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Abstract

Discriminitive models for sequences and
trees—such as linear-chain conditional
random fields (CRFs) and max-margin
parsing—have shown great promise be-
cause they combine the ability to incorpo-
rate arbitrary input features and the ben-
efits of principled global inference over
their structured outputs. However, since
parameter estimation in these models in-
volves repeatedly performing this global
inference, training can be very slow. We
presentpiecewise training, a new train-
ing method that combines the speed of lo-
cal training with the accuracy of global
training by incorporating a limited amount
of global information derived from pre-
vious errors of the model. On named-
entity and part-of-speech data, we show
that our new method not only trains in
less than one-fifth the time of a CRF
and yields improved accuracy over the
MEMM, but surprisingly also provides
a statistically-significant gain in accuracy
over the CRF. Also, we present prelimi-
nary results showing a potential applica-
tion to efficient training of discriminative
parsers.

1 Introduction

Conditionally-trained models have enjoyed popular-
ity for a wide variety of tasks in NLP, including

document classification (Taskar et al., 2002; Nigam
et al., 1999), part-of-speech tagging (Ratnaparkhi,
1996; Toutanova et al., 2003), chunking (Sha and
Pereira, 2003), named-entity recognition (Florian et
al., 2004), and information extraction (McCallum et
al., 2000; Pinto et al., 2003). Their popularity stems
from the flexibility they afford in designing rich fea-
tures to best suit particular tasks.

Of special recent interest has been discriminative
parsing (Taskar et al., 2004; Clark and Curran, 2004;
Collins and Roark, 2004). Discriminative parsing
models have been interesting, because the rich fea-
tures sets they afford can allow higher better accu-
racy without explicitly needing the intricate smooth-
ing required by state-of-the-art generative parsing
models (Charniak, 2000; Collins, 2000).

These benefits come at a cost, however. Although
conditional training for unstructured models is rela-
tively efficient (it is simply the maximum-entropy
classifier), if the model predicts richly structured
outputs, such as sequences or parse trees, then dis-
criminative training can become extremely expen-
sive. This is because learning with structured out-
puts requires repeated inference over the training
set: to compute model expectations in CRF-style
training, or to find a high-probability configuration
in perceptron training.

Discriminative parsers, for instance, can be fan-
tastically expensive to train, because they require re-
peatedly parsing the many sentences in the training
set. For example, Clark and Curran (2004) report
training their model on 45 machines in parallel. And
a max-margin parsing model can take over 3 months
to train on the entire Penn treebank (Ben Taskar, per-



sonal communication).
Even in simpler models, such as for sequences,

CRF training can be slow if there are many states.
Training a CRF part-of-speech tagger on the Sec-
tions 2-21 of the Penn treebank, for example, can
take weeks because of expense of running forward-
backward with 45 part-of-speech tags.

Conditional training methods like CRF and per-
ceptron training can be expensive because they are
global, that is, they require repeatedly performing
inference over entire structured training examples.
An alternative is to define a model that is locally nor-
malized, for example, in terms of distributions over
successor states or individual expansions of a non-
terminal. Locally-normalized models correspond to
learning probabilistic classifiers for individual deci-
sions in the model. Thus training can be much faster
because it does not require global inference. Un-
fortunately, globally-trained models usually perform
better. One reason for this is that when an earlier
classifier makes a mistake, a later classifier has lo-
cal information that indicates against it. But even if
global inference is performed at test time, because
training is local, the later classifiers never learn to
vote against earlier mistakes.

These phenomena appear even in models as sim-
ple as a linear chain. A CRF is a globally-
normalized sequence model, in which parameter
estimation involves repeatedly running forward-
backward over the training set, which can be ex-
pensive if the state space is large. Alternatively,
maximum-entropy markov models (MEMMs) are
locally-normalized conditional sequence models, in
which the parameter estimation for each next-state
classifier can be performed separately, and forward-
backward is not required. But despite their fast
training, MEMMs are known to suffer from sev-
eral pathologies, such as label bias (Lafferty et al.,
2001) and observation bias (Klein and Manning,
2002). For these reasons, across a broad range
of NLP tasks, MEMMs consistently perform worse
than CRFs.

We propose a new piecewise training procedure
for locally-normalized models that allows limited in-
teraction between the local classifiers. This com-
bines the efficiency of MEMM-style training with
the accuracy of CRF-style training. The basic idea
is to train the the next-state classifier to recognize

and vote against errors in the previous state. We
do this by augmenting the local training sets of an
MEMM with noisy instances where the source state
is actually in error; for these new instances, instead
of predicting a next-state, the classifier is trained
to predict a new “none-of-the-above” (NOTA) label,
thereby learning to vote against the previous incor-
rect decision. In two different NLP tasks, we show
that piecewise training not only is faster than CRF
training but also, amazingly, has higher accuracy.
We hypothesize that the CRF’s capacity to trade off
weights across sequence positions leads to greater
capacity to overfit.

Although we explore piecewise training in the
case of linear models, it can be applied to general
probability distributions, as long as they can be di-
vided into locally-normalized pieces. To demon-
strate this, we also present early, preliminary results
applying piecewise training to a discriminative pars-
ing model. With piecewise training, we show a small
improvement over an MEMM-style discriminative
parsing model.1 Unlike other discriminative parsing
approaches, our piecewise procedure requires pars-
ing the training set only once.

2 Conditional Linear-Chain Models

In this section, we review two standard models for
sequence labeling, themaximum-entropy Markov
model (MEMM) (McCallum et al., 2000) and the
conditional random fields(CRF) (Lafferty et al.,
2001). Both CRFs and MEMMs are methods for
conditionally training weighted finite state trans-
ducers, so that given a sentencex, both assign
a probability p(y|x) to a sequence of labelsy.
Both models are defined in terms of a set of fea-
tures{fk(yt, yt−1,x, t)} on state transitions, each of
which has an associated real-valued weightλk.

MEMMs learn a next-state classifier for each state
in the FSM. In an MEMM, the next-state classifier
trained by maximum entropy, so that the model is
given by:

p(yt−1|yt,x) =
exp (

∑
k λkfk(yt−1, yt,xt))

Z(xt, yt)
(1)

1In fact, the MEMM-style parsing model, which we term an
MECFG, seems unexplored in the literature, and may be inter-
esting in its own right.



where each next-state distribution is locally normal-
ized by

Z(xt, yt) =
∑
y′

exp

(∑
k

λkfk(y′, yt,xt)

)
(2)

Several pathologies have been observed with
MEMMs. One such pathology islabel bias(Bottou,
1991; Lafferty et al., 2001), in which the MEMM
tends to favor states with low-entropy next-state dis-
tributions. In the extreme, states with only one suc-
cessor ignore their observations completely.

Now, if the Markov assumptions of the MEMM
were accurate, ignoring the observation would be
correct; label bias arises because a later observation
influences an earlier transition. In fact, in carefully
designed experiments with synthetic data it has been
reported (Lafferty et al., 2001) that CRFs are more
robust to violations of their independence assump-
tions than MEMMs.

Also, Klein and Manning (Klein and Manning,
2002) report the phenomenon ofobservation bias,
in which in some data sets, instead of observations
being incorrectly ignored, state transitions are not
given enough weight, even when they are highly pre-
dictive. Now, this phenomenon has been reported in
part-of-speech tagging, where the observations are
known to provide much more information than the
state transitions, so it is not clear to what extent this
phenomenon occurs across tasks.

Because of these pathologies, MEMMs have been
shown to perform worse than CRFs across NLP
data sets, including noun-phrase chunking (Sha and
Pereira, 2003), part-of-speech tagging, and named-
entity recognition (Section 4).

The CRF remedies these limitations of the
MEMM. A linear-chain CRF defines a global dis-
tribution over label sequencesy as

p(y|x) =
∏

t exp (
∑

k λkfk(yt−1, yt,xt))
Z(x)

, (3)

whereZ(x) is a normalization constant given by

Z(x) =
∑
y

∏
t

exp

(∑
k

λkfk(yt−1, yt,xt)

)
.

(4)
The only difference between the CRF model and

the MEMM model, then, is that a CRF is globally

normalized over all possible label sequences, while
in an MEMM, each transition distribution is locally
normalized.

Conditional random fields are usually trained by
maximum likelihood. The partial derivative of the
likelihood with respect to a weightλk is

∂L
∂λk

=
∑

t

fk(yt, yt−1,xt)

−
∑

t

∑
y,y′

fk(y, y′,x)p(y, y′|x) (5)

Computing the gradient thus requires comput-
ing p(yt, yt−1|x), which can be computed by the
forward-backward algorithm. This explains the
difference in training time between CRFs and
MEMMs. Computing the MEMM gradient requires
local computations that are linear in the number
of FSM states. The CRF gradient, on the other
hand, requires running forward-backward, which is
quadratic in the number of states. And forward-
backward must be called once for each training in-
stance at each iteration of a numerical optimiza-
tion procedure. This means that CRF training as a
whole can require hundreds of thousands of calls to
forward-backward for large NLP data sets.

3 Piecewise Training with Limited
Interactions

In this section, we introducepiecewise training, a
method for local training that avoids the patholo-
gies of MEMMs. For concreteness, we present our
method for the case of linear chains, although it is
more general.

In MEMMs, training by conditioning only on the
true values of the previous state can be problematic.
When global inference at test time estimates high
probability for an incorrect state at the previous time
step, the next-state classifiers are evaluated on inputs
they may never have seen at training time, resulting
in unpredictable scores.

We propose avoiding this problem by augment-
ing the objective function of the MEMM. For each
local classifier we introduce an additional value
termed “none of the above,” or NOTA (e.g., an addi-
tional, imaginary part-of-speech label). Traditional
MEMM training would create local training sets for



each source state, assigning training data to a partic-
ular next-state classifier using the true labels in the
training data. By contrast, we also assign training
data to a source state even when the true source state
from the original training sequence does not match;
the correct predicted value in this case is NOTA.

Inference at test time is performed with standard
MEMM local inference, with the NOTA state and
all parameters associated with NOTA outcomes re-
moved. Accordingly, training is performed such that
all parameters associated with NOTAvalues are con-
strained to be zero. Thus the only way for NOTA

to be correctly predicted is by reducing the strength
of the parameters associated with other outcomes,
given the current observations. Once NOTA is re-
moved, the next-state distribution is nearly uniform,
which in an MEMM is the next-state distribution
that most equally “votes against” all possible out-
comes.

Formally, the objective function used in a
piecewise-trained linear-chain model with parame-
tersΛ and training dataD = {〈x(i),y(i)〉} is

OPT (Λ,D) = log
|D|∏
i

∏
t

p̃Λ(y(i)
t |y(i)

t−1,x
(i)
t )∏

y 6=y
(i)
t−1

p̃Λ(NOTA|y,x(i)
t ). (6)

An interesting insight comes from expanding this
to show the normalization function and the product
of potential functions. If we define a potential func-
tion as

φ(yt, yt−1,xt) = exp

(∑
k

λkfk((yt, yt−1,xt)

)
(7)

then we see

OPT (Λ,D) = log
|D|∏
i

∏
t

φ(y(i)
t , y

(i)
t−1, x

(i)
t )

1 +
∑

y φ(y, y
(i)
t−1, x

(i)
t )∏

y′ 6=y
(i)
t−1

1

1 +
∑

y φ(y, y′, x
(i)
t )

= log
|D|∏
i

∏
t

φ(y(i)
t , y

(i)
t−1, x

(i)
t )∏

y′

(
1 +

∑
y φ(y, y′, x

(i)
t )
) ,

where the sum overy does not include NOTA (since
they are captured with the included 1’s). This corre-
sponds to approximating the normalization function
Z(Λ,x) with

ZPT (Λ,x(i)) =
∏

t

∏
y′

(
1 +

∑
y

φ(y, y′, x
(i)
t )

)
.

Tom Minka (personal communication) has
pointed out that this seems to be a novel approxima-
tion to the partition function, and that a somewhat
similar approximation is produced in the very
beginning of belief propagation, when all messages
are equal to 1, and the partition function is estimated
by

ZBP (Λ,x(i)) ∝
∏

t

∑
y′

∑
y

φ(y, y′, x
(i)
t ).

The training data for the NOTA outcome,y 6=
y

(i)
t−1, may be exhaustive, or randomly sampled, or

chosen to include only those cases in which incor-
rectly had high marginal probability by joint infer-
ence with a previous parameter setting. A method
similar to this last option has been previously used
to successfully incorporate not all but some of the
most important “unsupported features” in linear-
chain CRFs (McCallum, personal communication).

Furthermore, we can calibrate the magnitude of
the parametersΛs across each subsets, by learning
a per-subset multiplicative factor,αsΛs. Although
this factor is learned via traditional global inference,
its impact on training time is limited because it has
such low dimensionality that optimization typically
requires only a few gradient steps.

Essentially NOTA outcomes allow limited com-
munication between locally-normalized subsets, by
allowing them to assign uninformative distributions
to incorrect variable assignments of conditioned
variables.

4 Experiments on Sequential Tasks

Although piecewise training was motivated by the
need to train large structure models such as parse
trees, we show here that piecewise training can be
beneficial even in graphical models as simple as a
linear-chain.

We present results on two tasks: part-of-speech
tagging and named-entity recognition. First, for



Named entity POS tagging
Training Testing Training Training Testing Training

F1 F1 Time Accuracy Accuracy Time

MEMM 99.89% 88.90 1 hr 99.1% 88.1% 2 hr, 8 min
CRF 99.95% 89.87 9 hr 99.8% 88.1% 14 hr

CRF-PT 99.82% 90.47 5 hr, 35 min 99.08% 88.8% 2 hr, 30 min

Table 1: Results on named-entity recognition and part-of-speech tagging. CRFs trained in pieces (CRF-PT)
statistically-significantly outperform both regular MEMMs and CRFs. A small subset of the treebank was
used for the POS results, which explains the low baseline performance.

named-entity recognition, we use the CoNLL 2003
English data set, consisting of 14,987 newswire sen-
tences annotated with names of people, organiza-
tions, locations, and miscellaneous entities. We test
on the standard development set of 3,466 sentences.
Evaluation is done using precision and recall on the
extracted chunks, and we reportF1 = 2PR/P + R.

Results are shown in Table 1. We compare a CRF,
an MEMM, and a piecewise-trained CRF (CRF-PT)
with exhaustively-added NOTA instances. Consis-
tent with previous work, the CRF performs better
than the MEMM. But with the addition of NOTA in-
stances, the CRF-PT performs better than the stan-
dard MEMM and, amazingly, also better than the
CRF. It appears that CRF-PT is overfitting less than
the CRF, since CRF-PT has lower training accuracy
despite its higher testing accuracy. All of the pair-
wise differences in table 1 are significant by Mc-
Nemar’s test on the per-sentence labeling disagree-
ments (p < 0.001).

Second, in previous work (Lafferty et al., 2001),
CRFs were shown to outperform MEMMs on part-
of-speech tagging. Here we test whether training in
pieces addresses the previously-observed problems
with local normalization on a POS data set. For
these preliminary experiments, we used a small sub-
set comprising 1,154 sentences, randomly sampled
from sections 0–18 of the Penn Treebank WSJ cor-
pus. We evaluated on all 5,527 sentences of of sec-
tions 20 and 21. The Treebank tag set contains 45
tags.

In this experiment, we achieved better perfor-
mance by including only a few NOTA interactions.
In particular, after twenty iterations of training, we
added a NOTA term of the formp(NOTA|yt) for all
incorrectyt in the training set that the model as-

signed probability greater than 0.2.
On this small training set, the MEMM and the

CRF had identical performance. The training set is
so small that the CRF’s greater capacity to overfit
negates its advantage in avoiding label bias. When
trained on larger subsets of the treebank, the CRF
performs better than the the MEMM, consistent with
previous results. Still, the piecewise-trained CRF-
PT achieves significantly better performance than
both the CRF and the MEMM. This difference is sig-
nificant by a pairedt-test on the number of incorrect
tags per sentence (p < 0.001).

In both data sets, we found that for piecewise
training using local MEMM-style normalization at
test time performed better than CRF-style global
testing. This is not surprising, because one might
expect that the weights from each of the separately-
trained pieces would have different scale. For the
NER results that we report, we globally train a per-
state scaling factor, as mentioned in the previous
section. For the POS results in Table 1, however,
we used locally-normalized MEMM testing.

5 Discriminative Parsing

The real promise of piecewise training techniques
is for richly-structured models that are simply too
complex to train globally. In this section, we present
early results which suggest that piecewise training is
also a promising approach for discriminative pars-
ing, which can take weeks or months to train glob-
ally.

Our aim in these early experiments is not to beat
generative models (by performing extensive feature
engineering), but to show that piecewise training im-
proves over a plain locally-normalized MEMM ana-
logue to parsing. We indeed find a small improve-



Number NOTA Test P Test R
Instances (len<= 15) (len<= 15)

GENERATIVE N/A 81.7 83.1
MECFG 0 81.4 82.7
PT-CFG 1 564 827 81.7 83.2

Table 2: Early results from a piecewise-trained discriminative parsing model. As more NOTA instances are
added, the performance of the model improves, evntually equalling the generative baseline.

ment, suggestive of good future work in this area.
Although previous locally-normalized parsers

(Ratnaparkhi, 1999) have normalized over shift-
reduce decisions, a locally-normalized model can be
defined from a CFG more directly. Just as a MEMM
locally normalizes over all next-states from a source
state, in a CFG one can normalize over all expan-
sions of a given chart edge. This yields a condi-
tional model from a PCFG exactly as an MEMM
does from an HMM.

More formally, letT be a parse tree for a sentence
x. We assume that we have a CFGG in Chomsky
normal form, and set of featuresfk(A,BC,x, i, j),
whereA → BC is a rule in the CFG, and the indices
i andj are the boundaries inx of the subtree headed
by A. This means essentially that all features must
computable given a single traversal in a chart.

To define the probability of a parse tree in this
model, we first define the probability of a single ex-
pansionA → BC occuring whenA spans the se-
quencexi . . . xj :

p(BC|A, xi . . . xj) =
φ(A,BC,x, i, j)

Z(A,x, i, j))

Z(A,x, i, j) =
∑

B′C′:A′→B′C′

φ(A,BC,x, i, j)

φ(A,BC,x, i, j) = exp

(∑
k

λkfk(A,BC,x, i, j)

)
,

and then the probability of a treeT is simply the
product of all expansions that occur in it. We are not
aware of this model in the literature, so we call it a
maximum-entropy context-free grammar(MECFG).

Maximum-likelihood training for MECFGs can
be accomplished by numerical optimization, as is
standard for maximum-entropy models. Thus, al-
though MECFG training is more expensive than

PCFG training, it still requires no parsing at train-
ing time.

We report early results from training these models
on the Penn Wall St. Journal Treebank. In the results
here, we restrict the training and test sets sentences
of length≤ 15 words. As usual, we report labeled
precision and recall. We train on sections 2-21 (9753
sentences), and use section 22 as our test set (421
sentences).

We use the CFG structure from the unlexicalized
PCFG of Klein and Manning (2003).2 However, in
these results, our tagging model is not very sophis-
ticated, and our handling of unknown words is very
simple. This explains why our generative baseline
has anF1 of 82.4, much lower than the 88 F1 that
one can get with this PCFG structure on this subset.

Our features are lexical features of the span
boundaries, similar to Taskar et al. (Taskar et al.,
2004). Specifically, we used the first and last words
of the span, conjoined with the span length if it is
less than 3.

To apply piecewise training to this model, recall
that a NOTA instance corresponds to an incorrect
decision that could potentially occur during global
inference at test time. While in an MEMM, this cor-
responds to an incorrect source state, in a CFG this
corresponds to an incorrect chart edge(X, i, j). A
chart edge could be incorrect for two reasons: the
nonterminalX can be incorrect, and the span(i, j)
might not correspond to a true bracketing. We selec-
tively generate NOTA instances for both kinds of er-
rors, based on mistakes made by a partially-trained
model. Specifically, after 10 iterations of MECFG
training, we parse the training set and add NOTA

2In fact, our implementation uses transformed trees
printed directly from Dan Klein’s code, which is avail-
able athttp://www-nlp.stanford.edu/software/
lex-parser.shtml .



instances that correspond to incorrect chart edges
whose scores are sufficiently high. For each incor-
rect chart edge, we compare its score to the best-
scoring chart edge of the same length; if the log ratio
of scores is greater than a thresholdδ (here, we use
δ =5), then the incorrect chart edge is included as a
NOTA instance.

Results from comparing MECFG training, piece-
wise training, and a generative baseline are given
in Table 2. We expected the MECFG to perform
poorly, perhaps suffering even more severely from
the same pathologies that affect MEMMs. To our
surprise, this was not the case; the MECFG comes
within 0.4 F1 of the generative baseline. Even so,
piecewise training still provides a small, suggestive
improvement, essentially equalling the generative
baseline in performance. More complex discrim-
inative features, such as scores from a generative
model (Collins and Roark, 2004) and richer lexical
features, can help performance further.

We have shown that with fairly basic lexical fea-
tures, piecewise training can equal the performance
of a generative baseline without the vast training
time required by a global discriminative model. To
get an idea of the cost of training a global model
on this subset, our parser takes about 40 minutes
to parse the entire training set. Suppose that global
training takes 100 iterations to converge (CRF-style
training might use many more iterations than this;
perceptron training may use less.) This yields a
back-of-the-envelope estimate of 3 days to train. By
contrast, piecewise training took only 4.6 hr. In ad-
dition, we do not necessarily need to parse the entire
training set to generate NOTA instances; parsing a
sample of the training set may work well for large
data sets.

6 Related Work

There are several examples in the literature of undi-
rected models trained in locally-normalized pieces.
Pseudolikelihood (Besag, 1975) is a well-known
method for training a globally-normalized model us-
ing local distributions. In pseudolikelihood, param-
eters are trained to maximize the likelihood of each
predicted variable, conditioned on the true values of
the neighboring variables. The MEMM training ob-
jective is actually very similar to the pseudolikeli-

hood objective, except that in the MEMM objective,
the local term for each node is conditioned only on
the previous node, not on both neighbors as in pseu-
dolikeliood. It would be interesting to see whether
the NOTAtechnique can be used to improve the per-
formance of pseudolikelihood training as well. The
MEMM objective has also been used by others (Pun-
yakanok and Roth, 2001; Klein et al., 2003).

Pseudolikelihood has had some success in ap-
plications. For example, Toutanova et al. (2003)
achieve state-of-the-art performance on part-of-
speech tagging using a cyclic dependency network
trained using pseudolikelihood. Also, pseudo-
likelihood has been used for grid-shaped CRFs in
computer vision (Kumar and Hebert, 2003).

Roth (2002) has advocated training disjoint classi-
fiers, and then performing joint inference at test time
in an approach he terms “training with classifiers.”

Kakade, Teh, and Roweis (2002) show that la-
bel bias in MEMMs can be somewhat ameliorated
by training on the marginal probability of single la-
bels. With this training objective, MEMMs actually
perform better on token accuracy than CRFs on an
extraction data set. To compute the marginal like-
lihood, however, requires forward-backward, and
therefore is just as computationally intensive as
global CRF training.

7 Conclusion

We present a new method for efficient piecewise
of large, richly structure probabilistic models. Us-
ing so-called “none-of-the-above” instances we al-
low some global interactions across the model with-
out requiring full inference at training time. On two
sequence-labeling NLP tasks, we show that NOTA

training preserves the efficiency of MEMM train-
ing, while surprisingly achieving significantly better
accuracy than a CRF. We also present early results
showing that piecewise training is a promising ap-
proach for discriminative parsing. We introduce a
maximum-entropy context free grammar, a locally-
normalized parsing model analogous to MEMM,
which we believe to be novel. On a subset of the
Penn treebank, we show that MECFGs perform sur-
prisingly well, only slightly below an (admittedly
low) generative baseline. We present early results
suggesting that piecewise training can potentially



improve performance over a MECFG.
In future work, we will improve the parsing re-

sults, by using better tagging models in the baseline,
and by making better use of discriminative features.
Also, we are interested in broader applications of
piecewise training to large structured models, such
as arise in information extraction and data mining.
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