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Source code is a means of 
human communication



Over 20 billion lines of open source code online

Implicit knowledge about how to write code 
• Uses common libraries 
• Avoids common bugs 
• Easy to read and maintain 

Source: Black Duck

Perhaps PL text has NL-style regularities

Statistical NLP techniques for 
identifying patterns in PL text 

Source code as a means of human communication



Every SWE activity can 
benefit from NLP+ML

• Defining requirements 
• Architecting 
• Implement systems  
• Reading 
• Navigation 
• Maintenance 
• Optimising performance 
• Validation 
• Refactoring 
• Porting



Every NLP problem 
has SWE analogue

• Spelling correction 
• Finding co-locations 
• Summarisation 
• Generation 
• Machine Translation  
• Question Answering

• Semantic Parsing 
• Semantic Entailment 
• Information Extraction 
• Information Retrieval 
• Grounding Semantics 
• Statistical Parsing (!)



Learning coding 
conventions

Mining idioms
(probabilistic grammars)

API Mining

Corpus of client code

Library

API patterns Documentation 
Suggestion

[Zhong et al, 2009; Dang et al 2013] 

e.g.

jrupac/CleanTwitter

brk3 / finch

katahirado/tsubunomi

private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model
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Figure 5: Top twitter4j.* API patterns mined by MAPO [44] (left), UPMiner [40] (middle), and PAM (right).

API patterns returned by PAM that were not present in any
example call sequence. We found that the 15 selected API
patterns fell into the following three categories: 7 referred
to an API method not in any of the examples, 3 referred
to an API class not in any of the examples and 5 referred
to an API pattern that was not contained in any API ex-
ample (although its methods were present in the examples).
This provides some support for the hypothesis that the API
patterns document part of the API that are used in client
code but for which the original developers have not chosen
to write specific examples.

Overall these results suggest that the patterns returned by
PAM could serve as a useful supplement to code examples
written by API developers. Indeed, these results raise the
question of whether, in future work, PAM could be used to
help detect novel and undocumented API usages and feed
them back to library and framework maintainers.

Qualitative Evaluation To provide further support to
RQ3, whether the mined patterns from PAM could be useful,
we qualitatively compare and contrast the top sequences
returned by PAM, MAPO, and UPMiner on an example
target API. Figure 5 shows the top ten mined API patterns
from twitter4j returned by PAM, MAPO and UPMiner on
the Example dataset. One can clearly see that the API calls
found by MAPO are extremely repetitive, in fact most of the
top ten calls are just combinations of subsequences of the
following pattern:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

which (according to our manual inspection) occurs commonly
in client code but does not appear anywhere in the top ten
patterns returned by MAPO. Similarly, the majority of the
top ten UPMiner patterns are combinations of subsequences
of the pattern:

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthConsumer
Twitter.setOAuthAccessToken

despite the full version of this sequence appearing as the
10th pattern returned by UPMiner. PAM on the other hand,
retrieves both of these full patterns within the top ten. One
might think that the ConfigurationBuilder pattern without
OAuth returned by PAM is redundant, however not all clients
use OAuth. Moreover, the sequences returned by PAM clearly
display a more diverse selection of API methods: The top
ten PAM sequences use 20 unique API methods, compared
to only 8 for both MAPO and UPMiner.

6. CONCLUSIONS
We presented a parameter-free probabilistic API mining

algorithm that makes use of a novel probabilistic model to
infers the most interesting API call patterns and demon-
strated the e�cacy of our approach on dataset of several
hundred thousand API client files from GitHub. Through
our experiments we found suggestions that API calls are not
well documented in example code and in future we would
like to verify this through a large-scale empirical study.
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Mining

 

1 /* Header */
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first
5 * line of a response message */
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine */
11 public StatusLine(int c, String r) {
12 code = c;
13 reason = r;
14 }
15
16 /** Create a new copy of the request-line */
17 public Object clone() {
18 return new StatusLine(getCode(), getReason());
19 }
20
21 /** Indicates whether some other Object
22 * is "equal to" this StatusLine */
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {
32 return false;
33 }
34 }
35
36 public int getCode() {
37 return code;
38 }
39
40 public String getReason() {
41 return reason;
42 }
43
44 public String toString() {
45 return "SIP/2.0 " + code + " " + reason + "\r\n";
46 }
47 }

Figure 1: Original source code. A snippet from bigbluebutton’s
StatusLine.java. We use this as a running example.

decisions, we formulate this method as a contiguous
rooted subtree problem (Section III-C). This is, to our
knowledge, the first method for code summarization to
use autofolding.

• To determine which non-essential regions should be
folded, we introduce a novel topic model for code (Sec-
tion III-B), building on work in NLP summarization
[13]. The key feature of the model is that it endows
di�erent scopes (files, projects, and the corpus) with
separate topics, allowing the model to identify which
tokens best characterize their enclosing file.

• We perform a comprehensive evaluation of our method
on a set of popular open source projects from GitHub
(Section IV), and find that TASSAL performs better
than simpler baselines (Section V) at matching human
judgements, with a relative error reduction of 28%.

1 /* Header...*/
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first...*/
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine...*/
11 public StatusLine(int c, String r) {...}
15
16 /** Create a new copy of the request-line ..*/
17 public Object clone() {...}
20
21 /** Indicates whether some other Object...*/
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == (getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {...}
34 }
35
36 public int getCode() {...}
39
40 public String getReason() {...}
43
44 public String toString() {...}
47 }

Figure 2: Summarized source code. A summary of the file in Figure 1
(left) which results from folding lines 1, 4–5, 11–14, 21–22, 31–33, 36-
38 and 40-42.

Furthermore, in a user study with experienced devel-
opers, TASSAL is strongly preferred to the baselines.

More broadly, we hope that this work will aid program
comprehension by turning code folding, perhaps an over-
looked feature, into a useful, usable and valuable tool.

II. Related Work

The application of NLP methods to the analysis of
source code text is only just beginning to be explored.
Recent work has applied language modelling [14]–[18],
natural language generation [9], [19], machine translation
[20], and topic modelling [21] to the text of source code
from large software projects.

One of the main challenges in this area is to adapt
existing NLP techniques to source code text. In con-
trast to natural languages, programming languages are
unambiguous, employ little redundancy, are meant to be
interpreted literally, and consist of strictly structured text.
To exploit these features of the problem, we perform the
summarization at the code block level, leveraging the fact
that source code is syntactically unambiguous.

There is some existing work on the use of manual

code folding to aid comprehension. In particular, Ru-
gaber et al. [8] consider a conceptual model for manual
folding, extending it to non-contiguous regions of code.
Kullbach et al. [7] develop the GUPRO IDE to aid in the
comprehension of C preprocessor code by folding macro
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27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {...}
34 }
35
36 public int getCode() {...}
39
40 public String getReason() {...}
43
44 public String toString() {...}
47 }

Figure 2: Summarized source code. A summary of the file in Figure 1
(left) which results from folding lines 1, 4–5, 11–14, 21–22, 31–33, 36-
38 and 40-42.

Furthermore, in a user study with experienced devel-
opers, TASSAL is strongly preferred to the baselines.

More broadly, we hope that this work will aid program
comprehension by turning code folding, perhaps an over-
looked feature, into a useful, usable and valuable tool.

II. Related Work

The application of NLP methods to the analysis of
source code text is only just beginning to be explored.
Recent work has applied language modelling [14]–[18],
natural language generation [9], [19], machine translation
[20], and topic modelling [21] to the text of source code
from large software projects.

One of the main challenges in this area is to adapt
existing NLP techniques to source code text. In con-
trast to natural languages, programming languages are
unambiguous, employ little redundancy, are meant to be
interpreted literally, and consist of strictly structured text.
To exploit these features of the problem, we perform the
summarization at the code block level, leveraging the fact
that source code is syntactically unambiguous.

There is some existing work on the use of manual

code folding to aid comprehension. In particular, Ru-
gaber et al. [8] consider a conceptual model for manual
folding, extending it to non-contiguous regions of code.
Kullbach et al. [7] develop the GUPRO IDE to aid in the
comprehension of C preprocessor code by folding macro

2

(structure learning)
Code summarization

(topic models)

http://bit.ly/sutton-nlpswe


Learning Natural Coding 
Conventions

[Allamanis, Barr, Bird, Sutton; FSE 2014]http://bit.ly/sutton-nlpswe

http://bit.ly/sutton-nlpswe


A coding convention is a 
syntactic constraint beyond that 
imposed by the language 
grammar



Coding Conventions

gofmt indent• Boogerd and Moonen, 2008 
• Caprile and Tonella, 2000 
• Takang, 1996

Developers care

Research in SWE

• Create style guides 
• Enforce during code reviews



Importance of Conventions

Study at Microsoft:  

169 code reviews with 1,093 discussion threads. 

Code Review 
Discussions

Conventions 38%

     Naming 24%

     Formatting   9% 



Where conventions come from?
• Too many to agree 

explicitly 
• Instead arise 

implicitly 
• Soft constraints 

(mores) rather than 
hard constraints 
(laws)

Coding convention inference problem:  
Learn conventions from examples  
of conventional code

New developers don’t know  
about implicit conventions



junit/src/test/java/junit/tests/runner/TextRunnerTest.java  
public class TextRunnerTest extends TestCase {  

  void execTest(String testClass, boolean success) throws Exception {  

...  

InputStream i = p.getInputStream();  

while ((i.read()) != -1);  

...  

}  

...  

}  

Suggest 
alternate 
names

input

inputStream

is

streamScore by ngram model 
and threshold

input (81.93%)



Language Models for Source Code

Probability distribution over token sequences:

Consider naive estimator:

In Naturalize : Choose the name other programmers 
use in similar contexts



junit/src/test/java/junit/tests/runner/TextRunnerTest.java  
public class TextRunnerTest extends TestCase {  

  void execTest(String testClass, boolean success) throws Exception {  

...  

InputStream i = p.getInputStream();  

while ((i.read()) != -1);  

...  

}  

...  

}  

Suggest 
alternate 
names

input

inputStream

is

streamScore by ngram model 
and threshold

input (81.93%)

P (tm|tM . . . tm+1, tm�1 . . . tm�n+1)



Learning Formatting Conventions



Evaluation Methodology

• Top 10 Java projects on GitHub 
• Perturb existing code  
• Measure: does Naturalize retrieve ground truth.

Automatic evaluation:

ForkJoinTask<?> XYZZY;  
if (task instanceof ForkJoinTask<?>)  
    XYZZY = (ForkJoinTask<?>) task;  
else  
    XYZZY = new ForkJoinTask.AdaptedRunnableAction(task);  
externalPush(XYZZY);

1. job (30%)
2. task (20%)
3. tsk (15%)

Naturalize



Variable Renaming

k=5

k=1



k=5

k=1

Variable Renaming



variables

methods

types

All names go to i? No!



18 patches for 5 open source 
projects:  
14 accepted - 4 still waiting



Extensions / future work

• Neural network language models 
[Allamanis, Barr, Bird and Sutton, 2015] 

• Method and class naming 
• Convolutional attention mechanism 

[Allamanis, Peng and Sutton, 2016] 

• Future work 
• Longer distance context 
• Code semantics  
• LSTMs



Mining Idioms from Code

[Allamanis and Sutton; FSE 2014]http://bit.ly/sutton-nlpswe

http://bit.ly/sutton-nlpswe


A code idiom is a syntactic code 
fragment that recurs frequently 

across software projects and has a 
single semantic purpose. 



What are Code Idioms? Example

Looping through lines of a BufferedReader



Idioms Contain Metavariables

Looping through lines of a BufferedReader
Metavariables



Idioms Contain Gaps

Looping through lines of a BufferedReader

gap (non-terminal)



Idiom-Related Tools

Microsoft Visual Studio Code Assistant

Eclipse SnipMatch

IntelliJ IDEA live templates



The Idiom Mining Problem

Corpus of 
ASTs

Idioms

HAGGIS

Learn 
pTSG

Holistic, Automatic Gathering of 
Grammatical Idioms from Software



Corpus of 
ASTs

Idioms

HAGGIS

Learn 
pTSG

Extract & 
Filter 
Production 
Rules

Holistic, Automatic Gathering of 
Grammatical Idioms from Software

The Idiom Mining Problem



Probabilistic TSGs

Probability: 0.3
Infer elementary trees and 
their probabilities

Probability: 0.4 Probability: 0.3

[Joshi and Schabes, 1997]
[Cohn et al, 2010]

[Post, and Gildea, 2009]

Given a CFG and corpus,



θ: pTSG rules 

Maximum likelihood maximizes:

P(T1...TN|θ)

• Selects the rules that best explain the corpus
• Problem: Overfitting

Inferring TSGs



P(θ|T1...TN)
Using Bayes Rule:

Posterior Distribution 

Inferring TSGs

θ: pTSG rules 

Approximate using Markov Chain Monte Carlo
Type-based MCMC: [Liang, Jordan, Klein 2010]



Random code
public class JavaProjectionCalculator {
  private boolean enableCollapsing;
  public void setCollapsing(boolean collapseOn){
    enableCollapsing=collapseOn;
  }
  public Map findAnnotations(IJavaElement parentElement){
    try {
      Throwable result=new HashMap();
      findAnnotations((double)com.google.common.base.Preconditions,result);
      return result;
    } catch (JavaModelException e) { }
    return true;
  }
  private TSGNode findAnnotations(ProjectionAnnotation annotation,  TableColumn 
result) throws JavaModelException {
    int nextId;
    int elemType=elem.getElementType();
    Set regions=null;
    try {
      regions=computeProjections(owner);
    } catch ( RuntimeException e) {
      e.printStackTrace();
      throw e;
    }
    if (elem instanceof IParent) {
      IJavaElement[] children=((IParent)owner).getChildren();
      for (int fromPosition=0; i < children.length; i++) {
        IJavaElement aChild=children[i];
        Set childRegions=findAnnotations(aChild,result);
        removeCollisions(regions,childRegions);



Evaluation

• Qualitative analysis 

• Precision and coverage in held out set 

• External evaluation: StackOverflow 

• Idioms and the real world: Eclipse SnipMatch



Projects Dataset



Library Dataset



Defining a String constant

Creating a logger for a class

Looping through lines from a 
BufferedReader

Iterate through the elements of an 
Iterator

Mined Idioms (General Java)



Mined Idioms (Library-Specific)

Get an HTML Document in jsoup

Show a small popup in Android
Get the distance between 
two points in Android

Database transaction in node4j



Mined idioms are more common in example code

Idioms in StackOverflow



Eclipse SnipMatch

We submitted 44 snippets, of which:

• 19 already in SnipMatch

• 5 accepted

• 4 unsupported by tool

• 1 rejected as a bad practice

• 15 still waiting

Currently contains ~100 human-created code snippets 
(Eclipse Recommenders Project)



Why patterns in software?

Surface-semantic correspondence

void addOne (int[] arr) {
for (int i = 0; i < arr.length; i++) {
  arr[i] += 1;
}

} void foo (int[] bar) {
  int baz = 0;
  while (true) {
    bar[baz] = bar[baz] + 1;
    baz = baz + 1;
    if (baz > bar.length) break;
  }
}

Semantics available from glancing rather than reading

Orthogonal interfaces
Tools that “do one thing well” need to be combined well

Natural code: Code with 
good correspondence?



API Mining from Github

[Fowkes and Sutton; FSE 2016]

 

API Mining

Corpus of client code

Library

API patterns Documentation 
Suggestion

[Zhong et al, 2009; Dang et al 2013] 

e.g.

jrupac/CleanTwitter

brk3 / finch

katahirado/tsubunomi

private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model

private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
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}

public Twitter getTwitterInstance() {
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cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
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}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();
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requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
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}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model
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ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
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cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
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private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model
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Status.getText Twitter.setOAuthConsumer TwitterFactory.getInstance

Twitter.setOAuthConsumer
ConfigurationBuilder.<init> TwitterFactory.<init> Twitter.setOAuthAccessToken
ConfigurationBuilder.build TwitterFactory.getInstance
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ConfigurationBuilder.<init> Status.getText
TwitterFactory.<init> Status.getUser

Status.getText auth.AccessToken.getToken
ConfigurationBuilder.<init> auth.AccessToken.getTokenSecret
ConfigurationBuilder.setOAuthConsumerKey Twitter.setOAuthConsumer

Twitter.setOAuthAccessToken ConfigurationBuilder.<init>
ConfigurationBuilder.build ConfigurationBuilder.build
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TwitterFactory.getInstance TwitterFactory.getInstance
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ConfigurationBuilder.build Status.getId
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User.getId http.AccessToken.getToken
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Twitter.setOAuthConsumer Twitter.getOAuthAccessToken
Twitter.setOAuthAccessToken auth.AccessToken.getToken

auth.AccessToken.getTokenSecret

ConfigurationBuilder.setOAuthAccessToken
ConfigurationBuilder.setOAuthAccessTokenSecret

Figure 5: Top twitter4j.* API patterns mined by MAPO [44] (left), UPMiner [40] (middle), and PAM (right).

API patterns returned by PAM that were not present in any
example call sequence. We found that the 15 selected API
patterns fell into the following three categories: 7 referred
to an API method not in any of the examples, 3 referred
to an API class not in any of the examples and 5 referred
to an API pattern that was not contained in any API ex-
ample (although its methods were present in the examples).
This provides some support for the hypothesis that the API
patterns document part of the API that are used in client
code but for which the original developers have not chosen
to write specific examples.

Overall these results suggest that the patterns returned by
PAM could serve as a useful supplement to code examples
written by API developers. Indeed, these results raise the
question of whether, in future work, PAM could be used to
help detect novel and undocumented API usages and feed
them back to library and framework maintainers.

Qualitative Evaluation To provide further support to
RQ3, whether the mined patterns from PAM could be useful,
we qualitatively compare and contrast the top sequences
returned by PAM, MAPO, and UPMiner on an example
target API. Figure 5 shows the top ten mined API patterns
from twitter4j returned by PAM, MAPO and UPMiner on
the Example dataset. One can clearly see that the API calls
found by MAPO are extremely repetitive, in fact most of the
top ten calls are just combinations of subsequences of the
following pattern:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

which (according to our manual inspection) occurs commonly
in client code but does not appear anywhere in the top ten
patterns returned by MAPO. Similarly, the majority of the
top ten UPMiner patterns are combinations of subsequences
of the pattern:

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthConsumer
Twitter.setOAuthAccessToken

despite the full version of this sequence appearing as the
10th pattern returned by UPMiner. PAM on the other hand,
retrieves both of these full patterns within the top ten. One
might think that the ConfigurationBuilder pattern without
OAuth returned by PAM is redundant, however not all clients
use OAuth. Moreover, the sequences returned by PAM clearly
display a more diverse selection of API methods: The top
ten PAM sequences use 20 unique API methods, compared
to only 8 for both MAPO and UPMiner.

6. CONCLUSIONS
We presented a parameter-free probabilistic API mining

algorithm that makes use of a novel probabilistic model to
infers the most interesting API call patterns and demon-
strated the e�cacy of our approach on dataset of several
hundred thousand API client files from GitHub. Through
our experiments we found suggestions that API calls are not
well documented in example code and in future we would
like to verify this through a large-scale empirical study.
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patterns fell into the following three categories: 7 referred
to an API method not in any of the examples, 3 referred
to an API class not in any of the examples and 5 referred
to an API pattern that was not contained in any API ex-
ample (although its methods were present in the examples).
This provides some support for the hypothesis that the API
patterns document part of the API that are used in client
code but for which the original developers have not chosen
to write specific examples.

Overall these results suggest that the patterns returned by
PAM could serve as a useful supplement to code examples
written by API developers. Indeed, these results raise the
question of whether, in future work, PAM could be used to
help detect novel and undocumented API usages and feed
them back to library and framework maintainers.

Qualitative Evaluation To provide further support to
RQ3, whether the mined patterns from PAM could be useful,
we qualitatively compare and contrast the top sequences
returned by PAM, MAPO, and UPMiner on an example
target API. Figure 5 shows the top ten mined API patterns
from twitter4j returned by PAM, MAPO and UPMiner on
the Example dataset. One can clearly see that the API calls
found by MAPO are extremely repetitive, in fact most of the
top ten calls are just combinations of subsequences of the
following pattern:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

which (according to our manual inspection) occurs commonly
in client code but does not appear anywhere in the top ten
patterns returned by MAPO. Similarly, the majority of the
top ten UPMiner patterns are combinations of subsequences
of the pattern:

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthConsumer
Twitter.setOAuthAccessToken

despite the full version of this sequence appearing as the
10th pattern returned by UPMiner. PAM on the other hand,
retrieves both of these full patterns within the top ten. One
might think that the ConfigurationBuilder pattern without
OAuth returned by PAM is redundant, however not all clients
use OAuth. Moreover, the sequences returned by PAM clearly
display a more diverse selection of API methods: The top
ten PAM sequences use 20 unique API methods, compared
to only 8 for both MAPO and UPMiner.

6. CONCLUSIONS
We presented a parameter-free probabilistic API mining

algorithm that makes use of a novel probabilistic model to
infers the most interesting API call patterns and demon-
strated the e�cacy of our approach on dataset of several
hundred thousand API client files from GitHub. Through
our experiments we found suggestions that API calls are not
well documented in example code and in future we would
like to verify this through a large-scale empirical study.
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layers of libraries
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e.g.

jrupac/CleanTwitter

brk3 / finch

katahirado/tsubunomi

private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model
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configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
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private void startOAuth() {
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configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}
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Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
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TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model
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mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
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Configuration configuration = configurationBuilder.build();
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cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model
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ConfigurationBuilder.<init> Status.getText
TwitterFactory.<init> Status.getUser

Status.getText auth.AccessToken.getToken
ConfigurationBuilder.<init> auth.AccessToken.getTokenSecret
ConfigurationBuilder.setOAuthConsumerKey Twitter.setOAuthConsumer

Twitter.setOAuthAccessToken ConfigurationBuilder.<init>
ConfigurationBuilder.build ConfigurationBuilder.build
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ConfigurationBuilder.build Status.getId
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User.getId http.AccessToken.getToken
User.getId TwitterFactory.<init> http.AccessToken.getTokenSecret
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Twitter.setOAuthConsumer Twitter.getOAuthAccessToken
Twitter.setOAuthAccessToken auth.AccessToken.getToken

auth.AccessToken.getTokenSecret

ConfigurationBuilder.setOAuthAccessToken
ConfigurationBuilder.setOAuthAccessTokenSecret

Figure 5: Top twitter4j.* API patterns mined by MAPO [44] (left), UPMiner [40] (middle), and PAM (right).

API patterns returned by PAM that were not present in any
example call sequence. We found that the 15 selected API
patterns fell into the following three categories: 7 referred
to an API method not in any of the examples, 3 referred
to an API class not in any of the examples and 5 referred
to an API pattern that was not contained in any API ex-
ample (although its methods were present in the examples).
This provides some support for the hypothesis that the API
patterns document part of the API that are used in client
code but for which the original developers have not chosen
to write specific examples.

Overall these results suggest that the patterns returned by
PAM could serve as a useful supplement to code examples
written by API developers. Indeed, these results raise the
question of whether, in future work, PAM could be used to
help detect novel and undocumented API usages and feed
them back to library and framework maintainers.

Qualitative Evaluation To provide further support to
RQ3, whether the mined patterns from PAM could be useful,
we qualitatively compare and contrast the top sequences
returned by PAM, MAPO, and UPMiner on an example
target API. Figure 5 shows the top ten mined API patterns
from twitter4j returned by PAM, MAPO and UPMiner on
the Example dataset. One can clearly see that the API calls
found by MAPO are extremely repetitive, in fact most of the
top ten calls are just combinations of subsequences of the
following pattern:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

which (according to our manual inspection) occurs commonly
in client code but does not appear anywhere in the top ten
patterns returned by MAPO. Similarly, the majority of the
top ten UPMiner patterns are combinations of subsequences
of the pattern:

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthConsumer
Twitter.setOAuthAccessToken

despite the full version of this sequence appearing as the
10th pattern returned by UPMiner. PAM on the other hand,
retrieves both of these full patterns within the top ten. One
might think that the ConfigurationBuilder pattern without
OAuth returned by PAM is redundant, however not all clients
use OAuth. Moreover, the sequences returned by PAM clearly
display a more diverse selection of API methods: The top
ten PAM sequences use 20 unique API methods, compared
to only 8 for both MAPO and UPMiner.

6. CONCLUSIONS
We presented a parameter-free probabilistic API mining

algorithm that makes use of a novel probabilistic model to
infers the most interesting API call patterns and demon-
strated the e�cacy of our approach on dataset of several
hundred thousand API client files from GitHub. Through
our experiments we found suggestions that API calls are not
well documented in example code and in future we would
like to verify this through a large-scale empirical study.
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question of whether, in future work, PAM could be used to
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target API. Figure 5 shows the top ten mined API patterns
from twitter4j returned by PAM, MAPO and UPMiner on
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found by MAPO are extremely repetitive, in fact most of the
top ten calls are just combinations of subsequences of the
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which (according to our manual inspection) occurs commonly
in client code but does not appear anywhere in the top ten
patterns returned by MAPO. Similarly, the majority of the
top ten UPMiner patterns are combinations of subsequences
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10th pattern returned by UPMiner. PAM on the other hand,
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Frequent Sequence Mining

Database of sequences

[Agrawal and Srikant, 1995; 
Wang and Han, 2004] 

Sequence patterns
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b d a e f c

d a f c
b a f c
a e
b e
e c
…
(e.g. minimum support = 3) 

Problem: Frequent can be trivial!

Return all patterns with >= given support 
Support of pattern: Number of database 
sequences that contain it

d a f c
b a f c
a e
b e
e c
…

b d b a f e c
b c e a
e d a f c
a e f b
b d a e f c



Fundamental Pathologies
Truncation

d a f c
Real pattern

a c
Could be returned 
(more frequent!)

Spurious correlation

Effect: Redundant 
list of patternsFreerider

Support(a) = 90% 
Support(d) = 90% 
… but independent …

d a
Pattern at 81% 
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Support(d) = 90% 
… but independent …
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For API Mining…

Previous Approach: Cluster before/after 

TwitterFactory.getInstance
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TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthConsumer

TwitterFactory.<init>
Twitter.setOAuthAccessToken

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthAccessToken

TwitterFactory.getInstance
Twitter.setOAuthAccessToken

TwitterFactory.<init>
Twitter.setOAuthConsumer
Twitter.setOAuthAccessToken

TwitterFactory.<init>
TwitterFactory.getInstance

TwitterFactory.<init>
Twitter.setOAuthConsumer

Status.getUser
Status.getText

auth.AccessToken.<init>
Twitter.setOAuthAccessToken

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthConsumer
Twitter.setOAuthAccessToken

Top 10 API patterns 
from pure sequence 

mining (BIDE)

[Zhong et al, 2009; Dang et al 2013]



Interesting Sequence Mining

Sequences more meaningful, less redundant

Probabilistic methods

Minimum description length

(actually isomorphic; see MacKay, 2003)

[Fowkes and Sutton, KDD 2016, PKDD 2016]

[Vreeken et al, 2011; Tatti and Vreeken, 2012; Lam et al 2014]

Use patterns to define a compression algorithm for database 
Search for patterns that best compress

Use patterns to define a probability distribution over database 
Search for patterns that maximise database probability

define a goodness measure on a set of patterns



Probabilistic Sequence Mining
[Fowkes and Sutton, KDD 2016]

Define a distribution P( database | patterns )

   [ b  c  e ] : 0.1, 0.6 
   [ d f ]       : 0.7, 0.3
   [ d f ]       : 0.8, 0.2
   [ e f ]       : 0.8, 0.1

and include it in X if zS = 1. However, we may wish to in-
clude a subsequence more than once in the sequence X, that
is, we need some way of sampling the multiplicity of S in X.
The simplest way to do this is to change our generating dis-
tribution from Bernoulli to e.g. Categorical and sample the
multiplicity zS ≥ Categorical(fiS) where fiS is now a vec-
tor of probabilities, with one entry for each multiplicity (up
to the maximum in the database). We define the generative
model formally in the next section.

3.2 Generative Model
As discussed in the previous section, we propose a simple

directed graphical model for generating a database of se-
quences X(1), . . . , X(N) from a set I of interesting sequences.
The generative story for our model is, independently for each
sequence X in the database:
1. For each interesting sequence S œ I, decide indepen-

dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For clar-
ity we present the Categorical distribution here but one
could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all the
sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together all occurrences of the
sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

Here by interleaving we mean the placing of items from
one sequence into the gaps between items in another
whilst maintaining the orders of the items imposed by
each sequence.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the

probability of generating a database sequence X is

p(X, z|�) =
; 1
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if X œ P,

0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being an infinite vector and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
!q

SœS |S|
"
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Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
non-redundant set of sequences (see Section 4.2).

Now assuming the parameters � are known, we can infer
z for a database sequence X by maximizing the log of the
lower bound on the posterior p(X, z|�) over z:

max
z
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s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0
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and include it in X if zS = 1. However, we may wish to in-
clude a subsequence more than once in the sequence X, that
is, we need some way of sampling the multiplicity of S in X.
The simplest way to do this is to change our generating dis-
tribution from Bernoulli to e.g. Categorical and sample the
multiplicity zS ≥ Categorical(fiS) where fiS is now a vec-
tor of probabilities, with one entry for each multiplicity (up
to the maximum in the database). We define the generative
model formally in the next section.

3.2 Generative Model
As discussed in the previous section, we propose a simple

directed graphical model for generating a database of se-
quences X(1), . . . , X(N) from a set I of interesting sequences.
The generative story for our model is, independently for each
sequence X in the database:
1. For each interesting sequence S œ I, decide indepen-

dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For clar-
ity we present the Categorical distribution here but one
could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all the
sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together all occurrences of the
sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

Here by interleaving we mean the placing of items from
one sequence into the gaps between items in another
whilst maintaining the orders of the items imposed by
each sequence.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the

probability of generating a database sequence X is

p(X, z|�) =
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if X œ P,

0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being an infinite vector and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
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Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
non-redundant set of sequences (see Section 4.2).

Now assuming the parameters � are known, we can infer
z for a database sequence X by maximizing the log of the
lower bound on the posterior p(X, z|�) over z:
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s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC
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1. For each interesting sequence S œ I, decide indepen-
dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For
clarity we present the Categorical distribution here but
one could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all
the sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can
be generated by interleaving together all occurrences
of the sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.
Context Sensitivity Note that our generative model can
induce languages that are context-sensitive and not context-
free. To see this, consider the language L(I) of all sequences
generated by interleaving the unique subsequences S œ I,
allowing S to be re-used an arbitrary number of times. First,
we can always describe this language using a non-contractive
grammar, i.e., a grammar whose production rules are of the
form – æ — s.t. |–| Æ |—| where –, — are strings of terminal
and non-terminal symbols. In particular, our subsequence
interleaving sampler clearly corresponds to a grammar of
this form, showing that it is context-sensitive. To see that
the generative model can induce languages that are not con-
text free, consider I to be the set of all permutations of the
sequence (a, b, c). Then L(I) is the set of all sequences x

that consist of an equal number of occurrences of a, b, and
c. This language is not context-free.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the
probability of generating a database sequence X is

p(X, z|�) =
; 1

|P|
r

SœI

r|fiS |≠1
m=0 fi

[zS=m]
Sm

if X œ P,
0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being countably infinite and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
!q

SœS |S|
"
!

Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
small non-redundant set of sequences.

Now assuming the latent variables � are known, we can
infer z for a database sequence X by maximizing the log of
the lower bound on the posterior p(X, z|�) over z:

max
z

ÿ

SœI

|fiS |≠1ÿ

m=0

[zS = m] ln(fiSm ) ≠

q
SœS

|S|ÿ

j=1

ln j

s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC

|fiS |≠1ÿ

m=0

[#C(S) = m] ln(fiSm ) ≠

q
SœC

|S|ÿ

j=1

ln j

and g(C) := |fiSœCS|. We can now re-state (3.1) as: Find
a non-overlapping multiset covering C µ T that maximizes
f(C) , i.e., such that g(C) = g(T ) and f(C) is maximized.
Note that g(T ) = |X| by construction. Now clearly g is
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1. For each interesting sequence S œ I, decide indepen-
dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For
clarity we present the Categorical distribution here but
one could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all
the sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can
be generated by interleaving together all occurrences
of the sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.
Context Sensitivity Note that our generative model can
induce languages that are context-sensitive and not context-
free. To see this, consider the language L(I) of all sequences
generated by interleaving the unique subsequences S œ I,
allowing S to be re-used an arbitrary number of times. First,
we can always describe this language using a non-contractive
grammar, i.e., a grammar whose production rules are of the
form – æ — s.t. |–| Æ |—| where –, — are strings of terminal
and non-terminal symbols. In particular, our subsequence
interleaving sampler clearly corresponds to a grammar of
this form, showing that it is context-sensitive. To see that
the generative model can induce languages that are not con-
text free, consider I to be the set of all permutations of the
sequence (a, b, c). Then L(I) is the set of all sequences x

that consist of an equal number of occurrences of a, b, and
c. This language is not context-free.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the
probability of generating a database sequence X is

p(X, z|�) =
; 1
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if X œ P,
0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being countably infinite and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,
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Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
small non-redundant set of sequences.

Now assuming the latent variables � are known, we can
infer z for a database sequence X by maximizing the log of
the lower bound on the posterior p(X, z|�) over z:
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s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0
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f(C) :=
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and g(C) := |fiSœCS|. We can now re-state (3.1) as: Find
a non-overlapping multiset covering C µ T that maximizes
f(C) , i.e., such that g(C) = g(T ) and f(C) is maximized.
Note that g(T ) = |X| by construction. Now clearly g is
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and include it in X if zS = 1. However, we may wish to in-
clude a subsequence more than once in the sequence X, that
is, we need some way of sampling the multiplicity of S in X.
The simplest way to do this is to change our generating dis-
tribution from Bernoulli to e.g. Categorical and sample the
multiplicity zS ≥ Categorical(fiS) where fiS is now a vec-
tor of probabilities, with one entry for each multiplicity (up
to the maximum in the database). We define the generative
model formally in the next section.

3.2 Generative Model
As discussed in the previous section, we propose a simple

directed graphical model for generating a database of se-
quences X(1), . . . , X(N) from a set I of interesting sequences.
The generative story for our model is, independently for each
sequence X in the database:
1. For each interesting sequence S œ I, decide indepen-

dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For clar-
ity we present the Categorical distribution here but one
could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all the
sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together all occurrences of the
sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

Here by interleaving we mean the placing of items from
one sequence into the gaps between items in another
whilst maintaining the orders of the items imposed by
each sequence.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the

probability of generating a database sequence X is

p(X, z|�) =
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if X œ P,

0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being an infinite vector and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,
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Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
non-redundant set of sequences (see Section 4.2).

Now assuming the parameters � are known, we can infer
z for a database sequence X by maximizing the log of the
lower bound on the posterior p(X, z|�) over z:

max
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s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC

|fiS |≠1ÿ

m=0

[#C(S) = m] ln(fiSm ) ≠

q
SœC

|S|ÿ

j=1

ln j
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and include it in X if zS = 1. However, we may wish to in-
clude a subsequence more than once in the sequence X, that
is, we need some way of sampling the multiplicity of S in X.
The simplest way to do this is to change our generating dis-
tribution from Bernoulli to e.g. Categorical and sample the
multiplicity zS ≥ Categorical(fiS) where fiS is now a vec-
tor of probabilities, with one entry for each multiplicity (up
to the maximum in the database). We define the generative
model formally in the next section.

3.2 Generative Model
As discussed in the previous section, we propose a simple

directed graphical model for generating a database of se-
quences X(1), . . . , X(N) from a set I of interesting sequences.
The generative story for our model is, independently for each
sequence X in the database:
1. For each interesting sequence S œ I, decide indepen-

dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For clar-
ity we present the Categorical distribution here but one
could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all the
sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together all occurrences of the
sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

Here by interleaving we mean the placing of items from
one sequence into the gaps between items in another
whilst maintaining the orders of the items imposed by
each sequence.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the

probability of generating a database sequence X is

p(X, z|�) =
; 1

|P|
r

SœI

r|fiS |≠1
m=0 fi[zS=m]

Sm
if X œ P,

0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being an infinite vector and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
!q

SœS |S|
"
!

Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
non-redundant set of sequences (see Section 4.2).

Now assuming the parameters � are known, we can infer
z for a database sequence X by maximizing the log of the
lower bound on the posterior p(X, z|�) over z:

max
z

ÿ

SœI

|fiS |≠1ÿ

m=0

[zS = m] ln(fiSm ) ≠

q
SœS

|S|ÿ

j=1

ln j

s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC

|fiS |≠1ÿ

m=0

[#C(S) = m] ln(fiSm ) ≠

q
SœC

|S|ÿ

j=1

ln j
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and include it in X if zS = 1. However, we may wish to in-
clude a subsequence more than once in the sequence X, that
is, we need some way of sampling the multiplicity of S in X.
The simplest way to do this is to change our generating dis-
tribution from Bernoulli to e.g. Categorical and sample the
multiplicity zS ≥ Categorical(fiS) where fiS is now a vec-
tor of probabilities, with one entry for each multiplicity (up
to the maximum in the database). We define the generative
model formally in the next section.

3.2 Generative Model
As discussed in the previous section, we propose a simple

directed graphical model for generating a database of se-
quences X(1), . . . , X(N) from a set I of interesting sequences.
The generative story for our model is, independently for each
sequence X in the database:
1. For each interesting sequence S œ I, decide indepen-

dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For clar-
ity we present the Categorical distribution here but one
could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all the
sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together all occurrences of the
sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

Here by interleaving we mean the placing of items from
one sequence into the gaps between items in another
whilst maintaining the orders of the items imposed by
each sequence.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the

probability of generating a database sequence X is

p(X, z|�) =
; 1

|P|
r

SœI

r|fiS |≠1
m=0 fi[zS=m]

Sm
if X œ P,

0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being an infinite vector and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
!q

SœS |S|
"
!

Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
non-redundant set of sequences (see Section 4.2).

Now assuming the parameters � are known, we can infer
z for a database sequence X by maximizing the log of the
lower bound on the posterior p(X, z|�) over z:

max
z

ÿ

SœI

|fiS |≠1ÿ

m=0

[zS = m] ln(fiSm ) ≠

q
SœS

|S|ÿ

j=1

ln j

s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC

|fiS |≠1ÿ

m=0

[#C(S) = m] ln(fiSm ) ≠

q
SœC

|S|ÿ

j=1

ln j
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and include it in X if zS = 1. However, we may wish to in-
clude a subsequence more than once in the sequence X, that
is, we need some way of sampling the multiplicity of S in X.
The simplest way to do this is to change our generating dis-
tribution from Bernoulli to e.g. Categorical and sample the
multiplicity zS ≥ Categorical(fiS) where fiS is now a vec-
tor of probabilities, with one entry for each multiplicity (up
to the maximum in the database). We define the generative
model formally in the next section.

3.2 Generative Model
As discussed in the previous section, we propose a simple

directed graphical model for generating a database of se-
quences X(1), . . . , X(N) from a set I of interesting sequences.
The generative story for our model is, independently for each
sequence X in the database:
1. For each interesting sequence S œ I, decide indepen-

dently the number of times S should be included in X,
i.e., sample the multiplicity zS œ N0 as

zS ≥ Categorical(fiS),

where fiS is a vector of multiplicity probabilities. For clar-
ity we present the Categorical distribution here but one
could use a more general distribution if desired.

2. Set S to be the multiset with multiplicities zS of all the
sequences S selected for inclusion in X:

S := {S | zS Ø 1}.

3. Set P to be the set of all possible sequences that can be
generated by interleaving together all occurrences of the
sequences in the multiset S, i.e.,

P := {X | S partition of X, S µ X ’S œ S}.

Here by interleaving we mean the placing of items from
one sequence into the gaps between items in another
whilst maintaining the orders of the items imposed by
each sequence.

4. Sample X uniformly from P, i.e.,

X ≥ P.

Note that we never need to construct the set P in practice,
since we only require its cardinality during inference, and
we show in the next section how we can e�ciently compute
an approximation to |P|. We can, however, sample from P
e�ciently by merging subsequences S œ S into X one at a
time as follows: splice the elements of S, in order, into X at
randomly chosen points (here by splicing S into X we mean
the placing of items from S into the gaps between items in
X). For example, S = {(1, 2), (3, 4)} will generate the set of
sequences P = {(3, 4, 1, 2), (3, 1, 4, 2), (3, 1, 2, 4), (1, 3, 4, 2),
(1, 3, 2, 4), (1, 2, 3, 4)}. We could of course learn a transi-
tion distribution between subsequences in our model, but
we choose not to do so because we want to force the model
to use I to explain the sequential dependencies in the data.

3.3 Inference
Given a set of interesting sequences I, let z denote the

vector of zS for all sequences S œ I and similarly, let �

denote the list of fiS for all S œ I. Assuming z, � are fully
determined, it is evident from the generative model that the

probability of generating a database sequence X is

p(X, z|�) =
; 1

|P|
r

SœI

r|fiS |≠1
m=0 fi[zS=m]

Sm
if X œ P,

0 otherwise,

where |fiS | is the length of fiS and [zS = m] evaluates to
1 if zS = m, 0 otherwise. Intuitively, it helps to think of
each fiS as being an infinite vector and each S œ I as being
augmented with a Kleene star operator, so that, for exam-
ple, one can use (1, 2)ú and (3)ú to generate the sequence
(1, 2, 1, 3, 2).

Calculating the normalization constant |P| is problem-
atic as we have to count the number of possible distinct
sequences that could be generated by interleaving together
subsequences in S. This is further complicated by the fact
that S is a multiset and so can contain multiple occurrences
of the same subsequence, which makes e�cient computa-
tion of |P| impractical. However, it turns out that we can
compute a straightforward upper bound since |P| is clearly
bounded above by all possible permutations of all the items
in all the subsequences S œ S, and this bound is attained
when S contains only distinct singleton sequences without
repetition. Formally,

|P| Æ
!q

SœS |S|
"
!

Conveniently, this gives us a non-trivial lower-bound on the
posterior p(X, z|�) which, as we will want to maximize the
posterior, is precisely what we want. Moreover, the lower
bound acts as an additional penalty, strongly favouring a
non-redundant set of sequences (see Section 4.2).

Now assuming the parameters � are known, we can infer
z for a database sequence X by maximizing the log of the
lower bound on the posterior p(X, z|�) over z:

max
z

ÿ

SœI

|fiS |≠1ÿ

m=0

[zS = m] ln(fiSm ) ≠

q
SœS

|S|ÿ

j=1

ln j

s.t. X œ P.

(3.1)

This is an NP-hard problem in general and so impractical
to solve directly in practice. However, we will show that it
can be viewed as a special case of maximizing a submodular
function subject to a submodular constraint and so approx-
imately solved using the greedy algorithm for submodular
function optimization. Now strictly speaking the notion of a
submodular function is only applicable to sets, however we
will consider the following generalization to multisets:

Definition 1. (Submodular Multiset Function) Let � be
a finite multiset and let N0

� denote the set of all possible
multisets that are subsets of �, then a function f : N0

� æ R
is submodular if for for every C µ D µ � and S œ � with
#C(S) = #D(S) it holds that

f(C fi {S}) ≠ f(C) Ø f(D fi {S}) ≠ f(D).

Let us now define a function f for our specific case: let
T be the multiset of supported interesting sequences, i.e.,
sequences S œ I s.t. S µ X with multiplicity given by the
maximum number of occurrences of S in any partition of X.
Now, define f : N0

T æ R as

f(C) :=
ÿ

SœC

|fiS |≠1ÿ

m=0

[#C(S) = m] ln(fiSm ) ≠

q
SœC

|S|ÿ
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ln j
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private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model

private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model

private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.setUseSSL
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.setOAuthAccessToken
ConfigurationBuilder.setOAuthAccessTokenSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance
TwitterFactory.getOAuthRequestToken
RequestToken.getAuthenticationURL

Corpus

Sequence database Probabilistic 
sequence mining



Data
Target projects: 17 Java libraries, all that: 

Library source on Github  
Library in top 1000 Github projects 
Called by >50 other methods on Github 
At least 10k lines of example/ code 
Total: Over 300k lines of example code 

Client methods: all that called any targets 
967 client projects 
Total: Over 4M lines of client code 



Experimental Questions

Quality 
Match to “held-out” client code 
Match to examples from library developers 
Measure: sequence overlap, precision, recall 

Redundancy 
Why? Ease of use, diversity 
Measure: number of containing sequences 

All results averaged over the 17 libraries
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Figure 3: Average no. containing sequences for PAM,
MAPO and UPMiner on the Example dataset, us-
ing the top-k mined sequences.

significantly as the recall increases. We can therefore say
with certainty that the API call sequences mined by PAM
are more prevalent. Note that while the best recall that
PAM achieves is 44%, this is actually close to the theoretical
maximum recall on the test set. This can be approximated
by the proportion of test set sequences that contain training
set sequences, which is around 45%.

RQ2: Are the API call sequences mined by PAM more

diverse? We now turn our attention to the complete dataset
and mine call sequences from the entire Client file set for each
project (cf. Table 1). We can then use the no. containing
sequences metric to determine how redundant the set of
mined call sequences is. Figure 3 shows the average no. of
sequences containing other sequences in the set of top-k
mined sequences as k varies. One can see that PAM has
consistently the lowest figure, around 0.5, showing that it is
the least redundant and therefore most diverse. One of the
key motivations of our method is that the list of patterns
returned by sequence mining methods is redundant. This
figure shows that, even after the extra steps that MAPO and
UPMiner take to reduce the redundancy of the raw output
of frequent sequence mining, the patterns returned by PAM
are still less redundant.

RQ3: Could the API patterns mined by PAM supple-

ment existing developer-written API examples? We
measure whether the mined API patterns correspond to hand-
written examples in the dataset. We therefore mine, for each
project, call sequences from the Client file set and evaluate
them against call sequences in the Example file set. Figure 4
shows the sequence precision against recall, averaged across
all projects. Again, PAM has evidently better precision and
recall than MAPO and UPMiner. The best recall achieved
by PAM is 28%, significantly better than the other methods,
and for any fixed recall value, PAM has higher precision
than the other methods. This suggests that the API patterns
returned by PAM could better supplement developer-written
examples than those returned by MAPO or UPMiner.

In an absolute sense, the level of agreement between PAM
and the hand-written examples, although substantial, might
not seem especially high. This raises an interesting question:
Does this level of disagreement occur because the PAM pat-
terns are not representative of the client code they were mined
from, or because the hand-written examples themselves are
not fully representative of the client code? Although previous
work has explored what it means for a single API example
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Figure 4: Average example-set interpolated precision
against recall for PAM, MAPO and UPMiner on the
Example dataset2, using the top-k mined sequences
as a threshold.

to be useful [42, 34], there seems to be much less work about
what it means for a set of examples to be useful, and how
well example directories in popular projects reflect all of the
actual common uses of an API.

We can however make an initial assessment of this question
by going back to the held-out test set of client code that we
used in RQ1. We can measure how well the client test set
and the handwritten examples agree by measuring sequence
precision and recall if we take the handwritten examples as
if they were API patterns and the client test set as the gold
standard. When we do this, we find that the handwritten
examples have a recall of 27%, meaning that three-quarters
of client API method sequences are not contained within
any of the handwritten examples. Turning to precision, the
handwritten examples have a precision of 36%, meaning that
two-thirds of API sequences from the example code are not
used by any client method (where “used by” means “fully
contained by”). This is significantly lower than the precision
between the training set of client methods and the test set,
suggesting that the training set is more representative of the
test set than the handwritten examples are. Although this
might be seen as a suggestive result, we caution that this has
an important threat to validity: handwritten examples may
include sca↵olding code that is unnecessary in client methods.
For this reason, we advise caution about drawing strong
conclusions from the precision of handwritten examples, but
we note that this threat does not apply to the recall.

These results suggest that even in very well documented
projects with extensive sets of examples, the API usage exam-
ples written by developers are still incomplete. While it may
not seem surprising that developer-written example directo-
ries would be incomplete, recall that we specifically chose our
data set to consist only of popular libraries with extensive
handwritten examples — indeed, our data set averages 18,000
lines of example code per target API. It is striking that even
with projects that are so extensively documented, PAM is
still able to infer a list of coverage with substantially greater
coverage of the API.

To gain further insight into this issue, we randomly selected
three projects from our dataset and looked at the top five

2This figure excludes hadoop as we had problems with our
implementation of MAPO and UPMiner running out of mem-
ory (hadoop has around 2 million client LOC). While PAM
had no issues, we excluded it for a fair comparison.

Handwritten Examples

Recall
(per-sequence)

Precision
(per-sequence)
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MAPO and UPMiner on the Example dataset, us-
ing the top-k mined sequences.

significantly as the recall increases. We can therefore say
with certainty that the API call sequences mined by PAM
are more prevalent. Note that while the best recall that
PAM achieves is 44%, this is actually close to the theoretical
maximum recall on the test set. This can be approximated
by the proportion of test set sequences that contain training
set sequences, which is around 45%.

RQ2: Are the API call sequences mined by PAM more

diverse? We now turn our attention to the complete dataset
and mine call sequences from the entire Client file set for each
project (cf. Table 1). We can then use the no. containing
sequences metric to determine how redundant the set of
mined call sequences is. Figure 3 shows the average no. of
sequences containing other sequences in the set of top-k
mined sequences as k varies. One can see that PAM has
consistently the lowest figure, around 0.5, showing that it is
the least redundant and therefore most diverse. One of the
key motivations of our method is that the list of patterns
returned by sequence mining methods is redundant. This
figure shows that, even after the extra steps that MAPO and
UPMiner take to reduce the redundancy of the raw output
of frequent sequence mining, the patterns returned by PAM
are still less redundant.

RQ3: Could the API patterns mined by PAM supple-

ment existing developer-written API examples? We
measure whether the mined API patterns correspond to hand-
written examples in the dataset. We therefore mine, for each
project, call sequences from the Client file set and evaluate
them against call sequences in the Example file set. Figure 4
shows the sequence precision against recall, averaged across
all projects. Again, PAM has evidently better precision and
recall than MAPO and UPMiner. The best recall achieved
by PAM is 28%, significantly better than the other methods,
and for any fixed recall value, PAM has higher precision
than the other methods. This suggests that the API patterns
returned by PAM could better supplement developer-written
examples than those returned by MAPO or UPMiner.

In an absolute sense, the level of agreement between PAM
and the hand-written examples, although substantial, might
not seem especially high. This raises an interesting question:
Does this level of disagreement occur because the PAM pat-
terns are not representative of the client code they were mined
from, or because the hand-written examples themselves are
not fully representative of the client code? Although previous
work has explored what it means for a single API example
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Figure 4: Average example-set interpolated precision
against recall for PAM, MAPO and UPMiner on the
Example dataset2, using the top-k mined sequences
as a threshold.

to be useful [42, 34], there seems to be much less work about
what it means for a set of examples to be useful, and how
well example directories in popular projects reflect all of the
actual common uses of an API.

We can however make an initial assessment of this question
by going back to the held-out test set of client code that we
used in RQ1. We can measure how well the client test set
and the handwritten examples agree by measuring sequence
precision and recall if we take the handwritten examples as
if they were API patterns and the client test set as the gold
standard. When we do this, we find that the handwritten
examples have a recall of 27%, meaning that three-quarters
of client API method sequences are not contained within
any of the handwritten examples. Turning to precision, the
handwritten examples have a precision of 36%, meaning that
two-thirds of API sequences from the example code are not
used by any client method (where “used by” means “fully
contained by”). This is significantly lower than the precision
between the training set of client methods and the test set,
suggesting that the training set is more representative of the
test set than the handwritten examples are. Although this
might be seen as a suggestive result, we caution that this has
an important threat to validity: handwritten examples may
include sca↵olding code that is unnecessary in client methods.
For this reason, we advise caution about drawing strong
conclusions from the precision of handwritten examples, but
we note that this threat does not apply to the recall.

These results suggest that even in very well documented
projects with extensive sets of examples, the API usage exam-
ples written by developers are still incomplete. While it may
not seem surprising that developer-written example directo-
ries would be incomplete, recall that we specifically chose our
data set to consist only of popular libraries with extensive
handwritten examples — indeed, our data set averages 18,000
lines of example code per target API. It is striking that even
with projects that are so extensively documented, PAM is
still able to infer a list of coverage with substantially greater
coverage of the API.

To gain further insight into this issue, we randomly selected
three projects from our dataset and looked at the top five

2This figure excludes hadoop as we had problems with our
implementation of MAPO and UPMiner running out of mem-
ory (hadoop has around 2 million client LOC). While PAM
had no issues, we excluded it for a fair comparison.
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PAM MAPO 
[Zhong et al, ‘09]

UPMiner 
  [Wang et al, ‘13]

					TwitterFactory.<init>	
					TwitterFactory.getInstance

TwitterFactory.<init>	
TwitterFactory.getInstance

TwitterFactory.<init>					
TwitterFactory.getInstance

					TwitterFactory.<init>	
					TwitterFactory.getInstance	
					Twitter.setOAuthConsumer	
					Twitter.setOAuthAccessToken

Status.getUser	
Status.getText

TwitterFactory.getInstance	
Twitter.setOAuthConsumer

					Status.getUser	
					Status.getText

ConfigurationBuilder.<init>	
ConfigurationBuilder.build

TwitterFactory.<init>					
TwitterFactory.getInstance	
Twitter.setOAuthConsumer

					AccessToken.getToken	
					AccessToken.getTokenSecret

ConfigurationBuilder.<init>	
TwitterFactory.<init> Status.getUserStatus.getText

					ConfigurationBuilder.<init>	
					ConfigurationBuilder.build	
					TwitterFactory.<init>	
					TwitterFactory.getInstance

ConfigurationBuilder.<init>	
ConfigurationBuilder.setOAuthConsu
merKey

Twitter.setOAuthConsumer					
Twitter.setOAuthAccessToken

Example: twitter4j

: two main types of twitter initialization call



Code summarisation

[Fowkes, Ranca, Allamanis, Lapata 
and Sutton; TSE 2017]

1 /* Header */
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first
5 * line of a response message */
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine */
11 public StatusLine(int c, String r) {
12 code = c;
13 reason = r;
14 }
15
16 /** Create a new copy of the request-line */
17 public Object clone() {
18 return new StatusLine(getCode(), getReason());
19 }
20
21 /** Indicates whether some other Object
22 * is "equal to" this StatusLine */
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {
32 return false;
33 }
34 }
35
36 public int getCode() {
37 return code;
38 }
39
40 public String getReason() {
41 return reason;
42 }
43
44 public String toString() {
45 return "SIP/2.0 " + code + " " + reason + "\r\n";
46 }
47 }

Figure 1: Original source code. A snippet from bigbluebutton’s
StatusLine.java. We use this as a running example.

decisions, we formulate this method as a contiguous
rooted subtree problem (Section III-C). This is, to our
knowledge, the first method for code summarization to
use autofolding.

• To determine which non-essential regions should be
folded, we introduce a novel topic model for code (Sec-
tion III-B), building on work in NLP summarization
[13]. The key feature of the model is that it endows
di�erent scopes (files, projects, and the corpus) with
separate topics, allowing the model to identify which
tokens best characterize their enclosing file.

• We perform a comprehensive evaluation of our method
on a set of popular open source projects from GitHub
(Section IV), and find that TASSAL performs better
than simpler baselines (Section V) at matching human
judgements, with a relative error reduction of 28%.

1 /* Header...*/
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first...*/
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine...*/
11 public StatusLine(int c, String r) {...}
15
16 /** Create a new copy of the request-line ..*/
17 public Object clone() {...}
20
21 /** Indicates whether some other Object...*/
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == (getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {...}
34 }
35
36 public int getCode() {...}
39
40 public String getReason() {...}
43
44 public String toString() {...}
47 }

Figure 2: Summarized source code. A summary of the file in Figure 1
(left) which results from folding lines 1, 4–5, 11–14, 21–22, 31–33, 36-
38 and 40-42.

Furthermore, in a user study with experienced devel-
opers, TASSAL is strongly preferred to the baselines.

More broadly, we hope that this work will aid program
comprehension by turning code folding, perhaps an over-
looked feature, into a useful, usable and valuable tool.

II. Related Work

The application of NLP methods to the analysis of
source code text is only just beginning to be explored.
Recent work has applied language modelling [14]–[18],
natural language generation [9], [19], machine translation
[20], and topic modelling [21] to the text of source code
from large software projects.

One of the main challenges in this area is to adapt
existing NLP techniques to source code text. In con-
trast to natural languages, programming languages are
unambiguous, employ little redundancy, are meant to be
interpreted literally, and consist of strictly structured text.
To exploit these features of the problem, we perform the
summarization at the code block level, leveraging the fact
that source code is syntactically unambiguous.

There is some existing work on the use of manual

code folding to aid comprehension. In particular, Ru-
gaber et al. [8] consider a conceptual model for manual
folding, extending it to non-contiguous regions of code.
Kullbach et al. [7] develop the GUPRO IDE to aid in the
comprehension of C preprocessor code by folding macro
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2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first
5 * line of a response message */
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine */
11 public StatusLine(int c, String r) {
12 code = c;
13 reason = r;
14 }
15
16 /** Create a new copy of the request-line */
17 public Object clone() {
18 return new StatusLine(getCode(), getReason());
19 }
20
21 /** Indicates whether some other Object
22 * is "equal to" this StatusLine */
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {
32 return false;
33 }
34 }
35
36 public int getCode() {
37 return code;
38 }
39
40 public String getReason() {
41 return reason;
42 }
43
44 public String toString() {
45 return "SIP/2.0 " + code + " " + reason + "\r\n";
46 }
47 }

Figure 1: Original source code. A snippet from bigbluebutton’s
StatusLine.java. We use this as a running example.

decisions, we formulate this method as a contiguous
rooted subtree problem (Section III-C). This is, to our
knowledge, the first method for code summarization to
use autofolding.

• To determine which non-essential regions should be
folded, we introduce a novel topic model for code (Sec-
tion III-B), building on work in NLP summarization
[13]. The key feature of the model is that it endows
di�erent scopes (files, projects, and the corpus) with
separate topics, allowing the model to identify which
tokens best characterize their enclosing file.

• We perform a comprehensive evaluation of our method
on a set of popular open source projects from GitHub
(Section IV), and find that TASSAL performs better
than simpler baselines (Section V) at matching human
judgements, with a relative error reduction of 28%.

1 /* Header...*/
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first...*/
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine...*/
11 public StatusLine(int c, String r) {...}
15
16 /** Create a new copy of the request-line ..*/
17 public Object clone() {...}
20
21 /** Indicates whether some other Object...*/
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == (getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
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36 public int getCode() {...}
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44 public String toString() {...}
47 }

Figure 2: Summarized source code. A summary of the file in Figure 1
(left) which results from folding lines 1, 4–5, 11–14, 21–22, 31–33, 36-
38 and 40-42.

Furthermore, in a user study with experienced devel-
opers, TASSAL is strongly preferred to the baselines.

More broadly, we hope that this work will aid program
comprehension by turning code folding, perhaps an over-
looked feature, into a useful, usable and valuable tool.

II. Related Work

The application of NLP methods to the analysis of
source code text is only just beginning to be explored.
Recent work has applied language modelling [14]–[18],
natural language generation [9], [19], machine translation
[20], and topic modelling [21] to the text of source code
from large software projects.

One of the main challenges in this area is to adapt
existing NLP techniques to source code text. In con-
trast to natural languages, programming languages are
unambiguous, employ little redundancy, are meant to be
interpreted literally, and consist of strictly structured text.
To exploit these features of the problem, we perform the
summarization at the code block level, leveraging the fact
that source code is syntactically unambiguous.

There is some existing work on the use of manual

code folding to aid comprehension. In particular, Ru-
gaber et al. [8] consider a conceptual model for manual
folding, extending it to non-contiguous regions of code.
Kullbach et al. [7] develop the GUPRO IDE to aid in the
comprehension of C preprocessor code by folding macro
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1 /* Header */
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first
5 * line of a response message */
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine */
11 public StatusLine(int c, String r) {
12 code = c;
13 reason = r;
14 }
15
16 /** Create a new copy of the request-line */
17 public Object clone() {
18 return new StatusLine(getCode(), getReason());
19 }
20
21 /** Indicates whether some other Object
22 * is "equal to" this StatusLine */
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {
32 return false;
33 }
34 }
35
36 public int getCode() {
37 return code;
38 }
39
40 public String getReason() {
41 return reason;
42 }
43
44 public String toString() {
45 return "SIP/2.0 " + code + " " + reason + "\r\n";
46 }
47 }

Figure 1: Original source code. A snippet from bigbluebutton’s
StatusLine.java. We use this as a running example.

decisions, we formulate this method as a contiguous
rooted subtree problem (Section III-C). This is, to our
knowledge, the first method for code summarization to
use autofolding.

• To determine which non-essential regions should be
folded, we introduce a novel topic model for code (Sec-
tion III-B), building on work in NLP summarization
[13]. The key feature of the model is that it endows
di�erent scopes (files, projects, and the corpus) with
separate topics, allowing the model to identify which
tokens best characterize their enclosing file.

• We perform a comprehensive evaluation of our method
on a set of popular open source projects from GitHub
(Section IV), and find that TASSAL performs better
than simpler baselines (Section V) at matching human
judgements, with a relative error reduction of 28%.

1 /* Header...*/
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first...*/
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine...*/
11 public StatusLine(int c, String r) {...}
15
16 /** Create a new copy of the request-line ..*/
17 public Object clone() {...}
20
21 /** Indicates whether some other Object...*/
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == (getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {...}
34 }
35
36 public int getCode() {...}
39
40 public String getReason() {...}
43
44 public String toString() {...}
47 }

Figure 2: Summarized source code. A summary of the file in Figure 1
(left) which results from folding lines 1, 4–5, 11–14, 21–22, 31–33, 36-
38 and 40-42.

Furthermore, in a user study with experienced devel-
opers, TASSAL is strongly preferred to the baselines.

More broadly, we hope that this work will aid program
comprehension by turning code folding, perhaps an over-
looked feature, into a useful, usable and valuable tool.

II. Related Work

The application of NLP methods to the analysis of
source code text is only just beginning to be explored.
Recent work has applied language modelling [14]–[18],
natural language generation [9], [19], machine translation
[20], and topic modelling [21] to the text of source code
from large software projects.

One of the main challenges in this area is to adapt
existing NLP techniques to source code text. In con-
trast to natural languages, programming languages are
unambiguous, employ little redundancy, are meant to be
interpreted literally, and consist of strictly structured text.
To exploit these features of the problem, we perform the
summarization at the code block level, leveraging the fact
that source code is syntactically unambiguous.

There is some existing work on the use of manual

code folding to aid comprehension. In particular, Ru-
gaber et al. [8] consider a conceptual model for manual
folding, extending it to non-contiguous regions of code.
Kullbach et al. [7] develop the GUPRO IDE to aid in the
comprehension of C preprocessor code by folding macro

2

statusline.java from BigBlueButton
1 /* Header */
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first
5 * line of a response message */
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine */
11 public StatusLine(int c, String r) {
12 code = c;
13 reason = r;
14 }
15
16 /** Create a new copy of the request-line */
17 public Object clone() {
18 return new StatusLine(getCode(), getReason());
19 }
20
21 /** Indicates whether some other Object
22 * is "equal to" this StatusLine */
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {
32 return false;
33 }
34 }
35
36 public int getCode() {
37 return code;
38 }
39
40 public String getReason() {
41 return reason;
42 }
43
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Figure 1: Original source code. A snippet from bigbluebutton’s
StatusLine.java. We use this as a running example.
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knowledge, the first method for code summarization to
use autofolding.

• To determine which non-essential regions should be
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[13]. The key feature of the model is that it endows
di�erent scopes (files, projects, and the corpus) with
separate topics, allowing the model to identify which
tokens best characterize their enclosing file.

• We perform a comprehensive evaluation of our method
on a set of popular open source projects from GitHub
(Section IV), and find that TASSAL performs better
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code reviewing for which a more focused summary may be
desirable; we leave these other tasks to future work.

The outline of TASSAL is as follows: TASSAL takes as
input a set of source files along with a desired compression
ratio and outputs a summary of each file where uninfor-
mative regions of code have been folded (see Figure 2 for
an example). In order to achieve this TASSAL first parses
the code’s AST to obtain suitable regions to fold (Sec-
tion III-A). It then applies a source code language model to
each foldable region. The aim of this model is to indenify,
for every source file, which tokens specifically characterize
file, as opposed to project-specific or Java-generic tokens
that are not as informative for understanding the file. To
this end, we develop a scoped topic model for source code
(Section III-B), which we apply to rank how informative
each code region is to its enclosing file. Using this ranking
TASSAL then leverages an optimization algorithm to
determine the most uninformative regions to fold while
achieving the desired level of compression. This is a novel
optimization procedure that takes the structure of the
code into account (Section III-C).

A. Problem Definition
Most modern IDEs already have extensive support for

manual folding of code as well as the ability to fold
regions based on user-specfied rules. But to the best of
our knowledge the problem of automatically determining
which regions to fold is novel. When we say that we fold
a source code region we mean that the region is replaced
by a one line summary and a symbol indicating that the
region was folded. We define the autofolding problem as
that of choosing a set of code regions to fold, such that
the total length of the folded file as a fraction of the
original is below a user-specified compression ratio, and
the remaining, unfolded, text captures the most important
aspects of the file in question.

To provide an intuitive summary to the end-user, we
let the system perform folding on code blocks (regions of
source code delimited by { , }), comment blocks (regions de-
limited by /*(*) , */), and import statements. We call these
the foldable regions of the code. Our reasoning for this is
that it is a summary many programmers are familiar with
as these are the regions that can be manually folded in
the majority of modern IDEs and text editors. Moreover,
code blocks are natural units for extractive summarization
since they take advantage of the code structure specified
by the programmer. However, since our approach works
within the code’s AST, it can be trivially extended to
fold any contiguous region of interest. For example, in our
implementation we have added optional features to allow
autofolding of line comments, fields and method signatures.
In keeping with the conventions from manual folding in
IDEs, the one line summary we display for a folded region
consists of the first non-empty line of the code block,
then a symbol denoting the folded region (an ellipsis), and
finally the right delimiter of the region. See Figure 2 for

1. StatusLine.java

(1-48)

2. header

(1-1)

3. class jdoc

(4-5) 

4. class

(6-47)

5. constructor

(11-14)

6. equals jdoc

(21-22)

7. equals

(23-34)

8. getCode

(36-38)

9. getReason

(40-42)

10. try

(24-30)

11. catch

(31-33)

Figure 3: Partial foldable tree constructed for StatusLine.java
(Figure 1). Numbered breadth-first with labels denoting block types
and line numbers in brackets, cf. the source code snippet in Figure 1.
Note that we have omitted some nodes for clarity.

an example of how folded text appears in an IDE.
We formalize the autofolding problem by using the AST

representation of the source code.1 Given a program’s
AST, we define the program’s foldable nodes as those AST
nodes which correspond to a foldable region of code. By
starting at the root of an AST and sequentially extracting
all foldable nodes, we construct a directed foldable tree,
containing just the AST nodes we are interested in. Fig-
ure 3 shows a partial foldable tree for the running example.

Constructing a foldable tree enables us to formulate
the summarization problem mathematically as finding the
best contiguous rooted subtree that takes up no more than
a predefined number of lines of source code (LOC). That is
to say, we unfold all nodes in the best subtree and fold the
remaining nodes in the tree. Note that we require the tree
to be rooted and contiguous as otherwise this would lead
to confusing situations where we would have a deep node
present in the summary with no context. We will describe
the precise formulation in the next two sections.

B. Content Model
In order to determine which nodes of the foldable tree

should be unfolded, we require a content selection method
for choosing the best nodes to retain in the summary.
Intuitively, one would like to retain the most informative
nodes and a natural approach, as in text summarization,
is to tokenize the node text and select the nodes with the
most representative tokens. For this reason we make use
of a topic model, an extension of the TopicSum model [?].
Note that we do not use an n-gram language model as we
require a global model of the distribution of code across
files rather than a local model based on nearby tokens.
Tokenization A first idea would be to have one token
in the topic model for each Java token in the code base.
However there are a few problems with this. First, some
tokens, like operators and delimiters, are not informative
about the program content. Second, identifier names have

1We use the Eclipse JDT parser [46].
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Developer Study

Conciseness Usefulness

Gold 3.34 3.33

TASSAL 3.27 3.18

Javadocs 3.07 2.69
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private FinchTwitterFactory(Context context) {
mContext = context;

installHttpResponseCache();

ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(ConsumerKey.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(ConsumerKey.CONSUMER_SECRET);
configurationBuilder.setUseSSL(true);
Configuration configuration = configurationBuilder.build();
mTwitter = new TwitterFactory(configuration).getInstance();

}

public Twitter getTwitterInstance() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setOAuthConsumerKey(Keys.consumerKey);
cb.setOAuthConsumerSecret(Keys.consumerSecret);
cb.setOAuthAccessToken(mSettings.getString("accessToken", null));
cb.setOAuthAccessTokenSecret(mSettings.getString("accessSecret", null));
TwitterFactory tf = new TwitterFactory(cb.build());
return tf.getInstance();

}

private void startOAuth() {
ConfigurationBuilder configurationBuilder = new ConfigurationBuilder();
configurationBuilder.setOAuthConsumerKey(Const.CONSUMER_KEY);
configurationBuilder.setOAuthConsumerSecret(Const.CONSUMER_SECRET);
twitter = new TwitterFactory(configurationBuilder.build()).getInstance();

try {
requestToken = twitter.getOAuthRequestToken(Const.CALLBACK_URL);
Toast.makeText(this, "Please authorize this app!", Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse(requestToken.getAuthenticationURL() + "&force_login=true")));
} catch (TwitterException e) {

e.printStackTrace();
}

}

Figure 1: Three real-world usage examples of a twitter4j API pattern that sets up a twitter client with OAuth
authorization.

so that we can resolve fully qualified names of classes that
are explicitly imported, as well as those imported using a
wildcard by scanning for specific imports from the wildcarded
package in the corpus in a pre-processing step. Additionally,
in the pre-processing step we find the return types of locally
declared methods so that we are able to subsequently resolve
any calls on them. Finally, we filter out any method names
that cannot be fully resolved. Each API call sequence is then
the sequence of fully qualified API method names that are
called by a method in the source file.

For example, consider the client methods in Figure 1 that
all share the common twitter4j API call sequence:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

This is the minimum API call sequence required to set up
OAuth authorization for a twitter client. All the methods in
Figure 1 have added extra API calls for optional functionality
(e.g. SSL encryption) but all contain the minimal API call
sequence as a subsequence.
There are of course limitations to this approximation (as

noted in the original MAPO paper [41]). In particular it is
not possible to resolve external nested method calls (i.e., in
the call method1().method2(), we cannot resolve method2()
unless method1() is declared locally). However, for the pur-
poses of this paper we are primarily interested in assessing
the performance of PAM. Moreover, it is important to note

that PAM is flexible and supports any API call extractor that
returns sequences of calls, making it applicable to dynami-
cally inferred call sequences as well as other programming
languages. While we mine (possibly incomplete) API calls
that are inferred statically from .java files in this paper, one
can in principle extract fully resolved static or dynamic API
call sequences using the BCEL bytecode library [1, 2]. The
reason we did not perform dynamic call sequence extraction
is that the idiosyncratic build process of most Java projects
would have made compiling all 967 open-source Java projects
that used our chosen libraries in our dataset (see Table 1)
prohibitive. Finally, note that any API call extractor that
only extracts sequences of calls cannot handle conditional
statements properly, as it is trying to approximate a graph
with a sequence.

4. MINING API CALL PATTERNS
In this section we will describe our novel probabilistic

model for API mining. Our model is a joint probability
distribution over the list of API calls in a client method, which
we observe in the data, and the underlying API patterns that
the programmer intended to use, which we never observe
directly. The model defines this probability assuming that
the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model
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the set of all possible true API patterns is known. Then,
learning involves working backward: given the client methods
that were observed, what set of true API patterns might
have generated them? Specifically, we measure the quality of
a proposed set of API patterns by supposing those were the
true patterns, and measure the probability that the model
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API patterns returned by PAM that were not present in any
example call sequence. We found that the 15 selected API
patterns fell into the following three categories: 7 referred
to an API method not in any of the examples, 3 referred
to an API class not in any of the examples and 5 referred
to an API pattern that was not contained in any API ex-
ample (although its methods were present in the examples).
This provides some support for the hypothesis that the API
patterns document part of the API that are used in client
code but for which the original developers have not chosen
to write specific examples.

Overall these results suggest that the patterns returned by
PAM could serve as a useful supplement to code examples
written by API developers. Indeed, these results raise the
question of whether, in future work, PAM could be used to
help detect novel and undocumented API usages and feed
them back to library and framework maintainers.

Qualitative Evaluation To provide further support to
RQ3, whether the mined patterns from PAM could be useful,
we qualitatively compare and contrast the top sequences
returned by PAM, MAPO, and UPMiner on an example
target API. Figure 5 shows the top ten mined API patterns
from twitter4j returned by PAM, MAPO and UPMiner on
the Example dataset. One can clearly see that the API calls
found by MAPO are extremely repetitive, in fact most of the
top ten calls are just combinations of subsequences of the
following pattern:

ConfigurationBuilder.<init>
ConfigurationBuilder.setOAuthConsumerKey
ConfigurationBuilder.setOAuthConsumerSecret
ConfigurationBuilder.build
TwitterFactory.<init>
TwitterFactory.getInstance

which (according to our manual inspection) occurs commonly
in client code but does not appear anywhere in the top ten
patterns returned by MAPO. Similarly, the majority of the
top ten UPMiner patterns are combinations of subsequences
of the pattern:

TwitterFactory.<init>
TwitterFactory.getInstance
Twitter.setOAuthConsumer
Twitter.setOAuthAccessToken

despite the full version of this sequence appearing as the
10th pattern returned by UPMiner. PAM on the other hand,
retrieves both of these full patterns within the top ten. One
might think that the ConfigurationBuilder pattern without
OAuth returned by PAM is redundant, however not all clients
use OAuth. Moreover, the sequences returned by PAM clearly
display a more diverse selection of API methods: The top
ten PAM sequences use 20 unique API methods, compared
to only 8 for both MAPO and UPMiner.

6. CONCLUSIONS
We presented a parameter-free probabilistic API mining

algorithm that makes use of a novel probabilistic model to
infers the most interesting API call patterns and demon-
strated the e�cacy of our approach on dataset of several
hundred thousand API client files from GitHub. Through
our experiments we found suggestions that API calls are not
well documented in example code and in future we would
like to verify this through a large-scale empirical study.
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1 /* Header */
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first
5 * line of a response message */
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine */
11 public StatusLine(int c, String r) {
12 code = c;
13 reason = r;
14 }
15
16 /** Create a new copy of the request-line */
17 public Object clone() {
18 return new StatusLine(getCode(), getReason());
19 }
20
21 /** Indicates whether some other Object
22 * is "equal to" this StatusLine */
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {
32 return false;
33 }
34 }
35
36 public int getCode() {
37 return code;
38 }
39
40 public String getReason() {
41 return reason;
42 }
43
44 public String toString() {
45 return "SIP/2.0 " + code + " " + reason + "\r\n";
46 }
47 }

Figure 1: Original source code. A snippet from bigbluebutton’s
StatusLine.java. We use this as a running example.

decisions, we formulate this method as a contiguous
rooted subtree problem (Section III-C). This is, to our
knowledge, the first method for code summarization to
use autofolding.

• To determine which non-essential regions should be
folded, we introduce a novel topic model for code (Sec-
tion III-B), building on work in NLP summarization
[13]. The key feature of the model is that it endows
di�erent scopes (files, projects, and the corpus) with
separate topics, allowing the model to identify which
tokens best characterize their enclosing file.

• We perform a comprehensive evaluation of our method
on a set of popular open source projects from GitHub
(Section IV), and find that TASSAL performs better
than simpler baselines (Section V) at matching human
judgements, with a relative error reduction of 28%.

1 /* Header...*/
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first...*/
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine...*/
11 public StatusLine(int c, String r) {...}
15
16 /** Create a new copy of the request-line ..*/
17 public Object clone() {...}
20
21 /** Indicates whether some other Object...*/
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == (getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {...}
34 }
35
36 public int getCode() {...}
39
40 public String getReason() {...}
43
44 public String toString() {...}
47 }

Figure 2: Summarized source code. A summary of the file in Figure 1
(left) which results from folding lines 1, 4–5, 11–14, 21–22, 31–33, 36-
38 and 40-42.

Furthermore, in a user study with experienced devel-
opers, TASSAL is strongly preferred to the baselines.

More broadly, we hope that this work will aid program
comprehension by turning code folding, perhaps an over-
looked feature, into a useful, usable and valuable tool.

II. Related Work

The application of NLP methods to the analysis of
source code text is only just beginning to be explored.
Recent work has applied language modelling [14]–[18],
natural language generation [9], [19], machine translation
[20], and topic modelling [21] to the text of source code
from large software projects.

One of the main challenges in this area is to adapt
existing NLP techniques to source code text. In con-
trast to natural languages, programming languages are
unambiguous, employ little redundancy, are meant to be
interpreted literally, and consist of strictly structured text.
To exploit these features of the problem, we perform the
summarization at the code block level, leveraging the fact
that source code is syntactically unambiguous.

There is some existing work on the use of manual

code folding to aid comprehension. In particular, Ru-
gaber et al. [8] consider a conceptual model for manual
folding, extending it to non-contiguous regions of code.
Kullbach et al. [7] develop the GUPRO IDE to aid in the
comprehension of C preprocessor code by folding macro
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