
Why, When, and What: Analyzing Stack Overflow
Questions by Topic, Type, and Code

Miltiadis Allamanis, Charles Sutton
School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK

Email: m.allamanis@ed.ac.uk, csutton@inf.ed.ac.uk

Abstract—Questions from Stack Overflow provide a unique
opportunity to gain insight into what programming concepts
are the most confusing. We present a topic modeling analysis
that combines question concepts, types, and code. Using topic
modeling, we are able to associate programming concepts and
identifiers (like the String class) with particular types of
questions, such as, “how to perform encoding”.

I. INTRODUCTION

Frequently software engineers and programmer hobbyists
seek answers to questions using websites such as Stack
Overflow. Analyzing this data [1] has the potential to provide
insight into what aspects of programming and APIs are most
difficult to understand. In this paper, we categorize Stack
Overflow questions into two overlapping views: programming
concepts, and type of information being sought.

First, using standard topic models, we categorize questions
according to concepts such as “applets” and “games”. We
extend this analysis to cluster identifiers from code snippets
together with text. From this analysis we make several find-
ings, for example, that there are topics, such as memory
management and compatibility issues, which do not lend
themselves to the use of code snippets.

Second, we move beyond this analysis by categorizing
questions by type. Question types represent the kind of
information requested in a way that is orthogonal to any
particular technology. For example, some questions are about
build issues, whereas others request references for learning a
particular programming language. We present a method for
clustering questions by type using an unorthodox (and to our
knowledge, novel) method of applying topic models removing
noun phrases. so that the model focuses on the type of the
question asked. A major finding is that the distribution over
question types does not vary among languages, suggesting that
we have found a domain-general categorization of questions.
We can also evaluate the orthogonality of tools and technolo-
gies based on the type of problems they can solve. This can
be helpful for navigating software projects alternatives.

Finally, we connect question concepts and types to perform
analyses like: “What types of questions are most commonly
asked about the Date object in Java?” In this example, the
most common type is about conversion and formatting. This
provides a way of analyzing the most confusing aspects of
particular programming concepts.

All these findings may have implications for assistive IDE
technologies, allowing for smarter context-specific question

TABLE I: Categories of Questions Used

Category Count Related Stack Overflow Tags
Java 281508 java, java-ee
Python 122708 python
Android 210799 android
CSS 86961 css, css3
SQL 218326 sql, mysql, sql-server, postgresql, databases
Version Control 33314 git, mercurial, svn
Build Tools 12990 ant, maven

answering using external data sources such as StackOverflow.

II. QUESTION TOPIC MODELS

In this paper we will train three topic models to find
question concepts, code and text topics and types, using
Latent Dirichlet Allocation (LDA) [2]. LDA is a generative
model for describing documents as mixtures of topics, with
each topic containing frequently co-occurring words. To train
LDA, we used MALLET [3]. For natural language processing
tasks, such as text tokenization, part-of-speech tagging and
chunking we used Apache OpenNLP. We stem all natural
language tokens with the Snowball Stemmer [4]. Finally,
for extracting Java code tokens, such as identifiers, we use
Eclipse JDT. From the Stack Overflow dataset we used the
questions containing a selected set of tags listed in Table I.
The questions include a variety of programming languages
and software engineering tools. Our goal is to find differences
among categories and identify concepts and types of questions.

A. Question Concepts

Now, using a topic model we will identify different question
concepts. We train a topic model for 2000 iterations with
150 topics on all the questions and their respective answers.
This number of topics allows sufficiently granular topics to be
discovered. Table II shows a sample of the topics discovered.
The concepts are an indication about what is confusing but
do not show what users are trying to achieve. We observe that
LDA has found interesting clusters (word co-occurrences). For
example, there are general topics with words such as “try”
or “wrong” (A1), but there are problem-specific topics (e.g.
databases in A4) or references to specific technologies (e.g.
Java in A8). However, it is not clear from these topics why
the users are confused; this is addressed in the next section.

Figure 1 shows a heatmap of the average topic assignment
for the category questions (Table I), normalized by the maxi-
mum average topic assignment. We observe that the Java topic

m.allamanis@ed.ac.uk
csutton@inf.ed.ac.uk
http://www.stackoverflow.com
http://www.stackoverflow.com


TABLE II: Sample Question Concepts

Top Words
A1 code, work, try, problem, change, correct, wrong
A2 http, link, example, tutorial, read, check
A3 code, write, make, example, easier
A4 query, table, row, join, select
A5 perform, time, cache, faster, slow, optimize
A6 page, load, javascript, iframe, html
A7 android, app, mobile, device, iphone
A8 java, application, applet, jdk, jvm
A9 return, result, function, call, method
A10 image, background, color, picture, image
A11 server, client, send, socket, data, connect
A12 size, screen, width, height, resize
A13 report, print, pdf, word, document, generate
A14 language, locale, translate, english, barcode

0 20 40 60 80 100 120 140
Question Concepts

Java

Android

Python

SQL

CSS

Build

VCS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative Topic Assignment

Fig. 1: Average topic assignment for question concepts nor-
malized by the maximum average assignment. Most frequent
topics are on the left.

distribution is spread out compared to the other categories. We
also observe that programming languages (Java, Python) have
a wider mixture of concepts. On the other hand, specialized
languages, such as SQL and CSS are confined to a smaller
range of topics, mostly disjoint from those used in Java and
Python questions. Finally, build and version control systems
(VCS) are dominated by few topics—uncommon with the rest
of the tools.

Results: These are interesting observations indicating that
we can create tools based on topic models that can evaluate the
orthogonality of different languages, platforms and tools. Two
technologies are orthogonal if they are used to solve different
classes of problems. For example, the cosine similarity of the
average topic assignments between Python and Java is 0.7,
Java and Android is 0.61, while Java and VCSs have a cosine
similarity of 0.24 being—unsurprisingly—“more” orthogonal.
The average topic assignments also provide insights about
the categories of programming tasks that are more common
in various languages: For example, “log”, “console”, “file”,
“encrypt” are more common in Java than in Python, whereas
“script”, “shell” are more common in Python.

B. Code & Text Model

In addition to text, many questions contain code snippets.
In this section, we incorporate code identifiers into the topic
model. First, by tokenizing the title and—whenever possible—
parsing the Java code snippets we identify that 28.2% of
the question titles contain type identifiers, 16.2% variable

TABLE III: Sample Code and Text Java Topics of Questions

Top Words∗

C1 way, want, work, look, something, solution, create, make, question
C2 java, library, implement, api, look, want, code, way, standard
C3 method, call, parameter, pass, function, class, invoke, return
C4 system, out, println, string, main, java, exception
C5 get, set, to, add, override, instance, equals, new
C6 list, array, list, add, size, util, linked, vector
C7 version, java, jdk, release, new, support, old, compatibility, latest
C8 stream, input, output, io, write, read, byte
C9 thread, thread, run, call, runnable, execute, wait, start
C10 test, test, unit, junit, run, mock, assert, mock, class, fail
C11 string, pattern, match, regex, matcher, string, replace
C12 android, activity, intent, app, manager, context
C13 memory, heap, jvm, size, garbage, run, gc, allocate, space, profile
C14 audio, play, media, video, audio, sound, player, sound
C15 algorithm, search, index, graph, find, implement, lucene

∗ Words in typewriter font are code identifiers.

identifiers and 7.9% method identifiers. It seems that although
type identifiers are the least common in code corpora [5] they
are the most frequently asked code artifacts. The percentage of
variable identifiers is unexpectedly higher than that of methods
and this can be attributed to the semantics variable names have,
allowing for better code understanding.

We train a new LDA model with 150 topics (2000 iterations)
but include both words and code identifiers, after splitting
identifiers into parts based on underscores and capital letters.
The topics discovered are shown in Table III). Surprisingly,
we find topics where code identifiers prevail, others where
text prevails and others where code identifiers and text co-
exist. Again, some topics are general and represent the basic
vocabulary for expressing questions and solutions (C1). Topics
(e.g. C5) containing common Java identifiers are also present.
Additionally, the majority of identifiers are type and method
names but we also find commonly used variable names (e.g.
tmp, i).

Results: This reaffirms that Stack Overflow questions are
about the code and are not application domain specific, since
we find that type and method identifiers are conceptually
consistent, while variable names are not. Interestingly, we also
find task-specific identifiers (C10, C14). Finally, we recognize
question concepts that cannot be explained with code since
they do not consistently coocur with identifiers. These are
emergent code properties, such as memory or version issues
(C7, C13).

C. Question Types

Previously, we identified concepts across questions and code
that provided indications about the task that the users tried to
achieve but not the cause of the problem. To address this issue,
we focus on the context to find different types of questions that
are not specific to any technology. By question types we mean
the set of reasons questions are asked and what the users are
trying to accomplish.

To build the question type model, we preprocess the text
in a special way. We chunk the question and answer text
and remove chunks that represent noun phrases and consider
all other chunks, such as verb phrases, as single tokens.
For example, “try to insert” is a single token. Verbs are



TABLE IV: Question Type Topics Sample

Top Chunks Phrases
B1 to use, can use, to do, want to use, to get, can do, instead of
B2 doesn’t work, work, try, didn’t, won’t, isn’t, wrong
B3 run, happen, cause, occur, fail, work, check, to see, fine, due
B4 create, to create, is creating, call, can create, add, want to create
B5 hope, make, understand, give, to make, work, read, explain, check
B6 faster, run, will be, slow, depend, make, can be, fast, would be
B7 return, pass, call, to pass, is returning, is passing, will return
B8 change, update, to change, modify, can change, want to change
B9 join, select, base, return, to get, to select, filter, query, match
B10 calculate, find, give, to calculate, will be, equal, to find, compute
B11 run, connect, to connect, is running, start, configure, work, fail
B12 convert, to convert, format, encode, back, need to convert, decode
B13 build, compile, include, link, to build, to compile, run, make
B14 log, redirect, to redirect, is logged, check, to login, login, visit
B15 generate, to generate, create, is generated, produce, automatically
B16 learn, to learn, start, read, understand, recommend, find, good
B17 deploy, run, publish, build, to deploy, install, develop, host, app
B18 merge, commit, push, back, git, create, check, make, clone
B19 import, export, to import, to export, create, format, to excel
B20 sort, to sort, order, want to sort, base, sorted, compare

stemmed. Now, we have a set of phrases, mostly verb phrases,
representing activities that users are trying to address. We note
that since chunking and part-of-speech tagging are automatic,
they will make a few errors. However, this is a minor issue.
Applying topic models in this way is unorthodox and novel,
since usually the emphasis is given on nouns and single verbs.

We train LDA with 100 topics (2000 iterations) using all
Stack Overflow questions irrespective of their tag. We chose
100 topics since we need less granular question types to be
discovered. Excitingly, we now have a much more informative
clustering of the questions (Table IV), finding some major
question categories about:

• concepts that have been coded but do not work (B2,B3);
• not understanding how/why something works (B5);
• not knowing how to implement something (B4);
• the way of using some piece of code or API (B1);
• suggestions for learning a language or technology (B16).

We also find general, non-technology specific issues that evoke
questions such as execution speed (B6), compiling (B13),
user authentication (B14), importing and exporting data (B19).
Furthermore, common operations such as sorting (B20) and
calling functions (B7) are also included. Thus, it is possible to
cluster questions by type rather than content. These topics pro-
vide valuable information about problems practitioners face.
The aforementioned issues seem to be calling for more or-
ganized learning resources or more descriptive, intent-specific
APIs or better documentation searchability.

Figure 2 shows the assignment distribution of types across
the categories. Compared to Figure 1, among Java, Android
and Python we now get similar types of questions. Specifically,
Java and Python are very similar (cosine similarity 0.98)
and Android differs only slightly (cosine similarity with Java
0.95 and 0.92 with Python). Thus, the types of questions
practitioners have in programming languages are similar and
independent of the language, at least between Python and Java.

0 20 40 60 80
Question Types

Java

Android

Python

SQL

CSS

Build

VCS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative Topic Assignment

Fig. 2: Average topic assignment for question types, nor-
malized by the maximum average assignment. Most frequent
topics are on the left.

Platforms (like Android) slightly change the distribution refo-
cusing it on a specific domain (mobile devices for Android).

For most of the technologies studied in this paper, generic
phrases like “to use” or “can do” rank high with minor
differences. However, interesting differences also arise: for
example questions containing phrases such as “implement”,
“create”, “handle”, “deploy” and “override” are more common
in Java, compared to Python. Similar observations are made
with question types having phrases such as “concurrently”,
“synchronize” and “serialize”. On the other hand question
using verbs such as “calculate”, “compute”, “parse”, “match”,
“replace”, “extract” and “import” are more common in Python
compared to Java. We hypothesize that this happens because
Python is commonly used for such tasks. Similar results are
also observed between Android and Java questions. Unsur-
prisingly, Android questions are much more about displaying,
rendering, loading and clicking compared to Java.

We also find that task-specific technology questions are
focused: Build technologies are used with words like “build”,
“link” and “deploy” (B13) and VCSs with words like “merge”
and “commit” (B18). SQL questions focus on “filtering” and
“storing” data (B9), but speed (B6) seems to be an import
issue. Conversely, CSS is mostly concerned with verbs about
placing items on a screen. The cosine similarity of question
types between CSS and VCSs is 0.41 indicating widely differ-
ent types of questions. Interestingly, CSS seems to be easily
tweaked since the topic containing words such as “work”,
“change”, “does not work”, “wrong” is ranked higher than
the other languages. According to Figure 2, SQL and build
tools are more similar to programming languages compared
to VCSs and CSS. Results: From the discussion above it
seems that the question type model, could be helpful for code-
related information retrieval allowing better coding question
understanding and code-aware query expansions.

III. CONNECTING QUESTION CONCEPTS AND TYPES

Now, we connect the topic models of Table III and Table IV
by examining how different topics were assigned to the same
documents. We study the covariance of the topic assignments
to identify what are the confusing types and topics of questions.
Looking at relatively large differences in the covariances of
the question concepts and types among the categories, we



TABLE VI: Percent (%) of questions asked on a specific day for various tags.

Java Java EE Android JDBC Python C# RoR SQL Server C++ Maven .NET iPhone XML All
Mon 15.9 16.5 16.1 15.5 15.2 16.0 15.5 16.7 15.3 15.9 16.0 16.1 16.0 15.6
Tue 17.3 18.0 17.1 18.8 16.7 18.0 17.0 19.0 16.5 18.8 18.0 17.5 18.0 17.4
Wed 17.5 18.6 17.2 17.5 17.0 18.1 16.8 19.5 16.6 17.8 18.6 17.4 18.3 17.6
Thu 17.2 17.2 17.0 18.0 16.5 17.9 16.5 19.3 16.7 18.8 18.2 16.9 18.0 17.4
Fri 15.3 15.3 15.2 14.8 14.9 15.7 15.0 16.3 15.0 16.1 16.0 15.3 15.4 15.7
Sat 8.3 7.5 9.0 7.5 9.7 7.2 9.5 3.6 9.8 6.3 6.6 8.8 7.0 8.3
Sun 8.5 7.0 8.3 7.9 9.9 7.1 9.8 5.7 10.1 6.4 6.6 8.1 7.2 8.1

TABLE V: Strong Correlations between Text & Code Topic
with Question Type

Topic∗ Question Type Topics
character, encoding, string, ascii convert, encode, format, decode
date, format, time, parse convert, encode, format, decode
thread, Runnable, call, task start, run, wait, call, kill
time, performance, memory, large faster, run, slow, depend
class, method, interface implement, inherit, call, create
key, ssl, certificate, cipher hash, encrypt, store, sign
audio, play, media, video, sound load, play, reload, download
color, width, height, paint draw, rotate, render, transform

∗ Words in typewriter font are code identifiers.

find that questions containing problems with “crashes” in the
“browser”, an “applet” or a “web service” are uncommon in
Python. Compared to Java, Android questions contain less
frequently tokens such as “results”, “search”, “store” than
phrases such as “submit”, “enter”, “upload”. This is happening
since search servers are rarely implemented in Android, while
search facilities are much more common in Java applications.

The observations above are interesting for software engi-
neering and specifically to software design. Joint topic models
can be part of tools that help with technology selection based
on the “actions” imposed by the requirements. Additionally,
they can help discover similar technologies (e.g. build systems)
as an initial “market research” widening the pool of potential
tool alternatives considered. Interestingly, the combination of
these topic models can be helpful to code search.

We now focus on the covariance between the Code &
Text concepts (Table III) with the question types (Table IV)
and look for topics that co-occur frequently (higher absolute
covariance). The covariance seems to be uniform across topics,
with some exceptions: For example, we find higher covariance
between question types containing words such as “start”,
“run”, “stop” with the topic containing Runnable, “thread”,
run, “call” etc.; the topic containing “string”, pattern,
“regex” is correlated with phrases such as “match”, “replace”
and “escape”. Interestingly, we also find correlations between
words such as “code”, “pattern”, “implement”, “design” as-
sociated with the phrases “make”, “easier”, “write”, “find”
indicating software design questions.

Results: From the top correlations we are able to determine
what are the most confusing or problematic issues about
specific identifiers and concepts as shown in Table V. This is
an interesting observation indicating that we can predict the
type of question asked from few keywords about the domain,
a useful feature for IDEs and information retrieval systems.

IV. HOBBY OR SERIOUS WORK?

As a side issue, we now examine programming language
usage on a daily basis. Table VI shows the percentages of
posts for each weekday throughout the whole dataset for some
tags. First, weekends are less “busy” days for Stack Overflow.
We also observe that Mondays and Fridays are “slower” days.

However, it is interesting to notice differences across lan-
guages and technologies during the weekend. Those that are
used more in corporate environments (such as SQL Server,
Java EE and .NET) have a much lower percentage of questions
asked during the weekend. On the other end, we find that C++,
Python and Ruby on Rails (RoR) have a larger percentage of
questions during weekends. We hypothesize that this effect is
attributed to the technologies more widely used by hobbyists1,
since such technologies include popular scripting languages
and low entry-barrier technologies (e.g. Android).

V. CONCLUSION

In this paper, we observed how topic models provide
intuitions about programming languages and the problems
practitioners face. The question type analysis allowed us to
make findings that would not have been possible otherwise.
Most notably, we were able to show that the types of questions
asked do not vary across programming languages, and we
presented a method for identifying what question types were
mostly associated with particular programmming constructs/
identifiers. In the future, IDEs and smart documentation sys-
tems using this information and the identifiers in the current
context could be able to provide guidance and context-specific
answers to frequently asked questions.

ACKNOWLEDGMENT

The authors would like to thank Prof. Andrew D. Gordon for
his insightful comments and the anonymous reviewers for their
suggestions. This work was supported by Microsoft Research
through its PhD Scholarship Programme.

REFERENCES

[1] A. Bacchelli, “Mining Challenge 2013: Stack Overflow,” in The 10th
Working Conference on Mining Software Repositories, 2013, p. to appear.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
the Journal of machine Learning research, vol. 3, pp. 993–1022, 2003.

[3] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002.

[4] M. F. Porter, “Snowball: A language for stemming algorithms,” 2001.
[5] M. Allamanis and C. Sutton, “Mining Source Code Repositories at Mas-

sive Scale using Language Modeling,” in The 10th Working Conference
on Mining Software Repositories, 2013, p. to appear.

1They could also be workaholics and academics but it is impossible to tell.


	Introduction
	Question Topic Models
	Question Concepts
	Code & Text Model
	Question Types

	Connecting Question Concepts and Types
	Hobby or Serious Work?
	Conclusion
	References

