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Abstract

For many large undirected models that arise
in real-world applications, exact maximum-
likelihood training is intractable, because it re-
quires computing marginal distributions of the
model. Conditional training is even more diffi-
cult, because the partition function depends not
only on the parameters, but also on the ob-
served input, requiring repeated inference over
each training example. An appealing idea for
such models is to independently train a lo-
cal undirected classifier over each clique, after-
wards combining the learned weights into a sin-
gle global model. In this paper, we show that
this piecewisemethod can be justified as min-
imizing a new family of upper bounds on the
log partition function. Our bounds are derived
from the tree-reweighted upper bounds of Wain-
wright, Jaakkola, and Willsky, where the compo-
nent subgraphs are restricted to disjoint pieces of
the model. The choice of disjoint subgraphs is
especially suited to conditional training because
it avoids the usual need to invoke a message-
passing algorithm many times during training.
On three natural-language data sets, piecewise
training is more accurate than pseudolikelihood,
and often performs comparably to global training
using belief propagation.

1 INTRODUCTION

Large graphical models are becoming increasingly com-
mon in applications including computer vision, relational
learning [15], and natural language processing [18, 3]. Of-
ten the cheapest way to build such models is to estimate
their parameters from labeled training data. But exact
maximum-likelihood estimation requires repeatedly com-
puting marginals of the model distribution, which is in-
tractable in general.

This problem is especially severe for conditional training.
If our final task is predict certain variablesy given ob-
served datax, then it is appropriate to optimize the con-
ditional likelihoodp(y|x) instead of the generative likeli-
hoodp(y,x). This allows inclusion of rich, overlapping
features ofx without needing to model their distribution,
which can greatly improve performance [9]. Conditional
training can be expensive, however, because the partition
functionZ(x) depends not only on the model parameters
but also on the input data. This means that parameter es-
timation requires computing (or approximating)Z(x) for
each training instance for each iteration of a numerical opti-
mization algorithm; this can be expensive even if the graph
is a tree.

To train such large models efficiently, an appealing idea
is to divide the full model into pieces which are trained
independently, combining the learned weights from each
piece at test time. We call thispiecewise training.

In this paper, we show that the piecewise method can
be justified as minimizing a new family of upper bounds
on the log partition function, which corresponds to max-
imizing a lower bound on the log likelihood. Our bound
is derived from the upper bounds introduced by Wain-
wright, Jaakkola, and Willsky [16]. Their bounds arise
from writing the original parameter vector of the full model
as a mixture of parameter vectors for tractable subgraphs.
Their analysis focuses on the special case where the set of
tractable subgraphs is the set of all spanning trees, resulting
in a reweighted extension of belief propagation.

In this paper, we instead consider the special case where
the set of tractable subgraphs is a set of disjoint pieces of
the full model. Just as in the previous work, this yields a
lower bound on the log likelihood by Jensen’s inequality.
Because the pieces are disjoint, computing the bound re-
quires normalization only over each piece, which can be
done efficiently. The bound also depends on a mixture dis-
tributionµ over pieces. If we take the limit asµ approaches
a point mass on one piece, we obtain a bound that depends
on the local normalization function for that piece, and the
maximum exponential parameters of all the other pieces.



Finally, upper-bounding the maximum exponential param-
eters yields the piecewise estimator.

The piecewise estimator is also closely related to pseudo-
likelihood [1, 2]. Both estimators are based on locally nor-
malizing small pieces of the full model. But pseudolike-
lihood conditions on the true value of neighboring nodes,
which has the effect of coupling parameters in neighboring
pieces (see Figure 3), while the piecewise estimator opti-
mizes each piece independently. So the piecewise estima-
tor is distinct from pseudolikelihood. Even though the dif-
ference may seem small, we show experimentally that the
piecewise estimator is more accurate.

On three real-world natural language tasks, we show that
the accuracy of piecewise training is often comparable to
exact training. We also show that piecewise training per-
forms better than pseudolikelihood, even if the pseudo-
likelihood objective is augmented to normalize over edges
rather than single nodes.

These results suggest that piecewise training should sup-
plant pseudolikelihood as a method of choice for local
training, allowing efficient training of massive real-world
models where conditional training is currently impossible.

2 MARKOV RANDOM FIELDS

In this section, we briefly give background and notation
on Markov random fields (MRFs) and conditional random
fields (CRFs). AMarkov random fieldis a probability dis-
tribution over a vectory that has been specified in terms of
local factorsψ as:

p(y) =
1
Z

∑
st

ψ(ys, yt), (1)

where the partition functionZ =
∑

y′
∑

st ψ(y′s, y
′
t) nor-

malizes the distribution. The distributionp(y) can also be
described as an undirected graphical modelG with edge set
E = {(s, t)}.

We assume that each of the local functionsψ can be written
in terms of weightsθ and functionsφ as

ψ(ys, yt) = exp

{∑
α

θst;αφst;α(ys, yt)

}
. (2)

The functionsφst;α are the sufficient statistics of the model.
For example, if the sufficient statistics are indicator func-
tions of the form

φst;α(ys, yt) = 1{ys=y′
s}1{yt=y′

t}, (3)

then ψ(ys, yt) is a lookup table where each value is
ψ(ys, yt) = exp{θst;ys,yt

}.

This choice of parameterization for the local factors en-
sures that the set{p(y;θ)} is an exponential family:

p(y) = exp

{∑
st

∑
α

θαφα(ys, yt)−A(θ)

}
. (4)

The log partition functionA(θ) = logZ is convex, a fact
which will be crucial in deriving our bounds.

Parameter estimation for MRFs can be done by maximum
likelihood, but this requires computingA(θ), which is in-
tractable. It is for this reason that approximations and
bounds ofA are of great interest.

To simplify the exposition, we have assumed that the local
functions are over pairs of variables. All of the discussion
in this paper can easily be generalized to factors of higher
arity.

A conditional random fieldis a Markov random field used
to model the conditional distributionp(y|x) of target vari-
ablesy given input variablesx. As above, letG be an undi-
rected graph overy with edgesE = {(s, t)}. Then a CRF
models the conditional distribution as

p(y|x) = exp

{∑
st

∑
k

λkfk(ys, yt,x)−A(Λ;x).

}
,

(5)
wherefk are feature functionsthat can depend both on
an edge iny and (potentially) the entire inputx, and
Λ = {λk} are the real-valued model parameters. Because
the distribution overx is not modeled, the feature functions
fk are free to include rich, overlapping features of the in-
put without sacrificing tractability. Indeed, this is the chief
benefit of using a conditional model.

For any fixed inputx, the distributionp(y|x) is an MRF
with parameters

θst;ys,yt =
∑

k

λkfk(ys, yt,x), (6)

and the indicator functions as sufficient statistics. We call
this MRF theunrolled graphof the CRF for the inputx.

Parameter estimation in CRFs is performed by maximiz-
ing the log likelihood of fully-observed training dataD =
{(x(i),y(i))}, which is given by

`(Λ) =
∑

i

∑
st

∑
k

λkfk(y(i)
s , y

(i)
t ,x(i))−

∑
i

A
(
x(i); Λ

)
.

This is a convex function that can be maximized numer-
ically by standard techniques, including preconditioned
conjugate gradient and limited-memory BFGS. Quadratic
regularization (i.e., a Gaussian prior on parameters) is of-
ten used to reduce overfitting.

Although inferencefor CRFs is thus exactly as in MRFs,
training is more expensive. This is because the CRF log



partition functionA(Λ;x) depends not only on the param-
eters but also on the input. Thus maximum-likelihood pa-
rameter estimation involves computing or approximating
A(Λ;x) once for each training instance for each iteration
of a gradient ascent procedure. This can be expensive even
when the unrolled graph is a tree.

3 VARIATIONAL TECHNIQUES FOR
LEARNING

First we discuss standard variational techniques for learn-
ing, including why an upper bound onA(θ) is potentially
more useful for learning than an lower bound. Then we de-
scribe in some detail the upper bounds onA(θ) from Wain-
wright, Jaakkola, and Willsky.

3.1 TRAINING BY FREE-ENERGY
MINIMIZATION

Variational approximations are those that cast the inference
problem of computingA(θ) as an optimization problem.
Standard variational techniques, such as structured mean
field and all the extensions to belief propagation, approxi-
mate−A(θ) by minimizing afree energyF(q) defined on
probability distributionsq:

−A(θ) ≈ min
q∈D

F(q), (7)

whereD is a set of tractable distributions. Using this ap-
proximation, the objective function for ML learning be-
comes

˜̀(θ) =
∑
α

θαφα(x) + min
q∈D

F(q) (8)

Since we wish to maximize the likelihood, parameter es-
timation becomes a constrained saddlepoint optimization
problem with respect toθ and q. In practice, this maxi-
mization has been performed by a dual-loop approach in
which the outer loop optimizesθ by a convex optimiza-
tion algorithm, and the inner loop optimizesq by belief
propagation [15, 14]. But this dual-loop approach can be
very computationally expensive, especially in conditional
models. Upper bounds ofA(θ), on the other hand, are
potentially more useful, because then learning problem is
straight maximization rather than finding a saddlepoint.

3.2 TREE-REWEIGHTED UPPER BOUNDS

Wainwright, Jaakkola, and Willsky [16] introduce a class
of upper bounds onA(θ) that arise immediately from its
convexity. The basic idea is to write the parameter vectorθ
as a mixture of parameter vectors of tractable distributions,
and then apply Jensen’s inequality.

Let T = {Tr} be a set of tractable subgraphs ofG. For
concreteness, think ofT as the set of all spanning trees

of G; this is in fact the special case to which Wainwright,
Jaakkola, and Willsky devote their attention. For each
tractable graphTr, let θ(Tr) be an exponential parameter
vector that has the same dimensionality asθ, but respects
the structureof Tr. More formally, this means that the en-
tries ofθ(Tr) must be zero for edges that do not appear in
Tr. Except for this,θ(Tr) is arbitrary; there is no require-
ment that on its own, it matchesθ in any way.

Suppose we also have a distributionµ = {µr|Tr ∈ T }
over the tractable subgraphs, such that the original parame-
ter vectorθ can be written as a combination of the per-tree
parameter vectors:

θ =
∑

Tr∈T
µrθ(Tr). (9)

In other words, we have written the original parametersθ
as a mixture of parameters on tractable subgraphs.

Then the upper bound on the log partition functionA(θ)
arises directly from Jensen’s inequality:

A(θ) = A

(∑
Tr∈T

µrθ(Tr)

)
≤
∑

Tr∈T
µrA(θ(Tr)). (10)

Because we have required that each graphT be tractable,
each term on the right-hand side of Equation 10 can be
computed efficiently. If the size ofT is large, however,
then computing the sum is still intractable. We deal with
this issue next.

A natural question about this bound is how to selectθ so
as to get the tightest upper bound possible. For fixedµ, the
optimization overθ can be cast as a convex optimization
problem:

min
θ

∑
Tr∈T

µrA(θ(Tr)) (11)

s.t.θ =
∑

Tr∈T
µrθ(Tr). (12)

But this optimization problem can have astronomically
many parameters, especially ifT is the set of all spanning
trees. The number of constraints, however, is much smaller,
because the constraints are just one equality constraint for
each element ofθ. To collapse the dimensionality of the
optimization problem, therefore, it makes sense to consider
the Lagrange dual of Equation 11, because the dual prob-
lem has one parameter for each constraint, rather than one
parameter for each spanning tree.

In fact, Wainwright, Jaakkola, and Willsky show that the
dual problem of Equation 11 can be interpreted as a free
energyFTRW, which depends only on a set of approxi-
mate node marginalsTs(xs), approximate edge marginals
Tst(xs, xt), and edge appearance probabilitiesµst, which
are the probabilities that an edge(s, t) will occur in a span-
ning tree sampled according toµ. The free energyFTRW



is closely related the Bethe free energy, but because it is a
dual function, it is necessarily convex. This free energy can
be optimized in several different ways, including conjugate
gradient and message passing.

For parameter estimation, however, these bounds still result
in a saddlepoint optimization problem, because in the dual
space we again must minimizeFTRW to get the bound on
−A(θ). Conditional parameter estimation using these up-
per bounds thus again involves running a message-passing
algorithm for each data case for each maximizer iteration.

4 PIECEWISE TRAINING

In this section, we present the piecewise estimator, justify-
ing it as minimizing a new class of upper bounds on the
partition function. Our bounds are derived from those of
Wainwright, Jaakkola, and Willsky that we discussed in the
last section. For simplicity, we will describe only the case
where the pieces are individual edges, but any set of dis-
joint pieces can be used.

4.1 THE PIECEWISE ESTIMATOR

First we explicity define the piecewise estimator. For an
edger, define byθ|r the restriction ofθ to r; that is, θ|r
is the same asθ, but with zeros in all entries that do not
correspond to the edger.

Then we define the piecewise objective function as

`PW(θ) =
∑
α

θαφα(x)−
∑

r

A(θ|r), (13)

which yields the piecewise estimatorθ̂PW = maxθ `PW.

This is exactly what it means to train independent proba-
bilistic classifiers on each edge. The maximization of`PW

is readily performed numerically by methods such as con-
jugate gradient and BFGS.

4.2 PIECEWISE UPPER BOUNDS

In this section, we show that the piecewise estimator maxi-
mizes a lower bound on the true likelihood, as stated in the
following proposition.

Proposition 1. The piecewise approximation maximizes a
lower bound on the likelihood, that is,

A(θ) ≤
∑

r

A(θ|r), (14)

where θ|r is the vectorθ with zeros in all entries that do
not correspond to the edger.

Proof. As before, we will obtain an upper bound by writ-
ing the original parametersθ as a mixture of tractable pa-
rameter vectorsθ(T ). Consider the setT of tractable sub-
graphs induced by single edges ofG. Precisely, for each

edgeEr = (ur, vr) in G, we add a (non-spanning) treeTr

which contains all the original vertices but only the edge
Er. With each treeTr we associate an exponential param-
eter vectorθ(Tr).

Let µ be a strictly positive probability distribution over
edges. To use Jensen’s inequality, we will need to have
the constraint

θ =
∑

r

µrθ(Tr). (15)

Now, each parameterθi corresponds to exactly one edge of
G, which appears in only one of theTr. Therefore, only
one choice of subgraph parameter vectors{θ(Tr)} meets
the constraint (15), namely:

θ(Tr) =
θ|r
µr

. (16)

Using Jensen’s inequality, we immediately have the bound

A(θ) ≤
∑

r

µrA

(
θ|r
µr

)
. (17)

In order to arrive at the piecewise estimator, we need to
remove the dependence of this bound onµ. We do this by
taking the limit asµ approaches a point mass on an edge
r∗. Specifically, forε ∈ (0, 1), let µr∗ = 1 − ε and define
µr uniform over all otherr.

Consider the right-hand side of Equation 17 asε → 0.
As µr∗ → 1, the term forr∗ approaches the unscaled lo-
cal normalization, because of the continuity of the function
g(µ) = µA(θ|r /µ). That is,

µr∗A

(
θ|r
µr∗

)
→ A (θ|r∗) asµr∗ → 1. (18)

For all otherr, the term approaches the maximum parame-
ter value, because

lim
µ→0

(∑
α

eθα/µ

)µ

= lim
k→∞

(∑
α

(eθα)k

)1/k

= ‖[eθα ]‖∞,

so that:

µrA

(
θ|r
µr

)
→ max

α
θr;α asµr → 0 (19)

Therefore we have the new bound

A(θ) ≤ A (θ|r∗) +
∑
r 6=r∗

max
α

θr;α. (20)

Finally, we bound each of the termsθr;α. It is an elemen-
tary property of the log partition function that

θ1 = log eθ1 ≤ log(eθ1 + eθ2), (21)

so that
max

α
θr;α ≤ A (θ|r) . (22)

Substituting this inequality into Equation 20 completes the
proof.



It is useful to contrast this piecewise bound with the pre-
vious bounds based on spanning trees. By considering the
set of all spanning trees ofG, the primal optimization prob-
lem is intractable, so Wainwright, Jaakkola, and Willsky
move to the dual problem to obtain tractability. But the
dual problem has to be maximized instead of minimized,
so that parameter estimation becomes a constrained sad-
dlepoint problem.

In this work, rather than considering a large class of sub-
graphs and dualizing, we consider a very restricted set of
subgraphs, so that only one feasible choice ofθ(Tr) re-
mains. With this small choice of subgraphs, the bound is
unlikely to be tight. We show experimentally, however, that
in practice optimizing this bound can achieve comparable
accuracy to globally-normalized training.

4.3 APPLICATION TO CONDITIONAL RANDOM
FIELDS

Piecewise estimation is especially well-suited for con-
ditional random fields. As mentioned earlier, standard
maximum-likelihood training for CRFs can requires evalu-
ating the instance-specific partition functionZ(x) for each
training instance for each iteration of an optimization algo-
rithm, which can be expensive even for linear chains. By
using piecewise training, we need to compute only local
normalization over small cliques, which for loopy graphs
is potentially much more efficient.

If the training data isD = {(x(i),y(i))}, then the piecewise
CRF objective function is

`PW(Λ) =
∑

i

∑
st

∑
k

λkfk(y(i)
s , y

(i)
t ,x(i))

−
∑

i

∑
st

A
(
x(i); Λ

)
, (23)

where the local normalization factors are

A
(
x(i); Λ

)
= log

∑
ys,yt

exp

{∑
k

λkfk(y(i)
s , y

(i)
t ,x(i))

}
.

The proof of Proposition 1 in the last section does not hold
in the presence of parameter tying, which is ubiquitous in
real-world CRFs. This theoretical difficulty can be handled
by realizing that the bound in Proposition 1 needs to be ap-
plied separately to the unrolled graph for eachx(i). In each
unrolled graph, the parametersθst;α are no longer tied, so
the proof applies. Essentially this amounts to bounding
each per-instance partition functionA(Λ;x(i)) separately.

Conditional training is likely to be the principal applica-
tion of the piecewise estimator. Generative piecewise train-
ing is likely to be less useful in practice, because in later
work [17], Wainwright, Jaakkola, and Willsky propose
an approximate maximum-likelihood estimator based on

Method Overall F1
Piecewise 91.2

Pseudolikelihood 84.7
Per-edge PL 89.7

Exact 89.9

Table 1: Comparison of piecewise training to exact and
pseudolikehood training on a linear-chain CRF for named-
entity recognition. On this tractable model, piecewise
methods are more accurate than pseudolikelihood, and just
as accurate as exact training.

Method Noun-phrase F1
Piecewise 88.1

Pseudolikelihood 84.9
Per-edge PL 86.5

BP 86.0

Table 2: Comparison of piecewise training to other meth-
ods on a two-level factorial CRF for joint part-of-speech
tagging and noun-phrase segmentation.

pseudo-moment matching. This estimator is a closed-form
estimator that computes exactly the parameters that would
have been returned by numerically optimizingFTRW. So for
generative training, optimizing an upper bound based on a
small set of graphs may not be best, because we can very
efficiently optimize a bound based on the set ofall span-
ning trees.

For conditional training, however, the pseudo-moment
matching estimator does not apply, because the partition
function is different for each data case. Indeed, condi-
tional training of undirected models includes as a special
case logistic regression, so a closed-form estimator here is
unlikely.

5 EXPERIMENTS

The bound in Equation 14 is not tight. Because the bound
does not necessarily touch the true likelihood at any point,
maximizing it is not guaranteed to maximize the true like-
lihood. We turn to experiments to compare the accuracy

Method Token F1
location speaker

Piecewise 87.7 75.4
Pseudolikelihood 67.1 25.5

Per-edge PL 76.9 69.3
BP 86.6 78.2

Table 3: Comparison of piecewise training to other meth-
ods on a skip-chain CRF for seminar announcements.



of piecewise training both to exact estimation, and to other
approximate estimators. A particularly interesting compar-
ison is to pseudolikelihood, because it is a related local es-
timation method.

On three real-world natural language tasks, we compare
piecewise training to exact ML training, approximate ML
training using belief propagation, and pseudolikelihood
training. To be as fair as possible, we compare to two vari-
ations of pseudolikelihood, one based on nodes and a struc-
tured version based on edges. Pseudolikelihood is normally
defined as [1]:

PL(θ) =
∏
s

p(xs|N (xs)). (24)

This objective function does not work well for sequence
labeling, because it does not take into account strong inter-
actions between neighboring sequence positions. In order
to have a stronger baseline, we also compare to a per-edge
version of pseudolikelihood:

PLe(θ) =
∏
st

p(xs, xt|N (xs, xt)), (25)

that is, instead of using the conditional distribution of each
node, we use each edge, hoping to take more of the sequen-
tial interactions into account.

We evaluate piecewise training on three models used in pre-
vious work: a linear-chain CRF [9], a factorial CRF [14],
and a skip-chain CRF [13]. All of these models use input
features such as word identity, part-of-speech tags, capital-
ization, and membership in domain-specific lexicons; these
are described fully in the original papers.

In all the experiments below, we optimizèPW using
limited-memory BFGS. We use a Gaussian prior on
weights to avoid overfitting. In previous work, the prior
parameter had been tuned on each data set for belief prop-
agation, and for the local models we used the same prior
parameter without change. At test time, decoding is always
performed using max-product belief propagation.

5.1 LINEAR-CHAIN CRF

First, we evaluate the accuracy of piecewise training on a
tractable model, so that we can compare the accuracy to ex-
act maximum-likelihood training. The task is named-entity
recognition, that is, to find proper nouns in text. We use the
CoNLL 2003 data set, consisting of 14,987 newswire sen-
tences annotated with names of people, organizations, lo-
cations, and miscellaneous entities. We test on the standard
development set of 3,466 sentences. Evaluation is done us-
ing precision and recall on the extracted chunks, and we
reportF1 = 2PR/P + R. We use a linear-chain CRF,
whose features are described elsewhere [11].

Piecewise training performs better than either of the pseu-
dolikelihood methods. Even though it is a completely local

t � 1

t � 1 t + 1t
t t + 1t � 1

t t + 1

Figure 1: Graphical model for two-level FCRF for joint
part-of-speech tagging and noun-phrase segmentation.

training methods, piecewise training performs comparably
to exact CRF training.

Now, in a linear-chain model, piecewise training has the
same asymptotic complexity as exact CRF training, so
we do not mean this experiment to advocate using the
piecewise approximation for linear-chain graphs. Rather,
that the piecewise approximation loses no accuracy on the
linear-chain model is encouraging when we turn to loopy
models, which we do next.

5.2 FACTORIAL CRF

The first loopy model we consider is thefactorial CRF in-
troduced by Sutton, Rohanimanesh, and McCallum [14].
Factorial CRFs are the conditionally-trained analogue of
factorial HMMs [6]; it consists of a series of undirected
linear chains with connections between cotemporal labels.
This is a natural model for jointly performing multiple de-
pendent sequence labeling tasks.

We consider here the task of jointly predicting part-of-
speech tags and segmenting noun phrases in newswire text.
Thus, the FCRF we use has a two-level grid structure,
shown in Figure 1.

Our data comes from the CoNLL 2000 shared task [12],
and consists of sentences from the Wall Street Journal an-
notated by the Penn Treebank project [10]. We consider
each sentence to be a training instance, with single words
as tokens. We report results here on subsets of 223 training
sentences, and the standard test set of 2012 sentences. Re-
sults are averaged over 5 different random subsets. There
are 45 different POS labels, and the three NP labels. We
report F1 on noun-phrase chunks.

In previous work, this model was optimized by approxi-
mating the partition function using belief optimization, but
this was quite expensive. Training on the full data set of
8936 sentences required about 12 days of CPU time.

Results on this loopy data set are presented in Table 2.
Again, the piecewise estimator performs better than either
version of pseudolikelihood and maximum-likelihood esti-
mation using belief propagation.
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Figure 2: Graphical model for skip-chain CRF.

5.3 SKIP-CHAIN CRF

Finally, we consider a model with many irregular loops,
which is the skip chain model introduced by Sutton and
McCallum [13]. This model incorporates certain long-
distance dependencies between word labels into a linear-
chain model for information extraction.

The task is to extract information about seminars from
email announcements. Our data set is a collection of 485
e-mail messages announcing seminars at Carnegie Mellon
University. The messages are annotated with the seminar’s
starting time, ending time, location, and speaker. This data
set is due to Dayne Freitag [5], and has been used in much
previous work.

Often the speaker is listed multiple times in the same mes-
sage. For example, the speaker’s name might be included
both near the beginning and later on, in a sentence like “If
you would like to meet with Professor Smith. . . ” It can be
useful to find both such mentions, because different infor-
mation can be in the surrounding context of each mention:
for example, the first mention might be near an institution
affiliation, while the second mentions that Smith is a pro-
fessor.

To increase recall of person names, we wish to exploit that
when the same word appears multiple times in the same
message, it tends to have the same label. In a CRF, we
can represent this by adding edges between output nodes
(yi, yj) when the wordsxi andxj are identical and capi-
talized. An example of this is shown in Figure 2. Thus,
the conditional distributionp(y|x) has different graphical
structure for different input configurationsx.

Consistently with the previous work on this data set, we
use 10-fold cross validation with a 50/50 training/test split.
We report per-token F1 on the speaker and location fields,
the most difficult of the four fields. Most documents con-
tain many crossing skip-edges, so that exact maximum-
likelihood training using junction tree is completely infea-
sible, so instead we compare to approximate training using
loopy belief propagation.

Results on this model are given in Table 3. Pseudolikeli-
hood performs particularly poorly on this model. Piecewise
estimation performs much better, but worse than approxi-
mate training using BP.

Figure 3: Schematic factor-graph depiction of the differ-
ence between pseudolikelihood (top) and piecewise train-
ing (bottom). Each term in pseudolikelihood normalizes
the product of many factors (as circled), while piecewise
training normalizes over one factor at a time.

Piecewise training is faster than loopy BP: in our imple-
mentation piecewise training used on average 3.5 hr, while
loopy BP used 6.8 hr. To get these loopy BP results, how-
ever, we must carefully initialize the training procedure:
We initialize the linear-chain part of the skip-chain from
the weights of a fully-trained linear-chain CRF. If we in-
stead start at the uniform distribution, not only does loopy
BP training take much longer, over 10 hours, but testing
performance is much worse, because the convex optimiza-
tion procedure has difficulty with noisier gradients. With
uniform initialization, loopy BP does not converge for all
training instances, especially at early iterations of training.
the gradients are much noisier, because early. Carefully
initializing the model parameters seems to alleviate these
issues, but it is model-specific tweaking that was unneces-
sary for piecewise training.

6 RELATED WORK

Because the piecewise estimator is such an intuitively ap-
pealing method, it has been used in several scattered places
in the literature, for tasks such as information extraction
[18], collective classification [8], and computer vision [4].
In these papers, the piecewise method is reported as a suc-
cessful heuristic for training large models, but its perfor-
mance is not compared against other training methods. We
are unaware of previous work systematically studying this
procedure in its own right.

As mentioned earlier, the most closely related procedure
that has been studied statistically is pseudolikelihood [1, 2].
The main difference is that piecewise training does not con-
dition on neighboring nodes, but ignores them altogether



during training. This is depicted schematically by the fac-
tor graphs in Figure 3. In pseudolikelihood, each locally-
normalized term for a variable or edge in pseudolikelihood
includes contributions from a number of factors that con-
nect to the neighbors whose observed values are taken from
labeled training data. All these factors are circled in the
top section of Figure 3. In piecewise training, each factor
becomes an independently, locally-normalized term in the
objective function.

7 CONCLUSION

In this paper, we study piecewise training, an intuitively ap-
pealing procedure that separately trains disjoint pieces of a
loopy graph. We show that this procedure can be justified
as maximizing a loose bound on the log likelihood. On
three real-world language tasks with different model struc-
tures, piecewise training outperforms several versions of
pseudolikelihood, a traditional local training method. On
two of the data sets, in fact, piecewise training is more ac-
curate than global training using belief propagation.

Many properties of piecewise training remain to be ex-
plored. An interesting question is whether the proofs of
consistency for pseudolikelihood [7] can be adapted to the
piecewise estimator. Also, a careful analysis of the failure
conditions of piecewise training would allow it to be ap-
plied with more confidence. Finally, the piecewise bound
(14) is in no way tight. Our derivation, however, suggests
several tighter bounds that merit further study.

Our results suggest that piecewise training should replace
pseudolikelihood as the local training method of choice.
Piecewise estimation has the potential to allow training
in massive graphical models, in which global conditional
training is impossible.
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