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Abstract

Continuous relaxations play an important role in discrete optimization, but have
not seen much use in approximate probabilistic inference. Here we show that a
general form of the Gaussian Integral Trick makes it possible to transform a wide
class of discrete variable undirected models into fully continuous systems. The
continuous representation allows the use of gradient-based Hamiltonian Monte
Carlo for inference, results in new ways of estimating normalization constants
(partition functions), and in general opens up a number of new avenues for in-
ference in difficult discrete systems. We demonstrate some of these continuous
relaxation inference algorithms on a number of illustrative problems.

1 Introduction

Discrete undirected graphical models have seen wide use in natural language processing [11, 24] and
computer vision [19]. Although sophisticated inference algorithms exist for these models, including
both exact algorithms and variational approximations, it has proven more difficult to develop discrete
Markov chain Monte Carlo (MCMC) methods. Despite much work and many recent advances [3],
the most commonly used MCMC methods in practice for discrete models are based on Metropolis-
Hastings, the effectiveness of which is strongly dependent on the choice of proposal distribution.

An appealing idea is to relax the constraint that the random variables of interest take integral values.
This is inspired by optimization methods such as linear program relaxation. Continuous problems
are appealing because the gradient is on your side: Unlike discrete probability mass functions, in
the continuous setting, densities have derivatives, contours, and curvature that can be used to inform
sampling algorithms [6, 16, 18, 20, 27]. For this reason, continuous relaxations are widespread in
combinatorial optimization, and likewise a major appeal of variational methods is that they con-
vert discrete inference problems into continuous optimization problems. Comparatively speaking,
relaxations in an MCMC setting have been generally overlooked.

In this paper we provide a method for relaxing a discrete model into a continuous one, using a
technique from statistical physics that Hertz et al. [8] call the “Gaussian integral trick,” and that we
present in a more general form than is typical. This trick is also known as the Hubbard-Stratonovich
transform [10]. Starting with a discrete Markov random field (MRF), the trick introduces an aux-
iliary Gaussian variable in such a way that the discrete dependencies cancel out. This allows the
discrete variables to be summed away, leaving a continuous problem.

The continuous representation allows the use of gradient-based Hamiltonian Monte Carlo for infer-
ence, highlights an equivalence between Boltzmann machines and the Gaussian-Bernoulli harmo-
nium model [25], and in general opens up a number of new avenues for inference in difficult discrete
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systems. On synthetic problems and a real world problem in text processing, we show that HMC in
the continuous relaxation can be much more accurate than standard MCMC methods on the discrete
distribution.

The only previous work of which we are aware that uses the Gaussian integral trick for inference
in graphical models is Martens and Sutskever [12]. They use the trick to transform an arbitrary
MRF into an equivalent restricted Boltzmann machine (RBM), on which they then do block Gibbs
sampling. They show that this transformation is useful when each block Gibbs step can be performed
in parallel. However, unlike the current work, they do not sum out the discrete variables, so they do
not perform a full continuous relaxation.

2 Background

Consider an undirected graphical model over random vectors t = (t1, t2, . . . tM ) where each
ti ∈ {0, 1, 2, . . .Ki − 1}. We will employ a 1 of Ki representation for each non-binary ti and
concatenate the resulting binary variables into the vector s = (s1 . . . sN ). We will also focus on
pairwise models over a graph G = (V,E) where V = {1, 2, . . . N}. Every discrete undirected
model can be converted into a pairwise model at the cost of expanding the state space. The undi-
rected pairwise graphical model can be written in the form

p(s) =
1

Z

∏
(i,j)∈G

exp(−Eij(si, sj)) (1)

where Z is a normalisation term, and is a sum over all valid states of (s1, s2, . . . , sN ) that comply
with the 1 of Ki constraints. Equivalently we can set Eij(si, sj) to be very large when si and sj
are derived from the same variable tk (for some k and i 6= j, and expanding G to include (i, j)),
making the resulting product for the terms that break the 1 of Ki constraints to be exponentially
small. Henceforth, without loss of generality, we can consider binary pairwise models, and assume
E captures any additional constraints that might apply. Then this model takes the general form of a
Boltzmann machine or binary MRF, and can be conveniently rewritten as

p(s) =
1

Z
exp

{
aT s +

1

2
sTW s

}
(2)

where a ∈ RN , and W , a real symmetric matrix, are the model parameters. The normalization
function is

Z =
∑
s

exp

{
aT s +

1

2
sTW s

}
. (3)

3 Gaussian Integral Trick

Inference in Boltzmann machines (which is equivalent to inference in Ising models) has always been
a challenging problem. Typically Markov chain Monte Carlo procedures such as Gibbs sampling
have been used, but the high levels of connectivity in Boltzmann machines can cause trouble and
result in slow mixing in many situations. Furthermore for frustrated systems, such models are highly
multimodal [1], often with large potential barriers between the different modes.

In many situations, the Hamiltonian Monte Carlo method has provided a more efficient sampling
method for highly coupled systems [17], but is only appropriate in real valued problems. For this
reason, we choose to work with a real valued augmentation of the Boltzmann machine using the
Gaussian integral trick. The main idea is to introduce a real valued auxiliary vector x ∈ RN in such
a way that the sTW s term from (2) cancels out [8]. We generalise the standard form of the Gaussian
integral trick by using the following form for the conditional distribution of the auxiliary variable x:

p(x|s) = N (x;A(W +D)s, A(W +D)AT ) (4)
for any choice of invertible matrix A and any diagonal matrix D for which W + D is positive
definite. N (x;m,Σ) denotes the Gaussian distribution in x with mean m and covariance Σ. The
resulting joint distribution over x and s is

p(x, s) ∝ exp(−1

2
(x−A(W+D)s)T (A−1)T (W+D)−1A−1(x−A(W+D)s)+

1

2
sTW s+aT s).

(5)
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If d denotes a vector containing the diagonal elements of D, this simplifies to

p(x, s) ∝ exp

(
−1

2
xT (A−1)T (W +D)−1A−1x + sTA−1x + (a− 1

2
d)T s

)
. (6)

The key point is that the sTW s term has vanished. We can then marginalise out the s variables, as
they are decoupled from one another in the energy function, and can be summed over independently.
Define the vector αx = A−1x. Then the marginal density is

p(x) ∝ exp

{
−1

2
xTA−1(W +D)−1(A−1)Tx

}∏
i

(
1 + exp

{
αx;i + ai −

di
2

})
. (7)

The constant of proportionality in the above equation is Z−1|2πA(W +D)AT |−1/2. The distribu-
tion p(x) is a mixture of 2N Gaussians, i.e., the Gaussians are p(x|s) with mixing proportion p(s)
for each possible assignment s.

We have now converted the discrete distribution p(s) into a corresponding continuous distribution
p(x). To understand the sense in which the two distributions “correspond”, consider reconstructing
s using the conditional distribution p(s|x). First, all of the si are independent given x, because s
appears only log-linearly in (6). Using the sigmoid σ(z) = (1 + exp{−z})−1, this is

p(si|x) = σ

(
−αx;i − ai +

di
2

)1−si
σ

(
αx;i + ai −

di
2

)si

(8)

Two choices for A are of particular interest because they introduce additional independence rela-
tionships into the augmented model. First, if A = Λ−

1
2V T for the eigendecomposition W + D =

V ΛV T , then the result is an undirected bipartite graphical model in the joint space of (x, s):

p(x, s) ∝ exp

(
−1

2
xTx + sTV Λ

1
2x + (a− 1

2
d)T s

)
. (9)

This is a Gaussian-Bernoulli form of exponential family harmonium [25]. Hence we see that the
Gaussian-Bernoulli harmonium is equivalent to a general Boltzmann machine over the discrete vari-
ables only. Second, if A = I we get

p(x, s) = Z−1|2π(W +D)|−1/2 exp

{(
a + x− 1

2
d

)T

s− 1

2
xT (W +D)−1x

}
, (10)

which is of particular interest in that the coupling between s and x is one-to-one. A given xi
determines the Bernoulli probabilities for the variable si, independent of the states of any of the
other variables. This yields a marginal density

p(x) = Z−1|2π(W +D)|−1/2 exp

{
−1

2
xT (W +D)−1x

}∏
i

(
1 + exp

{
ai + xi −

di
2

})
(11)

and a particularly nice set of Bernoulli conditional probabilities

p(si|x) = σ

(
−ai − xi +

di
2

)1−si
σ

(
ai + xi −

di
2

)si

(12)

In this model, the marginal of p(x) is a mixture of Gaussian distributions. Then, conditioned on x,
the log odds of si = 1 is a recentered version of xi, in particular, xi − ai − di/2.

The different versions of the Gaussian integral trick can be compactly summarized by the indepen-
dence relations that they introduce. All versions of Gaussian integral trick give us that all si and
sj are independent given x. If we take A = Λ−1/2V T , we additionally get that all xi and xj are
independent given s. Finally if we instead take A = I , we get that si and sj are independent given
only xi and xj . These independence relations are presented graphically in Figure 1.
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Figure 1: Graphical depiction of the different versions of the Gaussian integral trick. In all of the
models here si ∈ {0, 1} while xi ∈ R. Notice that when A = I the x have the same dependence
structure as the s did in the original MRF.

3.1 Convexity of Log Density

Because probabilistic inference is NP-hard, it is too much to expect that the continuous transfor-
mation will always help. Sometimes difficult discrete distributions will be converted into difficult
continuous ones. Experimentally we have noticed that highly frustrated systems typically result in
multimodal p(x).

The modes of p(x) are particularly easy to understand if A = Λ−1/2V T , because p(x|s) =
N (x; Λ1/2V s; I), that is, the covariance does not depend on W + D. Without loss of general-
ity assume that the diagonal of W is 0. Then write (W + D) = W + cD′. Interpreting p(x) as a
mixture of Gaussians, one for each assignment s, as c→∞ the Gaussians become farther apart and
we get 2n modes, one each at Λ1/2V s for each assignment to binary vector s. If we take a small
c, however, we can sometimes get fewer modes, and as shown next, we can sometimes even get
log p(x) convex. This is a motivation to make sure that the elements of D are not too large.

In the following proposition we characterize the conditions on p(s) under which the resultant p(x)
is log-concave. For any N × N matrix M , let λ1(M) ≥ . . . ≥ λN (M) denote the eigenvalues of
M . Recall that we have already required that D be chosen so that W + D is positive definite, i.e.,
λN (W +D) > 0. Then
Proposition 1. p(x) is log-concave if and only ifW +D has a narrow spectrum, by which we mean
λ1(W +D) < 4.

Proof. The Hessian of log p(x) is easy to compute. It is

Hx := ∇2
x log p(x) = Cx − (W +D)−1 (13)

where Cx is a diagonal matrix with elements cii = σ(−ai − xi + di

2 )(1− σ(−ai − xi + di

2 )). We
use the simple eigenvalue inequalities that λ1(A) + λN (B) ≤ λ1(A + B) ≤ λ1(A) + λ1(B). If
λ1(W +D) ≤ 4, then

λ1(Hx) ≤ λ1(Cx)− [λ1(W +D)]−1 ≤ 0.25− [λ1(W +D)]−1 ≤ 0.

So p(x) is log-concave. Conversely suppose that p(x) is log-concave. Then

0.25− [λ1(W +D)]−1 = sup
x
λN (Cx)− [λ1(W +D)]−1 ≤ sup

x
λ1(Hx) ≤ 0.

So λ1(W +D) ≤ 4.

3.2 MCMC in the Continuous Relaxation

Now we discuss how to perform inference in the augmented distribution resulting from the trick.
One simple choice is to focus on the joint density p(x, s). It is straightforward to generate samples
from the conditional distributions p(x|s) and p(s|x). Therefore one can sample the joint distribution
p(x, s) in a block Gibbs style that switches sampling between p(x|s) and p(s|x). In spite of the sim-
plicity of this method, it has the potential difficulty that it may generate highly correlated samples,
due to the coupling between discrete and continuous samples.

To overcome the drawbacks of block Gibbs sampling, we propose running MCMC directly on the
marginal p(x). We can efficiently evaluate the unnormalized density of p(x) from (11) up to a
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constant, so we can approximately sample from p(x) using MCMC. The derivatives of log p(x)
have a simple form and can be computed at a linear cost of the number of dimension of x.

That suggests the use of Hamiltonian Monte Carlo, an advanced MCMC method that uses gradient
information to traverse the continuous space efficiently. We refer to the use of HMC on p(x) as
discrete Hamiltonian Monte Carlo (DHMC). An important benefit of HMC is that it is more likely
than many other Metropolis-Hastings methods to accept a proposed sample that has a large change
of log density compared with the current sample.

3.3 Estimating Marginal Probabilities

Given a set of samples that are approximately distributed from p(x) we can estimate the marginal
distribution over any subset Sq ⊆ S of the discrete variables. This is possible because all of the
variables Sq decompose given x. There is no need to generate samples of s because p(s|x) is easy
to compute. The marginal probability p(sq) can be estimated as

p(sq) ≈ 1

M

M∑
m=1

p(Sq|x(m)) =
1

M

M∑
m=1

∏
si∈Sq

p(si|x(m)) x(m) ∼ p(x)

This gives us a Rao-Blackwellized estimate of p(sq) without needing to sample s directly. We will
not typically be able to obtain exact samples from p(x), as in general it may be multimodal, but we
can obtain approximate samples from an MCMC method.

3.4 Normalizing Constants

Because the normalizing factor Z−1 of the Boltzmann machine is equal to the probability p(s = 0),
we can estimate the normalizing factor using the technique from the previous section

Z−1 = p(s = 0) ≈ 1

M

M∑
m=1

p(s = 0|x(m)) x(m) ∼ p(x). (14)

Although if we can sample exactly from p(x), this estimator is unbiased, it suffers from two prob-
lems. First, because it is an estimator of Z−1, as [15] explains, such an estimator may underestimate
Z and logZ in practice. Second, it can suffer a similar problem as the harmonic mean estimator. The
non-Gaussian term in p(x) corresponds to p(s = 0|x)−1. In general it is difficult to approximate
the expectation of a function f(x) with respect to a distribution q(x) if f is large precisely where q
is not. This is potentially the situation with this estimator of Z.

We use an alternative estimator using a “mirrored variant” of the importance trick. First, we intro-
duce a distribution q(x). Define p∗(x) = Zp(x) to be an unnormalized version of p. Using the
identity Z−1 = Z−1

∫
dx q(x) we have

Z−1 = Z−1
∫
dx q(x)

p∗(x)

p∗(x)
=

∫
dx

q(x)

p∗(x)
p(x),

A Monte Carlo estimate of this integral is Ẑ−1 = 1
M

∑
m

q(x(m))
p∗(x(m))

for x(m) ∼ p(x). This estimator
reduces to (14) if we take q(x) to be the Gaussian portion of p(x) i.e., q(x) = N (x; 0, A(W +
D)AT ). However in practice we have found other choices of q to be much better. Intuitively, the
variance of Ẑ depends on the ratio of q(x)/p∗(x). If p(x) = q(x), the variance of this estimator is
asymptotically zero. This importance trick is well known in the statistics literature, e.g., [14].

4 Related Work

The use of Hamiltonian mechanics in Boltzmann machines and related models (e.g., Ising Models,
stochastic Hopfield models) has an interesting history. The Ising model was studied as a model
of physical spin systems, and so the dynamics used were typically representative of the physics,
with Glauber dynamics [7] being a common model, e.g., [2]. In the context of stochastic neural
models, though, there was the potential to examine other dynamics that did not match the standard
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physics of spin systems. Hamiltonian dynamics were considered as a neural interaction model [13,
21, 26], but were not applied directly to the Ising model itself, or used for inference. Hamiltonian
dynamics were also considered for networks combining excitatory and inhibitory neurons [22]. All
these approaches involved developing Hamiltonian neural models, rather than Hamiltonian auxiliary
methods for existing models.

The Gaussian integral trick is also known as the Hubbard-Stratonovich transformation in
physics[10]. In the area of neural modelling, the Gaussian integral trick was also common for
theoretical reasons rather than as a practical augmentation strategy [8]. The Gaussian integral trick
formed a critical part of replica-theoretical analysis [8] for phase analysis of spin systems, as it
enabled ensemble averaging of the spin components, leading to saddle-point equations in the con-
tinuous domain. These theoretical analysis relied on the ensemble randomness of the interaction
matrix of the stochastic Hopfield model, and so were not directly relevant in the context of a learnt
Boltzmann machine, where the weight matrix has a specific structure.

The Gaussian integral trick relates the general Boltzmann machines to exponential family harmo-
niums [25], which generalise the restricted Boltzmann machines. The specific Gaussian-Bernoulli
harmonium is in common use, but where the real valued variables are visible units and the binary
variables are hidden variables [9]. This is quite distinct from the use here where the visible and
hidden units are all binary and the Gaussian variables are auxiliary variables.

The only work of which we are aware that uses the Gaussian integral trick for probabilistic inference
is that of Martens and Sutskever [12]. This work also considers inference in MRFs, using the special
case of the Gaussian integral trick in which A = Λ−

1
2V T . However, they do not use the full version

of the trick, as they do not integrate s out, so they never obtain a fully continuous problem. Instead
they perform inference directly in the resulting harmonium, using block Gibbs sampling alternating
between s and x. On serial computers, they do not find that this expanded representation offers much
benefit over performing single-site Gibbs in the discrete space. Indeed they find that the sampler in
the augmented model is actually slightly slower than the one in the original discrete space. This is
in sharp contrast to our work, because we use a Rao-Blackwellized sampler on the x.

5 Results

In this section we evaluate the accuracy of the relaxed sampling algorithms on both synthetic grids
and a real-world task. We evaluate both the estimation of node marginal and of the normalisation
factor estimation on two synthetic models.

We compare the accuracy of the discrete HMC sampler to Gibbs sampling in the original discrete
model p(s) and to block Gibbs sampling the augmented model p(x, s). We choose the number of
MCMC samples so that the total computational time for each method is roughly the same. The
Gibbs sampler resamples one node at a time from p(si|s−i). The node marginal probability p(si)
is estimated by the empirical probability of the samples. The normalizing constant is estimated in
Chib-style using the Gibbs transition kernel, for more details see [15].

The block Gibbs sampler over p(x, s) we use is based on [12]. This comparison is designed to eval-
uate the benefits of summing away the discrete variables. To estimate the node marginals, we use
the block Gibbs sampler to generate samples of x and then apply the Rao-Blackwellized estimators
from Sections 3.3 and 3.4. We empirically choose the mirror distribution q as a Gaussian distribu-
tion, with mean and variance given by the empirical mean and covariance of the x samples from
MCMC. The samples of s are simply discarded at the estimation stage.

HMC can generate better samples while a large number of leapfrog steps is used, but this requires
much more computation time. For a fixed computational budget, using more leapfrog steps causes
fewer samples to be generated, which can also undermine the accuracy of the estimator. So, we
empirically pick 5 leapfrog steps and tuning the leapfrog step size so that acceptance rate is around
90%. We useA = I for DHMC. To estimate the marginals p(si) and the partition function, we apply
the Rao-Blackwellized estimators from Sections 3.3 and 3.4 in the same way as for block Gibbs.

Synthetic Boltzmann Machines. We evaluate the performance of the samplers across different
types of weight matrices by using synthetically generated models. The idea is to characterize what
types of distributions are difficult for each sampler.
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Figure 2: Performance of samplers on synthetic grid-structured Boltzmann machines. The axes show
the standard deviations of the distributions used to select the synthetic models. The top row shows
error in the normalization constant, while the bottom row shows average error in the single-mode
marginal distributions.

We randomly generate 10 × 10 grid models over binary variables. We use two different generating
processes, a “standard” one and a “frustrated” one. In the standard case, for each node si, the biases
are generated as ai ∼ c1N (0, 4). The weights are generated as wij ∼ c2N (0, 4). The parameters
c1 and c2 define the scales of the biases and weights and determine how hard the problem is. In
the frustrated case, we shift the weights to make the problem more difficult. We still generate the
weights as wij ∼ c2N (0, 4) but now we generate the biases as ai ∼ c1N (

∑
i wij , 4). This shift in

the Gaussian distribution tends to encourage the multimodality of p(x).

We test all three samplers on 36 random graphs from each of the two generating processes, using
different values of c1 and c2 for each random graph. Each MCMC method is given 10 runs of 10000
samples with 2000 burn-in samples. We report the MSE of the node marginal estimate and the log
normalising constant estimate averaged over 10 runs.

The results are shown in Figure 2 and 3. The axes show c1 and c2, which determine the difficulty
of the problem. The higher value in the heat maps means a larger error. On the standard graphs
(Figure 2), the DHMC method significantly outperforms both competitors. DHMC beats Gibbs on
p(s) at the normalization constant and beats block Gibbs on p(x, s) at marginal estimation.

The frustrated graphs (Figure 3) are significantly more difficult for DHMC, as expected. All three
samplers seem to have trouble in the same area of model space, although DHMC suffers somewhat
worse than the other methods in marginal error, while still beating Chib’s method for normalization
constants. It is noted that in worst scenarios, the weights of the model are very extreme. Examining a
few representative graphs seems to indicate that in the regime with large weights, the HMC sampler
becomes stuck in a bad mode. We observe that in both cases block Gibbs of p(x, s) performs roughly
the same at marginal estimation as Gibbs on p(s). This is consistent with the results in [12].

Text data. We also evaluate the relaxed inference methods on a small text labelling data set. The
data are a series of email messages that announce academic seminars [5]. We consider the binary
problem of determining whether or not each word in the message is part of the name of the seminar’s
speaker, so we have one random variable for each token in the message. We use a “skip-chain CRF”
[4, 23] model which contains edges between adjacent tokens and also additional edges between any
pair of identical capitalized words.

We trained the CRF on a set of 485 messages using belief propagation. We evaluate the performance
of different inference methods on inferring the probability distribution over labels on a held out set
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Figure 3: Performance of samplers on a set of highly frustrated grid-structured Boltzmann machines.
The axes show the standard deviations of the distributions used to select the synthetic models. The
top row shows error in the normalization constant, while the bottom row shows average error in the
single-mode marginal distributions.

of messages. Our test set uses a subset of the messages which are small enough that we can run exact
inference. The test set contained 75 messages whose length ranged from 50 words to 628 words.
We evaluate whether the approximate inference methods match the solution from exact inference.

The accuracy of the three approximate inference methods are shown in Table 1. We see that the HMC
sampler is much more accurate than either of the other samplers at estimating single-node marginals.
Chib’s method and DHMC have roughly the same accuracy on the normalization constant. The block
Gibbs sampler yields both worse estimates of the marginals and a significantly worse estimate of the
normalization constant.

Gibbs p(s) DHMC p(x) Block Gibbs p(s,x)

RMSE (node marginal) 0.2346 0.1619 0.2251
RSME (log normalizing constant) 3.3041 3.3171 12.9685

Table 1: Root mean squared error of single site marginal and normalising constant against the ground
truth computed by the variable elimination algorithm

6 Conclusion

We have provided a general strategy for approximate inference based on relaxing discrete distribu-
tions into continuous ones using the classical Gaussian integral trick. We described a continuum of
different versions of the trick that have different properties. Although we illustrated the benefits of
the continuous setting by using Hamiltonian Monte Carlo, in future work other inference methods
such as elliptical slice sampling or more advanced HMC methods may prove superior. We hope that
this work might open the door to a larger space of interesting relaxations for approximate inference.
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