
Learning Program
Representations:

Symbols to Vectors to Semantics

Charles Sutton
University of Edinburgh

& The Alan Turing Institute

10 December 2016

http://edin.ac/2ggR9uK

💩👷🤖

Source code is a means of
human communication

Topic models
Learning how libraries are used

Summarisation

1 /* Header */
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first
5 * line of a response message */
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine */
11 public StatusLine(int c, String r) {
12 code = c;
13 reason = r;
14 }
15
16 /** Create a new copy of the request-line */
17 public Object clone() {
18 return new StatusLine(getCode(), getReason());
19 }
20
21 /** Indicates whether some other Object
22 * is "equal to" this StatusLine */
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {
32 return false;
33 }
34 }
35
36 public int getCode() {
37 return code;
38 }
39
40 public String getReason() {
41 return reason;
42 }
43
44 public String toString() {
45 return "SIP/2.0 " + code + " " + reason + "\r\n";
46 }
47 }

Figure 1: Original source code. A snippet from bigbluebutton’s
StatusLine.java. We use this as a running example.

decisions, we formulate this method as a contiguous
rooted subtree problem (Section III-C). This is, to our
knowledge, the first method for code summarization to
use autofolding.

• To determine which non-essential regions should be
folded, we introduce a novel topic model for code (Sec-
tion III-B), building on work in NLP summarization
[13]. The key feature of the model is that it endows
di�erent scopes (files, projects, and the corpus) with
separate topics, allowing the model to identify which
tokens best characterize their enclosing file.

• We perform a comprehensive evaluation of our method
on a set of popular open source projects from GitHub
(Section IV), and find that TASSAL performs better
than simpler baselines (Section V) at matching human
judgements, with a relative error reduction of 28%.

1 /* Header...*/
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first...*/
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine...*/
11 public StatusLine(int c, String r) {...}
15
16 /** Create a new copy of the request-line ..*/
17 public Object clone() {...}
20
21 /** Indicates whether some other Object...*/
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == (getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {...}
34 }
35
36 public int getCode() {...}
39
40 public String getReason() {...}
43
44 public String toString() {...}
47 }

Figure 2: Summarized source code. A summary of the file in Figure 1
(left) which results from folding lines 1, 4–5, 11–14, 21–22, 31–33, 36-
38 and 40-42.

Furthermore, in a user study with experienced devel-
opers, TASSAL is strongly preferred to the baselines.

More broadly, we hope that this work will aid program
comprehension by turning code folding, perhaps an over-
looked feature, into a useful, usable and valuable tool.

II. Related Work

The application of NLP methods to the analysis of
source code text is only just beginning to be explored.
Recent work has applied language modelling [14]–[18],
natural language generation [9], [19], machine translation
[20], and topic modelling [21] to the text of source code
from large software projects.

One of the main challenges in this area is to adapt
existing NLP techniques to source code text. In con-
trast to natural languages, programming languages are
unambiguous, employ little redundancy, are meant to be
interpreted literally, and consist of strictly structured text.
To exploit these features of the problem, we perform the
summarization at the code block level, leveraging the fact
that source code is syntactically unambiguous.

There is some existing work on the use of manual

code folding to aid comprehension. In particular, Ru-
gaber et al. [8] consider a conceptual model for manual
folding, extending it to non-contiguous regions of code.
Kullbach et al. [7] develop the GUPRO IDE to aid in the
comprehension of C preprocessor code by folding macro

2

1 /* Header */
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first
5 * line of a response message */
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine */
11 public StatusLine(int c, String r) {
12 code = c;
13 reason = r;
14 }
15
16 /** Create a new copy of the request-line */
17 public Object clone() {
18 return new StatusLine(getCode(), getReason());
19 }
20
21 /** Indicates whether some other Object
22 * is "equal to" this StatusLine */
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {
32 return false;
33 }
34 }
35
36 public int getCode() {
37 return code;
38 }
39
40 public String getReason() {
41 return reason;
42 }
43
44 public String toString() {
45 return "SIP/2.0 " + code + " " + reason + "\r\n";
46 }
47 }

Figure 1: Original source code. A snippet from bigbluebutton’s
StatusLine.java. We use this as a running example.

decisions, we formulate this method as a contiguous
rooted subtree problem (Section III-C). This is, to our
knowledge, the first method for code summarization to
use autofolding.

• To determine which non-essential regions should be
folded, we introduce a novel topic model for code (Sec-
tion III-B), building on work in NLP summarization
[13]. The key feature of the model is that it endows
di�erent scopes (files, projects, and the corpus) with
separate topics, allowing the model to identify which
tokens best characterize their enclosing file.

• We perform a comprehensive evaluation of our method
on a set of popular open source projects from GitHub
(Section IV), and find that TASSAL performs better
than simpler baselines (Section V) at matching human
judgements, with a relative error reduction of 28%.

1 /* Header...*/
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first...*/
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine...*/
11 public StatusLine(int c, String r) {...}
15
16 /** Create a new copy of the request-line ..*/
17 public Object clone() {...}
20
21 /** Indicates whether some other Object...*/
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == (getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {...}
34 }
35
36 public int getCode() {...}
39
40 public String getReason() {...}
43
44 public String toString() {...}
47 }

Figure 2: Summarized source code. A summary of the file in Figure 1
(left) which results from folding lines 1, 4–5, 11–14, 21–22, 31–33, 36-
38 and 40-42.

Furthermore, in a user study with experienced devel-
opers, TASSAL is strongly preferred to the baselines.

More broadly, we hope that this work will aid program
comprehension by turning code folding, perhaps an over-
looked feature, into a useful, usable and valuable tool.

II. Related Work

The application of NLP methods to the analysis of
source code text is only just beginning to be explored.
Recent work has applied language modelling [14]–[18],
natural language generation [9], [19], machine translation
[20], and topic modelling [21] to the text of source code
from large software projects.

One of the main challenges in this area is to adapt
existing NLP techniques to source code text. In con-
trast to natural languages, programming languages are
unambiguous, employ little redundancy, are meant to be
interpreted literally, and consist of strictly structured text.
To exploit these features of the problem, we perform the
summarization at the code block level, leveraging the fact
that source code is syntactically unambiguous.

There is some existing work on the use of manual

code folding to aid comprehension. In particular, Ru-
gaber et al. [8] consider a conceptual model for manual
folding, extending it to non-contiguous regions of code.
Kullbach et al. [7] develop the GUPRO IDE to aid in the
comprehension of C preprocessor code by folding macro

2

private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model

[ICSE 2016]

Nonparametric Bayes grammars
Probabilistic pattern mining

[FSE 2014]

[KDD 2016; FSE 2016] Further ahead…
• Defining requirements
• Architecting
• Navigation
• Maintenance
• Optimising performance
• Testing, verification
• Refactoring
• Porting
• Debugging

Learning coding conventions
[FSE 2014, 2015]

Neural networks that capture
program semantics

1. Domain connections
2. Typical programs

Why not solved?

Learning to Name

[Allamanis, Peng, and Sutton ICML 2016] http://edin.ac/2ggR9uK

minRunLength

Predicting Names of Methods

min					Run				Length

Name

Code

convolutional attention
mechanismRNN for generating summary

h0 h1 h2

[Allamanis, Peng, and Sutton ICML 2016] http://edin.ac/2ggR9uK

Three Attention Mechanisms

• : Distribution over input locations
• Weights for averaging input

embeddings
• : Distribution over input locations
• Weights for copying tokens from input

to output (even OOV)
• Related to pointer networks

 [Vinyals et al, 2015]

• : Scalar [0, 1]
• weight to decide two mechanisms

�

�

�

[Allamanis, Peng, and Sutton ICML 2016] http://edin.ac/2ggR9uK

Standard attention: [Bahdanau, Cho, and Bengio, 2015]

http://edin.ac/2ggR9uK

Continuous Semantics for
Symbolic Expressions
[Allamanis, Chanthirasegaran Kohli, and Sutton, 2017]

(a-b)*(b+c)+(b-b)	
a*b+a*c-b*(b+c)	
a*c+b*(a-b-c)	

http://edin.ac/2ggR9uK

Goal
semVecs

How much symbolic semantics (semantic equivalence)
 can we compress into continuous vector?

Symbolic reasoning: search pattern recognition

In this work: semantics = equivalence
Assume we have an oracle

http://edin.ac/2ggR9uK

Recursive NN (TreeNN)

[Socher et al, 2011, 2013]

Child representation

Feedforward

Child representation

Parent representation

http://edin.ac/2ggR9uK

Problem: Separating out syntax

(a+b) * (a*a - b*b) (a+b) * ((a + b) * (a - b))

(a+b) (a*a - b*b) (a+b) (a*a - b*b)

semantically equivalent, different vectors!

Result: nearest neighbours mostly reflect syntax
http://edin.ac/2ggR9uK

EqNet

http://edin.ac/2ggR9uK

Motivation via Unification

Semantic information is bidirectional
Not only do children provide info re parents

But parents provide info re children

uncle(?A,?B) :- parent(?A,?Z), brother(?Z,?B)

Unification propagates this info automatically
How to map to continuous space?

http://edin.ac/2ggR9uK

Subexpression Forcing

(a+b) * (a*a - b*b) (a+b) * ((a + b) * (a - b))

(a+b) (a*a - b*b) (a+b) (a*a - b*b)

ensure this prediction problem is “easy”
semantic classes will be clustered together

http://edin.ac/2ggR9uK

Subexpression Forcing

(Additional regulariser)

Denoising autoencoder plus bottleneck
on (parent, child1, child2) representations

http://edin.ac/2ggR9uK

Visualizing polynomials

http://edin.ac/2ggR9uK

Evaluation

http://edin.ac/2ggR9uK

Training / Test Split

Eq Class 1

Eq Class 4

Eq Class 3

Eq Class 2

Eq Class 6

Eq Class 7

Eq Class 8

Eq Class 5

UnseenEqClass Testset

20%

20%

SeenEqClass Testset

http://edin.ac/2ggR9uK

Evaluation Metric

query point

k-nearest
neighbors

http://edin.ac/2ggR9uK

Results
SeenEqClass Testset UnseenEqClass Testset

http://edin.ac/2ggR9uK

Evaluating compositionality
SeenEqClass Testset UnseenEqClass Testset

http://edin.ac/2ggR9uK

Learning Program Representations:
Symbols to Vectors to Semantics

Charles Sutton, University of Edinburgh

http://edin.ac/2ggR9uK

• Miltiadis Allamanis
• Hao Peng
• Pushmeet Kohli
• Pankajan Chantirasagaran

Thanks!

Equivalence networks
 for continuous semantics

Naming methods
 convolutional attention

