
2 Misleading Learners: Co-opting Your Spam
Filter

Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph,
Benjamin I. P. Rubinstein, Udam Saini, Charles Sutton, J. D. Tygar, Kai Xia1

Abstract Using statistical machine learning for making security decisions intro-
duces new vulnerabilities in large scale systems. We show how an adversary can
exploit statistical machine learning, as used in the SpamBayes spam filter, to ren-
der it useless—even if the adversary’s access is limited to only 1% of the spam
training messages. We demonstrate three new attacks that successfully make the
filter unusable, prevent victims from receiving specific email messages, and cause
spam emails to arrive in the victim’s inbox.

2.1 Introduction

Applications use statistical machine learning to perform a growing num-
ber of critical tasks in virtually all areas of computing. The key strength of
machine learning is adaptability; however, this can become a weakness when
an adversary manipulates the learner's environment. With the continual
growth of malicious activity and electronic crime, the increasingly broad
adoption of learning makes assessing the vulnerability of learning systems to
attack an essential problem.

The question of robust decision making in systems that rely on machine
learning is of interest in its own right. But for security practitioners, it is espe-
cially important, as a wide swath of security-sensitive applications build on
machine learning technology, including intrusion detection systems, virus and
worm detection systems, and spam filters [13, 14, 18, 20, 24].

Past machine learning research has often proceeded under the assumption
that learning systems are provided with training data drawn from a natural dis-
tribution of inputs. However, in many real applications an attacker might have
the ability to provide a machine learning system with maliciously chosen in-
puts that cause the system to infer poor classification rules. In the spam do-
main, for example, the adversary can send carefully crafted spam messages

1 Comp. Sci. Div., Soda Hall #1776, University of California, Berkeley, 94720-1776, USA

© Springer Science + Business Media, LLC 2009

J.J.P. Tsai and P.S. Yu (eds.), Machine Learning in Cyber Trust: Security, Privacy, 17
and Reliability, DOI: 10.1007/978-0-387-88735-7_2,

In Machine Learning in Cyber Trust: Security, Privacy, Reliability, eds. J. Tsai and P..Yu (eds.) Springer, 2009, pp. 17-51

18

that a human user will correctly identify and mark as spam, but which can in-
fluence the underlying machine learning system and adversely affect its ability
to correctly classify future messages.

We demonstrate how attackers can exploit machine learning to subvert the
SpamBayes statistical spam filter. Our attack strategies exhibit two key dif-
ferences from previous work: traditional attacks modify attack instances to
evade a filter, whereas our attacks interfere with the training process of the
learning algorithm and modify the filter itself; and rather than focusing only on
placing spam emails in the victim's inbox, we also present attacks that remove
legitimate emails from the inbox.

We consider attackers with one of two goals: expose the victim to an ad-
vertisement or prevent the victim from seeing a legitimate message. Potential
revenue gain for a spammer drives the first goal, while the second goal is mo-
tivated, for example, by an organization competing for a contract that wants to
prevent competing bids from reaching their intended recipient.

An attacker may have detailed knowledge of a specific email the victim is
likely to receive in the future, or the attacker may know particular words or
general information about the victim's word distribution. In many cases, the
attacker may know nothing beyond which language the emails are likely to
use.

When an attacker wants the victim to see spam emails, a broad dictionary
attack can render the spam filter unusable, causing the victim to disable the
filter (Section 2.3.1.1). With more information about the email distribution,
the attacker can select a smaller dictionary of high-value features that are still
effective. When an attacker wants to prevent a victim from seeing particular
emails and has some information about those emails, the attacker can target
them with a focused attack (Section 2.3.1.2). Furthermore, if an attacker can
send email messages that the user will train as non-spam, a pseudospam attack
can cause the filter to accept spam messages into the user's inbox (Section
2.3.2).

We demonstrate the potency of these attacks and present a potential de-
fense—the Reject On Negative Impact (RONI) defense tests the impact of each
email on training and doesn't train on messages that have a large negative im-
pact. We show that this defense is effective in preventing some attacks from
succeeding.

Our attacks target the learning algorithm used by several spam filters, in-
cluding SpamBayes (spambayes.sourceforge.net), a similar spam filter called
BogoFilter (bogofilter.sourceforge.net), the spam filter in Mozilla's Thunder-
bird (mozilla.org), and the machine learning component of SpamAssassin
(spamassassin.apache.org)—the primary difference between the learning ele-
ments of these three filters is in their tokenization methods. We target Spam-
Bayes because it uses a pure machine learning method, it is familiar to the
academic community [17], and it is popular with over 700,000 downloads.
Although we specifically attack SpamBayes, the widespread use of its statisti-

Blaine Nelson et al.

 19

cal learning algorithm suggests that other filters are also vulnerable to similar
attacks2.

Our experimental results confirm that this class of attacks presents a seri-
ous concern for statistical spam filters. A dictionary attack makes the spam
filter unusable when controlling just 1% of the messages in the training set,
and a well-informed focused attack removes the target email from the victim's
inbox over 90% of the time. Our pseudospam attack causes the victim to see
almost 90% of the target spam messages with control of less than 10% of the
training data.

We explore the effect of the contamination assumption: the adversary can
control some of the user's training data. Novel contributions of our research
include:

• A detailed presentation of specific, successful attacks against Spam-
Bayes.

• A discussion of how these attacks fit into a more general framework of
attacks against machine learning systems.

• Experimental results showing that our attacks are effective in a realistic
setting.

• A potential defense that succeeds empirically against the dictionary at-
tack.

Below, we discuss the background of the training model (Section 2.2); we
present three new attacks on SpamBayes (Section 2.3); we give experimental
results (Section 2.4); and we propose a defense against these attacks together
with further experimental results (Section 2.5).

A preliminary report on this work appeared in the First USENIX Work-
shop on Large-Scale Exploits and Emergent Threats (LEET) [19].

2.2 Background

SpamBayes counts occurrences of tokens in spam and non-spam emails
and learns which tokens are more indicative of each class. To predict whether
a new email is spam or not, SpamBayes uses a statistical test to determine
whether the email's tokens are sufficiently indicative of one class or the other,
and returns its decision or unsure. In this section, we detail the statistical
method SpamBayes uses to learn token scores and combine them in predic-

2 We note that while some filters, such as SpamAssassin, use the learner only as one of several
components of a broader filtering strategy, our attacks would still degrade the performance of
SpamAssassin. Since other components of SpamAssassin are fixed rules, the only element that is
trained is the learner. For SpamAssassin, our attacks will degrade the performance of this ele-
ment in their system and thereby diminish its overall accuracy.

2 Misleading Learners: Co-opting Your Spam Filter

20

tion, but first we discuss realistic models for deploying SpamBayes and our
assumption of adversarial control.

2.2.1 Training Model

SpamBayes produces a classifier from a training set of labeled examples
of spam and non-spam messages. This classifier (or filter) is subsequently
used to label future email messages as spam (bad, unsolicited email) or ham
(good, legitimate email). SpamBayes also has a third label—when it isn't con-
fident one way or the other, it returns unsure. We adopt this terminology: the
true class of an email can be ham or spam, and a classifier produces the labels
ham, spam, and unsure.

There are three natural choices for how to treat unsure-labeled messages:
they can be placed in the spam folder, they can be left in the user's inbox, or
they can be put into a third folder for separate review. Each choice can be
problematic because the unsure label is likely to appear on both ham and spam
messages. If unsure messages are placed in the spam folder, the user must sift
through all spam periodically or risk missing legitimate messages. If they re-
main in the inbox, the user will encounter an increased amount of spam mes-
sages in their inbox. If they have their own “Unsure” folder, the user still
must sift through an increased number of unsure-labeled spam messages to lo-
cate unsure-labeled ham messages. Too much unsure email is therefore al-
most as troublesome as too many false positives (ham labeled as spam) or
false negatives (spam labeled as ham). In the extreme case, if every email is
labeled unsure then the user must sift through every spam email to find the
ham emails and thus obtains no advantage from using the filter.

Consider an organization that uses SpamBayes to filter incoming email for
multiple users and periodically retrains on all received email, or an individual
who uses SpamBayes as a personal email filter and regularly retrains it with
the latest spam and ham. These scenarios serve as our canonical usage exam-
ples. We use the terms user and victim interchangeably for either the organi-
zation or individual who is the target of the attack; the meaning will be clear
from context.

We assume that the user retrains SpamBayes periodically (e.g., weekly);
updating the filter in this way is necessary to keep up with changing trends in
the statistical characteristics of both legitimate and spam email. Our attacks
are not limited to any particular retraining process; they only require an as-
sumption that we call the contamination assumption.

Blaine Nelson et al.

 21

2.2.2 The Contamination Assumption

We assume that the attacker can send emails that the victim will use for
training—the contamination assumption—but incorporate two significant re-
strictions: 1) attackers may specify arbitrary email bodies but cannot alter
email headers; and 2) attack emails will always be trained as spam, not ham.
In our pseudospam attack, however, we investigate the consequences of lifting
the second restriction and allowing the attacker to have messages trained as
ham.

It is common practice in security research to assume the attacker has as
much power as possible, since a determined adversary may find unanticipated
methods of attack—if a vulnerability exists, we assume it may be exploited. It
is clear that in some cases the attacker can control training data. Here, we dis-
cuss realistic scenarios where the contamination assumption is justified; in the
later sections, we examine its implications.

Adaptive spam filters must be retrained periodically to cope with the
changing nature of both ham and spam. Many users simply train on all email
received, using all spam-labeled messages as spam training data and all ham-
labeled messages as ham training data. Generally the user will manually pro-
vide true labels for messages labeled unsure by the filter, as well as for mes-
sages filtered incorrectly as ham (false negatives) or spam (false positives). In
this case, it is trivial for the attacker to control training data: any emails sent to
the user are used in training.

The fact that users may manually label emails does not protect against our
attacks: the attack messages are unsolicited emails from unknown sources and
may contain normal spam marketing content. The spam labels manually given
to attack emails are correct and yet allow the attack to proceed. When the at-
tack emails can be trained as ham, a different attack is possible; our pseu-
dospam attack explores the case where attack emails are trained as ham (see
Section 2.3.2).

2.2.3 SpamBayes Learning Method

SpamBayes is a content-based spam filter that classifies messages based
on the tokens (including header tokens) observed in an email. The spam clas-
sification model used by SpamBayes comes from Robinson [17, 22], based on
ideas by Graham [8] together with Fisher's method for combining independent
significance tests [7]. Intuitively, SpamBayes learns how strongly each token
indicates ham or spam by counting the number of each type of email that to-
ken appears in. When classifying a new email, SpamBayes looks at all of its

2 Misleading Learners: Co-opting Your Spam Filter

22

tokens and uses a statistical test to decide whether they indicate one label or
the other with sufficient confidence; if not, SpamBayes returns unsure.

SpamBayes tokenizes each email E based on words, URL components,
header elements, and other character sequences that appear in E. Each is
treated as a unique token of the email. The SpamBayes algorithm only re-
cords whether or not a token occurs in the message, not how many times it oc-
curs. Email E is represented as a binary vector e where

th1 the token occurs in .

0 otherwise
i E

i
��= �
��

e

Below, we use e to refer to both the original message E and SpamBayes'
representation of it since we are only concerned with the latter.

In training, SpamBayes computes a spam score vector P(S) where the ith
component is a token spam score for the ith token given by

 (,)
()

() ()
H S

S i
H S S H

N N i
N N i N N i

=
+

P (1)

where NS, NH, NS(i), and NH(i) are the number of spam emails, ham emails,
spam emails including the ith token and ham emails including the ith token, re-
spectively. The quantity P(S,i) is an estimate of Pr(E is spam | ei) if the prior of
ham and spam are equal, but for our purposes, it is simply a per-token score
for the email. An analogous token ham score is given by P(H,i)= 1 - P(S,i).

Robinson's method [22] smooths P(S,i) through a convex combination with
a prior belief x (default value of x = 0.5), weighting the quantities by N(i) (the
number of training emails with the ith token) and s (chosen for strength of prior
with a default of s = 1), respectively:

 ()
()

() (,) .i S i
N is x

s N i s N i
= +

+ +
f P (2)

Effectively, smoothing reduces the impact that low token counts have on
the scores. For rare tokens, the score is dominated by the prior x. However,
as more tokens are observed, the smoothed score gradually shifts to the score
in Eq. (1). An analogous smoothed ham score is given by 1 - f.

After training, the filter computes the overall spam score S(m) of a new
message M using Fisher's method [7] for combining the scores of the tokens
observed in M. SpamBayes uses at most 150 tokens from M with scores fur-
thest from 0.5 and outside the interval [0.4,0.6]. Let δ(m) be the binary vector

Blaine Nelson et al.

 23

where δ(m)i = 1 if token i is one of these tokens, and 0 otherwise. The token
spam scores are combined into a message spam score for M by

 () () ()()2
21 2 log ,nS χ δΤ= − −m f m (3)

where n is the number of tokens in M and ()2
2nχ • denotes the cumulative

distribution function of the chi-square distribution with 2n degrees of freedom.
A ham score H(e) is similarly defined by replacing f with 1 - f in Eq. (3). Fi-
nally, SpamBayes constructs an overall spam score for M by averaging S(m)
and 1 - H(m) (both being indicators of whether m is spam) giving the final
score

 () () ()1
2

S H
I

+ −
=

m m
m (4)

for a message; a quantity between 0 (ham) and 1 (spam). SpamBayes pre-
dicts by thresholding I(m) against two user-tunable thresholds θ0 and θ1, with
defaults θ0 = 0.15 and θ1 = 0.9. SpamBayes predicts ham, unsure, or spam if
I(m) falls into the interval [0,θ0], (θ0,θ1], or (θ1,1], respectively, and filters the
message accordingly.

The inclusion of an unsure label in addition to spam and ham prevents us
from purely using ham-as-spam and spam-as-ham misclassification rates
(false positives and false negatives, respectively) for evaluation. We must also
consider spam-as-unsure and ham-as-unsure misclassifications. Because of
the practical effects on the user's time and effort discussed in Section 2.2.1,
ham-as-unsure misclassifications are nearly as bad for the user as ham-as-
spam.

2.3 Attacks

We examine several attacks against the SpamBayes spam filter. Unlike
attacks that exploit flaws in an application's implementation or policies, our at-
tacks take advantage of the learner's adaptive nature. Each attack embodies a
particular insight about ways in which a machine learning system is vulner-
able, which we can better understand in terms of several commonalities be-
tween the attacks.

In a previous paper, we categorize attacks against machine learning sys-
tems along three axes [1]. The axes of the taxonomy are:

Influence

2 Misleading Learners: Co-opting Your Spam Filter

24

• Causative attacks influence learning with control over training data.
• Exploratory attacks exploit misclassifications but do not affect train-

ing.

Security violation

• Integrity attacks compromise assets via false negatives.
• Availability attacks cause denial of service, usually via false positives.

Specificity

• Targeted attacks focus on a particular instance.
• Indiscriminate attacks encompass a wide class of instances.

The first axis of the taxonomy describes the capability of the attacker:
whether (a) the attacker has the ability to influence the training data that is
used to construct the classifier (a Causative attack) or (b) the attacker does not
influence the learned classifier, but can send new emails to the classifier, and
observe its decisions on these emails (an Exploratory attack).

The second axis indicates the type of security violation caused: (a) false
negatives, in which spam slip through the filter (an Integrity violation); or (b)
false positives, in which ham emails are incorrectly filtered (an Availability
violation).

The third axis refers to how specific the attacker's intention is: whether (a)
the attack is Targeted to degrade the classifier's performance on one particular
type of email or (b) the attack aims to cause the classifier to fail in an Indis-
criminate fashion on a broad class of email.

In the remainder of this section, we discuss three novel Causative attacks
against SpamBayes' learning algorithm in the context of this taxonomy: one is
an Indiscriminate Availability attack, one is a Targeted Availability attack, and
the third is a Targeted Integrity attack.

A Causative attack against a learning spam filter proceeds as follows:

1. The attacker determines the goal for the attack.
2. The attacker sends attack messages to include in the victim's training

set.
3. The victim (re-)trains the spam filter, resulting in a tainted filter.
4. The filter's classification performance degrades on incoming mes-

sages.

We consider two possible goals for the attacker: to cause spam emails to
be seen by the victim or to prevent the victim from seeing legitimate emails.
There are at least two motives for the attacker to cause legitimate emails to be
filtered as spam. First, a large number of misclassifications will make the
spam filter unreliable, causing users to abandon filtering and see more spam.
Second, causing legitimate messages to be mislabeled can cause users to miss
important messages. For example, an organization competing for a contract

Blaine Nelson et al.

 25

could block competing bids by causing them to be filtered as spam, thereby
gaining a competitive advantage.

Based on these considerations, we can further divide the attacker's goals
into four categories:

1. Cause the victim to disable the spam filter, thus letting all spam into
the inbox

2. Cause the victim to miss a particular ham email filtered away as
spam

3. Get a particular spam into the victim's inbox
4. Get any spam into the victim's inbox

In the remainder of this section, we describe attacks that achieve these ob-
jectives. Each of the attacks we describe consists of inserting emails into the
training set that are drawn from a particular distribution; the properties of
these distributions, along with other parameters, determine the nature of the at-
tack. The dictionary attack sends email messages with tokens drawn from a
broad distribution, essentially including every token with equal probability.
The focused attack focuses the distribution specifically on one message or a
narrow class of messages. If the attacker has the additional ability to send
messages that will be trained as ham, a pseudospam attack can cause spam
messages to reach the user's inbox.

2.3.1 Causative Availability Attacks

We first focus on Causative Availability attacks, which manipulate the fil-
ter's training data to increase the number of ham messages misclassified. We
consider both Indiscriminate and Targeted attacks. In Indiscriminate attacks,
enough false positives force the victim to disable the filter or frequently search
in spam/unsure folders for legitimate messages erroneously filtered away.
Hence, the victim is forced to view more spam. In Targeted attacks, the at-
tacker does not disable the filter but surreptitiously prevents the victim from
receiving certain messages.

Without loss of generality, consider the construction of a single attack
message a. The victim adds it to the training set, (re-)trains on the contami-
nated data, and subsequently uses the tainted model to classify a new message
m. The attacker also has some (perhaps limited) knowledge of the next email
the victim will receive. This knowledge can be represented as a distribution
p—the vector of probabilities that each token will appear in the next message.

The goal of the attacker is to choose the tokens for the attack message a to
maximize the expected spam score:

2 Misleading Learners: Co-opting Your Spam Filter

26

 ()~max .I� �� 	m p aa
E m (5)

In other words, the attack goal is to maximize the expectation of Ia(m)
(Eq. (4) with the attack message a added to the spam training set) of the next
legitimate email m drawn from distribution p.

To describe the optimal attack under this criterion, we make two observa-
tions, which we detail in Appendix 2.A. First, Ia(m) is monotonically non-
decreasing in fi for all i. Therefore, increasing the score of any token in the at-
tack message can only increase Ia. Second, the token scores of distinct tokens
do not interact; that is, adding the ith token to the attack does not change the
score fj of some different token j i≠ . Hence, the attacker can simply choose
which tokens will be most beneficial for their purpose. From this, we moti-
vate two attacks, the dictionary and focused attacks, as instances of a common
attack in which the attacker has different amounts of knowledge about the vic-
tim's email.

For this, let us consider specific choices for the distribution p. First, if the
attacker has little knowledge about the tokens in target emails, we give equal
probability to each token in p. In this case, we can optimize the expected
message spam score by including all possible tokens in the attack email. Sec-
ond, if the attacker has specific knowledge of a target email, we can represent
this by setting pi to 1 if and only if the ith token is in the target email. This at-
tack is also optimal with respect to the target message, but it is much more
compact.

In reality, the attacker's knowledge usually falls between these two ex-
tremes. If the attacker has relatively little knowledge, such as knowledge that
the victim's primary language is English, the attack can include all words in an
English dictionary. This reasoning yields the dictionary attack (Sec-
tion 2.3.1.1). On the other hand, the attacker may know some of the particular
words to appear in a target email, though not all of the words. This scenario is
the focused attack (Section 2.3.1.2). Between these levels of knowledge, an
attacker could use information about the distribution of words in English text
to make the attack more efficient, such as characteristic vocabulary or jargon
typical of emails the victim receives. Any of these cases result in a distribu-
tion p over tokens in the victim's email that is more specific than an equal dis-
tribution over all tokens but less informative than the true distribution of to-
kens in the next message. Below, we explore the details of the dictionary and
focused attacks, with some exploration of using an additional corpus of com-
mon tokens to improve the dictionary attack.

Blaine Nelson et al.

 27

2.3.1.1 Dictionary Attack

The dictionary attack, an Indiscriminate attack, makes the spam filter un-
usable by causing it to misclassify a significant portion of ham emails so that
the victim disables the spam filter, or at least must frequently search through
spam/unsure folders to find legitimate messages that were filtered away. In
either case, the victim loses confidence in the filter and is forced to view more
spam achieving the ultimate goal of the spammer: the victim sees the at-
tacker's spam. The result of this attack is denial of service, a higher rate of
ham misclassified as spam.

The dictionary attack is an approximation of the optimal attack suggested
in Section 3.1, in which the attacker maximizes the expected score by includ-
ing all possible tokens. Creating messages with every possible token is infea-
sible in practice. Nevertheless, when the attacker lacks knowledge about the
victim's email, this optimal attack can be approximated with an entire diction-
ary of the victim’s native language—the dictionary attack. The dictionary at-
tack increases the score of every token in a dictionary; i.e., it makes them
more indicative of spam.

The central idea that underlies the dictionary attack is to send attack mes-
sages containing a large set of tokens—the attacker's dictionary. The diction-
ary is selected as the set of tokens whose scores maximally increase the ex-
pected value of Ia(m) as in Eq. (5). Since the score of a token typically
increases when included in an attack message except in unusual circumstances
(see Appendix 2.A.2), the attacker simply needs to include any tokens that are
likely to occur in future legitimate message. In particular, if the victim's lan-
guage is known by the attacker, they can use that language's entire lexicon (or
at least a large subset) as the attack dictionary. After training on the dictionary
message, the victim's spam filter will have a higher spam score for every token
in the dictionary, an effect that is amplified for rare tokens. As a result, future
legitimate email is more likely to be marked as spam since it will contain
many tokens from that lexicon.

A refinement uses a token source with a distribution closer to the victim's
email distribution. For example, a large pool of Usenet newsgroup postings
may have colloquialisms, misspellings, and other “words” not found in a
proper dictionary; furthermore, using the most frequent tokens in such a cor-
pus may allow the attacker to send smaller emails without losing much effec-
tiveness. However, there is an inherent trade-off in choosing tokens. Rare to-
kens are the most vulnerable to attack since their scores will shift more
towards spam (1.0 in the SpamBayes formulas) with fewer attack emails.
However, the rare vulnerable tokens also are less likely to appear in future
messages, diluting their usefulness.

2 Misleading Learners: Co-opting Your Spam Filter

28

2.3.1.2 Focused Attack

Our second Causative Availability attack is a Targeted attack—the at-
tacker has some knowledge of a specific legitimate email to target for filtering.
If the attacker has exact knowledge of the target email, placing all of its tokens
in attack emails produces an optimal attack. Realistically, the attacker has
partial knowledge about the target email and can guess only some of its tokens
to include in attack emails. We model this knowledge by letting the attacker
know a certain fraction of tokens from the target email, which are included in
the attack message. (The attack email may also include additional tokens
added by the attacker to obfuscate the attack message's intent.) When Spam-
Bayes trains on the resulting attack email, the spam scores of the targeted to-
kens increase, so the target message is more likely to be filtered as spam. This
is the focused attack.

Consider an example in which the attacker sends spam emails to the vic-
tim with tokens such as the names of competing companies, their products,
and their employees. The bid messages may even follow a common template
known to the attacker, making the attack easier to craft. As a result of the at-
tack, the legitimate bid email may be filtered away as spam, causing the victim
not to see it.

The focused attack is more concise than the dictionary attack because the
attacker has detailed knowledge of the target email and no reason to affect
other messages. This conciseness makes the attack both more efficient for the
attacker and more difficult to detect for the defender. Further, the focused at-
tack can be more effective because the attacker may know proper nouns and
other non-word tokens common in the victim’s email that are otherwise un-
common.

An interesting side-effect of the focused attack is that repeatedly sending
similar emails tends to not only increase the spam score of tokens in the attack
but also reduce the spam score of tokens not in the attack. To understand
why, recall the estimate of the token posterior in Eq. (1), and suppose that the
ith token does not occur in the attack email. Then NS increases with the addi-
tion of the attack email but NS(i) does not, so P(S,i) decreases and therefore so
does fi. In Section 2.4.3, we observe empirically that the focused attack can
indeed reduce the spam score of tokens not included in the attack emails.

2.3.2 Causative Integrity Attacks—Pseudospam

We also examine Causative Integrity attacks, which manipulate the filter's
training data to increase false negatives; that is, spam messages misclassified
as ham. In contrast to the previous attacks, the pseudospam attack directly at-
tempts to make the filter misclassify spam messages. If the attacker can

Blaine Nelson et al.

 29

choose messages arbitrarily that are trained as ham, the attack is similar to a
focused attack with knowledge of 100% of the target email's tokens. How-
ever, there is no reason to believe a user would train on arbitrary messages as
ham. We introduce the concept of a pseudospam email—an email that does
not look like spam but that has characteristics (such as headers) that are typical
of true spam emails. Not all users consider benign-looking, non-commercial
emails offensive enough to mark them as spam.

To create pseudospam emails, we take the message body text from news-
paper articles, journals, books, or a corpus of legitimate email. The idea is
that in some cases, users may mistake these messages as ham for training, or
may not be diligent about correcting false negatives before retraining, if the
messages do not have marketing content. In this way, an attacker might be
able to gain control of ham training data. This motivation is less compelling
than the motivation for the dictionary and focused attacks, but in the cases
where it applies, the headers in the pseudospam messages will gain significant
weight indicating ham, so when future spam is sent with similar headers (i.e.,
by the same spammer) it will arrive in the user's inbox.

2.4 Experiments

In this section, we present our empirical results. First, in Section 2.4.1, we
outline our experimental setup. Then, we discuss the effect of each of our at-
tacks in the remainder of the section.

2.4.1 Experimental Method

2.4.1.1 Datasets

In our experiments we use the Text Retrieval Conference (TREC) 2005
spam corpus [5], which is based on the Enron email corpus [12] and contains
92,189 emails (52,790 spam and 39,399 ham). This corpus has several
strengths: it comes from a real-world source, it has a large number of emails,
and its creators took care that the added spam does not have obvious artifacts
to differentiate it from the ham.

We use two sources of tokens for attacks. First, we use the GNU Aspell
English dictionary version 6.0-0, containing 98,568 words. We also use a
corpus of English Usenet postings to generate tokens for our attacks. This
corpus is a subset of a Usenet corpus of 140,179 postings compiled by the

2 Misleading Learners: Co-opting Your Spam Filter

30

University of Alberta's Westbury Lab [23]. An attacker can download such
data and build a language model to use in attacks, and we explore how effec-
tive this technique is. We build a primary Usenet dictionary by taking the
most frequent 90,000 tokens in the corpus (Usenet-90k), and we also experi-
ment with a smaller dictionary of the most frequent 25,000 tokens (Usenet-
25k).

The overlap between the Aspell dictionary and the most frequent 90,000
tokens in the Usenet corpus is approximately 26,800 tokens. The overlap be-
tween the Aspell dictionary and the TREC corpus is about 16,100 tokens, and
the intersection of the TREC corpus and Usenet-90k is around 26,600 tokens.

2.4.1.2 Constructing Message Sets for Experiments

In constructing an experiment, we often need several non-repeating se-
quences of emails in the form of mailboxes. When we require a mailbox, we
sample messages without replacement from the TREC corpus, stratifying our
sampling to ensure the necessary proportions of ham and spam. For subse-
quent messages needed in any part of our experiments (target messages, head-
ers for attack messages, and so on), we again sample emails without replace-
ment from the messages remaining in the TREC corpus. In this way we
ensure that no message is repeated in our experiments.

We construct attack messages by splicing elements of several emails to-
gether to make messages that are realistic under our model of the adversary's
control. We construct our attack email bodies according to the specifications
of the attack. We select the header for each attack email by choosing a ran-
dom spam email from TREC and using its headers, taking care to ensure that
the content-type and other Multipurpose Internet Mail Extensions (MIME)
headers correctly reflect the composition of the attack message body. Specifi-
cally, we discard the entire existing multi- or single-part body and we set rele-
vant headers (such as Content-Type and Content-Transfer-Encoding) to indi-
cate a single plain-text body.

The tokens used in each attack message are selected from our datasets ac-
cording to the attack method. For the dictionary attack, we use all tokens from
the attack dictionary in every attack message (98,568 tokens for the Aspell
dictionary and 90,000 or 25,000 tokens for the Usenet dictionary). For the fo-
cused and the pseudospam attacks, we select tokens for each attack message
based on a fresh message sampled from the TREC dataset. The number of to-
kens in attack messages for the focused and pseudospam attacks varies, but all
such messages are comparable in size to the messages in the TREC dataset.

Finally, to evaluate an attack, we create a control model by training
SpamBayes once on the base training set. We incrementally add attack emails
to the training set and train new models at each step, giving us a series of
models tainted with increasing numbers of attack emails. (Because Spam-

Blaine Nelson et al.

 31

Bayes is order-independent in its training, it arrives at the same model whether
training on all messages in one batch or training incrementally on each email
in any order.) We evaluate the performance of these models on a fresh set of
test messages.

Parameter Focused Attack Pseudospam Attack RONI defense
Training set size 2,000, 10,000 2,000, 10,000 2,000, 10,000
Test set size 200, 1,000 200, 1,000 200, 1,000
Spam percent 50, 75, 90 50, 75, 90 50
Attack percent 0.1, 0.5, 1, 2, 5, 10 0.1, 0.5, 1, 2, 5, 10 10
Validation folds 10 10 -
Target emails 20 - -

Table 2.1 Parameters used in the experiments

2 Misleading Learners: Co-opting Your Spam Filter

32

Percent control of training set

Pe
rc
en
tt
es
th
am

m
is
cl
as
si
fie
d

Optimal Usenet (90k) Usenet (25k) Aspell

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Fig. 2.1 Training on 10,000 messages (50% spam). Figures 2.1-2.4 show the
effect of three dictionary attacks on SpamBayes in two settings. Figure 2.1
and Figure 2.2 have an initial training set of 10,000 messages (50% spam)
while Figure 2.3 and Figure 2.4 have an initial training set of 2,000 messages
(75% spam). Figure 2.2 and Figure 2.4 also depict the standard errors in our
experiments for both of the settings. We plot percent of ham classified as
spam (dashed lines) and as spam or unsure (solid lines) against the attack as
percent of the training set. We show the optimal attack (�), the Usenet-90k
dictionary attack (�), the Usenet-25k dictionary attack (�), and the Aspell dic-
tionary attack (�). Each attack renders the filter unusable with adversarial
control over as little as 1% of the messages (101 messages).

2.4.1.3 Attack Assessment Method

We measure the effect of each attack by randomly choosing an inbox ac-
cording to the parameters in Table 2.1 and comparing classification perform-
ance of the control and compromised filters using ten-fold cross-validation. In
cross-validation, we partition the data into ten subsets and perform ten train-
test epochs. During the kth epoch, the kth subset is set aside as a test set and the
remaining nine subsets are combined into a training set. In this way, each
email from the sample inbox functions independently as both training and test
data.

Blaine Nelson et al.

 33

In the following sections, we show the effect of our attacks on test sets of
held-out messages. Because our dictionary and focused attacks are designed
to cause ham to be misclassified, we only show their effect on ham messages;
we found that their effect on spam is marginal. Likewise, for the pseudospam
attack, we concentrate on the results for spam messages. Most of our graphs
do not include error bars since we observed that the variation on our tests was
small compared to the effect of our attacks (see Figure 2.2 and Figure 2.4).
See Table 2.1 for our experimental parameters. We found that varying the
size of the training set and spam prevalence in the training set had minimal
impact on the performance of our attacks (for comparison, see Figure 2.1 and
Figure 2.3), so we primarily present the results of 10,000-message training
sets at 50% spam prevalence.

2.4.2 Dictionary Attack Results

We examine dictionary attacks as a function of the percent of attack mes-
sages in the training set. Figures 2.1-2.4 show the misclassification rates of
three dictionary attack variants averaging over ten-fold cross-validation in two
settings (Figure 2.1 and Figure 2.2 have an initial training set of 10,000 mes-
sages with 50% spam while Figure 2.3 and Figure 2.4 have an initial training
set of 2,000 messages with 75% spam). First, we analyze the optimal diction-
ary attack discussed in Section 2.3.1 by simulating the effect of including
every possible token in our attack emails. As shown in the figures, this opti-
mal attack quickly causes the filter to mislabel all ham emails.

2 Misleading Learners: Co-opting Your Spam Filter

34

Percent control of training set

Pe
rc
en
tt
es
th
am

m
is
cl
as
si
fie
d

Optimal Usenet (90k) Usenet (25k) Aspell

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Fig. 2.2 Training on 10,000 messages (50% spam) with error bars. See Fig-
ure 2.1.

Percent control of training set

Pe
rc
en
tt
es
th
am

m
is
cl
as
si
fie
d

Optimal Usenet (90k) Usenet (25k) Aspell

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Fig. 2.3 Training on 2,000 messages (75% spam). See Figure 2.1.

Blaine Nelson et al.

 35

Percent control of training set

Pe
rc
en
tt
es
th
am

m
is
cl
as
si
fie
d

Optimal Usenet (90k) Usenet (25k) Aspell

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Fig. 2.4 Training on 2,000 messages (75% spam) with error bars. See Figure
2.1.

Dictionary attacks using tokens from the Aspell dictionary are also suc-
cessful, though not as successful as the optimal attack. Both the Usenet-90k
and Usenet-25k dictionary attacks cause more ham emails to be misclassified
than the Aspell dictionary attack, since they contains common misspellings
and slang terms that are not present in the Aspell dictionary. All of these
variations of the attack require relatively few attack emails to significantly de-
grade SpamBayes' accuracy. After 101 attack emails (1% of 10,000), the ac-
curacy of the filter falls significantly for each attack variation. Overall mis-
classification rates are 96% for optimal, 37% for Usenet-90k, 19% for Usenet-
25k, and 18% for Aspell—at this point most users will gain no advantage from
continued use of the filter.

It is of significant interest that so few attack messages can degrade a
common filtering algorithm to such a degree. However, while the attack
emails make up a small percentage of the number of messages in a contami-
nated inbox, they make up a large percentage of the number of tokens. For ex-
ample, at 204 attack emails (2% of the training messages), the Usenet-25k at-
tack uses approximately 1.8 times as many tokens as the entire pre-attack
training dataset, and the Aspell attack includes 7 times as many tokens.

While it seems trivial to prevent dictionary attacks by filtering large mes-
sages out of the training set, such strategies fail to completely address this

2 Misleading Learners: Co-opting Your Spam Filter

36

vulnerability of SpamBayes. First, while ham messages in TREC are rela-
tively small (fewer than 1% exceeded 5,000 tokens and fewer than 0.01% of
messages exceeded 25,000 tokens), this dataset may not be representative of
actual messages. Second, an attacker can circumvent size-based thresholds.
By fragmenting the dictionary, an attack can have a similar impact using more
messages with fewer tokens per message. Additionally, informed token selec-
tion methods can yield more effective dictionaries as we demonstrate with the
two Usenet dictionaries. Thus, size-based defenses lead to a trade-off between
vulnerability to dictionary attacks and the effectiveness of training the filter.
In Section 2.5, we present a defense that instead filters messages based di-
rectly on their impact on the spam filter's accuracy.

2.4.3 Focused Attack Results

In this section, we discuss experiments examining how accurate the at-
tacker needs to be at guessing target tokens, how many attack emails are re-
quired for the focused attack to be effective, and what effect the focused attack
has on the token scores of a targeted message. For the focused attack, we ran-
domly select 20 ham emails from the TREC corpus to serve as the target
emails before creating the clean training set. During each fold of cross-
validation, we perform 20 focused attacks, one for each email, so our results
average over 200 different trials.

Blaine Nelson et al.

 37

Percent of tokens known

Pe
rc
en
ta
tta
ck
su
cc
es
s

HAM

SPAM
UNSURE

0

20

40

60

80

100

10 30 50 90 100

Fig. 2.5 Effect of the focused attack as a function of the percentage of target
tokens known by the attacker. Each bar depicts the fraction of target emails
classified as spam, ham, and unsure after the attack. The initial inbox contains
10,000 emails (50% spam).

These results differ from our preliminary focused attack experiments [19]
in two important ways. First, here we randomly select a fixed percentage of
tokens known by the attacker from each message instead of selecting each to-
ken with a fixed probability. The later approach causes the percentage of to-
kens known by the attacker to fluctuate from message to message. Second,
here we only select messages with more than 100 tokens to use as target
emails. With these changes, our results more accurately represent the behav-
ior of a focused attack. Furthermore, in this more accurate setting, the focused
attack is even more effective.

Figure 2.5 shows the effectiveness of the attack when the attacker has in-
creasing knowledge of the target email by simulating the process of the at-
tacker guessing tokens from the target email. We assume that the attacker

2 Misleading Learners: Co-opting Your Spam Filter

38

knows a fixed fraction F of the actual tokens in the target email, with
{ }0.1,0.3,0.5,0.9F ∈ —the x-axis of Figure 2.5. The y-axis shows the percent

of the 20 targets classified as ham, unsure and spam. As expected, the attack
is increasingly effective as F increases. If the attacker knows 50% of the to-
kens in the target, classification changes to spam or unsure on all of the target
emails, with a 75% rate of classifying as spam.

Percent control of training set

Pe
rc
en
tt
ar
ge
th
am

m
is
cl
as
si
fie
d

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Fig. 2.6 Effect of the focused attack as a function of the number of attack
emails with a fixed percentage (50%) of tokens known by the attacker. The
dashed line shows the percentage of target ham messages classified as spam
after the attack, and the solid line the percentage of targets that are spam or
unsure after the attack. The initial inbox contains 10,000 emails (50% spam).

Figure 2.6 shows the attack's effect on misclassifications of the target
emails as the number of attack messages increases. We fix the fraction of
known tokens at 0.5. The x-axis shows the number of messages in the attack
as a fraction of the training set, and the y-axis shows the fraction of target
messages misclassified. With 101 attack emails inserted into an initial mail-
box size of 10,000 (1%), the target email is misclassified as spam or unsure
over 90% of the time.

Figures 2.7-2.9 show the attack's effect on three representative emails.
Each of the figures represents a single target email from each of three attack
results: ham misclassified as spam (Figure 2.7), ham misclassified as unsure

Blaine Nelson et al.

 39

(Figure 2.8), and ham correctly classified as ham (Figure 2.9). Each point
represents a token in the email. The x-axis is the token’s spam score (from
Eq. (2)) before the attack, and the y-axis is the token’s score after the attack (0
means ham and 1 means spam). The ×'s are tokens included in the attack
(known by the attacker) and the �'s are tokens not in the attack. The histo-
grams show the distribution of token scores before the attack (at bottom) and
after the attack (at right).

Token score before attack

To
ke
n
sc
or
e
af
te
r
at
ta
ck

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2.7 Misclassified as spam. Figures 2.7-2.9 show the effect of the focused
attack on three representative emails—one graph for each target. Each point is
a token in the email. The x-axis is the token’s spam score in Eq. (2) before the
attack (0 means ham and 1 means spam). The y-axis is the token’s spam score
after the attack. The ×'s are tokens that were included in the attack and the �'s
are tokens that were not in the attack. The histograms show the distribution of
spam scores before the attack (at bottom) and after the attack (at right).

Any point above the line y=x is a token whose score increased due to the
attack and any point below is a decrease. In these graphs we see that the score
of the tokens included in the attack typically increase significantly while those
not included decrease slightly. Since the increase in score is more significant

2 Misleading Learners: Co-opting Your Spam Filter

40

for included tokens than the decrease in score for excluded tokens, the attack
has substantial impact even when the attacker has a low probability of guess-
ing tokens, as seen in Figure 2.5. Further, the before/after histograms in Fig-
ures 2.7-2.9 provide a direct indication of the attack's success. By shifting
most token scores toward 1, we cause more misclassifications.

Token score before attack

To
ke
n
sc
or
e
af
te
r
at
ta
ck

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2.8 Misclassified as unsure. See Figure 2.7.

2.4.4 Pseudospam Attack Experiments

In contrast to the previous attacks, for the pseudospam attack, we created
attack emails that may be labeled as ham by a human as the emails are added
into the training set. We setup the experiment for the pseudospam attack by
first randomly selecting a target spam header to be used as the base header for
the attack. We then create the set of attack emails that look similar to ham
emails (see Section 2.3.2). To create attack messages, we combine each ham
email with the target spam header. This is done so that the attack email has

Blaine Nelson et al.

 41

contents similar to other legitimate email messages. Header fields that may
modify the interpretation of the body are taken from the ham email to make
the attack realistic.

Figure 2.10 demonstrates the effectiveness of the pseudospam attack. We
plot the percent of attack messages in the training set (x-axis) against the mis-
classification rates on the test spam email (y-axis). The solid line shows the
fraction of target spam classified as ham or unsure spam while the dashed line
shows the fraction of spam classified as ham. In the absence of attack, Spam-
Bayes only misclassifies about 10% of the target spam emails (including those
labeled unsure). If the attacker can insert a few hundred attack emails (1% of
the training set), then SpamBayes misclassifies more than 80% of the target
spam emails.

Token score before attack

To
ke
n
sc
or
e
af
te
r
at
ta
ck

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2.9 Correctly classified as ham. See Figure 2.7.

Further, the attack has a minimal effect on regular ham and spam mes-
sages. Other spam email messages are still correctly classified since they do
not generally have the same header fields as the adversary's messages. In fact,

2 Misleading Learners: Co-opting Your Spam Filter

42

ham messages may have lower spam scores since they may contain tokens
similar to those in the attack emails.

We also explore the scenario in which the pseudospam attack emails are
labeled by the user as spam to better understand the effect of these attacks if
the pseudospam messages fail to fool the user. The result is that, in general,
SpamBayes classifies more spam messages incorrectly. As Figure 2.11 indi-
cates, this variant causes an increase in spams mislabeled as either unsure or
ham increases to nearly 15% as the number of attack emails increases. Fur-
ther, this version of the attack does not cause a substantial impact on normal
ham messages.

Percent control of training set

Pe
rc
en
tt
ar
ge
ts
pa
m
m
is
cl
as
si
fie
d

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Fig. 2.10 Effect of the pseudospam attack when trained as ham as a function
of the number of attack emails. The dashed line shows the percentage of the
adversary's messages classified as ham after the attack, and the solid line the
percentage that are ham or unsure after the attack. The initial inbox contains
10,000 emails (50% spam).

Blaine Nelson et al.

 43

2.5 A Defense: Reject on Negative Impact (RONI)

Here we describe a potential defense against some of our attacks. Our
Causative attacks succeed because training on attack emails causes the filter to
learn incorrectly and misclassify emails. Each attack email contributes to-
wards the degradation of the filter's performance; if we can measure each
email's impact, then we can remove messages with a deleterious effect from
the training set.

In the Reject On Negative Impact (RONI) defense, we measure the incre-
mental effect of a query email Q by testing the performance difference with
and without that email. We independently sample a 20-message training set T
and a 50-message validation set V five times from the initial pool of emails
given to SpamBayes for training, choosing a small training set so that the ef-
fect of a single email will be greater. We train on both T and T Q∪ and
measure the impact of Q as the average change in incorrect classifications on
V over the five trials. We remove Q from the training pool if its impact is sig-
nificantly harmful.

2 Misleading Learners: Co-opting Your Spam Filter

44

Percent control of training set

Pe
rc
en
tt
es
ts
pa
m
m
is
cl
as
si
fie
d

0 1 2 3 4 5 6 7 8 9 10
0

10

20

5

15

25

Fig. 2.11 Effect of the pseudospam attack when trained as spam, as a function
of the number of attack emails. The dashed line shows the percentage of the
normal spam messages classified as ham after the attack, and the solid line the
percentage that are unsure after the attack. Surprisingly, training the attack
emails as ham causes an increase in misclassification of normal spam mes-
sages. The initial inbox contains 10,000 emails (50% spam).

We test the effectiveness of this defense with 120 random non-attack spam
messages and dictionary attack emails using both the Aspell and Usenet dic-
tionaries. Our preliminary experiments show that the RONI defense is ex-
tremely successful against dictionary attacks, identifying 100% of the attack
emails without flagging any non-attack emails. Each dictionary attack mes-
sage causes an average decrease of at least 6.8 true negatives (ham-as-ham
messages). In sharp contrast, non-attack spam messages cause at most an av-
erage decrease of 4.4 true negatives. Hence a simple threshold on this statistic
is effective at separating dictionary attack emails from non-attack spam.

However, the RONI defense fails to detect focused attack emails because
the focused attack targets a future message, so its effect on the training set is
minute.

Blaine Nelson et al.

 45

2.6 Related Work

Here we briefly review prior work related to the security of learning sys-
tems. A more detailed survey of this literature on appears in a related techni-
cal report [2].

Many authors have examined adversarial learning from a more theoretical
perspective. For example, within the Probably Approximately Correct frame-
work, Kearns and Li bound the classification error an adversary can cause
with control over a fraction of the training set [10]. Dalvi et al. apply game
theory to the classification problem [6]. They model the interactions between
the classifier and attacker as a game and develop an optimal counter-strategy
for an optimal classifier playing against an optimal opponent.

We focus on Causative attacks. Most existing attacks against content-
based spam filters are Exploratory attacks that do not influence training but
engineer spam messages so they pass through the filter. For example, Lowd
and Meek explore reverse-engineering a spam classifier to find high-value
messages that the filter does not block [15, 16], Karlberger et al. study the ef-
fect of replacing strong spam words with synonyms [9], and Wittel and Wu
study the effect of adding common words to spam to get it through a spam fil-
ter [25].

Several others have recently developed Causative attacks against learning
systems. Chung and Mok [3, 4] present a Causative Availability attack against
the Autograph worm signature generation system [11], which infers blocking
rules from the traffic of suspicious nodes. The main idea is that the attack
node first sends traffic that causes Autograph to mark it suspicious, then sends
traffic similar to legitimate traffic, resulting in rules that cause denial of ser-
vice.

Newsome, Karp, and Song [21] present attacks against Polygraph [20], a
polymorphic virus detector that uses machine learning. They primarily focus
on conjunction learners, presenting Causative Integrity attacks that exploit
certain weaknesses not present in other learning algorithms (such as that used
by SpamBayes). They also suggest a correlated outlier attack, which attacks
a naive-Bayes-like learner by adding spurious features to positive training in-
stances, causing the filter to block benign traffic with those features (a Causa-
tive Availability attack). They speculate briefly about applying such an attack
to spam filters; however, several of their assumptions about the learner are not
appropriate in the case of SpamBayes, such as that the learner uses only fea-
tures indicative of the positive class. Furthermore, although they present in-
sightful analysis, they do not evaluate the correlated outlier attack against a
real system. Our attacks use similar ideas, but we develop and test them on a
real system. We also explore the value of information to an attacker, and we
present and test a defense against the attacks.

2 Misleading Learners: Co-opting Your Spam Filter

46

2.7 Conclusion

Above, we show that an adversary can effectively disable the SpamBayes
spam filter with relatively little system state information and relatively limited
control over training data. Using the framework presented in Section 2.3, we
have demonstrated the effectiveness of Causative attacks against SpamBayes
if the adversary is given realistic control over the training process of Spam-
Bayes, by limiting the header fields the attacker can modify and the amount of
control over the training set. Our Usenet-25k dictionary attack causes mis-
classification of 19% of ham messages with only 1% control over the training
messages3, rendering SpamBayes unusable. Our focused attack changes the
classification of the target message virtually 100% of the time with knowledge
of only 30% of the target's tokens. Our pseudospam attack is able to cause
almost 90% of the target spam messages to be labeled as either unsure or ham
with control of less than 10% of the training data.

We also demonstrate a defense against some attacks. We explore the
RONI defense, which filters out dictionary attack messages with complete
success based on how a message impacts the performance of our classifier.
Focused attacks are especially difficult; defending against an attacker with ex-
tra knowledge of future events remains an open problem.

Our attacks and defense should also work for other spam filtering systems
based on similar learning algorithms, such as BogoFilter, Thunderbird's spam
filter and the Bayesian component of SpamAssassin, although their effects
may vary (and SpamAssassin uses more components than just the learning al-
gorithm, so the effect of our attacks may be smaller). These techniques may
also be effective against other learning systems, such as those used for worm
or intrusion detection.

2.A Appendix: Analysis of an Optimal Attack

In this appendix, we justify our claims in Section 2.3.1 about optimal at-
tacks.

3 While the dictionary attack messages are larger than most typical email, we have demonstrated
the effect of these attacks and that one can reduce the attack message size by using a more in-
formed dictionary.

Blaine Nelson et al.

 47

2.A.1 Properties of the Spam Score

The key to understanding heuristic attacks and constructing optimal at-
tacks on SpamBayes is characterizing conditions under which the SpamBayes
score I(m) increases when the training corpus is injected with attack spam
messages.

Lemma A.1 The I(m) score defined in Eq. (4) is non-decreasing in fi for all i.

Proof. We show that the derivative of I(m) with respect to fk is non-negative.
By rewriting, Eq. (3) as () []()2

2 : () 11 2log
in i iS δχ == − − Π mm f , we can use the

chain rule. Let () []: () 1ii ix δ == Π mf f and we have

 ()() () ()() 12
2

11 2log log ,
1 !

n
n

d x x
dx n

χ
−� �− − = −� 	 −

which is non-negative since 0 1x≤ ≤ . We have () kx∂ ∂f f is

[]: () 1 0
ii k iδ≠ =Π ≥m f if δ(m)k=1 or 0 otherwise. Combining these derivatives,

we have

()

0 .
k

S∂
∂

≥
m

f

By an analogous derivation, replacing fi by 1 - fi, we have

()

0 .
k

H∂
∂

≤
m

f

Finally, we obtain the result

() () ()1 1 0 .

2 2k k k

I S H∂ ∂ ∂
∂ ∂ ∂

= − ≥
m m m

f f f

Remark A.2 Given a fixed number of attack spam messages, fj is independent of the number of
those messages containing the ith token for all j i≠ .

2 Misleading Learners: Co-opting Your Spam Filter

48

This remark follows from the fact that the inclusion of the ith token in at-
tack spams affects NS(i) and N(i) but not NH(i), NS, NH, NS(j), NH(j), N(j) for all
j i≠ (see Eq. (1) and Eq. (2) in Section 2.2.3).

After an attack of a fixed number of spam messages, the score I(m) of an
incoming test message m can be maximized by maximizing each fi separately.
This motivates our attacks—intuitively, we increase the fi of tokens appearing
in m.

2.A.2 Effect of Poisoning on Token Scores

We have not yet established how email spam scores change as the result of
an attack message in the training set. One might assume that the ith score fi
should increase when the ith token is added to the attack email. This would be
the case, in fact, if the token score in Eq. (1) were computed according to
Bayes' Rule. However, the score in Eq. (1) is derived by applying Bayes' Rule
with an additional assumption that the prior of spam and ham is equal. As a
result we show that fi can be smaller if the ith token is included in the attack
email.

We consider a single attack spam message, after which the counts become

 () ()
()

() ()

1

1 if 1

otherwise

 .

S S

H H

iS
S

S

H H

N N
N N

N i
N i

N i

N i N i

+

� + =�
�
��

a

�

�

�

�

Using these count transformations, we assess the effect on the smoothed
SpamBayes score fi of training on an attack spam message a. If the ith token is
included in the attack (i.e., ai = 1), then the new score for the ith token (from
Eq. (1)) is

()()

()() () ()
(1)
(,)

1
.

1 1
H S

S i
H S S H

N N i

N N i N N i

+
=

+ + +
P

If the token is not included in the attack (i.e., ai = 0), then the new token
score is

Blaine Nelson et al.

 49

()

() () ()
(0)
(,) .

1
H S

S i
H S S H

N N i
N N i N N i

=
+ +

P

We use the notation (1)
if and (0)

if to denote the smoothed spam score after
the attack depending on whether or not the ith token was used in the attack
message.

We wish to analyze the quantity

 (1) (0) .i i iΔ = −f f f

One might expect this difference to always be non-negative, but we show
that in some scenarios Δfi < 0. After some algebra, we expand Δfi as follows:

()() ()() ()
()

()() () () ()()

()() ()() ()

(1)
(,)

(1)
(,)

1

1

1 ,
1

i S i

H
H i

H S S H

s x
s N i s N i

N N i
s N i N N i N N i

i
s N i s N i

α

Δ = −
+ + +

+
+ + +

= ⋅
+ + +

f P

P

where (1) (1)
(,) (,)1H i S i= −P P is the altered ham score of the ith token. The first

factor in the above expression is positive and the second is defined as

() () () ()() () () ()
() () ()

(1)
(,)

1 1
1 .

1
H H H S H

H i
H S S H

N N i N i sN N i s N N i
i s x P

N N i N N i
α

+ + − +
= − +

+ +

When we combine these two terms, only the numerator can be negative.
Focusing on conditions under which this can happen leads to the (weakest)
conditions that NS(i) = 0, s > 0, NH(i) > 0 and

()() ()()

()()()
1

.
1

H H H

H S H

N N i s N i
x

s N i N N

+ +
>

+ +

If NS(i) > 0, the resulting bound would be larger.
Under SpamBayes' default values of s = 1 and x = 1/2, we can rewrite the

above condition as NS(i) = 0, NH(i) > 0, and

2 Misleading Learners: Co-opting Your Spam Filter

50

()()

()

2
2 1 1

1 .H
S H

H

N i
N N

N i

� �+ −
 �> −

 �
� 	

Since () 1HN i ≥ , we have the weakest possible condition for Δfi to be
negative under default settings: 7S HN N≥ , NH(i) = 1, and NS(i) = 0. Thus,
when the number of spam, NS, in the training set is sufficiently larger than the
number of ham, NH, it is possible that the score of a token will be lower if it is
included in the attack message than if it were excluded. This is a direct result
of the assumption made by SpamBayes that NS = NH. Such aberrations will
occur most readily in tokens with low initial values of NH(i) and NS(i).

Acknowledgments We would like to thank Satish Rao and Carla Brodley for their useful com-
ments and suggestions on this research. This work was supported in part by the Team for Re-
search in Ubiquitous Secure Technology (TRUST), which receives support from the National
Science Foundation (NSF award #CCF-0424422), the Air Force Office of Scientific Research
(AFOSR #FA9550-06-1-0244), Cisco, British Telecom, ESCHER, Hewlett-Packard, IBM,
iCAST, Intel, Microsoft, ORNL, Pirelli, Qualcomm, Sun, Symantec, Telecom Italia, and United
Technologies; in part by California state Microelectronics Innovation and Computer Research
Opportunities grants (MICRO ID#06-148 and #07-012) and Siemens; and in part by the cyber-
DEfense Technology Experimental Research laboratory (DETERlab), which receives support
from the Department of Homeland Security Homeland Security Advanced Research Projects
Agency (HSARPA award #022412) and AFOSR (#FA9550-07-1-0501). We also gratefully ac-
knowledge the support of the NSF through grants DMS-0434383 and DMS-0707060. The opin-
ions expressed here are solely those of the authors and do not necessarily reflect the opinions of
any funding agency, the State of California, or the U.S. government.

References

[1]. Barreno M, Nelson B, Sears R, Joseph AD, Tygar JD (2006) Can machine learning be se-
cure? In: Proceedings of the ACM Symposium on InformAtion, Computer, and Communi-
cations Security (ASIACCS), pp 16-25

[2]. Barreno M, Nelson B, Joseph AD, Tygar JD (2008) The security of machine learning.
Tech. Rep. UCB/EECS-2008-43, EECS Department, University of California, Berkeley,
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-43.html

[3]. Chung SP, Mok AK (2006) Allergy attack against automatic signature generation. In: Pro-
ceedings of the International Symposium on Recent Advances in Intrusion Detection
(RAID), pp 61-80

[4]. Chung SP, Mok AK (2007) Advanced allergy attacks: Does a corpus really help? In: Pro-
ceedings of the International Symposium on Recent Advances in Intrusion Detection
(RAID), pp 236-255

[5]. Cormack G, Lynam T (2005) Spam corpus creation for TREC. In: Proceedings of the
Conference on Email and Anti-Spam (CEAS)

Blaine Nelson et al.

 51

[6]. Dalvi N, Domingos P, Mausam, Sanghai S, Verma D (2004) Adversarial classification. In:
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp 99-108

[7]. Fisher RA (1948) Question 14: Combining independent tests of significance. American
Statistician 2(5):30-30J

[8]. Graham P (2002) A plan for spam. http://www.paulgraham.com/spam.html
[9]. Karlberger C, Bayler G, Kruegel C, Kirda E (2007) Exploiting redundancy in natural lan-

guage to penetrate Bayesian spam filters. In: Proceedings of the USENIX Workshop on
Offensive Technologies (WOOT), pp 1-7

[10]. Kearns M, Li M (1993) Learning in the presence of malicious errors. SIAM Journal on
Computing 22(4):807-837

[11]. Kim HA, Karp B (2004) Autograph: Toward automated, distributed worm signature detec-
tion. In: Proceedings of the USENIX Security Symposium, pp 271-286

[12]. Klimt B, Yang Y (2004) Introducing the Enron corpus. In: Proceedings of the Conference
on Email and Anti-Spam (CEAS)

[13]. Lazarevic A, Ertöz L, Kumar V, Ozgur A, Srivastava J (2003) A comparative study of
anomaly detection schemes in network intrusion detection. In: Barbará D, Kamath C (eds)
Proceedings of the SIAM International Conference on Data Mining, pp 25-36

[14]. Liao Y, Vemuri VR (2002) Using text categorization techniques for intrusion detection.
In: Proceedings of the USENIX Security Symposium, pp 51-59

[15]. Lowd D, Meek C (2005) Adversarial learning. In: Proceedings of the ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pp 641-647

[16]. Lowd D, Meek C (2005) Good word attacks on statistical spam filters. In: Proceedings of
the Conference on Email and Anti-Spam (CEAS)

[17]. Meyer T, Whateley B (2004) SpamBayes: Effective open-source, Bayesian based, email
classification system. In: Proceedings of the Conference on Email and Anti-Spam (CEAS)

[18]. Mukkamala S, Janoski G, Sung A (2002) Intrusion detection using neural networks and
support vector machines. In: Proceedings of the International Joint Conference on Neural
Networks (IJCNN), pp 1702-1707

[19]. Nelson B, Barreno M, Chi FJ, Joseph AD, Rubinstein BIP, Saini U, Sutton C, Tygar JD,
Xia K (2008) Exploiting machine learning to subvert your spam filter. In: Proceedings of
the USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET)

[20]. Newsome J, Karp B, Song D (2005) Polygraph: Automatically generating signatures for
polymorphic worms. In: Proceedings of the IEEE Symposium on Security and Privacy, pp
226-241

[21]. Newsome J, Karp B, Song D (2006) Paragraph: Thwarting signature learning by training
maliciously. In: Proceedings of the International Symposium on Recent Advances in In-
trusion Detection (RAID 2006), pp 81-105

[22]. Robinson G (2003) A statistical approach to the spam problem. Linux Journal
[23]. Shaoul C, Westbury C (2007) A USENET corpus (2005-2007)
[24]. Stolfo SJ, Li WJ, Hershkop S, Wang K, Hu CW, Nimeskern O (2004) Detecting viral

propagations using email behavior profiles. ACM Transactions on Internet Technology
(TOIT) pp 187-221

[25]. Wittel GL, Wu SF (2004) On attacking statistical spam filters. In: Proceedings of the Con-
ference on Email and Anti-Spam (CEAS)

2 Misleading Learners: Co-opting Your Spam Filter

