
Machine Learning for Data
Exploration and Generation

Charles Sutton
University of Edinburgh and the Alan Turing Institute

13 June 2017

http://bit.ly/sutton-ml-exploration

Google: “charles sutton” talks —> find this talk

http://bit.ly/sutton-ml-exploration

Prediction: A small part of a big picture

CRISP-DM

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Static Analysis of Data Dependencies. In traditional code, compilers and build systems perform
static analysis of dependency graphs. Tools for static analysis of data dependencies are far less
common, but are essential for error checking, tracking down consumers, and enforcing migration
and updates. One such tool is the automated feature management system described in [12], which
enables data sources and features to be annotated. Automated checks can then be run to ensure that
all dependencies have the appropriate annotations, and dependency trees can be fully resolved. This
kind of tooling can make migration and deletion much safer in practice.

4 Feedback Loops

One of the key features of live ML systems is that they often end up influencing their own behavior
if they update over time. This leads to a form of analysis debt, in which it is difficult to predict the
behavior of a given model before it is released. These feedback loops can take different forms, but
they are all more difficult to detect and address if they occur gradually over time, as may be the case
when models are updated infrequently.

Direct Feedback Loops. A model may directly influence the selection of its own future training
data. It is common practice to use standard supervised algorithms, although the theoretically correct
solution would be to use bandit algorithms. The problem here is that bandit algorithms (such as
contextual bandits [9]) do not necessarily scale well to the size of action spaces typically required for
real-world problems. It is possible to mitigate these effects by using some amount of randomization
[3], or by isolating certain parts of data from being influenced by a given model.

Hidden Feedback Loops. Direct feedback loops are costly to analyze, but at least they pose a
statistical challenge that ML researchers may find natural to investigate [3]. A more difficult case is
hidden feedback loops, in which two systems influence each other indirectly through the world.

One example of this may be if two systems independently determine facets of a web page, such as
one selecting products to show and another selecting related reviews. Improving one system may
lead to changes in behavior in the other, as users begin clicking more or less on the other components
in reaction to the changes. Note that these hidden loops may exist between completely disjoint
systems. Consider the case of two stock-market prediction models from two different investment
companies. Improvements (or, more scarily, bugs) in one may influence the bidding and buying
behavior of the other.

5 ML-System Anti-Patterns

It may be surprising to the academic community to know that only a tiny fraction of the code in
many ML systems is actually devoted to learning or prediction – see Figure 1. In the language of
Lin and Ryaboy, much of the remainder may be described as “plumbing” [11].

It is unfortunately common for systems that incorporate machine learning methods to end up with
high-debt design patterns. In this section, we examine several system-design anti-patterns [4] that
can surface in machine learning systems and which should be avoided or refactored where possible.

4

System level
[Sculley et al, NIPS 2015]

Machine Learning that Matters

Choose or develop
algorithm

Collect
data

Phrase problem
as a machine
learning task

Select or
generate
features

Choose metrics,
conduct experiments

Interpret
results

Publicize results to
relevant user community

Persuade users to
adopt technique

Impact

Necessary
preparation

The "machine
learning contribution"

Figure 1. Three stages of a machine learning research program. Current publishing incentives are highly biased towards

the middle row only.

It is recognized that the performance obtained by
training a modelM on data set X may not reflectM’s
performance on other data sets drawn from the same
problem, i.e., training loss is an underestimate of test
loss (Hastie et al., 2001). Strategies such as splitting
X into training and test sets or cross-validation aim
to estimate the expected performance of M0, trained
on all of X, when applied to future data X

0.

However, these metrics tell us nothing about the im-
pact of di↵erent performance. For example, 80% ac-
curacy on iris classification might be su�cient for the
botany world, but to classify as poisonous or edible
a mushroom you intend to ingest, perhaps 99% (or
higher) accuracy is required. The assumption of cross-
domain comparability is a mirage created by the appli-
cation of metrics that have the same range, but not the
same meaning. Suites of experiments are often sum-
marized by the average accuracy across all data sets.
This tells us nothing at all useful about generalization
or impact, since the meaning of an x% improvement
may be very di↵erent for di↵erent data sets. A related
problem is the persistence of “bake-o↵s” or “mind-
less comparisons among the performance of algorithms
that reveal little about the sources of power or the ef-
fects of domain characteristics” (Langley, 2011).

Receiver Operating Characteristic (ROC) curves are
used to describe a system’s behavior for a range of
threshold settings, but they are rarely accompanied
by a discussion of which performance regimes are rele-
vant to the domain. The common practice of reporting
the area under the curve (AUC) (Hanley & McNeil,
1982) has several drawbacks, including summarizing
performance over all possible regimes even if they are
unlikely ever to be used (e.g., extremely high false pos-
itive rates), and weighting false positives and false neg-
atives equally, which may be inappropriate for a given
problem domain (Lobo et al., 2008). As such, it is in-
su�ciently grounded to meaningfully measure impact.

Methods from statistics such as the t-test (Student,
1908) are commonly used to support a conclusion
about whether a given performance improvement is
“significant” or not. Statistical significance is a func-
tion of a set of numbers; it does not compute real-world
significance. Of course we all know this, but it rarely
inspires the addition of a separate measure of (true)
significance. How often, instead, a t-test result serves
as the final punctuation to an experimental utterance!

2.3. Lack of Follow-Through

It is easy to sit in your o�ce and run a Weka (Hall
et al., 2009) algorithm on a data set you downloaded
from the web. It is very hard to identify a problem
for which machine learning may o↵er a solution, de-
termine what data should be collected, select or ex-
tract relevant features, choose an appropriate learning
method, select an evaluation method, interpret the re-
sults, involve domain experts, publicize the results to
the relevant scientific community, persuade users to
adopt the technique, and (only then) to truly have
made a di↵erence (see Figure 1). An ML researcher
might well feel fatigued or daunted just contemplating
this list of activities. However, each one is a necessary
component of any research program that seeks to have
a real impact on the world outside of machine learning.

Our field imposes an additional obstacle to impact.
Generally speaking, only the activities in the middle
row of Figure 1 are considered “publishable” in the ML
community. The Innovative Applications of Artificial
Intelligence conference and International Conference
on Machine Learning and Applications are exceptions.
The International Conference on Machine Learning
(ICML) experimented with an (unreviewed) “invited
applications” track in 2010. Yet to be accepted as a
mainstream paper at ICML or Machine Learning or
the Journal of Machine Learning Research, authors
must demonstrate a “machine learning contribution”
that is often narrowly interpreted by reviewers as “the

Research process
[Wagstaff, ICML 2012]

[Chapman et al 2000]

“Making data science
easier”: an application area
for machine learning!

Towards an Artificial Intelligence for Data Science

Data understanding

• What’s in it?
• What’s wrong with it?
• What should I do with it?

When you get a new data set….

Summarise data with probabilistic ML
Visualize resulting patterns
Patterns are “first class citizens” of model

Automating exploratory data analysis?
Contradiction in terms?

A task in visual analytics
Scalability a challenge Our theme

Exploratory data analysis

Data analysts are like cats.

… not just for dummies!

1. Want to explore their data
2. Don’t know what they want.

Machine learning for analysts
Whose information need is not explicit

Whose domain knowledge is difficult to encode

Explore data via learned patterns

Mining Patterns

[Fowkes & Sutton, KDD 2016]

[Fowkes & Sutton, PKDD 2016]
http://bit.ly/sutton-ml-exploration

http://bit.ly/sutton-ml-exploration

Database of
transactions

Association Rules (def’n)
Association rule mining:

Find set of all rules

that have

Prob

Count { } � M

� ↵()

Frequent itemsets:
Count { } � M

Why? Exploratory data analysis

Association Rules (alg)
1. Identify all frequent item sets

via exhaustive search (APriori, FP-Growth, etc.)

{ }

2. For each item set, consider all possible partitions

3. Rank the resulting list (e.g., by confidence) and enjoy

{ } { } { } ….

….

Pathologies “Free riders”
If both of these

have support >> M and independent

{ } { }

{ }
usually still support > M

(Confidence and lift do not fix this!)

 [Hastie et al., 2009]

Rare itemsets
Strongly associated but rare:
Not a frequent itemset

e.g., champagne, caviar

{ }
Redundancy

}{If frequent,

so are all 14 nontrivial subsets.
(Association rules “filter” item sets)

List of association rules
unwieldy, difficult to
understand

Procedure as a whole is
statistically incoherent.
Essentially just repeated
counting

Alternative: Interesting Itemsets

Ichoose to best fit data
I are the interesting itemsets

(unlike frequent itemsets, these are suitable for data analysis)

Xtransaction

p(X|I)
define probability model

{ }e.g., { },I = { }

Optimise the collection of itemsets as a whole,
rather than each in isolation

Interesting Sequence Mining

Sequences more meaningful, less redundant

Probabilistic methods

Minimum description length

(actually isomorphic; see MacKay, 2003)

[Fowkes and Sutton, KDD 2016, PKDD 2016]

[Vreeken et al, 2011; Tatti and Vreeken, 2012; Lam et al 2014]

Use patterns to define a compression algorithm for database
Search for patterns that best compress

Use patterns to define a probability distribution over database
Search for patterns that maximise database probability

define a goodness measure on a set of patterns

[Geerts, Goethals, and Mielikäinen, 2004]Also, see tiling:

Model
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Mining Interesting Itemsets

support divided by the support of its most frequent single-
ton. While the use of h-confidence does eliminate itemsets
with widely differing frequencies, some of these pruned
itemsets are likely to contain highly associated items that
we would like to retain. Instead, we suggest that the key
problem with spurious cross support patterns is not the
skewed support distribution, but the freerider problem.

3.2. Redundancy in the Itemset List

It is well known that the list of frequent itemsets is long
and difficult to understand (Tan et al., 2006). In part this is
because any subset of a frequent itemset is itself frequent.
Additionally, this is exacerbated by the freerider problem,
because the many spurious correlations increase the size
of the frequent itemset list. A common way of addressing
this problem are compact representations of the itemset list,
such as maximal and closed itemsets (Han et al., 2007). Al-
though these methods are effective at reducing the number
of itemsets retrieved, they do not address the other patholo-
gies in this section. Furthermore, we would argue that the
itemsets that are closed or maximal may not be those that
are the most statistically interesting. A maximal itemset,
for example, is actually likely to contain a freerider, as it is
by definition the largest frequent superset.

3.3. Rare itemsets

Another approach to address the redundancy problem in
FIM is simply to increase the minimum support threshold,
thereby excluding itemsets with low support. But this raises
a new issue, regarding the so called rare itemsets.

In a market basket transaction database, FIM algorithms
can easily find sets of items that are frequently bought
together such as {bread, milk}. However, now consider
champagne and caviar which are also frequently bought to-
gether, but as they are both expensive items, occur rarely in
a transaction database (Tan et al., 2006; Hastie et al., 2009).
As a result, unless the minimum support threshold of a FIM
algorithm is set sufficiently low, the algorithm will fail to
retrieve the rare itemset {champagne, caviar} even though
it is highly relevant.

Attempts to resolve this issue have mainly involved design-
ing specific algorithms for mining rare itemsets (Yun et al.,
2003; Koh & Rountree, 2005; Szathmary et al., 2007).
However, these approaches (such as Apriori-Inverse) are
merely simple modifications of FIM which do not consider
statistical interestingness. Most rare itemsets are rare for
good reason, so that the list of all rare itemsets will include
many itemsets whose associations are spurious.

z(j)S

X (j)

S 2 IS 2 I

⇡S

j 2 1, ...,m

Figure 1. Graphical model for Interesting Itemset Mining.

4. Interesting Itemset Mining
In this section we will formulate the problem of identifying
a set of interesting itemsets that are useful for explaining a
database (i.e., sequence) of transactions. First we will de-
fine some preliminary concepts and notation. An item i is
an element of the universe U = {1, 2, . . . , n} that indexes
database attributes. A transaction X is a subset of the uni-
verse U and an itemset S is simply a set of items i. The
set of interesting itemsets I we wish to determine is there-
fore a subset of the power set (set of all possible subsets)
of the universe. Further, we say that an itemset S supports
a transaction X if S ⊂ X .

4.1. Generative Model

We propose a simple directed graphical model for generat-
ing a database of transactions X(1), . . . , X(m) from a set
I of interesting itemsets (see Figure 1). The parameters of
our model are Bernoulli probabilities πS for each interest-
ing itemset S ∈ I . The generative story for our model is,
independently for each transaction X in the database:

1. For each itemset S ∈ I , decide independently
whether to include S in the transaction, i.e., sample

zS ∼ Bernoulli(πS).

2. Set the transaction to be the set of items in all the item-
sets selected above, i.e.,

X =
⋃

zs=1

S.

Note that the model allows individual items to be generated
multiple times from different itemsets, e.g. eggs could be
generated both as part of a breakfast itemset {bacon, eggs}
and as as part of a cake itemset {flour, sugar, eggs}.

4.2. Inference

Given a set of itemsets I, let z,π denote the vectors of
zS ,πS for all itemsets S ∈ I. Assuming z,π are fully de-
termined, it is evident from the generative model that the

1. For each itemset, sample
To sample a transaction,

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Mining Interesting Itemsets

support divided by the support of its most frequent single-
ton. While the use of h-confidence does eliminate itemsets
with widely differing frequencies, some of these pruned
itemsets are likely to contain highly associated items that
we would like to retain. Instead, we suggest that the key
problem with spurious cross support patterns is not the
skewed support distribution, but the freerider problem.

3.2. Redundancy in the Itemset List

It is well known that the list of frequent itemsets is long
and difficult to understand (Tan et al., 2006). In part this is
because any subset of a frequent itemset is itself frequent.
Additionally, this is exacerbated by the freerider problem,
because the many spurious correlations increase the size
of the frequent itemset list. A common way of addressing
this problem are compact representations of the itemset list,
such as maximal and closed itemsets (Han et al., 2007). Al-
though these methods are effective at reducing the number
of itemsets retrieved, they do not address the other patholo-
gies in this section. Furthermore, we would argue that the
itemsets that are closed or maximal may not be those that
are the most statistically interesting. A maximal itemset,
for example, is actually likely to contain a freerider, as it is
by definition the largest frequent superset.

3.3. Rare itemsets

Another approach to address the redundancy problem in
FIM is simply to increase the minimum support threshold,
thereby excluding itemsets with low support. But this raises
a new issue, regarding the so called rare itemsets.

In a market basket transaction database, FIM algorithms
can easily find sets of items that are frequently bought
together such as {bread, milk}. However, now consider
champagne and caviar which are also frequently bought to-
gether, but as they are both expensive items, occur rarely in
a transaction database (Tan et al., 2006; Hastie et al., 2009).
As a result, unless the minimum support threshold of a FIM
algorithm is set sufficiently low, the algorithm will fail to
retrieve the rare itemset {champagne, caviar} even though
it is highly relevant.

Attempts to resolve this issue have mainly involved design-
ing specific algorithms for mining rare itemsets (Yun et al.,
2003; Koh & Rountree, 2005; Szathmary et al., 2007).
However, these approaches (such as Apriori-Inverse) are
merely simple modifications of FIM which do not consider
statistical interestingness. Most rare itemsets are rare for
good reason, so that the list of all rare itemsets will include
many itemsets whose associations are spurious.

z(j)S

X (j)

S 2 IS 2 I

⇡S

j 2 1, ...,m

Figure 1. Graphical model for Interesting Itemset Mining.

4. Interesting Itemset Mining
In this section we will formulate the problem of identifying
a set of interesting itemsets that are useful for explaining a
database (i.e., sequence) of transactions. First we will de-
fine some preliminary concepts and notation. An item i is
an element of the universe U = {1, 2, . . . , n} that indexes
database attributes. A transaction X is a subset of the uni-
verse U and an itemset S is simply a set of items i. The
set of interesting itemsets I we wish to determine is there-
fore a subset of the power set (set of all possible subsets)
of the universe. Further, we say that an itemset S supports
a transaction X if S ⊂ X .

4.1. Generative Model

We propose a simple directed graphical model for generat-
ing a database of transactions X(1), . . . , X(m) from a set
I of interesting itemsets (see Figure 1). The parameters of
our model are Bernoulli probabilities πS for each interest-
ing itemset S ∈ I . The generative story for our model is,
independently for each transaction X in the database:

1. For each itemset S ∈ I , decide independently
whether to include S in the transaction, i.e., sample

zS ∼ Bernoulli(πS).

2. Set the transaction to be the set of items in all the item-
sets selected above, i.e.,

X =
⋃

zs=1

S.

Note that the model allows individual items to be generated
multiple times from different itemsets, e.g. eggs could be
generated both as part of a breakfast itemset {bacon, eggs}
and as as part of a cake itemset {flour, sugar, eggs}.

4.2. Inference

Given a set of itemsets I, let z,π denote the vectors of
zS ,πS for all itemsets S ∈ I. Assuming z,π are fully de-
termined, it is evident from the generative model that the

2. Deterministically set

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Mining Interesting Itemsets

support divided by the support of its most frequent single-
ton. While the use of h-confidence does eliminate itemsets
with widely differing frequencies, some of these pruned
itemsets are likely to contain highly associated items that
we would like to retain. Instead, we suggest that the key
problem with spurious cross support patterns is not the
skewed support distribution, but the freerider problem.

3.2. Redundancy in the Itemset List

It is well known that the list of frequent itemsets is long
and difficult to understand (Tan et al., 2006). In part this is
because any subset of a frequent itemset is itself frequent.
Additionally, this is exacerbated by the freerider problem,
because the many spurious correlations increase the size
of the frequent itemset list. A common way of addressing
this problem are compact representations of the itemset list,
such as maximal and closed itemsets (Han et al., 2007). Al-
though these methods are effective at reducing the number
of itemsets retrieved, they do not address the other patholo-
gies in this section. Furthermore, we would argue that the
itemsets that are closed or maximal may not be those that
are the most statistically interesting. A maximal itemset,
for example, is actually likely to contain a freerider, as it is
by definition the largest frequent superset.

3.3. Rare itemsets

Another approach to address the redundancy problem in
FIM is simply to increase the minimum support threshold,
thereby excluding itemsets with low support. But this raises
a new issue, regarding the so called rare itemsets.

In a market basket transaction database, FIM algorithms
can easily find sets of items that are frequently bought
together such as {bread, milk}. However, now consider
champagne and caviar which are also frequently bought to-
gether, but as they are both expensive items, occur rarely in
a transaction database (Tan et al., 2006; Hastie et al., 2009).
As a result, unless the minimum support threshold of a FIM
algorithm is set sufficiently low, the algorithm will fail to
retrieve the rare itemset {champagne, caviar} even though
it is highly relevant.

Attempts to resolve this issue have mainly involved design-
ing specific algorithms for mining rare itemsets (Yun et al.,
2003; Koh & Rountree, 2005; Szathmary et al., 2007).
However, these approaches (such as Apriori-Inverse) are
merely simple modifications of FIM which do not consider
statistical interestingness. Most rare itemsets are rare for
good reason, so that the list of all rare itemsets will include
many itemsets whose associations are spurious.

z(j)S

X (j)

S 2 IS 2 I

⇡S

j 2 1, ...,m

Figure 1. Graphical model for Interesting Itemset Mining.

4. Interesting Itemset Mining
In this section we will formulate the problem of identifying
a set of interesting itemsets that are useful for explaining a
database (i.e., sequence) of transactions. First we will de-
fine some preliminary concepts and notation. An item i is
an element of the universe U = {1, 2, . . . , n} that indexes
database attributes. A transaction X is a subset of the uni-
verse U and an itemset S is simply a set of items i. The
set of interesting itemsets I we wish to determine is there-
fore a subset of the power set (set of all possible subsets)
of the universe. Further, we say that an itemset S supports
a transaction X if S ⊂ X .

4.1. Generative Model

We propose a simple directed graphical model for generat-
ing a database of transactions X(1), . . . , X(m) from a set
I of interesting itemsets (see Figure 1). The parameters of
our model are Bernoulli probabilities πS for each interest-
ing itemset S ∈ I . The generative story for our model is,
independently for each transaction X in the database:

1. For each itemset S ∈ I , decide independently
whether to include S in the transaction, i.e., sample

zS ∼ Bernoulli(πS).

2. Set the transaction to be the set of items in all the item-
sets selected above, i.e.,

X =
⋃

zs=1

S.

Note that the model allows individual items to be generated
multiple times from different itemsets, e.g. eggs could be
generated both as part of a breakfast itemset {bacon, eggs}
and as as part of a cake itemset {flour, sugar, eggs}.

4.2. Inference

Given a set of itemsets I, let z,π denote the vectors of
zS ,πS for all itemsets S ∈ I. Assuming z,π are fully de-
termined, it is evident from the generative model that the

Parameters:

I Collection of
“interesting” itemsets

⇡S 2 [0, 1] S 2 Ifor each

probability of occurrence

Inference / Learning
Infer

NP-hard but submodular
(weighted set cover)
use greedy algorithm

z Xfrom

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Mining Interesting Itemsets

probability of generating a transaction X is

p(X, z|π) =
{∏

S∈I πzS
S (1− πS)1−zS if X =

⋃
zs=1 S,

0 otherwise

since each zS ∼ Bernoulli(πS). Now assuming the latent
variables π are known, we can infer z for a specific transac-
tion X by maximizing the posterior distribution p(z|X,π)
over z:

max
z

∏

S∈I
πzS
S (1− πS)

1−zS

s.t. X =
⋃

zs=1

S.
(4.1)

Taking logs and rewriting (4.1) in a more standard form we
obtain

max
z

∑

S∈I
zS ln

(
πS

1− πS

)
+ ln(1− πS)

s.t.
∑

S|i∈S

zS ≥ 1 ∀ i ∈ X

zS ∈ {0, 1} ∀S ∈ I

(4.2)

which is (up to a constant) the weighted set-cover problem
(see e.g. Korte & Vygen, 2012, ğ16.1) with weights wS ∈
R given by

wS := ln

(
πS

1− πS

)
.

This is an NP-hard problem in general and so impractical
to solve directly in practice. It is important to note that the
weighted set cover problem is a special case of maximiz-
ing a linear function subject to a submodular constraint1,
which we formulate as follows (cf. Young, 2008). Given
the set of interesting itemsets T := {S ∈ I |S ⊂ X} that
support the transaction, a real-valued weight wS for each
itemset S ∈ T and a non-decreasing submodular func-
tion f : 2T → R, the aim is to find a covering C ⊂ T
of maximum total weight, i.e., such that f(C) = f(T)
and

∑
S∈C wS is maximized. For weighted set cover we

simply define f(C) to be the number of items in C, i.e.,
f(C) := |∪S∈CS|. Note that f(T) = |X| by construction.

We can therefore approximately solve the weighted set
cover problem (4.2) using the greedy approximation algo-
rithm for submodular functions (Algorithm 1). The greedy
algorithm builds a covering C by repeatedly choosing an
itemset S that maximizes the weight wS divided by the
number of items not yet covered by the chosen itemset. In
order to minimize CPU time spent solving the weighted
set cover problem, we cache the itemsets and coverings for
each transaction as needed.

1Note that the posterior p(z|X) would not be submodular if
we were to use a noisy-OR model for the conditional probabilities.

Algorithm 1 Greedy Weighted Set Cover
Input: Transaction X , set of itemsets T , weights w

Initialize C ← ∅
while f(C) ̸= |X| do

Choose S ∈ T maximizing wS
f(C∪{S})−f(C)

C ← C ∪ {S}
end while
return C

It has been shown (Chvátal, 1979) that the greedy algorithm
achieves an ln|X|+ 1 approximation ratio to the weighted
set cover problem and moreover the following inapprox-
imability theorem shows that this is essentially the best pos-
sible approximation ratio.
Theorem 1 (Feige, 1998). There is no (1 − o(1)) ln|X|-
approximation algorithm to the weighted set cover problem
unless NP ⊆ DTIME(|X|O(log log|X|)), i.e., unless NP has
slightly superpolynomial time algorithms.

The runtime complexity of the greedy algorithm (Algo-
rithm 1) is O(|X||T |), however by maintaining a priority
queue this can be improved to O(|X| log|T |) (see e.g. Cor-
men et al., 2001). Note that there is also an O(|X||T |)-
runtime primal-dual approximation algorithm (Bar-Yehuda
& Even, 1981), however this has an approximation order
of f = maxi|{S | i ∈ S}|, i.e., the frequency of the most
frequent element, which would inevitably be worse in our
case.

4.3. Learning

Given a set of itemsets I, consider now the case where both
variables z,π in the model are unknown. In this case we
can use the hard EM algorithm (Dempster et al., 1977) for
parameter estimation with latent variables. The hard EM
algorithm in our case is merely a simple layer on top of
the inference algorithm (4.2). Suppose there are m trans-
actions X(1), . . . , X(m) with supporting sets of itemsets
T (1), . . . , T (m), then the hard EM algorithm is given in Al-
gorithm 2. To initialize π, a natural choice is simply the
support (relative frequency) of each itemset in I.

4.4. Inferring new itemsets

We can use structural EM (Friedman, 1998) to infer new
itemsets, i.e., we add a candidate itemset S′ to I if doing
so improves the optimal value p of the problem (4.2) av-
eraged across all transactions. Interestingly, there is an im-
plicit regularization effect here. Observe from Equation 4.1
that a new candidate S′ is added to the model, a corre-
sponding term log(1 − πS′) is added to the likelihood of
all transactions that S′ does not support. For large num-
bers of transactions, this amounts to a significant penalty
on candidates in practice.

“Implicit regularization”

Infer
Structural EM

I

Propose new itemset S
Add S to model
Re-infer
Check if cost improved

z

Redundancy

Plants Mammals ICDM Uganda

Interesting
Itemsets 3.50 5.30 3.66 3.72

KRIMP 1.53 2.02 2.22 2.24

CHARM 1.53 1.52 1.47 1.45

Average distance between itemsets in one ranked list
(symmetric distance, higher is better)

Facebook posts

IIM MTV KRIMP IIM not MTV/KRIMP

associ rule synthetic real algorithm experiment result set sequenc sequential
local global associ rule mine decis tree linear discriminant analysi

support vector machin svm frequent pattern mine algorithm high dimensional synthetic real life
parameter parameters frequent itemset mine inform model ensemble ensembles

anomali detect support vector machin associ rule mine event occurr
sequenc sequential naiv bayes synthetic real frequent item itemset transact

linear discriminant analysi state art time seri learner train
synthetic real life nearest neighbor feature select main memori

background knowledg play role knowledge discoveri privaci sensit
semi supervised linear discriminant analysi lda method find subset subsets

Table 3: Top ten non-singleton ICDM itemsets as found by IIM, MTV and KRIMP as well as those found by IIM but not MTV/KRIMP.
Note that MTV not IIM/KRIMP and KRIMP not IIM/MTV were both empty, lending further support to IIM’s statistical model.

IIM MTV KRIMP

soul, rest, peace heal, jesus, amen whi, ?
chris, brown god, amen ?, !
bebe, cool 2, 4 2, 4
airtel, red whi, ? wat, ?

everi, thing god, heal time, !
time, wast 2, ! soul, rest, peace

Table 4: Top six non-singleton Uganda itemsets for each method.

5 Conclusions

We presented a generative model that directly infers
itemsets that best explain a transaction database along
with a novel model-derived measure of interestingness
and demonstrated the e�cacy of our approach on both
synthetic and real-world databases. In future we would
like to extend our approach to directly inferring the
association rules implied by the itemsets and parallelize
our approach to large clusters so that we can e�ciently
scale to much larger databases.

References

[1] C. Aggarwal and J. Han. Frequent Pattern Mining.
Springer, 2014.

[2] R. Bar-Yehuda and S. Even. A linear-time approxima-
tion algorithm for the weighted vertex cover problem.
Journal of Algorithms, 2(2):198–203, 1981.

[3] V. Chvátal. A greedy heuristic for the set-covering
problem. Math. O.R., 4(3):233–235, 1979.

[4] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2001.

[5] A. Dempster, N. Laird, and D. Rubin. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society: Series B, pages
1–38, 1977.

[6] U. Feige. A threshold of ln n for approximating set
cover. Journal of the ACM, 45(4):634–652, 1998.

[7] P. Fournier-Viger, E. Mwamikazi, T. Gueniche, and
U. Faghihi. MEIT: Memory E�cient Itemset Tree for
targeted association rule mining. In Advanced Data
Mining and Applications, volume 8347 of Lecture Notes
in Computer Science, pages 95–106. Springer, 2013.

[8] N. Friedman. The Bayesian structural EM algorithm.

In UAI, pages 129–138, 1998.
[9] F. Geerts, B. Goethals, and T. Mielikäinen. Tiling

databases. In Discovery science, pages 278–289.
Springer, 2004.

[10] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In SIGMOD Record,
volume 29, pages 1–12. ACM, 2000.

[11] S. Jaroszewicz and D. A. Simovici. Interestingness
of frequent itemsets using Bayesian networks as back-
ground knowledge. In SIGKDD, pages 178–186. ACM,
2004.

[12] K.-N. Kontonasios and T. De Bie. An information-
theoretic approach to finding informative noisy tiles in
binary databases. In SDM, pages 153–164. SIAM, 2010.

[13] B. Korte and J. Vygen. Combinatorial Optimization:
Theory and Algorithms. Algorithms and Combinatorics.
Springer, 2012.

[14] M. Mampaey, J. Vreeken, and N. Tatti. Summarizing
data succinctly with the most informative itemsets.
TKDD, 6(4):16, 2012.

[15] C. Manning, P. Raghavan, and H. Schütze. Introduction
to Information Retrieval. Cambridge University Press,
2008.

[16] A. Mitchell-Jones, G. Amori, W. Bogdanowicz,
B. Kryötufek, P. Reijnders, F. Spitzenberger,
M. Stubbe, J. Thissen, V. Vohralík, and J. Zima.
The Atlas of European Mammals. T & AD Poyser,
1999.

[17] K. Murphy. Machine Learning: A Probabilistic Perspec-
tive. MIT Press, 2012.

[18] M. A. Shwe, B. Middleton, D. Heckerman, M. Henrion,
E. Horvitz, H. Lehmann, and G. Cooper. Probabilistic
diagnosis using a reformulation of the INTERNIST-
1/QMR knowledge base. Methods of information in
Medicine, 30(4):241–255, 1991.

[19] USDA. The PLANTS Database, 2008.
[20] J. Vreeken, M. Van Leeuwen, and A. Siebes. KRIMP:

mining itemsets that compress. Data Mining and
Knowledge Discovery, 23(1):169–214, 2011.

[21] N. Young. Greedy set-cover algorithms (1974-1979,
Chvátal, Johnson, Lovász, Stein). In M. Kao, editor,
Encyclopedia of Algorithms, pages 379–381. Springer,
2008.

[22] M. J. Zaki and C.-J. Hsiao. CHARM: An e�cient
algorithm for closed itemset mining. In SDM, volume 2,
pages 457–473. SIAM, 2002.

9

[courtesy John Quinn, UN Global Pulse]

Trending

[courtesy John Quinn, UN Global Pulse]

Facebook posts from public Ugandan pages

For both datasets, IIM, MTV and KRIMP find itemsets
that are spatially coherent, but as we showed in Table 1,
those returned by IIM are far less redundant. In partic-
ular, our interestingness measure enables IIM to rank
correlated itemsets above singletons and rare itemsets
above frequent ones, in contrast to MTV or KRIMP.
For example, for the plants dataset, the top itemset re-
trieved by IIM is {Puerto Rico, Virgin Islands} whereas
MTV returns {Puerto Rico}, not associating it with
the Virgin Islands (which are adjacent) until the 20th
ranked itemset. For the mammals dataset the top two
non-singleton IIM itemsets are a group of four mammals
that coexist in Scotland and Ireland and a group of ten
mammals that coexist on Sweden’s border with Norway.
By contrast, the top four KRIMP itemsets are lists of
some of the most common and well-known mammals in
Europe (see the supplementary material for details).
ICDM Dataset In this dataset [12], each transac-
tion is the abstract for an ICDM paper and each item is
a stemmed word in the abstract, excluding stop-words.
We show the top ten non-singleton itemsets returned
by IIM (ranked according to interestingness), MTV
(ranked according to probability) and KRIMP (ranked
according to usage) in Table 3. One can see that the IIM
itemsets are more informative since they contain inter-
esting collocations not found by the other algorithms
e.g. {privaci, sensit}, {main memori}. The IIM item-
sets also suggest that the stemmer used to process the
dataset could be improved, as we retrieve the itemsets
{parameter, parameters}, {sequenc, sequential}, {en-

semble, ensembles} and {subset, subsets}.
Uganda Dataset This dataset consists of Face-
book messages taken from a set of public Uganda-based
pages with substantial topical discussion (pages of news-
papers, radio stations, government ministries and em-
bassies) over a period of three months. Each transac-
tion in the dataset is an English language message and
each item is a stemmed English word from the mes-
sage. The top six non-singleton itemsets found by the
algorithms are shown in Table 4; the IIM itemsets pro-
vide much more information about the topics of the
tweets than those from MTV and KRIMP. Figure 4
plots the mentions of each of the top IIM itemsets per
day. As one can see, usage of the top itemsets display

Dataset Items Transactions Itemsets† Runtime

Plants 70 34, 781 259 27 min
Mammals 194 2, 670 359 22 min
ICDM 4, 976 859 798 163 min
Uganda 33, 278 124, 566 928 1086 min

Table 2: Summary of the real datasets used and IIM results after
1, 000 iterations. † excluding singleton itemsets.

Figure 4: Mentions per day of the top six non-singleton IIM
itemsets from the Uganda messages dataset over three months.

Figure 5: Mentions per day of the top six non-singleton MTV
itemsets from the Uganda messages dataset over three months.

temporal structure (and exhibit spikes of popularity),
even though our model does not explicitly capture this.
Of particular interest are the large spikes of the item-
set {soul, rest, peac} corresponding to notable deaths:
wealthy businessman James Mulwana on the 15th Jan-
uary, President Museveni’s father on the 22nd February
and six school students in a tra�c accident on the 29th
March. Also of interest are the 285 mentions of {air-

tel, red} on New Year’s Eve corresponding to mobile
provider Airtel’s Red Christmas competition for 10K
worth of airtime. The spike of {bebe, cool} on the 15th
January corresponds to the Ugandan musician’s wed-
ding announcement and the spike on the 24th January
of {chris, brown} refers to many enthusiastic mentions
of the popular American singer that day. The last two
itemsets capture that everything and time-wasting are
common phrases.

In comparison, the top-six MTV itemsets are plot-
ted in Figure 5. One can see that the itemsets {heal,

jesus, amen};{god, amen} and {god, heal} substantially
overlap and are strongly correlated with each other,
sharing a large spike on the 8th February and a smaller
spike on the 11th March. The remaining itemsets ex-
hibit no interesting spikes as one would expect. The top
six KRIMP itemsets in Table 4 all displayed random
time evolution (as one would expect) except for {soul,

rest, peac} which we have already encountered.

8

For both datasets, IIM, MTV and KRIMP find itemsets
that are spatially coherent, but as we showed in Table 1,
those returned by IIM are far less redundant. In partic-
ular, our interestingness measure enables IIM to rank
correlated itemsets above singletons and rare itemsets
above frequent ones, in contrast to MTV or KRIMP.
For example, for the plants dataset, the top itemset re-
trieved by IIM is {Puerto Rico, Virgin Islands} whereas
MTV returns {Puerto Rico}, not associating it with
the Virgin Islands (which are adjacent) until the 20th
ranked itemset. For the mammals dataset the top two
non-singleton IIM itemsets are a group of four mammals
that coexist in Scotland and Ireland and a group of ten
mammals that coexist on Sweden’s border with Norway.
By contrast, the top four KRIMP itemsets are lists of
some of the most common and well-known mammals in
Europe (see the supplementary material for details).
ICDM Dataset In this dataset [12], each transac-
tion is the abstract for an ICDM paper and each item is
a stemmed word in the abstract, excluding stop-words.
We show the top ten non-singleton itemsets returned
by IIM (ranked according to interestingness), MTV
(ranked according to probability) and KRIMP (ranked
according to usage) in Table 3. One can see that the IIM
itemsets are more informative since they contain inter-
esting collocations not found by the other algorithms
e.g. {privaci, sensit}, {main memori}. The IIM item-
sets also suggest that the stemmer used to process the
dataset could be improved, as we retrieve the itemsets
{parameter, parameters}, {sequenc, sequential}, {en-

semble, ensembles} and {subset, subsets}.
Uganda Dataset This dataset consists of Face-
book messages taken from a set of public Uganda-based
pages with substantial topical discussion (pages of news-
papers, radio stations, government ministries and em-
bassies) over a period of three months. Each transac-
tion in the dataset is an English language message and
each item is a stemmed English word from the mes-
sage. The top six non-singleton itemsets found by the
algorithms are shown in Table 4; the IIM itemsets pro-
vide much more information about the topics of the
tweets than those from MTV and KRIMP. Figure 4
plots the mentions of each of the top IIM itemsets per
day. As one can see, usage of the top itemsets display

Dataset Items Transactions Itemsets† Runtime

Plants 70 34, 781 259 27 min
Mammals 194 2, 670 359 22 min
ICDM 4, 976 859 798 163 min
Uganda 33, 278 124, 566 928 1086 min

Table 2: Summary of the real datasets used and IIM results after
1, 000 iterations. † excluding singleton itemsets.

Figure 4: Mentions per day of the top six non-singleton IIM
itemsets from the Uganda messages dataset over three months.

Figure 5: Mentions per day of the top six non-singleton MTV
itemsets from the Uganda messages dataset over three months.

temporal structure (and exhibit spikes of popularity),
even though our model does not explicitly capture this.
Of particular interest are the large spikes of the item-
set {soul, rest, peac} corresponding to notable deaths:
wealthy businessman James Mulwana on the 15th Jan-
uary, President Museveni’s father on the 22nd February
and six school students in a tra�c accident on the 29th
March. Also of interest are the 285 mentions of {air-

tel, red} on New Year’s Eve corresponding to mobile
provider Airtel’s Red Christmas competition for 10K
worth of airtime. The spike of {bebe, cool} on the 15th
January corresponds to the Ugandan musician’s wed-
ding announcement and the spike on the 24th January
of {chris, brown} refers to many enthusiastic mentions
of the popular American singer that day. The last two
itemsets capture that everything and time-wasting are
common phrases.

In comparison, the top-six MTV itemsets are plot-
ted in Figure 5. One can see that the itemsets {heal,

jesus, amen};{god, amen} and {god, heal} substantially
overlap and are strongly correlated with each other,
sharing a large spike on the 8th February and a smaller
spike on the 11th March. The remaining itemsets ex-
hibit no interesting spikes as one would expect. The top
six KRIMP itemsets in Table 4 all displayed random
time evolution (as one would expect) except for {soul,

rest, peac} which we have already encountered.

8

IIM MTV

Plants
Figure 2: The top-four itemsets (groups of US/Canadian states) found by MTV for the plants dataset (top-left is {Puerto Rico}).
Note that these are much smaller collections of states than those found by IIM and, unlike IIM, Virgin Islands is not associated with
Puerto Rico.

Figure 3: The top-four itemsets (groups of US/Canadian states) found by KRIMP for the plants dataset (top-right is {Hawaii},
bottom-left is {Puerto Rico}). Note that these are much smaller collections of states than those found by IIM and, unlike IIM, Virgin
Islands is not associated with Puerto Rico.

3

KRIMP

Plants
IIM

Figure 1: The top-four itemsets (groups of US/Canadian states) found by IIM for the plants dataset (top left is {Puerto Rico, Virgin
Islands}). Note how they correspond to geographically distinct and spatially coherent regions, even though this information is not
encoded in the model.

2

Frequent Sequence Mining

Database of sequences

[Agrawal and Srikant, 1995;
Wang and Han, 2004]

Sequence patterns

b d b a f e c
b c e a
e d a f c
a e f b
b d a e f c

d a f c
b a f c
a e
b e
e c
…
(e.g. minimum support = 3)

Problem: Frequent can be trivial!

Return all patterns with >= given support
Support of pattern: Number of database
sequences that contain it

d a f c
b a f c
a e
b e
e c
…

b d b a f e c
b c e a
e d a f c
a e f b
b d a e f c

Fundamental Pathologies
Truncation

d a f c
Real pattern

a c
Could be returned
(more frequent!)

Spurious correlation

Effect: Redundant
list of patternsFreerider

Support(a) = 90%
Support(d) = 90%
… but independent …

d a
Pattern at 81%
min_support

a f c real pattern
Support(d) = 90%
… but independent …

a d f c
for high enough
min_support

Probabilistic Sequence Mining
[Fowkes and Sutton, KDD 2016]

Define a distribution P(database | patterns)

 [b c e] : 0.1, 0.6
 [d f] : 0.7, 0.3
 [d f] : 0.8, 0.2
 [e f] : 0.8, 0.1

and include it in X if zS = 1. However, we may wish to in-
clude a subsequence more than once in the sequence X, that
is, we need some way of sampling the multiplicity of S in X.
The simplest way to do this is to change our generating dis-
tribution from Bernoulli to e.g. Categorical and sample the
multiplicity zS ≥ Categorical(fiS) where fiS is now a vec-
tor of probabilities, with one entry for each multiplicity (up
to the maximum in the database). We define the generative
model formally in the next section.

3.2 Generative Model
As discussed in the previous section, we propose a simple

directed graphical model for generating a database of se-
quences X(1), . . . , X(N) from a set I of interesting sequences.
The generative story for our model is, independently for each
sequence X in the database:
1. For each interesting sequence S œ I, decide indepen-

dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For clar-
ity we present the Categorical distribution here but one
could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all the
sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together all occurrences of the
sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

Here by interleaving we mean the placing of items from
one sequence into the gaps between items in another
whilst maintaining the orders of the items imposed by
each sequence.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the

probability of generating a database sequence X is

p(X, z|�) =
; 1

|P|
r

SœI

r|fiS |≠1
m=0 fi[zS=m]

Sm
if X œ P,

0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being an infinite vector and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
!q

SœS |S|
"
!

Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
non-redundant set of sequences (see Section 4.2).

Now assuming the parameters � are known, we can infer
z for a database sequence X by maximizing the log of the
lower bound on the posterior p(X, z|�) over z:

max
z

ÿ

SœI

|fiS |≠1ÿ

m=0

[zS = m] ln(fiSm) ≠

q
SœS

|S|ÿ

j=1

ln j

s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC

|fiS |≠1ÿ

m=0

[#C(S) = m] ln(fiSm) ≠

q
SœC

|S|ÿ

j=1

ln j

Sequence patterns  
(with probabilities)

Inclusion variables:
z1: 1
z2: 1
z3: 1
z4: 0

Sample

Interleave
randomly

Sampled database sequence

 b d c e d f f

and include it in X if zS = 1. However, we may wish to in-
clude a subsequence more than once in the sequence X, that
is, we need some way of sampling the multiplicity of S in X.
The simplest way to do this is to change our generating dis-
tribution from Bernoulli to e.g. Categorical and sample the
multiplicity zS ≥ Categorical(fiS) where fiS is now a vec-
tor of probabilities, with one entry for each multiplicity (up
to the maximum in the database). We define the generative
model formally in the next section.

3.2 Generative Model
As discussed in the previous section, we propose a simple

directed graphical model for generating a database of se-
quences X(1), . . . , X(N) from a set I of interesting sequences.
The generative story for our model is, independently for each
sequence X in the database:
1. For each interesting sequence S œ I, decide indepen-

dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For clar-
ity we present the Categorical distribution here but one
could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all the
sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together all occurrences of the
sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

Here by interleaving we mean the placing of items from
one sequence into the gaps between items in another
whilst maintaining the orders of the items imposed by
each sequence.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the

probability of generating a database sequence X is

p(X, z|�) =
; 1

|P|
r

SœI

r|fiS |≠1
m=0 fi[zS=m]

Sm
if X œ P,

0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being an infinite vector and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
!q

SœS |S|
"
!

Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
non-redundant set of sequences (see Section 4.2).

Now assuming the parameters � are known, we can infer
z for a database sequence X by maximizing the log of the
lower bound on the posterior p(X, z|�) over z:

max
z

ÿ

SœI

|fiS |≠1ÿ

m=0

[zS = m] ln(fiSm) ≠

q
SœS

|S|ÿ

j=1

ln j

s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC

|fiS |≠1ÿ

m=0

[#C(S) = m] ln(fiSm) ≠

q
SœC

|S|ÿ

j=1

ln j

probability of generating
from this process

P (X, z|I)
X, z

Probabilistic Sequence Mining
[Fowkes and Sutton, KDD 2016]

1. For each interesting sequence S œ I, decide indepen-
dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For
clarity we present the Categorical distribution here but
one could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all
the sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can
be generated by interleaving together all occurrences
of the sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.
Context Sensitivity Note that our generative model can
induce languages that are context-sensitive and not context-
free. To see this, consider the language L(I) of all sequences
generated by interleaving the unique subsequences S œ I,
allowing S to be re-used an arbitrary number of times. First,
we can always describe this language using a non-contractive
grammar, i.e., a grammar whose production rules are of the
form – æ — s.t. |–| Æ |—| where –, — are strings of terminal
and non-terminal symbols. In particular, our subsequence
interleaving sampler clearly corresponds to a grammar of
this form, showing that it is context-sensitive. To see that
the generative model can induce languages that are not con-
text free, consider I to be the set of all permutations of the
sequence (a, b, c). Then L(I) is the set of all sequences x

that consist of an equal number of occurrences of a, b, and
c. This language is not context-free.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the
probability of generating a database sequence X is

p(X, z|�) =
; 1

|P|
r

SœI

r|fiS |≠1
m=0 fi

[zS=m]
Sm

if X œ P,
0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being countably infinite and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
!q

SœS |S|
"
!

Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
small non-redundant set of sequences.

Now assuming the latent variables � are known, we can
infer z for a database sequence X by maximizing the log of
the lower bound on the posterior p(X, z|�) over z:

max
z

ÿ

SœI

|fiS |≠1ÿ

m=0

[zS = m] ln(fiSm) ≠

q
SœS

|S|ÿ

j=1

ln j

s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC

|fiS |≠1ÿ

m=0

[#C(S) = m] ln(fiSm) ≠

q
SœC

|S|ÿ

j=1

ln j

and g(C) := |fiSœCS|. We can now re-state (3.1) as: Find
a non-overlapping multiset covering C µ T that maximizes
f(C) , i.e., such that g(C) = g(T) and f(C) is maximized.
Note that g(T) = |X| by construction. Now clearly g is

3

1. For each interesting sequence S œ I, decide indepen-
dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For
clarity we present the Categorical distribution here but
one could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all
the sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can
be generated by interleaving together all occurrences
of the sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.
Context Sensitivity Note that our generative model can
induce languages that are context-sensitive and not context-
free. To see this, consider the language L(I) of all sequences
generated by interleaving the unique subsequences S œ I,
allowing S to be re-used an arbitrary number of times. First,
we can always describe this language using a non-contractive
grammar, i.e., a grammar whose production rules are of the
form – æ — s.t. |–| Æ |—| where –, — are strings of terminal
and non-terminal symbols. In particular, our subsequence
interleaving sampler clearly corresponds to a grammar of
this form, showing that it is context-sensitive. To see that
the generative model can induce languages that are not con-
text free, consider I to be the set of all permutations of the
sequence (a, b, c). Then L(I) is the set of all sequences x

that consist of an equal number of occurrences of a, b, and
c. This language is not context-free.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the
probability of generating a database sequence X is

p(X, z|�) =
; 1

|P|
r

SœI

r|fiS |≠1
m=0 fi

[zS=m]
Sm

if X œ P,
0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being countably infinite and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
!q

SœS |S|
"
!

Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
small non-redundant set of sequences.

Now assuming the latent variables � are known, we can
infer z for a database sequence X by maximizing the log of
the lower bound on the posterior p(X, z|�) over z:

max
z

ÿ

SœI

|fiS |≠1ÿ

m=0

[zS = m] ln(fiSm) ≠

q
SœS

|S|ÿ

j=1

ln j

s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC

|fiS |≠1ÿ

m=0

[#C(S) = m] ln(fiSm) ≠

q
SœC

|S|ÿ

j=1

ln j

and g(C) := |fiSœCS|. We can now re-state (3.1) as: Find
a non-overlapping multiset covering C µ T that maximizes
f(C) , i.e., such that g(C) = g(T) and f(C) is maximized.
Note that g(T) = |X| by construction. Now clearly g is

3

Model:

Inference: Determine z|X, I

 b d c e d f f

and include it in X if zS = 1. However, we may wish to in-
clude a subsequence more than once in the sequence X, that
is, we need some way of sampling the multiplicity of S in X.
The simplest way to do this is to change our generating dis-
tribution from Bernoulli to e.g. Categorical and sample the
multiplicity zS ≥ Categorical(fiS) where fiS is now a vec-
tor of probabilities, with one entry for each multiplicity (up
to the maximum in the database). We define the generative
model formally in the next section.

3.2 Generative Model
As discussed in the previous section, we propose a simple

directed graphical model for generating a database of se-
quences X(1), . . . , X(N) from a set I of interesting sequences.
The generative story for our model is, independently for each
sequence X in the database:
1. For each interesting sequence S œ I, decide indepen-

dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For clar-
ity we present the Categorical distribution here but one
could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all the
sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together all occurrences of the
sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

Here by interleaving we mean the placing of items from
one sequence into the gaps between items in another
whilst maintaining the orders of the items imposed by
each sequence.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the

probability of generating a database sequence X is

p(X, z|�) =
; 1

|P|
r

SœI

r|fiS |≠1
m=0 fi[zS=m]

Sm
if X œ P,

0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being an infinite vector and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
!q

SœS |S|
"
!

Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
non-redundant set of sequences (see Section 4.2).

Now assuming the parameters � are known, we can infer
z for a database sequence X by maximizing the log of the
lower bound on the posterior p(X, z|�) over z:

max
z

ÿ

SœI

|fiS |≠1ÿ

m=0

[zS = m] ln(fiSm) ≠

q
SœS

|S|ÿ

j=1

ln j

s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC

|fiS |≠1ÿ

m=0

[#C(S) = m] ln(fiSm) ≠

q
SœC

|S|ÿ

j=1

ln j

Use greedy algorithm to
max

z
log p(z|X, I)

(extension of weighted set cover)

cover these?

or these?

 [b c e] : 0.1, 0.6
 [d f] : 0.7, 0.3
 [d f] : 0.8, 0.2
 [e f] : 0.8, 0.1

and include it in X if zS = 1. However, we may wish to in-
clude a subsequence more than once in the sequence X, that
is, we need some way of sampling the multiplicity of S in X.
The simplest way to do this is to change our generating dis-
tribution from Bernoulli to e.g. Categorical and sample the
multiplicity zS ≥ Categorical(fiS) where fiS is now a vec-
tor of probabilities, with one entry for each multiplicity (up
to the maximum in the database). We define the generative
model formally in the next section.

3.2 Generative Model
As discussed in the previous section, we propose a simple

directed graphical model for generating a database of se-
quences X(1), . . . , X(N) from a set I of interesting sequences.
The generative story for our model is, independently for each
sequence X in the database:
1. For each interesting sequence S œ I, decide indepen-

dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For clar-
ity we present the Categorical distribution here but one
could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all the
sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together all occurrences of the
sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

Here by interleaving we mean the placing of items from
one sequence into the gaps between items in another
whilst maintaining the orders of the items imposed by
each sequence.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the

probability of generating a database sequence X is

p(X, z|�) =
; 1

|P|
r

SœI

r|fiS |≠1
m=0 fi[zS=m]

Sm
if X œ P,

0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being an infinite vector and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
!q

SœS |S|
"
!

Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
non-redundant set of sequences (see Section 4.2).

Now assuming the parameters � are known, we can infer
z for a database sequence X by maximizing the log of the
lower bound on the posterior p(X, z|�) over z:

max
z

ÿ

SœI

|fiS |≠1ÿ

m=0

[zS = m] ln(fiSm) ≠

q
SœS

|S|ÿ

j=1

ln j

s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC

|fiS |≠1ÿ

m=0

[#C(S) = m] ln(fiSm) ≠

q
SœC

|S|ÿ

j=1

ln j

Probabilistic Sequence Mining
[Fowkes and Sutton, KDD 2016]

Output of inference

b d c e d f f
e e d f f f
d f d d f f

Formally: Structural Expectation Maximization

[b c e] [d f] [d f] [e f]
1								1			1			0	
0								1			0			1		
0								1			1			1

z

Learning step: Infer

and include it in X if zS = 1. However, we may wish to in-
clude a subsequence more than once in the sequence X, that
is, we need some way of sampling the multiplicity of S in X.
The simplest way to do this is to change our generating dis-
tribution from Bernoulli to e.g. Categorical and sample the
multiplicity zS ≥ Categorical(fiS) where fiS is now a vec-
tor of probabilities, with one entry for each multiplicity (up
to the maximum in the database). We define the generative
model formally in the next section.

3.2 Generative Model
As discussed in the previous section, we propose a simple

directed graphical model for generating a database of se-
quences X(1), . . . , X(N) from a set I of interesting sequences.
The generative story for our model is, independently for each
sequence X in the database:
1. For each interesting sequence S œ I, decide indepen-

dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For clar-
ity we present the Categorical distribution here but one
could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all the
sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together all occurrences of the
sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

Here by interleaving we mean the placing of items from
one sequence into the gaps between items in another
whilst maintaining the orders of the items imposed by
each sequence.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the

probability of generating a database sequence X is

p(X, z|�) =
; 1

|P|
r

SœI

r|fiS |≠1
m=0 fi[zS=m]

Sm
if X œ P,

0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being an infinite vector and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
!q

SœS |S|
"
!

Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
non-redundant set of sequences (see Section 4.2).

Now assuming the parameters � are known, we can infer
z for a database sequence X by maximizing the log of the
lower bound on the posterior p(X, z|�) over z:

max
z

ÿ

SœI

|fiS |≠1ÿ

m=0

[zS = m] ln(fiSm) ≠

q
SœS

|S|ÿ

j=1

ln j

s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC

|fiS |≠1ÿ

m=0

[#C(S) = m] ln(fiSm) ≠

q
SœC

|S|ÿ

j=1

ln j

Update probabilities
 (average of z)

Propose new patterns
Add to model
See if probability increases

 [b c e] : 0.3, 0.7
 [d f] : 0.0, 1.0
 [d f] : 0.7, 0.3
 [e f] : 0.3, 0.7

and include it in X if zS = 1. However, we may wish to in-
clude a subsequence more than once in the sequence X, that
is, we need some way of sampling the multiplicity of S in X.
The simplest way to do this is to change our generating dis-
tribution from Bernoulli to e.g. Categorical and sample the
multiplicity zS ≥ Categorical(fiS) where fiS is now a vec-
tor of probabilities, with one entry for each multiplicity (up
to the maximum in the database). We define the generative
model formally in the next section.

3.2 Generative Model
As discussed in the previous section, we propose a simple

directed graphical model for generating a database of se-
quences X(1), . . . , X(N) from a set I of interesting sequences.
The generative story for our model is, independently for each
sequence X in the database:
1. For each interesting sequence S œ I, decide indepen-

dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For clar-
ity we present the Categorical distribution here but one
could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all the
sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together all occurrences of the
sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

Here by interleaving we mean the placing of items from
one sequence into the gaps between items in another
whilst maintaining the orders of the items imposed by
each sequence.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the

probability of generating a database sequence X is

p(X, z|�) =
; 1

|P|
r

SœI

r|fiS |≠1
m=0 fi[zS=m]

Sm
if X œ P,

0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being an infinite vector and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
!q

SœS |S|
"
!

Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
non-redundant set of sequences (see Section 4.2).

Now assuming the parameters � are known, we can infer
z for a database sequence X by maximizing the log of the
lower bound on the posterior p(X, z|�) over z:

max
z

ÿ

SœI

|fiS |≠1ÿ

m=0

[zS = m] ln(fiSm) ≠

q
SœS

|S|ÿ

j=1

ln j

s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC

|fiS |≠1ÿ

m=0

[#C(S) = m] ln(fiSm) ≠

q
SœC

|S|ÿ

j=1

ln j

Application to Software
Engineering

[Fowkes & Sutton, FSE 2016]

http://bit.ly/sutton-ml-exploration

http://bit.ly/sutton-ml-exploration

Modern development is
layers of libraries

http://groups.inf.ed.ac.uk/cup/javaGithub/

Github Java corpus (Allamanis and Sutton, 2013)
13000+ projects with at least one fork, 2M+ Java files

Average Java file on Github:
Imports from 2.1 packages outside project

45% of files import an external package
 (Not counting java.*	javax.*	sun.*)	

(heuristic analysis)

API Mining

Corpus of client code

Library

API patterns Documentation
Suggestion

[Zhong et al, 2009; Dang et al 2013]

e.g.

jrupac/CleanTwitter

brk3 / finch

katahirado/tsubunomi

private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model

private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model

private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model

TwitterFactory.<init> TwitterFactory.<init> TwitterFactory.<init>
TwitterFactory.getInstance TwitterFactory.getInstance TwitterFactory.getInstance

Status.getUser TwitterFactory.getInstance TwitterFactory.<init>
Status.getText Twitter.setOAuthConsumer TwitterFactory.getInstance

Twitter.setOAuthConsumer
ConfigurationBuilder.<init> TwitterFactory.<init> Twitter.setOAuthAccessToken
ConfigurationBuilder.build TwitterFactory.getInstance

Twitter.setOAuthConsumer Status.getUser
ConfigurationBuilder.<init> Status.getText
TwitterFactory.<init> Status.getUser

Status.getText auth.AccessToken.getToken
ConfigurationBuilder.<init> auth.AccessToken.getTokenSecret
ConfigurationBuilder.setOAuthConsumerKey Twitter.setOAuthConsumer

Twitter.setOAuthAccessToken ConfigurationBuilder.<init>
ConfigurationBuilder.build ConfigurationBuilder.build
TwitterFactory.<init> TwitterFactory.<init> TwitterFactory.<init>

TwitterFactory.getInstance TwitterFactory.getInstance
ConfigurationBuilder.<init> Twitter.setOAuthAccessToken
ConfigurationBuilder.build Status.getId
TwitterFactory.<init> ConfigurationBuilder.<init> Status.getId

TwitterFactory.<init>
ConfigurationBuilder.<init> ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey ConfigurationBuilder.<init> ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.build TwitterFactory.<init> ConfigurationBuilder.setOAuthConsumerSecret

TwitterFactory.getInstance ConfigurationBuilder.build
ConfigurationBuilder.setOAuthConsumerKey TwitterFactory.<init>
ConfigurationBuilder.build auth.AccessToken.<init> TwitterFactory.getInstance

Twitter.setOAuthAccessToken
User.getId http.AccessToken.getToken
User.getId TwitterFactory.<init> http.AccessToken.getTokenSecret

TwitterFactory.getInstance
Twitter.setOAuthConsumer Twitter.getOAuthAccessToken
Twitter.setOAuthAccessToken auth.AccessToken.getToken

auth.AccessToken.getTokenSecret

ConfigurationBuilder.setOAuthAccessToken
ConfigurationBuilder.setOAuthAccessTokenSecret

Figure 5: Top twitter4j.* API patterns mined by MAPO [44] (left), UPMiner [40] (middle), and PAM (right).

API patterns returned by PAM that were not present in any
example call sequence. We found that the 15 selected API
patterns fell into the following three categories: 7 referred
to an API method not in any of the examples, 3 referred
to an API class not in any of the examples and 5 referred
to an API pattern that was not contained in any API ex-
ample (although its methods were present in the examples).
This provides some support for the hypothesis that the API
patterns document part of the API that are used in client
code but for which the original developers have not chosen
to write specific examples.

Overall these results suggest that the patterns returned by
PAM could serve as a useful supplement to code examples
written by API developers. Indeed, these results raise the
question of whether, in future work, PAM could be used to
help detect novel and undocumented API usages and feed
them back to library and framework maintainers.

Qualitative Evaluation To provide further support to
RQ3, whether the mined patterns from PAM could be useful,
we qualitatively compare and contrast the top sequences
returned by PAM, MAPO, and UPMiner on an example
target API. Figure 5 shows the top ten mined API patterns
from twitter4j returned by PAM, MAPO and UPMiner on
the Example dataset. One can clearly see that the API calls
found by MAPO are extremely repetitive, in fact most of the
top ten calls are just combinations of subsequences of the
following pattern:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

which (according to our manual inspection) occurs commonly
in client code but does not appear anywhere in the top ten
patterns returned by MAPO. Similarly, the majority of the
top ten UPMiner patterns are combinations of subsequences
of the pattern:

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthConsumer
Twitter.setOAuthAccessToken

despite the full version of this sequence appearing as the
10th pattern returned by UPMiner. PAM on the other hand,
retrieves both of these full patterns within the top ten. One
might think that the ConfigurationBuilder pattern without
OAuth returned by PAM is redundant, however not all clients
use OAuth. Moreover, the sequences returned by PAM clearly
display a more diverse selection of API methods: The top
ten PAM sequences use 20 unique API methods, compared
to only 8 for both MAPO and UPMiner.

6. CONCLUSIONS
We presented a parameter-free probabilistic API mining

algorithm that makes use of a novel probabilistic model to
infers the most interesting API call patterns and demon-
strated the e�cacy of our approach on dataset of several
hundred thousand API client files from GitHub. Through
our experiments we found suggestions that API calls are not
well documented in example code and in future we would
like to verify this through a large-scale empirical study.

7. ACKNOWLEDGMENTS
This work was supported by the Engineering and Physical

Sciences Research Council (grant number EP/K024043/1).

TwitterFactory.<init> TwitterFactory.<init> TwitterFactory.<init>
TwitterFactory.getInstance TwitterFactory.getInstance TwitterFactory.getInstance

Status.getUser TwitterFactory.getInstance TwitterFactory.<init>
Status.getText Twitter.setOAuthConsumer TwitterFactory.getInstance

Twitter.setOAuthConsumer
ConfigurationBuilder.<init> TwitterFactory.<init> Twitter.setOAuthAccessToken
ConfigurationBuilder.build TwitterFactory.getInstance

Twitter.setOAuthConsumer Status.getUser
ConfigurationBuilder.<init> Status.getText
TwitterFactory.<init> Status.getUser

Status.getText auth.AccessToken.getToken
ConfigurationBuilder.<init> auth.AccessToken.getTokenSecret
ConfigurationBuilder.setOAuthConsumerKey Twitter.setOAuthConsumer

Twitter.setOAuthAccessToken ConfigurationBuilder.<init>
ConfigurationBuilder.build ConfigurationBuilder.build
TwitterFactory.<init> TwitterFactory.<init> TwitterFactory.<init>

TwitterFactory.getInstance TwitterFactory.getInstance
ConfigurationBuilder.<init> Twitter.setOAuthAccessToken
ConfigurationBuilder.build Status.getId
TwitterFactory.<init> ConfigurationBuilder.<init> Status.getId

TwitterFactory.<init>
ConfigurationBuilder.<init> ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey ConfigurationBuilder.<init> ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.build TwitterFactory.<init> ConfigurationBuilder.setOAuthConsumerSecret

TwitterFactory.getInstance ConfigurationBuilder.build
ConfigurationBuilder.setOAuthConsumerKey TwitterFactory.<init>
ConfigurationBuilder.build auth.AccessToken.<init> TwitterFactory.getInstance

Twitter.setOAuthAccessToken
User.getId http.AccessToken.getToken
User.getId TwitterFactory.<init> http.AccessToken.getTokenSecret

TwitterFactory.getInstance
Twitter.setOAuthConsumer Twitter.getOAuthAccessToken
Twitter.setOAuthAccessToken auth.AccessToken.getToken

auth.AccessToken.getTokenSecret

ConfigurationBuilder.setOAuthAccessToken
ConfigurationBuilder.setOAuthAccessTokenSecret

Figure 5: Top twitter4j.* API patterns mined by MAPO [44] (left), UPMiner [40] (middle), and PAM (right).

API patterns returned by PAM that were not present in any
example call sequence. We found that the 15 selected API
patterns fell into the following three categories: 7 referred
to an API method not in any of the examples, 3 referred
to an API class not in any of the examples and 5 referred
to an API pattern that was not contained in any API ex-
ample (although its methods were present in the examples).
This provides some support for the hypothesis that the API
patterns document part of the API that are used in client
code but for which the original developers have not chosen
to write specific examples.

Overall these results suggest that the patterns returned by
PAM could serve as a useful supplement to code examples
written by API developers. Indeed, these results raise the
question of whether, in future work, PAM could be used to
help detect novel and undocumented API usages and feed
them back to library and framework maintainers.

Qualitative Evaluation To provide further support to
RQ3, whether the mined patterns from PAM could be useful,
we qualitatively compare and contrast the top sequences
returned by PAM, MAPO, and UPMiner on an example
target API. Figure 5 shows the top ten mined API patterns
from twitter4j returned by PAM, MAPO and UPMiner on
the Example dataset. One can clearly see that the API calls
found by MAPO are extremely repetitive, in fact most of the
top ten calls are just combinations of subsequences of the
following pattern:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

which (according to our manual inspection) occurs commonly
in client code but does not appear anywhere in the top ten
patterns returned by MAPO. Similarly, the majority of the
top ten UPMiner patterns are combinations of subsequences
of the pattern:

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthConsumer
Twitter.setOAuthAccessToken

despite the full version of this sequence appearing as the
10th pattern returned by UPMiner. PAM on the other hand,
retrieves both of these full patterns within the top ten. One
might think that the ConfigurationBuilder pattern without
OAuth returned by PAM is redundant, however not all clients
use OAuth. Moreover, the sequences returned by PAM clearly
display a more diverse selection of API methods: The top
ten PAM sequences use 20 unique API methods, compared
to only 8 for both MAPO and UPMiner.

6. CONCLUSIONS
We presented a parameter-free probabilistic API mining

algorithm that makes use of a novel probabilistic model to
infers the most interesting API call patterns and demon-
strated the e�cacy of our approach on dataset of several
hundred thousand API client files from GitHub. Through
our experiments we found suggestions that API calls are not
well documented in example code and in future we would
like to verify this through a large-scale empirical study.

7. ACKNOWLEDGMENTS
This work was supported by the Engineering and Physical

Sciences Research Council (grant number EP/K024043/1).

Coding

API Mining

Frequent Sequence Mining

Database of sequences
Sequence patterns

b d b a f e c
b c e a
e d a f c
a e f b
b d a e f c

d a f c
b a f c
a e
b e
e c
…
(e.g. minimum support = 3)

Each transaction: client method
Each element: a method call to an API method

d a f c
b a f c
a e
b e
e c
…

b d b a f e c
b c e a
e d a f c
a e f b
b d a e f c

For API Mining…

Previous Approach: Cluster before/after

TwitterFactory.getInstance
Twitter.setOAuthConsumer

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthConsumer

TwitterFactory.<init>
Twitter.setOAuthAccessToken

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthAccessToken

TwitterFactory.getInstance
Twitter.setOAuthAccessToken

TwitterFactory.<init>
Twitter.setOAuthConsumer
Twitter.setOAuthAccessToken

TwitterFactory.<init>
TwitterFactory.getInstance

TwitterFactory.<init>
Twitter.setOAuthConsumer

Status.getUser
Status.getText

auth.AccessToken.<init>
Twitter.setOAuthAccessToken

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthConsumer
Twitter.setOAuthAccessToken

Top 10 API patterns
from pure sequence

mining (BIDE)

[Zhong et al, 2009; Dang et al 2013]

Probabilistic API Miner (PAM)
Interesting sequence mining for API mining

jrupac/CleanTwitter

brk3 / finch

katahirado/tsubunomi

private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model

private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model

private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.setUseSSL
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.setOAuthAccessToken
ConfigurationBuilder.setOAuthAccessTokenSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance
TwitterFactory.getOAuthRequestToken
RequestToken.getAuthenticationURL

Corpus

Sequence database Probabilistic
sequence mining

Data
Target projects: 17 Java libraries, all that:

Library source on Github
Library in top 1000 Github projects
Called by >50 other methods on Github
At least 10k lines of example/ code
Total: Over 300k lines of example code

Client methods: all that called any targets
967 client projects
Total: Over 4M lines of client code

Experimental Questions

Quality
Match to “held-out” client code
Match to examples from library developers
Measure: sequence overlap, precision, recall

Redundancy
Why? Ease of use, diversity
Measure: number of containing sequences

All results averaged over the 17 libraries

0 100 200 300 400 500
top N

0

2

4

6

8

10

12

14

A
v
e
ra

g
e
 n

o
.
co

n
ta

in
in

g
 s

u
b
se

q
u
e
n
ce

s PAM
MAPO
UPMiner

Figure 3: Average no. containing sequences for PAM,
MAPO and UPMiner on the Example dataset, us-
ing the top-k mined sequences.

significantly as the recall increases. We can therefore say
with certainty that the API call sequences mined by PAM
are more prevalent. Note that while the best recall that
PAM achieves is 44%, this is actually close to the theoretical
maximum recall on the test set. This can be approximated
by the proportion of test set sequences that contain training
set sequences, which is around 45%.

RQ2: Are the API call sequences mined by PAM more

diverse? We now turn our attention to the complete dataset
and mine call sequences from the entire Client file set for each
project (cf. Table 1). We can then use the no. containing
sequences metric to determine how redundant the set of
mined call sequences is. Figure 3 shows the average no. of
sequences containing other sequences in the set of top-k
mined sequences as k varies. One can see that PAM has
consistently the lowest figure, around 0.5, showing that it is
the least redundant and therefore most diverse. One of the
key motivations of our method is that the list of patterns
returned by sequence mining methods is redundant. This
figure shows that, even after the extra steps that MAPO and
UPMiner take to reduce the redundancy of the raw output
of frequent sequence mining, the patterns returned by PAM
are still less redundant.

RQ3: Could the API patterns mined by PAM supple-

ment existing developer-written API examples? We
measure whether the mined API patterns correspond to hand-
written examples in the dataset. We therefore mine, for each
project, call sequences from the Client file set and evaluate
them against call sequences in the Example file set. Figure 4
shows the sequence precision against recall, averaged across
all projects. Again, PAM has evidently better precision and
recall than MAPO and UPMiner. The best recall achieved
by PAM is 28%, significantly better than the other methods,
and for any fixed recall value, PAM has higher precision
than the other methods. This suggests that the API patterns
returned by PAM could better supplement developer-written
examples than those returned by MAPO or UPMiner.

In an absolute sense, the level of agreement between PAM
and the hand-written examples, although substantial, might
not seem especially high. This raises an interesting question:
Does this level of disagreement occur because the PAM pat-
terns are not representative of the client code they were mined
from, or because the hand-written examples themselves are
not fully representative of the client code? Although previous
work has explored what it means for a single API example

0.0 0.1 0.2 0.3 0.4 0.5
Average Sequence Recall

0.0

0.1

0.2

0.3

0.4

0.5

In
te

rp
o
la

te
d
 A

v
e
ra

g
e
 S

e
q
u
e
n
ce

 P
re

ci
si

o
n

PAM
MAPO
UPMiner

Figure 4: Average example-set interpolated precision
against recall for PAM, MAPO and UPMiner on the
Example dataset2, using the top-k mined sequences
as a threshold.

to be useful [42, 34], there seems to be much less work about
what it means for a set of examples to be useful, and how
well example directories in popular projects reflect all of the
actual common uses of an API.

We can however make an initial assessment of this question
by going back to the held-out test set of client code that we
used in RQ1. We can measure how well the client test set
and the handwritten examples agree by measuring sequence
precision and recall if we take the handwritten examples as
if they were API patterns and the client test set as the gold
standard. When we do this, we find that the handwritten
examples have a recall of 27%, meaning that three-quarters
of client API method sequences are not contained within
any of the handwritten examples. Turning to precision, the
handwritten examples have a precision of 36%, meaning that
two-thirds of API sequences from the example code are not
used by any client method (where “used by” means “fully
contained by”). This is significantly lower than the precision
between the training set of client methods and the test set,
suggesting that the training set is more representative of the
test set than the handwritten examples are. Although this
might be seen as a suggestive result, we caution that this has
an important threat to validity: handwritten examples may
include sca↵olding code that is unnecessary in client methods.
For this reason, we advise caution about drawing strong
conclusions from the precision of handwritten examples, but
we note that this threat does not apply to the recall.

These results suggest that even in very well documented
projects with extensive sets of examples, the API usage exam-
ples written by developers are still incomplete. While it may
not seem surprising that developer-written example directo-
ries would be incomplete, recall that we specifically chose our
data set to consist only of popular libraries with extensive
handwritten examples — indeed, our data set averages 18,000
lines of example code per target API. It is striking that even
with projects that are so extensively documented, PAM is
still able to infer a list of coverage with substantially greater
coverage of the API.

To gain further insight into this issue, we randomly selected
three projects from our dataset and looked at the top five

2This figure excludes hadoop as we had problems with our
implementation of MAPO and UPMiner running out of mem-
ory (hadoop has around 2 million client LOC). While PAM
had no issues, we excluded it for a fair comparison.

Handwritten Examples

Recall
(per-sequence)

Precision
(per-sequence)

Why Low Recall?

API mining bad, or examples incomplete?
Match test set to examples: is test set covered?
73% of client API sequences not covered
36% of examples used in client code

Manual error analysis
3 random projects, top 5 unmatching patterns
7 referred to API method not in examples
3 referred to API class not in examples

Table 1: Example dataset extracted from the GitHub Java corpus. Each row is a separate library or framework
for which we mine a set of API patterns. Each Client file set contains all source files that import a class
belonging to the respective package or one of its subpackages. Each Example file set contains all source files
that are present in the project’s example directory. Note that both file sets exclude duplicate files.

Project Package Name Client LOC Example LOC Description

AndEngine org.andengine 18,274 19,529 Android 2D OpenGL game engine
Apache Camel org.apache.camel 141,454 15,256 Enterprise application integration framework
Cloud9 edu.umd.cloud9 35,523 10,466 Cloud-based IDE
Drools org.drools 187,809 15,390 Business rules management system
Apache Hadoop org.apache.hadoop 1,951,653 26,162 Map-reduce framework
HornetQ org.hornetq 30,564 22,541 Embeddable asynchronous messaging system
Apache Mahout org.apache.mahout 48,206 11,772 Scalable machine learning environment
Neo4j org.neo4j 239,825 7,710 Graph Database
Netty io.netty 8,196 9,725 Network application framework
RESTEasy org.jboss.resteasy 131,447 16,055 RESTful application framework
Restlet Framework org.restlet 208,395 41,078 RESTful web API framework
Spring Data MongoDB org.springframework

.data.mongodb
16,567 18,786 Spring framework MongoDB integration

Spring Data Neo4J org.springframework
.data.neo4j

6,600 9,915 Spring framework Neo4j integration

Twitter4J twitter4j 96,010 6,560 Twitter API
Project Wonder com.webobjects 375,064 37,181 WebObjects frameworks
Weld org.jboss.weld 23,298 9,489 Contexts and Dependency Injection API
Apache Wicket org.apache.wicket 564,418 33,025 Web application framework

TOTAL 4,083,303 310,640

Dataset In order to asses the performance of PAM and
perform a thorough comparison with MAPO and UPMiner
we assemble a data set of target libraries and frameworks from
the GitHub Java corpus [6]. We focus on those projects that
contain an examples/ directory of code examples, so that we
can compare mined patterns to those written by the library’s
developers. We include in our data set all Java projects on
Github that are (1) su�ciently popular, (2) imported by a
su�cient number of other projects, and (3) that contain a
su�ciently large examples/ directory.

Specifically, we first find all Java projects in the corpus that
have an example directory (i.e., matching *example*|*Example*)
containing more than 10K LOC. From these projects we then
select those that are in the top 1, 000 projects in the corpus,
ranked according to popularity. Popularity in the GitHub
corpus is calculated as the sum of the number of project
forks and watchers, where each is separately normalized into
a z-score. From these top projects, we determine which of
these are called from 50 or more methods belonging to other
projects in the corpus, leaving us with the 17 projects in
Table 1. We call this set of projects and associated client
code the Example dataset, to emphasize the fact that we
focus on libraries and frameworks that include examples.

Each of these 17 projects is a library or framework, which
we will call a target project, for which we wish to extract API
patterns. For each target project, we perform API mining
separately, and all results are reported as an average over the
17 target projects. To extract a set of client methods for each
target project, we search the entire GitHub Java corpus for
all source files that import a class belonging to the respective
package or one of its subpackages and this set of files (ex-
cluding duplicates) formed the Client file set. Extracting, for
each project, all source files in the aforementioned example
directory (excluding duplicates) formed the Example file set.
Statistics on both file sets are given in Table 1.

Experimental Setup As public implementations were un-
available, we implemented MAPO [44] and UPMiner [40]
based on the descriptions in their respective papers. We used

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Average Sequence Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
te

rp
o
la

te
d
 A

v
e
ra

g
e
 S

e
q
u
e
n
ce

 P
re

ci
si

o
n

PAM
MAPO
UPMiner

Figure 2: Average test-set precision against recall
for PAM, MAPO and UPMiner on the Example

dataset, using the top-k mined train-set sequences
as a threshold.

a clustering threshold of 40% for MAPO as this gave con-
sistent performance and 20% for UPMiner as this matched
the natural cuto↵ in the dendrogram. The minimum support
thresholds for both algorithms were set as low as was practi-
cally feasible for each run. We ran PAM for 10, 000 iterations
with a priority queue size limit of 100, 000 candidates.

RQ1: Are the API call sequences mined by PAM more

prevalent? As previously mentioned, in an attempt to
answer this question we divide our dataset of API calls in half
and see if sequences mined from one half of the dataset are
prevalent in the other half. Specifically, we randomly divide
the Client file set (cf. Table 1) into two (roughly) equal train
and test sets. This enables us to mine API call subsequences
from the training set and evaluate them using the sequence
precision and recall metrics against the API call sequences
in the test set. Figure 2 shows the sequence precision against
recall, averaged across all projects in the dataset. It is evident
that PAM has significantly higher precision and recall than
both MAPO and UPMiner, reaching a precision of 69%.
MAPO performs especially poorly, as its precision degrades

Prevalence in Client Code

Precision

Recall
(per-sequence)

(per-sequence)
Handwritten examples

PAM MAPO
[Zhong et al, ‘09]

UPMiner
 [Wang et al, ‘13]

					TwitterFactory.<init>	
					TwitterFactory.getInstance

TwitterFactory.<init>	
TwitterFactory.getInstance

TwitterFactory.<init>					
TwitterFactory.getInstance

					TwitterFactory.<init>	
					TwitterFactory.getInstance	
					Twitter.setOAuthConsumer	
					Twitter.setOAuthAccessToken

Status.getUser	
Status.getText

TwitterFactory.getInstance	
Twitter.setOAuthConsumer

					Status.getUser	
					Status.getText

ConfigurationBuilder.<init>	
ConfigurationBuilder.build

TwitterFactory.<init>					
TwitterFactory.getInstance	
Twitter.setOAuthConsumer

					AccessToken.getToken	
					AccessToken.getTokenSecret

ConfigurationBuilder.<init>	
TwitterFactory.<init> Status.getUserStatus.getText

					ConfigurationBuilder.<init>	
					ConfigurationBuilder.build	
					TwitterFactory.<init>	
					TwitterFactory.getInstance

ConfigurationBuilder.<init>	
ConfigurationBuilder.setOAuthConsu
merKey

Twitter.setOAuthConsumer					
Twitter.setOAuthAccessToken

Example: twitter4j

: two main types of twitter initialization call

Super-Fast Neural Network
Topic Modelling

[Srivastava and Sutton, ICLR 2017]
http://bit.ly/sutton-ml-exploration

http://bit.ly/sutton-ml-exploration

Topic Models

Under review as a conference paper at ICLR 2017

Model Topics

ProdLDA

motherboard meg printer quadra hd windows processor vga mhz connector
armenian genocide turks turkish muslim massacre turkey armenians armenia greek
voltage nec outlet circuit cable wiring wire panel motor install
season nhl team hockey playoff puck league flyers defensive player
israel israeli lebanese arab lebanon arabs civilian territory palestinian militia

LDA
NVLDA

db file output program line entry write bit int return
drive disk get card scsi use hard ide controller one
game team play win year player get think good make
use law state health file gun public issue control firearm
people say one think life make know god man see

LDA
DMFVI

write article dod ride right go get night dealer like
gun law use drug crime government court criminal firearm control
lunar flyers hitter spacecraft power us existence god go mean
stephanopoulos encrypt spacecraft ripem rsa cipher saturn violate lunar crypto
file program available server version include software entry ftp use

LDA
Collapsed Gibbs

get right back light side like see take time one
list mail send post anonymous internet file information user message
thanks please know anyone help look appreciate get need email
jesus church god law say christian one christ day come
bike dod ride dog motorcycle write article bmw helmet get

NVDM

light die burn body life inside mother tear kill christian
insurance drug different sport friend bank owner vancouver buy prayer
input package interface output tape offer component channel level model
price quadra hockey slot san playoff jose deal market dealer
christian church gateway catholic christianity homosexual resurrection modem mouse sunday

Table 6: Five randomly selected topics from all the models.

7 DISCUSSION AND FUTURE WORK

We present what is to our knowledge the first neural variational inference algorithm for latent Dirich-
let allocation. Although this combination may seem simple in principle, in practice this method is
difficult to train because of the Dirichlet prior and because of the component collapsing problem.
By addressing both of these problems, we presented a black-box inference method for topic mod-
els with the notable advantage that the neural network allows computing topic proportions for new
documents without the need to run any variational optimization. As an illustration of the advan-
tages of black box inference techniques, we presented a new topic model, ProdLDA, which achieves
significantly better topics than LDA, while requiring a change of only one line of code from neural
variational LDA. Our results suggest that neural variational inference is ready to take its place along-
side mean field and collapsed Gibbs as one of the workhorse inference methods for topic models.
Future work could include extending our inference methods to handle dynamic and correlated topic
models.

ACKNOWLEDGMENTS

We thank Chris Dyer, Chris Russell, Hannah Wallach and Mirella Lapata for helpful discussions
and feedback.

REFERENCES

D. Blei and J. Lafferty. Correlated topic models. In Neural Information Processing Systems, 2006.

D. Blei and J. Lafferty. A correlated topic model of science. Annals of Applied Statistics, 1(1):
17–35, 2007.

David Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022, 2003.

James M Dickey. Multiple hypergeometric functions: Probabilistic interpretations and statistical
uses. Journal of the American Statistical Association, 78(383):628–637, 1983.

10

Topic Models: The Industry

• New topic model means new inference algorithm
• MCMC general but slow; variational fast but not as general,

and lower quality topics

But…

Pachinko Allocation

!
"#$!%&'!

!(
")$

!"!

*+
#!

, -)-!

.!

"/$!012(3%4546!7'8!

!(
")$

"(

*+9

!:

#!

,; -)-

!":!

!!:
")$

,9

*+; *+<

+ +!:

.

Figure 2. Graphical models for (a) LDA and (b) four-level
PAM

model structure and generative process for this spe-
cial setting are similar to LDA. The major di↵erence
is that it has one additional layer of super-topics mod-
eled with Dirichlet distributions, which is the key com-
ponent capturing topic correlations here. We present
the corresponding graphical models for LDA and PAM
in Figure 2.

2.2. Inference and Parameter Estimation

The hidden variables in PAM include the sampled
multinomial distributions ⇥ and topic assignments z.
Furthermore, we need to learn the parameters in the
Dirichlet distributions ↵ = {↵1,↵2, ...,↵s

}. We could
apply the Expectation-Maximization (EM) algorithm
for inference, which is often used to estimate param-
eters for models involving hidden variables. However,
EM has been shown to perform poorly for topic models
due to many local maxima.

Instead, we apply Gibbs Sampling to perform infer-
ence and parameter learning. For an arbitrary DAG,
we need to sample a topic path for each word given
other variable assignments enumerating all possible
paths and calculating their conditional probabilities.
In our special four-level PAM structure, each path con-
tains the root, a super-topic and a sub-topic. Since
the root is fixed, we only need to jointly sample the
super-topic and sub-topic assignments for each word,
based on their conditional probability given observa-
tions and other assignments, integrating out the multi-
nomial distributions ⇥; (thus the time for each sam-
ple is in the number of possible paths). The following
equation shows the joint probability of a super-topic
and a sub-topic. For word w in document d, we have:

P (z
w2 = t

k

, z

w3 =t

p

|D, z�w

,↵,�) /

n

(d)
1k

+ ↵1k

n

(d)
1 +

P
k

0 ↵1k

0

⇥
n

(d)
kp

+ ↵

kp

n

(d)
k

+
P

p

0 ↵

kp

0

⇥ n

pw

+ �

w

n

p

+
P

m

�

m

.

Here we assume that the root topic is t1. z

w2 and z

w3

correspond to super-topic and sub-topic assignments
respectively. z�w

is the topic assignments for all other
words. Excluding the current token, n

(d)
x

is the num-
ber of occurrences of topic t

x

in document d; n

(d)
xy

is
the number of times topic t

y

is sampled from its par-
ent t

x

in document d; n

x

is the number of occurrences
of sub-topic t

x

in the whole corpus and n

xw

is the
number of occurrences of word w in sub-topic t

x

. Fur-
thermore, ↵

xy

is the yth component in ↵

x

and �

w

is
the component for word w in �.

Note that in the Gibbs sampling equation, we assume
that the Dirichlet parameters ↵ are given. While LDA
can produce reasonable results with a simple uniform
Dirichlet, we have to learn these parameters for the
super-topics in PAM since they capture di↵erent cor-
relations among sub-topics. As for the root, we assume
a fixed Dirichlet parameter. To learn ↵, we could use
maximum likelihood or maximum a posteriori estima-
tion. However, since there are no closed-form solu-
tions for these methods and we wish to avoid iterative
methods for the sake of simplicity and speed, we ap-
proximate it by moment matching. In each iteration
of Gibbs sampling, we update

mean

xy

=
1
N

⇥
X

d

n

(d)
xy

n

(d)
x

;

var

xy

=
1
N

⇥
X

d

(
n

(d)
xy

n

(d)
x

�mean

xy

)2;

m

xy

=
mean

xy

⇥ (1�mean

xy

)
var

xy

� 1;

↵

xy

/ mean

xy

;
X

y

↵

xy

=
1
5
⇥ exp(

P
y

log(m
xy

)
s2 � 1

).

For each super-topic x and sub-topic y, we first cal-
culate the sample mean mean

xy

and sample variance
var

xy

. n

(d)
xy

and n

(d)
x

are the same as defined above.
Then we estimate ↵

xy

, the yth component in ↵

x

from
sample mean and variance. N is the number of docu-
ments and s2 is the number of sub-topics.

Smoothing is important when we estimate the Dirich-
let parameters with moment matching. From the
equations above, we can see that when one sub-topic y

does not get sampled from super-topic x in one itera-
tion, ↵

xy

will become 0. Furthermore from the Gibbs
sampling equation, we know that this sub-topic will
never have the chance to be sampled again by this
super-topic. We introduce a prior in the calculation
of sample means so that mean

xy

will not be 0 even if
n

(d)
xy

is 0 for every document d.

Dynamic Topic Models

ways, and quantitative results that demonstrate greater pre-
dictive accuracy when compared with static topic models.

2. Dynamic Topic Models
While traditional time series modeling has focused on con-
tinuous data, topic models are designed for categorical
data. Our approach is to use state space models on the nat-
ural parameter space of the underlying topic multinomials,
as well as on the natural parameters for the logistic nor-
mal distributions used for modeling the document-specific
topic proportions.

First, we review the underlying statistical assumptions of
a static topic model, such as latent Dirichlet allocation
(LDA) (Blei et al., 2003). Let β1:K be K topics, each of
which is a distribution over a fixed vocabulary. In a static
topic model, each document is assumed drawn from the
following generative process:

1. Choose topic proportions θ from a distribution over
the (K − 1)-simplex, such as a Dirichlet.

2. For each word:
(a) Choose a topic assignment Z ∼ Mult(θ).
(b) Choose a wordW ∼ Mult(βz).

This process implicitly assumes that the documents are
drawn exchangeably from the same set of topics. For many
collections, however, the order of the documents reflects
an evolving set of topics. In a dynamic topic model, we
suppose that the data is divided by time slice, for example
by year. We model the documents of each slice with a K-
component topic model, where the topics associated with
slice t evolve from the topics associated with slice t − 1.

For a K-component model with V terms, let βt,k denote
the V -vector of natural parameters for topic k in slice t.
The usual representation of a multinomial distribution is by
its mean parameterization. If we denote the mean param-
eter of a V -dimensional multinomial by π, the ith com-
ponent of the natural parameter is given by the mapping
βi = log(πi/πV). In typical language modeling applica-
tions, Dirichlet distributions are used to model uncertainty
about the distributions over words. However, the Dirichlet
is not amenable to sequential modeling. Instead, we chain
the natural parameters of each topic βt,k in a state space
model that evolves with Gaussian noise; the simplest ver-
sion of such a model is

βt,k |βt−1,k ∼ N (βt−1,k,σ2I) . (1)

Our approach is thus to model sequences of compositional
random variables by chaining Gaussian distributions in a
dynamic model and mapping the emitted values to the sim-
plex. This is an extension of the logistic normal distribu-

A A A

θθθ

zzz

ααα

β ββ

w w w

N N N

K

Figure 1. Graphical representation of a dynamic topic model (for
three time slices). Each topic’s natural parameters βt,k evolve
over time, together with the mean parameters αt of the logistic
normal distribution for the topic proportions.

tion (Aitchison, 1982) to time-series simplex data (West
and Harrison, 1997).

In LDA, the document-specific topic proportions θ are
drawn from a Dirichlet distribution. In the dynamic topic
model, we use a logistic normal with mean α to express
uncertainty over proportions. The sequential structure be-
tween models is again captured with a simple dynamic
model

αt |αt−1 ∼ N (αt−1, δ
2I) . (2)

For simplicity, we do not model the dynamics of topic cor-
relation, as was done for static models by Blei and Lafferty
(2006).

By chaining together topics and topic proportion distribu-
tions, we have sequentially tied a collection of topic mod-
els. The generative process for slice t of a sequential corpus
is thus as follows:

1. Draw topics βt |βt−1 ∼ N (βt−1,σ2I).
2. Draw αt |αt−1 ∼ N (αt−1, δ2I).
3. For each document:

(a) Draw η ∼ N (αt, a2I)

(b) For each word:
i. Draw Z ∼ Mult(π(η)).
ii. DrawWt,d,n ∼ Mult(π(βt,z)).

Note that π maps the multinomial natural parameters to the
mean parameters, π(βk,t)w = exp(βk,t,w)

P

w exp(βk,t,w) .

The graphical model for this generative process is shown in
Figure 1. When the horizontal arrows are removed, break-
ing the time dynamics, the graphical model reduces to a set
of independent topic models. With time dynamics, the kth

β41 β5 β6

β3β2

β1

2 4 3

4 32 1

4 3 2 1

cL

c1

c3

c2

η

α

z

θ

N M

w

Τ

γ

β

8

(a) (b)

Figure 1: (a) The paths of four tourists through the infinite tree of Chinese restaurants (L =
3). The solid lines connect each restaurant to the restaurants referred to by its tables. The
collected paths of the four tourists describe a particular subtree of the underlying infinite
tree. This illustrates a sample from the state space of the posterior nested CRP of Figure 1b
for four documents. (b) The graphical model representation of hierarchical LDA with a
nested CRP prior. We have separated the nested Chinese restaurant process from the topics.
Each of the infinite β’s corresponds to one of the restaurants.

to one of the L available topics. All other variables in the model—θ and β—are integrated
out. The Gibbs sampler thus assesses the values of zm,n and cm,ℓ.
Conceptually, we divide the Gibbs sampler into two parts. First, given the current state
of the CRP, we sample the zm,n variables of the underlying LDA model following the
algorithm developed in [12], which we do not reproduce here. Second, given the values of
the LDA hidden variables, we sample the cm,ℓ variables which are associated with the CRP
prior. The conditional distribution for cm, the L topics associated with documentm, is:

p(cm |w, c−m, z) ∝ p(wm | c,w−m, z)p(cm | c−m),

where w−m and c−m denote the w and c variables for all documents other than m. This
expression is an instance of Bayes’ rule with p(wm | c,w−m, z) as the likelihood of the data
given a particular choice of cm and p(cm | c−m) as the prior on cm implied by the nested
CRP. The likelihood is obtained by integrating over the parameters β, which gives:

p(wm | c,w−m, z) =
L∏

ℓ=1

(
Γ(n(·)

cm,ℓ,−m + Wη)
∏

w Γ(n(w)
cm,ℓ,−m + η)

∏
w Γ(n(w)

cm,ℓ,−m + n(w)
cm,ℓ,m + η)

Γ(n(·)
cm,ℓ,−m + n(·)

cm,ℓ,m + Wη)

)
,

where n(w)
cm,ℓ,−m is the number of instances of word w that have been assigned to the topic

indexed by cm,ℓ, not including those in the current document, W is the total vocabulary
size, and Γ(·) denotes the standard gamma function. When c contains a previously unvisited
restaurant, n(w)

cm,ℓ,−m is zero.

Note that the cm must be drawn as a block. The set of possible values for cm corresponds
to the union of the set of existing paths through the tree, equal to the number of leaves,
with the set of possible novel paths, equal to the number of internal nodes. This set can be
enumerated and scored using Eq. (1) and the definition of a nested CRP in Section 2.2.

Recognition Networks

Under review as a conference paper at ICLR 2017

for each document w do
Draw topic distribution ✓ ⇠ Dirichlet(↵);
for each word at position n do

Sample topic z
n

⇠ Multinomial(1, ✓);
Sample word w

n

⇠ Multinomial(1,�
zn);

end
end

Algorithm 1: LDA as a generative model.

2.2 MEAN FIELD AND NEURAL VARIATIONAL INFERENCE

A popular approximation for efficient inference in topic models is mean field variational inference,
which breaks the coupling between ✓ and z by introducing free variational parameters � over ✓
and � over z and dropping the edges between them. This results in an approximate variational
posterior q(✓, z|�,�) = q

�

(✓)
Q

n

q
�

(z
n

), which is optimized to best approximate the true posterior
p(✓, z|w,↵,�). The optimization problem is

(2)argmin
�,�

D
KL

[q(✓, z|�,�)||p(✓, z|w,↵,�)] .

In fact the above equation is a lower bound to the marginal log likelihood, sometimes called an
evidence lower bound (ELBO), a fact which can be easily verified by multiplying and dividing
(1) by the variational posterior and then applying Jensen’s inequality on its logarithm. The mean
field method optimizes over an independent set of variational parameters for each document. To
emphasize this, we will refer to this standard method by the non-standard name of Decoupled Mean-
Field Variational Inference (DMFVI).

For LDA, this optimization has closed form coordinate descent equations due to the conjugacy
between the Dirichlet and multinomial distributions. Although this is a computationally conve-
nient aspect of DMFVI, it also limits its flexibility. Applying DMFVI to new models relies on the
practitioner’s ability to derive the closed form updates, which can be impractical and sometimes
impossible.

Neural variational inference (NVI) (Kingma & Welling, 2013) is one of several recent methods that
aims at “black box” inference methods to sidestep this issue. First, rewrite the ELBO as

(3)L(�,� | ↵,�) = �D
KL

[q(✓, z|�,�)||p(✓, z|↵)] + E
q(✓,z|�,�)[log p(w|z, ✓,↵,�)]

This form is intuitive. The first term attempts to match the variational posterior over latent variables
to the prior on the latent variables, while the second term ensures that the variational posterior favors
values of the latent variables that are good at explaining the data. By analogy to autoencoders, this
second term is referred to as a reconstruction error.

What makes this method “neural,” and in fact the main difference from DMFVI, is the parameter-
ization of the variational distribution. In NVI, the variational parameters are computed by using
a neural network called an inference network that takes the observed data as input. For example,
if the model prior p(✓) were Gaussian, we might define the inference network as a feedforward
neural network (µ(w),v(w)) = f(w, �), where µ(w) and v(w) are both vectors of length k,
and � are the network’s parameters. Then we might choose a Gaussian variational distribution
q
�

(✓) = N(✓;µ(w), diag(v(w))), where diag(· · ·) produces a diagonal matrix from a column vec-
tor. The variational parameters � can then be chosen by optimizing the ELBO (3). Note that we
have now, unlike DMFVI, coupled the variational parameters for different documents because they
are all computed from the same neural network. To compute the expectations with respect to q in
(3), Kingma & Welling (2013) use a Monte Carlo estimator which they call the “reparameterization
trick” (RT; appears also in Williams (1992)). In the RT, we define a variate U with a simple dis-
tribution that is independent of all variational parameters, like a uniform or standard normal, and a
reparameterization function F such that F (U, �) has distribution q

�

. This is always possible, as we
could choose F to be the inverse cumulative distribution function of q

�

, although we will addition-
ally want F to be easy to compute and differentiable. If we can determine a suitable F , then we

3

Variational autoencoder [Kingma and Welling, 2013]

Generator
Inference network

p(w, �, z|�)

q(�|�, �)

�
LDA

Appx posterior

[Hinton et al, 1995]

How to make it work

• Discrete variables
• Marginalize them out

• Dirichlet difficult to reparameterize
• Use Laplace approximation

• Topic collapsing (a bad local minimum)
• High momentum in ADAM
• Batch normalization

[Kingma and Ba, 2014]

[Ioffe and Szegeti, 2015]

[MacKay, 1998]

Deriving new models

• Before, I would have derived a variational inference
algorithm

• Now, change one line of code

Very simple change to LDA, but hasn’t been seen before.
Why?

p(wn|�, �) �
�

k

p(wn|zn = k, �)�k

ProdLDA

LDA
p(wn|�, �) =

�

k

�kp(wn|zn = k, �)

Evaluation

Topic coherence (RCV1)

Under review as a conference paper at ICLR 2017

Tables 1 and 2 show the average topic coherence values for all the models for two different settings of
k, the number of topics. Comparing the different inference methods for LDA, we find that, consistent
with previous work, collapsed Gibbs sampling yields better topics than mean-field methods. Among
the variational methods, we find that NVLDA yields similar topic coherence and perplexity to the
standard DMFVI (although in some cases, NVLDA yields significantly better topics). However,
neural variational inference is significantly faster to train than DMFVI. NVI takes 46 seconds on 20
Newsgroup compared to 18 minutes for DMFVI. Where as for a million document corpus of RCV1
it only takes 1.5 hours while scikit-learn’s implementation of DMFVI failed to return any results
even after running for 24 hours.2

Comparing the new topic models than LDA, it is clear that PRODLDA finds significantly better
topics than LDA, even when trained by collapsed Gibbs sampling. To verify this qualitatively, we
display examples of topics from all the models in Table 6. The topics from ProdLDA appear visually
more coherent than NVDM or LDA. Unfortunately, NVDM does not perform comparatively to LDA
for any value of k. To avoid any training dissimilarities we train all the competing models until we
reach the perplexities that were reported in previous work. These are reported in Table 33.

topics ProdLDA LDA
NVLDA

LDA
DMFVI

LDA
Collapsed Gibbs NVDM

50 0.14 0.07 - 0.04 0.07
200 0.12 0.05 - 0.06 0.05

Table 2: Average topic coherence on the RCV1 dataset. Higher is better.

topics ProdLDA LDA
NVLDA

LDA
DMFVI

LDA
Collapsed Gibbs NVDM

50 1172 1059 1046 728 837
200 1168 1128 1195 688 884

Table 3: Perplexity scores for 20 Newsgroups. Lower is better.

A major benefit of neural variational inference is that it does not require running variational opti-
mization, which can be costly, for new data. Rather, the inference network can be used to obtain
topic proportions for new documents for new data points without running any optimization. We
evaluate whether this approximation is accurate, i.e. whether the neural network effectively learns
to mimic probabilistic inference. We verify this by training the model on the training set, then on
the test set, holding the topics (� matrix) fixed, and comparing the test perplexity if we obtain topic
proportions by running the inference neural network directly, or by the standard method of varia-
tional optimization of the inference network on the test set. As shown in Table 4, the perplexity
remains practically un-changed. The computational benefits of this are remarkable. On both the
datasets, computing perplexity using the neural network takes well under a minute, while running
the standard variational approximation takes ⇠ 3 minutes even on the smaller 20 Newsgroups data.
Finally, we investigate the reasons behind the improved topic coherence in PRODLDA. First, Table
5 explores the effects of each of our two main ideas separately. In this table, “Dirichlet” means
that the prior is the Laplace approximation to Dirichlet(↵ = 0.02), while “Gaussian” indicates that
we use a standard Gaussian as prior. ‘High Learning Rate” training means we use �1 > 0.8 and
0.1 > ⌘ > 0.0034 with batch normalization, whereas “Low Learning Rate” means �1 > 0.8 and
0.0009 > ⌘ > 0.00009 without batch normalization. (For both parameters, the precise value was
chosen by Bayesian optimization.) We find that the high topic coherence that we achieve in this
work is only possible if we use both tricks together. In fact the high learning rates with momentum
is required to avoid local minima in the beginning of the training and batch-normalization is required
to be able to train the network at these values without diverging. If trained at a lower momentum

2Therefore, we were not able to report topic coherence for DMFVI on RCV1
3We would like to point out that the previously reported (Miao et al., 2015) perplexities for collapsed Gibbs

sampling on 20 Newsgroup are off by a large margin.
4�1 is the weight on the average of the gradients from the previous time step and ⌘ refers to the learning

rate.

8

Topic coherence (20 Newsgroups)

Under review as a conference paper at ICLR 2017

two N dimensional multinomials parametrized by mean vectors p and q. Define the corresponding
natural parameters as p = �(rrr) and q = �(sss), and let � 2 [0, 1]. It is then easy to show that

P
⇣

x|�rrr + (1� �)sss
⌘

/
N

Y

i=1

�(�r
i

+ (1� �)s
i

)

xi /
N

Y

i=1

[r�
i

· s(1��)
i

]

xi .

So the PRODLDA model can be simply described as a product of experts, that is, p(w
n

|✓,�) /
Q

k

p(w
n

|z
n

= k,�)✓k .

5 RELATED WORK

For an overview of topic modeling, see Blei (2012). There are several examples of topic mod-
els based on neural networks and neural variational inference (Hinton & Salakhutdinov, 2009;
Larochelle & Lauly, 2012; Mnih & Gregor, 2014; Miao et al., 2015) but we are unaware of methods
that apply neural variational inference generically to a topic model specified by an analyst, or even
of a successful application of neural variational inference to the most widely used topic model, latent
Dirichlet allocation.

Recently, Miao et al. (2015) introduced a closely related model called the Neural Variational Docu-
ment Model (NVDM). This method uses a latent Gaussian distribution over topics, like probabilistic
latent semantic indexing, and averages over topic-word distributions in the logit space. However,
they do not use either of the two key aspects of our work: explicitly approximating the Dirichlet
prior using a Gaussian, or high-momentum training. In the experiments we show that these aspects
lead to much improved training and much better topics.

6 EXPERIMENTS AND RESULTS

Qualitative evaluation of topic models is a challenging task and consequently a large body of work
has developed automatic evaluation metrics that attempt to match human judgment of topic quality.
Traditionally, perplexity has been used to measure the goodness-of-fit of the model but it has been
repeatedly shown that perplexity is not a good metric for qualitative evaluation of topics (Newman
et al., 2010). Several new metrics of topic coherence evaluation have thus been proposed; see Lau
et al. (2014) for a comparative review. Lau et al. (2014) showed that among all the competing
metrics, normalized pointwise mutual information (NPMI) between all the pairs of words in a set of
topics matches human judgment most closely, so we adopt it in this work. We also report perplexity,
primarily as a way of evaluating the capability of different optimizers. Following standard practice
Blei et al. (2003), for variational methods we use the ELBO to calculate perplexity. For neural
variational methods, we calculate the ELBO using the same Monte Carlo approximation as for
training.

We run experiments on both the 20 Newsgroups and RCV1 Volume 2 datasets. Our preprocessing
involves tokenization, removal of some non UTF-8 characters for 20 Newsgroups and English stop
word removal. We compare neural inference methods on three different topic models: standard
LDA, PRODLDA, and the Neural Variational Document Model (NVDM) (Miao et al., 2015).1 On
LDA, we compare our neural variational inference inference method (NVLDA) with the standard
online mean-field variational inference (Hoffman et al., 2010) and collapsed Gibbs sampling (Grif-
fiths & Steyvers, 2004). We use standard implementations of both methods, scikit-learn for
DMFVI and mallet (McCallum, 2002) for collapsed Gibbs.

topics ProdLDA LDA
NVLDA

LDA
DMFVI

LDA
Collapsed Gibbs NVDM

50 0.24 0.20 0.11 0.17 0.08
200 0.19 0.12 0.06 0.14 0.06

Table 1: Average topic coherence on the 20 Newsgroups dataset. Higher is better.

1We have used both https://github.com/carpedm20/variational-text-tensorflow

and our own faster mini-batch implementation.

7

Look Ma, no inference!
Under review as a conference paper at ICLR 2017

Topics Inference
Network
Only

Inference
Network +
Optimization

50 1172 1162
200 1168 1151

Table 4: Evaluation of inference network of NVLDA on 20 Newsgroups test set. “Inference network
only” shows the test perplexity when the inference network is trained on the training set, but no
variational optimization is performed on the test set. “Inference Network + Optimization” shows the
standard approach of optimizing the ELBO on the test set. The neural network effectively learns to
approximate probabilistic inference effectively.

value or at a lower learning rate PRODLDA shows component collapsing. Interestingly, if we choose
a Gaussian prior, rather than the logistic normal approximation used in ProdLDA or NVLDA, the
model is easier to train even with low learning rate without any momentum or batch normalization.

The main advantage of NVI topic models as opposed to NVDM is that the Laplace approximation
allows us to match a specific Dirichlet prior of interest. As pointed out by Wallach et al. (2009), the
choice of Dirichlet hyperparameter is important to the topic quality of LDA. Following this reason-
ing, we hypothesize that NVI topics are higher quality than those of NVDM because they are much
more focused, i.e., apply to a more specific subset of documents of interest. We provide support for
this hypothesis in Figure 1, by evaluating the sparsity of the posterior proportions over topics, that
is, how many of the model’s topics are typically used to explain each document. In order to estimate
the sparsity in topic proportions, we project samples from the Gaussian latent spaces of PRODLDA
and NVDM in the simplex and average them across documents. We compare the topic sparsity for
the standard Gaussian prior used by NVDM to the Laplace approximation of Dirichlet priors with
different hyperparameter. Clearly the Laplace approximation to the Dirichlet prior significantly pro-
motes sparsity, providing support for our hypothesis that preserving the Dirichlet prior explains the
the increased topic coherence in our method.

Figure 1: Effect of prior assumptions on ✓ on sparsity of ✓ in neural topic models.

Dirichlet
+High Learning Rate

Dirichlet
+Low Learning Rate

Gaussian Prior
+High Learning Rate

Gaussian Prior
+Low Learning Rate

Topic Coherence 0.24 0.016 0.08 0.08

Table 5: Average topic coherence for different choices of prior and optimization strategies of
PRODLDA on 20 Newsgroup for k = 50.

The network architecture can be found in figure 2 in the appendix.

9

Test set perplexity (20 Newsgroups)

Accurate topic inference on new topic
with one pass of a feedforward neural network

VEEGAN: Reducing Mode
Collapse in Generative
Adversarial Learning

http://bit.ly/sutton-ml-exploration

http://bit.ly/sutton-ml-exploration

Generative Adversarial Networks

p✓(x)

1

0.00003

Input Explicit model Density value

Classical probabilistic modelling

Implicit probabilistic modelling

Gaussian ImageRepresentation Generator
network

p�(x)

xp(z) z

Sampling procedure for

G�(z)

How to train?
Can’t use maximum likelihood. There is no likelihood!

Generator network
G�(z)

Discriminator network
D�(x)

Instead define a game
1 if x came from generator
0 if x came from data

max
�

min
�

Ogan(�, �) := Ez [log D�(G�(z))] + Ex [log (1 � D�(x))]

Optimize

Mode Collapse

plausible images. Across the methods, we see in Figure 3 that VEEGAN captures small details, such272

as the face of the poodle, that other methods miss.273

Figure 2: Density plots of the true data and generator distributions from different GAN methods
trained on mixtures of Gaussians arrange in a ring (top) or a grid (bottom).

(a) True Data (b) GAN (c) ALI (d) Unrolled (e) VEEGAN

(f) True Data (g) GAN (h) ALI (i) Unrolled (j) VEEGAN

Figure 3: Sample images from GANs trained on CIFAR-10. Best viewed magnified on screen.]

(a) Nearest generated samples to real images from CIFAR 10. In
each of the two panels, the first column are real images, followed
by the nearest images from DCGAN, ALI, Unrolled and VEEGAN
respectively.

(b) Random samples from generator of
VEEGAN trained on CIFAR-10.

6 Conclusion274

We have presented VEEGAN, a new training principle for GANs that combines a KL divergence in275

the joint space of representation and data points with an autoencoder over the representation space,276

motivated by a variational argument. Experimental results on synthetic data and real images show277

that our approach is much more effective than several state-of-the art GAN methods at avoiding mode278

collapse while still generating good quality samples.279

References280

[1] Che, Tong, Li, Yanran, Jacob, Athul Paul, Bengio, Yoshua, and Li, Wenjie. Mode regularized281

generative adversarial networks. In International Conference on Learning Representations282

8

Example from 2D mixture of Gaussians

True data Samples from GAN

plausible images. Across the methods, we see in Figure 3 that VEEGAN captures small details, such272

as the face of the poodle, that other methods miss.273

Figure 2: Density plots of the true data and generator distributions from different GAN methods
trained on mixtures of Gaussians arrange in a ring (top) or a grid (bottom).

(a) True Data (b) GAN (c) ALI (d) Unrolled (e) VEEGAN

(f) True Data (g) GAN (h) ALI (i) Unrolled (j) VEEGAN

Figure 3: Sample images from GANs trained on CIFAR-10. Best viewed magnified on screen.]

(a) Nearest generated samples to real images from CIFAR 10. In
each of the two panels, the first column are real images, followed
by the nearest images from DCGAN, ALI, Unrolled and VEEGAN
respectively.

(b) Random samples from generator of
VEEGAN trained on CIFAR-10.

6 Conclusion274

We have presented VEEGAN, a new training principle for GANs that combines a KL divergence in275

the joint space of representation and data points with an autoencoder over the representation space,276

motivated by a variational argument. Experimental results on synthetic data and real images show277

that our approach is much more effective than several state-of-the art GAN methods at avoiding mode278

collapse while still generating good quality samples.279

References280

[1] Che, Tong, Li, Yanran, Jacob, Athul Paul, Bengio, Yoshua, and Li, Wenjie. Mode regularized281

generative adversarial networks. In International Conference on Learning Representations282

8

VEEGAN: Adding an Autoencoder

z
p0(z)

x
p(x)

z
p0(z)

G
�

F
✓

(a) A good choice of F✓ can help to detect mode
collapse, when F✓(G�(Z)) is non-Gaussian.

z
p0(z)

x
p(x)

z
p0(z)

G
�

F
✓

(b) A poor choice of F✓ could fail to detect mode
collapse.

Figure 1: Illustration of how a reconstructor network F
✓

can help to detect mode collapse in a deep
generative network G

�

. The data distribution is p(x) and the Gaussian is p0(z). See text for details.

of mode collapse. To address this problem, we need an appropriate learning principle for ✓, which we83

introduce in the next section.84

3.1 Objective Function85

Here we present the learning objective used in VEEGAN. We draw on the intuition that the reconstruc-86

tor should aim to reverse the operation of the optimal generator. The generator network G
�

implicitly87

defines a distribution q
�

(x), which we can simulate by sampling from the random vector G
�

(Z),88

where Z ⇠ N (0, I). In other words, the generator can be seen as attempting to map a standard89

normal random vector Z to the data vector X . Our key insight is to train F
✓

to reverse this process.90

That is, we interpret F
✓

as defining an implicit distribution p
✓

(z) over representations, and choose F
✓

91

to map the data distribution to a standard normal distribution, i.e, so that F
✓

(X) ⇠ N (0, I). In other92

words, we want F
✓

to map the true data distribution to a standard normal, that is, when considered93

as a functional on probability distributions, the optimal reconstructor should reverse the optimal94

generator.95

Formally, let p
✓

(z|x) to denote the deterministic conditional distribution defined by F
✓

, i.e., a delta96

function, so that p
✓

(z) =
R
p
✓

(z|x)p(x) dx. We choose ✓ to minimize the cross entropy97

H(Z,F
✓

(X)) = �
Z

p0(z) log p✓(z)dz = �
Z

p0(z) log

Z
p(x)p

✓

(z|x) dx dz, (1)

where p0 is the standard normal density. This cross entropy is minimized with respect to ✓ when98

p
✓

(z) = p0(z) [2] . Unfortunately, the integral on the right-hand side of (1) cannot usually be99

computed in closed form. We introduce an alternative optimization target in the form of a variational100

bound for p
✓

(z), by introducing a variational distribution q
�

(x|z). By Jensen’s inequality, we have101

� log p
✓

(z) = � log

Z
p
✓

(z|x)p(x)q�(x|z)
q
�

(x|z) dx  �
Z

q
�

(x|z) log p
✓

(z|x)p(x)
q
�

(x|z) dx, (2)

which we use to bound the cross-entropy in (1). In variational inference, strong parametric as-102

sumptions are typically made on q
�

. Importantly, we relax that assumption, instead representing q
�

103

implicitly as a deep generative model, enabling us to learn very complex distributions. The variational104

distribution q
�

(x|z) plays exactly the same role as the generator in a GAN. We defer the details of105

how we handle implicit probability distributions to the next section.106

In practice minimizing this bound is difficult if q
�

is specified implicitly. For instance, it is chal-107

lenging to train a discriminator network that accurately estimates the unknown likelihood ratio108

log p(x)/q
�

(x|z), because q
�

(x|z), as a conditional distribution, is much more peaked than the109

joint distribution p(x), making it too easy for a discriminator to tell the two distributions apart.110

Intuitively, the discriminator in a GAN works well when it is presented a difficult pair of distributions111

to distinguish. To circumvent this problem, we introduce a second bound (all proofs in supplementary112

material):113

�
Z

p0(z) log p✓(z)  O(�, ✓)

O(�, ✓) = KL [q
�

(x|z)p0(z) k p✓(z|x)p(x)]� E [log p0(z)] + E [d(z, F
✓

(x))] , (3)

3

Detecting mode collapse

z
p0(z)

x
p(x)

z
p0(z)

G
�

F
✓

(a) A good choice of F✓ can help to detect mode
collapse, when F✓(G�(Z)) is non-Gaussian.

z
p0(z)

x
p(x)

z
p0(z)

G
�

F
✓

(b) A poor choice of F✓ could fail to detect mode
collapse.

Figure 1: Illustration of how a reconstructor network F
✓

can help to detect mode collapse in a deep
generative network G

�

. The data distribution is p(x) and the Gaussian is p0(z). See text for details.

of mode collapse. To address this problem, we need an appropriate learning principle for ✓, which we83

introduce in the next section.84

3.1 Objective Function85

Here we present the learning objective used in VEEGAN. We draw on the intuition that the reconstruc-86

tor should aim to reverse the operation of the optimal generator. The generator network G
�

implicitly87

defines a distribution q
�

(x), which we can simulate by sampling from the random vector G
�

(Z),88

where Z ⇠ N (0, I). In other words, the generator can be seen as attempting to map a standard89

normal random vector Z to the data vector X . Our key insight is to train F
✓

to reverse this process.90

That is, we interpret F
✓

as defining an implicit distribution p
✓

(z) over representations, and choose F
✓

91

to map the data distribution to a standard normal distribution, i.e, so that F
✓

(X) ⇠ N (0, I). In other92

words, we want F
✓

to map the true data distribution to a standard normal, that is, when considered93

as a functional on probability distributions, the optimal reconstructor should reverse the optimal94

generator.95

Formally, let p
✓

(z|x) to denote the deterministic conditional distribution defined by F
✓

, i.e., a delta96

function, so that p
✓

(z) =
R
p
✓

(z|x)p(x) dx. We choose ✓ to minimize the cross entropy97

H(Z,F
✓

(X)) = �
Z

p0(z) log p✓(z)dz = �
Z

p0(z) log

Z
p(x)p

✓

(z|x) dx dz, (1)

where p0 is the standard normal density. This cross entropy is minimized with respect to ✓ when98

p
✓

(z) = p0(z) [2] . Unfortunately, the integral on the right-hand side of (1) cannot usually be99

computed in closed form. We introduce an alternative optimization target in the form of a variational100

bound for p
✓

(z), by introducing a variational distribution q
�

(x|z). By Jensen’s inequality, we have101

� log p
✓

(z) = � log

Z
p
✓

(z|x)p(x)q�(x|z)
q
�

(x|z) dx  �
Z

q
�

(x|z) log p
✓

(z|x)p(x)
q
�

(x|z) dx, (2)

which we use to bound the cross-entropy in (1). In variational inference, strong parametric as-102

sumptions are typically made on q
�

. Importantly, we relax that assumption, instead representing q
�

103

implicitly as a deep generative model, enabling us to learn very complex distributions. The variational104

distribution q
�

(x|z) plays exactly the same role as the generator in a GAN. We defer the details of105

how we handle implicit probability distributions to the next section.106

In practice minimizing this bound is difficult if q
�

is specified implicitly. For instance, it is chal-107

lenging to train a discriminator network that accurately estimates the unknown likelihood ratio108

log p(x)/q
�

(x|z), because q
�

(x|z), as a conditional distribution, is much more peaked than the109

joint distribution p(x), making it too easy for a discriminator to tell the two distributions apart.110

Intuitively, the discriminator in a GAN works well when it is presented a difficult pair of distributions111

to distinguish. To circumvent this problem, we introduce a second bound (all proofs in supplementary112

material):113

�
Z

p0(z) log p✓(z)  O(�, ✓)

O(�, ✓) = KL [q
�

(x|z)p0(z) k p✓(z|x)p(x)]� E [log p0(z)] + E [d(z, F
✓

(x))] , (3)

3

Not detecting mode collapse

Problem: How to train ? F�

VEEGAN objectives

Generator network
G�(z)

Discriminator network
D�(x)

Autoencoder

G�(z)

z

z

F�(x)

VEEGAN algorithm

Algorithm 1 VEEGAN training
1: while not converged do
2: for i 2 {1 . . . N} do
3: Sample zi ⇠ p0(z)
4: Sample xi

g

⇠ q
�

(x|z
i

)

5: Sample xi ⇠ p(x)
6: Sample zi

g

⇠ p
✓

(z
g

|x
i

)

7: g
!

 �r
!

1
N

P
i

log �
�
D

!

(zi, xi

g

)

�
+ log

�
1� �

�
D

!

(zi
g

, xi

)

��
. Compute r

!

ˆOLR

8:
9: g

✓

 r
✓

1
N

P
i

d(zi, xi

g

) . Compute r
✓

ˆO
10:
11: g

�

 r
�

1
N

P
i

D
!

(zi, xi

g

) +

1
N

P
i

d(zi, xi

g

) . Compute r
�

ˆO
12:
13: ! ! � ⌘g

!

; ✓ ✓ � ⌘g
✓

; � � � ⌘g
�

. Perform SGD updates for !, ✓ and �

BiGAN/Adversarially Learned Inference BiGAN [4] and Adversarially Learning Inference156

(ALI) [5] are two essentially identical recent adversarial methods for learning both a deep gen-157

erative network G
�

and a reconstructor network F
✓

. Likelihood-free variational inference (LFVI)158

[21] extends this idea to a hierarchical Bayesian setting. Like VEEGAN, all of these methods also use159

a discriminator D
!

(z, x) on the joint (z, x) space. However, the VEEGAN objective function O(✓, �)160

provides significant benefits over the logistic regression loss over ✓ and � that is used in ALI/BiGAN,161

or the KL-divergence used in LFVI. In all of these methods, just as in vanilla GANs, the objective162

function depends on ✓ and � only via the output D
!

(z,x) of the discriminator; therefore, if there is a163

mode of data space in which D
!

has zero gradient with respect to (✓, �), there will be mode collapse.164

In VEEGAN, by contrast, the reconstruction term does not depend on the discriminator, and so can165

provide learning signal to � or ✓ even when the discriminator is constant. We will show in Section 5166

that indeed VEEGAN is dramatically less prone to mode collapse than ALI.167

Adversarial Methods for Autoencoders A number of other recent methods have been proposed168

that combine adversarial methods and autoencoders, whether by explicitly regularizing the GAN169

loss with an autoencoder loss [1, 12], or by alternating optimization between the two losses [13].170

In all of these methods, the autoencoder is over images, i.e., they incorporate a loss function of the171

form �d(x,G
�

(F
✓

(x))), where d is a loss function over images, such as pixel-wise `2 loss, and � is172

a regularization constant. Similarly, variational autoencoders [11, 17] also autoencode images rather173

than noise vectors. Finally, the adversarial variational Bayes (AVB) [14] is an adaptation of VAEs to174

the case where the posterior distribution p
✓

(z|x) is implicit, but the data distribution q
�

(x|z), must175

be explicit, unlike in our work.176

Because these methods autoencode data points, they share a crucial disadvantage. Choosing a177

good loss function d over natural images can be problematic. For example, it has been commonly178

observed that minimizing an `2 reconstruction loss on images can lead to blurry images. Indeed, if179

choosing a loss function over images were easy, we could simply train a autoencoder and dispense180

with adversarial learning entirely. By contrast, in VEEGAN we autoencode the noise vectors z, and181

choosing a good loss function for a noise autoencoder is easy. The noise vectors z are drawn from182

a standard normal distribution, using an `2 loss on z is entirely natural — and does not, as we will183

show in Section 5, result in blurry images compared to purely adversarial methods.184

5 Experiments185

Quantitative evaluation of GANs is problematic because the implicit distribution does not have a186

likelihood term to quantify generative accuracy. Quantifying mode dropping behavior is also not187

straightforward, except in the case of synthetic data with known modes. For this reason, several188

indirect metrics have recently been proposed to evaluate GANs specifically for their mode collapsing189

behavior [1, 15]. However, none of these metrics are reliable on their own and therefore we need to190

compare across a number of different methods. Therefore in this section we evaluate VEEGAN on191

several synthetic and real datasets and compare its performance against vanilla GANs [6], Unrolled192

GAN [15] and ALI [5] on five different metrics. Our results strongly suggest that VEEGAN does193

5

Examples of generated images

Celebrity faces

Examples of generated images

plausible images. Across the methods, we see in Figure 3 that VEEGAN captures small details, such272

as the face of the poodle, that other methods miss.273

Figure 2: Density plots of the true data and generator distributions from different GAN methods
trained on mixtures of Gaussians arrange in a ring (top) or a grid (bottom).

(a) True Data (b) GAN (c) ALI (d) Unrolled (e) VEEGAN

(f) True Data (g) GAN (h) ALI (i) Unrolled (j) VEEGAN

Figure 3: Sample images from GANs trained on CIFAR-10. Best viewed magnified on screen.]

(a) Nearest generated samples to real images from CIFAR 10. In
each of the two panels, the first column are real images, followed
by the nearest images from DCGAN, ALI, Unrolled and VEEGAN
respectively.

(b) Random samples from generator of
VEEGAN trained on CIFAR-10.

6 Conclusion274

We have presented VEEGAN, a new training principle for GANs that combines a KL divergence in275

the joint space of representation and data points with an autoencoder over the representation space,276

motivated by a variational argument. Experimental results on synthetic data and real images show277

that our approach is much more effective than several state-of-the art GAN methods at avoiding mode278

collapse while still generating good quality samples.279

References280

[1] Che, Tong, Li, Yanran, Jacob, Athul Paul, Bengio, Yoshua, and Li, Wenjie. Mode regularized281

generative adversarial networks. In International Conference on Learning Representations282

8

CIFAR-10 natural images

Help cats explore! Pattern mining

Machine Learning for Data Exploration
Charles Sutton, University of Edinburgh

VEEGANsNeural topic
modelling

API mining

• Jaroslav Fowkes
• Akash Srivastava
• Lazar Valkov
• Chris Russell
• Michael Gutmann

Thanks!

http://bit.ly/sutton-ml-exploration

http://bit.ly/sutton-ml-exploration

