can
be used for any later visualization. In other words, a user of a
Haggis IDE tool would never need to wait for an MCMC method to
finish. The output of an MCMC method is a series of (approximate)
samples from the posterior distribution, each of which in our case, is
a single pTSG. These sampled pTSGs need to be post-processed to
extract a single, meaningful set of code idioms. First, we aggregate
the MCMC samples after removing the first few samples as burn-
in, which is standard methodology for applying MCMC. Then, to
extract idioms from the remaining samples, we merge all samples’
tree fragments into a single multiset. We prune this multiset by

try {
regions=computeProjections(owner);
} catch (RuntimeException e) {
e.printStackTrace();
throw e;
}
if (elem instanceof IParent) {
IJavaElement[] children=((IParent)owner).getChildren();
for (int fromPosition=0; i < children.length; i++) {
IJavaElement aChild=children[i];
Set childRegions=findAnnotations(aChild,result);
removeCollisions(regions,childRegions);
}
}

Figure 3: Synthetic code randomly generated from a posterior pTSG.
The pTSG produces syntactically correct and locally consistent code.
This effect allows us to infer code idioms. As expected, the pTSG
cannot capture higher level information, such as variable binding.

removing all tree fragments that have been seen less than cmin

times. We also prune fragments that have fewer that nmin nodes to
remove trivial idioms. Finally, we convert the remaining fragments
back to Java code. The leaf nodes of the fragments that contain
non-terminal symbols represent metavariables and are converted to
the appropriate symbol that is denoted by a $ prefix.

Additionally, to assist the sampler in inducing meaningful id-
ioms, we prune any import statements from the corpus, so that they
cannot be mined as idioms. We also exclude some nodes from sam-
pling, fixing zi = 0 and thus forcing some nodes to be un-splittable.
Such nodes include method invocation arguments, qualified and
parametrized type node children, non-block children of while, for
and if statement nodes, parenthesized, postfix and infix expressions
and variable declaration statements.

5. CODE SNIPPET EVALUATION
We take advantage of the omnipresence of idioms in source code

to evaluate Haggis on popular open source projects. We restrict our-
selves to the Java programming language, due to the high availability
of tools and source code. We emphasize, however, that Haggis is
language agnostic. Before we get started, an interesting way to
get an intuitive feel for any probabilistic model is simply to draw
samples from it. Figure 3 shows a code snippet that we synthetically
generated by sampling from the posterior distribution over code
defined by the pTSG. One can observe that the pTSG is learning
to produce idiomatic and syntactically correct code, although — as
expected — the code is semantically inconsistent.

Methodology We use two evaluation data sets comprised of
Java open-source code available on GitHub. The Projects data set
(Figure 4) contains the top 13 Java GitHub projects whose repository
is at least 100MB in size according to the GitHub Archive [17].
To determine popularity, we computed the z-score of forks and
watchers for each project. The normalized scores were then averaged
to retrieve each project’s popularity ranking. The second evaluation
data set, Library (Figure 5), consists of Java classes that import
(i.e. use) 15 popular Java libraries. For each selected library, we
retrieved from the Java GitHub Corpus [2] all files that import that
library but do not implement it. We split both data sets into a train
and a test set, splitting each project in Projects and each library file
set in Library into a train (70%) and a test (30%) set. The Projects
will be used to mine project-specific idioms, while the Library will
be used to mine idioms that occur across libraries.

To extract idioms we run MCMC for 100 iterations for each of
the projects in Projects and each of the library file sets in Library,
using the first 75 iterations as burn-in. For the last 25 iterations, we
aggregate a sample posterior pTSG and extract idioms as detailed

Name Forks Stars Files Commit Description

arduino 2633 1533 180 2757691 Electronics Prototyping
atmosphere 1606 370 328 a0262bf WebSocket Framework
bigbluebutton 1018 1761 760 e3b6172 Web Conferencing
elasticsearch 5972 1534 3525 ad547eb REST Search Engine
grails-core 936 492 831 15f9114 Web App Framework
hadoop 756 742 4985 f68ca74 Map-Reduce Framework
hibernate 870 643 6273 d28447e ORM Framework
libgdx 2903 2342 1985 0c6a387 Game Dev Framework
netty 2639 1090 1031 3f53ba2 Net App Framework
storm 1534 7928 448 cdb116e Distributed Computation
vert.x 2739 527 383 9f79416 Application platform
voldemort 347 1230 936 9ea2e95 NoSQL Database
wildfly 1060 1040 8157 043d7d5 Application Server

Figure 4: Projects data set used for in-project idiom evaluation.
Projects in alphabetical order.

Package Name Files Description

android.location 1262 Android location API
android.net.wifi 373 Android WiFi API
com.rabbitmq 242 Messaging system
com.spatial4j 65 Geospatial library
io.netty 65 Network app framework
opennlp 202 NLP tools
org.apache.hadoop 8467 Map-Reduce framework
org.apache.lucene 4595 Search Server
org.elasticsearch 338 REST Search Engine
org.eclipse.jgit 1350 Git implementation
org.hibernate 7822 Persistence framework
org.jsoup 335 HTML parser
org.mozilla.javascript 1002 JavaScript implementation
org.neo4j 1294 Graph database
twitter4j 454 Twitter API

Figure 5: Library data set for cross-project idiom evaluation. Each
API file set contains all class files that import a class belonging to
the respective package or one of its subpackages.

in Section 4. A threat to the validity of the evaluation using the
aforementioned data sets is the possibility that the data sets are not
representative of Java development practices, containing solely open-
source projects from GitHub. However, the selected data sets span a
wide variety of domains, including databases, messaging systems
and code parsers, diminishing any such possibility. Furthermore, we
perform an extrinsic evaluation on source code found on a popular
online Q&A website, Stack Overflow.

Evaluation Metrics We compute two metrics on the test corpora.
These metrics resemble precision and recall in information retrieval
but are adjusted to the code idiom domain. We define idiom coverage
as the percent of source code AST nodes that matches any of the
mined idioms. Coverage is thus a number between 0 and 1 indicating
the extent to which the mined idioms exist in a piece of code. We
define idiom set precision as the percentage of the mined idioms
that also appear in the test corpus. Using these two metrics, we
tune the concentration parameter of the DPpTSG model by using
android.net.wifi as a validation set, yielding α = 1.

5.1 Top Idioms
Figure 6 shows the top idioms mined in the Library data set,

ranked by the number of files in the test sets where each idiom has
appeared in. The reader will observe their immediate usefulness.
Some idioms capture how to retrieve or instantiate an object. For
example, in Figure 6, the idiom 6a captures the instantiation of a
message channel in RabbitMQ, 6q retrieves a handle for the Hadoop
file system, 6e builds a SearchSourceBuilder in Elasticsearch
and 6l retrieves a URL using JSoup. Other idioms capture important
transactional properties of code: idiom 6h demonstrates proper use

channel=connection.
createChannel();

(a)

Elements $name=$(Element).
select($StringLit);

(b)

Transaction tx=ConnectionFactory.
getDatabase().beginTx();

(c)

catch (Exception e){
$(Transaction).failure();
}

(d)

SearchSourceBuilder builder=
getQueryTranslator().build(
$(ContentIndexQuery));

(e)

LocationManager $name =
(LocationManager)getSystemService(
Context.LOCATION_SERVICE);

(f)

Location.distanceBetween(
$(Location).getLatitude(),
$(Location).getLongitude(),
$...);

(g)

try{
$BODY$
}finally{
$(RevWalk).release();
}

(h)

try{
Node $name=$methodInvoc();
$BODY$
}finally{
$(Transaction).finish();
}

(i)

ConnectionFactory factory =
new ConnectionFactory();
$methodInvoc();
Connection connection =
factory.newConnection();

(j)

while ($(ModelNode) != null){
if ($(ModelNode) == limit)
break;
$ifstatement
$(ModelNode)=$(ModelNode)
.getParentModelNode();

}

(k)

Document doc=Jsoup.connect(URL).
userAgent("Mozilla").
header("Accept","text/html").
get();

(l)

if ($(Connection) != null){
try{
$(Connection).close();
}catch (Exception ignore){}
}

(m)

Traverser traverser
=$(Node).traverse();

for (Node $name : traverser){
$BODY$

}

(n)

Toast.makeText(this,
$stringLit,Toast.LENGTH_SHORT)
.show()

(o)

try{
Session session
=HibernateUtil
.currentSession();

$BODY$
}catch (HibernateException e){
throw new DaoException(e);
}

(p)

FileSystem $name
=FileSystem.get(
$(Path).toUri(),conf);

(q)

(token=$(XContentParser)
.nextToken())
!= XContentParser
.Token.END_OBJECT

(r)

Figure 6: Top cross-project idioms for Library projects (Figure 4). Here we include idioms that appear in the test set files. We rank them
by the number of distinct files they appear in and restrict into presenting idioms that contain at least one library-specific (i.e. API-specific)
identifier. The special notation $(TypeName) denotes the presence of a variable whose name is undefined. $BODY$ denotes a user-defined
code block of one or more statements, $name a freely defined (variable) name, $methodInvoc a single method invocation statement and
$ifstatement a single if statement. All the idioms have been automatically identified by Haggis

for (Iterator iter=$methodInvoc; iter.hasNext();)
{$BODY$}

(a) Iterate through the elements of an Iterator.

private final static Log $name=
LogFactory.getLog($type.class);

(b) Creating a logger for a class.

public static final String $name = $StringLit;

(c) Defining a constant String.

while (($(String) = $(BufferedReader).
readLine()) != null) {$BODY$}

(d) Looping through lines from a BufferedReader.

Figure 7: Sample language-specific idioms. $StringLit de-
notes a user-defined string literal, $name a (variable) name,
$methodInvoc a method invocation statement, $ifstatement
an if statement and $BODY$ a code block.

Name Precision Coverage Avg Size
(%) (%) (#Nodes)

Haggis 8.5 ±3.2 23.5 ±13.2 15.0 ±2.1
nmin = 5, cmin = 2

L
ib
r
a
r
y Haggis 16.9 ±10.1 2.8 ±3.0 27.9 ±8.6

nmin = 20, cmin = 25

Deckard 0.9 ±1.3 4.1 ±5.2 24.6 ±15.0
minToks=10, stride=2, sim=1

Pr
o
je
c
t
s Haggis 14.4 ±9.4 30.3 ±12.5 15.5 ±3.1

nmin = 5, cmin = 2

Haggis 29.9 ±19.4 3.1 ±2.6 25.3 ±3.5
nmin = 20, cmin = 25

Figure 8: Average and standard deviation of performance in Library
test set. Standard deviation across projects.

Test Corpus Coverage Precision

Stack Overflow 31% 67%
Projects 22% 50%

Figure 9: Extrinsic evaluation of mined idioms from Library.

of the memory-hungry RevWalk object in JGit and 6i is a transaction
idiom in Neo4J. Other idioms capture common error handling, such
as 6d for Neo4J and 6p for a Hibernate transaction. Finally, some
idioms capture common operations, such as closing a connection
in Netty (6m), traversing through the database nodes (6n), visiting
all AST nodes in a JavaScript file in Rhino (6k) and computing
the distance between two locations (6g) in Android. The reader
may observe that these idioms provide a meaningful set of coding
patterns for each library, capturing semantically consistent actions
that a developer is likely to need when using these libraries.

In Figure 7 we present a small set of general Java idioms mined
across all data sets by Haggis. These idioms represent frequently
used patterns that could be included by default in tools such as
Eclipse’s SnipMatch [43] and IntelliJ’s live templates [23]. These
include idioms for defining constants (Figure 7c), creating loggers
(Figure 7b) and iterating through an iterable (Figure 7a).

We now quantitatively evaluate the mined idiom sets. Figure 8
shows idiom coverage, idiom set precision and the average size of
the matched idioms in the test sets of each data set. We observe
that Haggis achieves better precision and coverage in Projects than
Library. This is expected since code idioms recur more often within
a project than across disparate projects. This effect may be partially
attributed to the small number of people working in a project and
partially to project-specific idioms. Figure 8 also gives an indication
of the trade-offs we can achieve for different cmin and nmin.

5.2 Code Cloning vs Code Idioms
Previously, we argued that code idioms differ significantly from

code clones. We now show this by using a cutting-edge clone
detection tool: Deckard [24] is a state-of-the-art tree-based clone-
detection tool that uses an intermediate vector representation to
detect similarities. To extract code idioms from the code clone
clusters that Deckard computes, we retrieve the maximal common
subtree of each cluster, ignoring patterns that are less than 50% of
the original size of the tree.

We run Deckard on the validation set with multiple parameters
(stride ∈ {0, 2}, similarity ∈ {0.95, 1.0}, minToks ∈ {10, 20})
and picked those that achieve the best combination of precision
and coverage. These parameters would be plausible choices if one
would try to mine idioms with a clone detection tool. Figure 8 shows
precision, coverage and average idiom size (in number of nodes)
of the patterns found through Deckard and Haggis. Haggis found
larger and higher coverage idioms, since clones seldom recur across
projects. The differences in precision and coverage are statistically
significant (paired t-test; p < 0.001). We note that the overlap in
the patterns extracted by Deckard and Haggis is small (< 0.5%).

These results are not a criticism of Deckard— which is a high-
quality, state-of-the-art code clone detection tool — but rather show
that the task of code clone detection is different from code idiom
mining. Code clone detection — even when searching for gapped
clones — is concerned with finding pieces of code that are not
necessarily frequent but are maximally identical. In contrast, idiom
mining is concerned with finding very common tree fragments that
trade off between pattern size and frequency.

5.3 Extrinsic Evaluation of Mined Idioms
Now, we evaluate Haggis extrinsically on a data set of Stack

Packages

Id
io

m
s

Figure 10: Lift (i.e. co-occurrence) between packages and code
idioms. Rows show the correlation between packages and idioms.
Darker blue color shows higher correlation. Generic/language id-
ioms are found on the top and package-specific at the dark blocks on
the right. Idioms and packages shown only for android.location,
android.net.wifi and org.hibernate for brevity.

Overflow questions [4]. Stack Overflow is a popular Q&A site
for programming-related questions. The questions and answers
often contain code snippets, which are representative of general
development practice and are usually short, concise and idiomatic,
containing only essential pieces of code. Our hypothesis is that
snippets from Stack Overflow are more idiomatic than typical code,
so if Haggis idioms are meaningful, they will occur more commonly
in code snippets from Stack Overflow than in typical code.

To test this, we first extract all code fragments in questions and
answers tagged as java or android, filtering only those that can be
parsed by Eclipse JDT [12]. We further remove snippets that contain
less than 5 tokens. After this process, we have 108,407 partial Java
snippets. Then, we create a single set of idioms, merging all those
found in Library and removing any idioms that have been seen in
less than five files in the Library test set. We end up with small but
high precision set of idioms across all APIs in Library.

Figure 9 shows precision and coverage of Haggis’s idioms com-
paring Stack Overflow, Library and Projects. Using the Library
idioms, we achieve a coverage of 31% and a precision of 67% on
Stack Overflow, compared to a much smaller precision and coverage
in Projects. This shows that the mined idioms are more frequent in
Stack Overflow than in a “random” set of projects. Since we expect
that Stack Overflow snippets are more highly idiomatic than average
projects’ source code, this provides strong indication that Haggis has
mined a set of meaningful idioms. We note that precision depends
highly on the popularity of Library’s libraries. For example, be-
cause Android is one of the most popular topics in Stack Overflow,
when we limit the mined idioms to those found in the two Android
libraries, Haggis achieves a precision of 96.6% at a coverage of 21%
in Stack Overflow. This indicates that Haggis idioms are widely
used in development practice.

Eclipse Snipmatch To further evaluate Haggis, we submitted a set
of idioms to Eclipse Snipmatch [43]. Snipmatch currently contains
about 100 human-created code snippets. Currently only JRE, SWT
and Eclipse specific snippets are being accepted. Upon discussion
with the community, we mined a set of idioms specifically for SWT,
JRE and Eclipse. Some of the Haggis mined idioms already existed
in Snipmatch. Of the remaining idioms, we manually translated 27
idioms into JFace templates, added a description and submitted them
for consideration. Five of these were merged as is, four were rejected
because of unsupported features/libraries in Snipmatch (but might
be added in the future), one was discarded as a bad practice that
nevertheless appeared often in our data, and one more was discarded
because it already existed in Snipmatch. Finally, another snippet
was rejected to allow Snipmatch “to keep the snippets balanced, i.e.,
cover more APIs equally well”. The remaining fifteen were still
under consideration at the time of writing. This provides informal
evidence that Haggis mines useful idioms that other developers find
useful. Nevertheless, this experience also highlights that, as with
any data-driven method, the idioms mined will also reflect any old

0.0 0.2 0.4 0.6 0.8 1.0
Suggestion Frequency

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
ec

al
la

t
ra

nk
k k=1

k=5
k=10

Figure 11: Recall at rank k for code idiom suggestion.

or deprecated coding practices in the data.

5.4 Idioms and Code Libraries
As a final evaluation of the mined code idioms’ semantic con-

sistency, we now show that code idioms are highly correlated with
the imported packages of a Java file. We merge the idioms across
our Library projects and visualize the lift among code idioms and
import statements. Lift, commonly used in association rule mining,
measures how dependent the co-appearance of two elements is. For
each imported package p, we compute lift l of the code idiom t
as l(p, t) = P (p, t)/ (P (p)P (t)) where P (p) is the probability of
importing package p, P (t) is the probability of the appearance of
code idiom t and P (p, t) is the probability that package p and idiom
t appear together. l(p, t) is higher as package p and idiom t are
more correlated, i.e., their appearance is not independent.

Figure 10 shows a matrix of the lift of the top idioms and pack-
ages. We show the top 300 most frequent packages in the training
set and their highest correlating code idioms, along with the top 100
most frequent idioms in Library. Each row represents a single code
idiom and each column a single package. At the top, one can see
idioms that do not depend strongly on the package imports. These
are generic idioms (e.g., Figure 7c) that do not correlate significantly
with any package. We can also observe dark blocks of packages
and idioms. Those represent library or project-specific idioms that
co-appear frequently. This provides additional evidence that Hag-
gis finds meaningful idioms since, as expected, some idioms are
common throughout Java, while others are API or project-specific.

Suggesting idioms To further demonstrate the semantic consis-
tency of the Haggis idioms, we present a preliminary approach to
suggesting idioms based on package imports. We caution that our
goal here is to develop an initial proof of concept, not the best possi-
ble suggestion method. First, we score each idiom Ti by computing
s(Ti|I) = maxp∈I l(p, Ti) where I is the set of all imported pack-
ages. We then return a ranked list TI = {T1, T2, . . . } such that
for all i < j, s(Ti, I) > s(Tj , I). Additionally, we use a threshold
sth to control the precision of the returned suggestions, showing
only those idioms ti that have s(Ti, I) > sth. Thus, we are only
suggesting idioms where the level of confidence is higher than sth.
This parameter controls suggestion frequency, i.e. the percent of the
times where we present at least one code idiom.

To evaluate Haggis’s idiom suggestions, we use the Library id-
ioms mined from the train set and compute the recall-at-rank-k on
the Library’s test set. Recall-at-rank-k evaluates Haggis’s ability
to return at least one code idiom for each test file. Figure 11 shows
that for suggestion frequency of 20% we achieve a recall of 76%
at rank k = 5, meaning that in the top 5 results we return at least
one relevant idiom 76% of the time. This result shows the quality
of the mined idioms, suggesting that Haggis can provide a set of
meaningful suggestions to developers by solely using the code’s
imports. Further improvements in performance can be achieved by
using advanced classification methods, which we leave to future
work, and will enable an IDE side-pane with suggested code idioms.

6. RELATED WORK
Source code has been shown to be highly repetitive [14], sug-

gesting that statistical NLP methods could be promising for code
analysis. N -gram language models have been used to improve code
autocompletion performance [2, 18, 39], learn coding conventions
[3] and find syntax errors [8]. Models of the tree structure of the
code have also been studied with the aim of generating programs
by example [35] and modeling source code [34]. However, none
of this work has tried to extract non-sequential patterns in code or
mine tree fragments. The only work that we are aware of that uses
language models for detecting textual patterns in code is Jacob and
Tairas [21], who use n-grams to autocomplete code templates.

Code clones [6, 11, 26, 27, 28, 32, 44, 45] are related to idiom
mining, since they aim to find blocks of highly similar code. Code
clone detection using ASTs has also been studied extensively [7,
13, 24, 30]. For a survey of clone detection methods, see Roy et al.
[44, 45]. In contrast to clone detection, as we noted in Section 5,
code idiom mining searches for frequent, rather than maximally
identical subtrees. It is worth noting that code clones have been
found to have a positive effect on maintenance [27, 28]. Another
related area is API mining [1, 20, 56, 51]. However, this problem
is also significantly different from code idiom mining because it
tries to mine sequences or graphs [38] of API method calls, usually
ignoring most features of the language. This difference should be
evident from the sample code idioms in Figure 6.

Within the data mining literature, there has been a series of work
on frequent tree mining algorithms [25, 49, 54, 55], which focuses
on finding subtrees that occur often in a database of trees. How-
ever, as described in Section 3.2.1, these have the difficulty that
frequent trees are not always interesting trees, a difficulty which our
probabilistic approach addresses in a principled way. Finally, as
described previously, Bayesian nonparametric methods are a widely
researched area in statistics and machine learning [19, 16, 48, 41],
which have also found many applications in NLP [47, 10, 42].

7. DISCUSSION & CONCLUSIONS
We presented Haggis, a system for automatically mining high-

quality code idioms. The idioms discovered include project, API,
and language specific idioms. One interesting direction for future
work is the question of why code idioms arise and their effect on the
software engineering process. It may be that there are “good” and
“bad” idioms. “Good” idioms could arise as an additional abstrac-
tion over programming languages helping developers communicate
more clearly their intention. “Bad” idioms may compensate for
deficiencies of a programming language or an API. For example,
the “multi-catch” statement in Java 7 [40] was designed to remove
the need for an idiom that consisted of a sequence of catch state-
ments with identical bodies. However, it may be argued that other
idioms, such as the ubiquitous for(int i=0;i<n;i++) aid code
understanding. A formal study about the differences between these
types of idioms could be of great interest.

Acknowledgments
We thank Jaroslav Fowkes, Sharon Goldwater and Mirella Lapata
for insightful comments and suggestions. We thank Johannes Dorn,
Andreas Seve, and Marcel Bruch for help in integrating idioms
into Snipmatch. This work was supported by Microsoft Research
through its PhD Scholarship Programme. Charles Sutton was sup-
ported by the Engineering and Physical Sciences Research Council
[grant number EP/K024043/1].

References
[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns

as partial orders from source code: from usage scenarios to
specifications. In Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE), pages
25–34. ACM, 2007.

[2] M. Allamanis and C. Sutton. Mining source code reposito-
ries at massive scale using language modeling. In Working
Conference on Mining Software Repositories (MSR), 2013.

[3] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Learning
natural coding conventions. In Symposium on the Foundations
of Software Engineering (FSE), 2014.

[4] A. Bacchelli. Mining challenge 2013: StackOverflow. In
Working Conference on Mining Software Repositories (MSR),
2013.

[5] B. S. Baker. A program for identifying duplicated code. Com-
puting Science and Statistics, pages 49–49, 1993.

[6] H. A. Basit and S. Jarzabek. A data mining approach for
detecting higher-level clones in software. IEEE Transactions
on Software Engineering, 35(4):497–514, 2009.

[7] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. In International
Conference on Software Maintenance, pages 368–377. IEEE,
1998.

[8] J. Campbell, A. Hindle, and J. N. Amaral. Syntax errors just
aren’t natural: Improving error reporting with language mod-
els. In Working Conference on Mining Software Repositories
(MSR), 2014.

[9] S. Chuan. JavaScript Patterns Collection. http://shichuan.
github.io/javascript-patterns/, 2014. Visited Feb
2014.

[10] T. Cohn, P. Blunsom, and S. Goldwater. Inducing tree-
substitution grammars. Journal of Machine Learning Research,
11:3053–3096, Nov 2010.

[11] R. Cottrell, R. J. Walker, and J. Denzinger. Semi-automating
small-scale source code reuse via structural correspondence.
In Symposium on Foundations of Software Engineering (FSE),
pages 214–225. ACM, 2008.

[12] Eclipse-Contributors. Eclipse JDT. eclipse.org/jdt, 2014.
Visited Mar 2014.

[13] R. Falke, P. Frenzel, and R. Koschke. Empirical evaluation of
clone detection using syntax suffix trees. Empirical Software
Engineering, 13(6):601–643, 2008.

[14] M. Gabel and Z. Su. A study of the uniqueness of source code.
In Symposium on Foundations of Software Engineering (FSE),
pages 147–156. ACM, 2010.

[15] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari,
and D. B. Rubin. Bayesian data analysis. CRC Press, 2013.

[16] S. J. Gershman and D. M. Blei. A tutorial on Bayesian non-
parametric models. Journal of Mathematical Psychology, 56
(1):1–12, 2012.

[17] I. Grigorik. GitHub Archive. www.githubarchive.org,
2014. Visited Mar 2014.

[18] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On
the naturalness of software. In International Conference on
Software Engineering (ICSE), 2012.

[19] N. L. Hjort. Bayesian Nonparametrics. Number 28. Cam-
bridge University Press, 2010.

[20] R. Holmes, R. J. Walker, and G. C. Murphy. Approximate
structural context matching: An approach to recommend rele-
vant examples. IEEE Transactions on Software Engineering,
32(12):952–970, 2006.

[21] F. Jacob and R. Tairas. Code template inference using language
models. In Annual Southeast Regional Conference, page 104.
ACM, 2010.

[22] Java Idioms Editors. Java Idioms. http://c2.com/ppr/
wiki/JavaIdioms/JavaIdioms.html, 2014. Visited Feb
2014.

[23] JetBrains. High-speed coding with Custom Live Templates.
bit.ly/1o8R8Do, 2014. Visited Mar 2014.

[24] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scal-
able and accurate tree-based detection of code clones. In
International Conference on Software Engineering (ICSE),
pages 96–105. IEEE Computer Society, 2007.

[25] A. Jiménez, F. Berzal, and J.-C. Cubero. Frequent tree pattern
mining: A survey. Intelligent Data Analysis, 14(6):603–622,
01 2010.

[26] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilin-
guistic token-based code clone detection system for large scale
source code. IEEE Transactions on Software Engineering, 28
(7):654–670, 2002.

[27] C. J. Kapser and M. W. Godfrey. “Cloning considered harmful”
considered harmful: patterns of cloning in software. Empirical
Software Engineering, 13(6):645–692, 2008.

[28] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical
study of code clone genealogies. In ACM SIGSOFT Software
Engineering Notes, volume 30, pages 187–196. ACM, 2005.

[29] K. A. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and
M. Bernstein. Pattern matching for clone and concept detection.
In Reverse Engineering, pages 77–108. Springer, 1996.

[30] R. Koschke, R. Falke, and P. Frenzel. Clone detection using
abstract syntax suffix trees. In Working Conference on Reverse
Engineering (WCRE), pages 253–262. IEEE, 2006.

[31] I. Kuzborskij. Large-scale pattern mining of computer program
source code. Master’s thesis, University of Edinburgh, 2011.

[32] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding
copy-paste and related bugs in large-scale software code. IEEE
Transactions on Software Engineering, 32(3):176–192, 2006.

[33] P. Liang, M. I. Jordan, and D. Klein. Type-based MCMC. In
Human Language Technologies: Annual Conference of the
North American Chapter of the Association for Computational
Linguistics (HLT/NAACL), pages 573–581, 2010.

http://shichuan.github.io/javascript-patterns/
http://shichuan.github.io/javascript-patterns/
http://www.eclipse.org/jdt/
http://www.githubarchive.org/
http://c2.com/ppr/wiki/JavaIdioms/JavaIdioms.html
http://c2.com/ppr/wiki/JavaIdioms/JavaIdioms.html
http://bit.ly/1o8R8Do

[34] C. J. Maddison and D. Tarlow. Structured generative models
of natural source code. arXiv preprint arXiv:1401.0514, 2014.

[35] A. Menon, O. Tamuz, S. Gulwani, B. Lampson, and A. Kalai.
A machine learning framework for programming by example.
In International Conference on Machine Learning (ICML),
pages 187–195, 2013.

[36] Microsoft Research. High-speed cod-
ing with Custom Live Templates.
research.microsoft.com/apps/video/dl.aspx?id=208961,
2014. Visited Mar 2014.

[37] K. P. Murphy. Machine Learning: A Probabilistic Perspective.
MIT Press, 2012.

[38] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi,
and T. N. Nguyen. Graph-based mining of multiple object
usage patterns. In Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE), pages
383–392. ACM, 2009.

[39] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen.
A statistical semantic language model for source code. In Joint
Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2013.

[40] Oracle. Java SE Documentation: Catching Multiple Exception
Types and Rethrowing Exceptions with Improved Type
Checking. http://docs.oracle.com/javase/7/docs/
technotes/guides/language/catch-multiple.html,
2014. Visited Feb 2014.

[41] P. Orbanz and Y. W. Teh. Bayesian nonparametric models. In
Encyclopedia of Machine Learning. Springer, 2010.

[42] M. Post and D. Gildea. Bayesian learning of a tree substitution
grammar. In Proceedings of the Association for Computational
Linguistics (ACL), pages 45–48, 2009.

[43] E. Recommenders-Contributors. Eclipse SnipMatch.
wiki.eclipse.org/Recommenders/Snipmatch, 2014.
Visited Mar 2014.

[44] C. K. Roy and J. R. Cordy. A survey on software clone
detection research. Technical report, Queen’s University at
Kingston, Ontario, 2007.

[45] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach. Science of Computer Programming, 74
(7):470–495, 2009.

[46] J. Sethuraman. A constructive definition of Dirichlet priors.
Technical report, DTIC Document, 1991.

[47] Y. W. Teh. A hierarchical Bayesian language model based on
Pitman-Yor processes. In Annual Meeting of the Association
for Computational Linguistics (ACL), pages 985–992, 2006.

[48] Y. W. Teh and M. I. Jordan. Hierarchical Bayesian nonparamet-
ric models with applications. In N. Hjort, C. Holmes, P. Müller,
and S. Walker, editors, Bayesian Nonparametrics: Principles
and Practice. Cambridge University Press, 2010.

[49] A. Termier, M.-C. Rousset, and M. Sebag. Treefinder: a first
step towards XML data mining. In International Conference
on Data Mining (ICDM), pages 450–457. IEEE, 2002.

[50] R. Waldron. Principles of Writing Consistent, Idiomatic
JavaScript. https://github.com/rwaldron/idiomatic.
js/, 2014. Visited Feb 2014.

[51] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang.
Mining succinct and high-coverage API usage patterns from
source code. In Working Conference on Mining Software
Repositories (MSR), pages 319–328. IEEE, 2013.

[52] Wikibooks. More C++ Idioms. http://en.wikibooks.
org/wiki/More_C%2B%2B_Idioms, 2013. Visited Feb 2014.

[53] C. K. Williams and C. E. Rasmussen. Gaussian Processes for
Machine Learning, 2006.

[54] M. J. Zaki. Efficiently mining frequent trees in a forest. In
Conference on Knowledge Discovery and Data Mining (KDD),
pages 71–80. ACM, 2002.

[55] M. J. Zaki. Efficiently mining frequent trees in a forest: Al-
gorithms and applications. IEEE Transactions on Knowledge
and Data Engineering, 17(8):1021–1035, 2005.

[56] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO: Min-
ing and recommending API usage patterns. In European Con-
ference on Object-Oriented Programming (ECOOP), pages
318–343. Springer, 2009.

http://research.microsoft.com/apps/video/dl.aspx?id=208961
http://docs.oracle.com/javase/7/docs/technotes/guides/language/catch-multiple.html
http://docs.oracle.com/javase/7/docs/technotes/guides/language/catch-multiple.html
http://wiki.eclipse.org/Recommenders/Snipmatch
https://github.com/rwaldron/idiomatic.js/
https://github.com/rwaldron/idiomatic.js/
http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms
http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms

	Introduction
	Problem Definition
	Mining Code Idioms
	Probabilistic Grammars
	Learning TSGs
	Why Not Just Count Common Trees?
	Nonparametric Bayesian Methods
	Inference

	Sampling a TSG for Code
	Code Snippet Evaluation
	Top Idioms
	Code Cloning vs Code Idioms
	Extrinsic Evaluation of Mined Idioms
	Idioms and Code Libraries

	Related Work
	Discussion & Conclusions

