
Type checking Parametrised Programs and
Specifications in ASL+FPC

David Aspinall

School of Informatics, University of Edinburgh, U.K.
David.Aspinall@ed.ac.uk,

WWW: http://homepages.inf.ed.ac.uk/da

Abstract ASL+ [SST92] is a kernel specification language with higher-
order parametrisation for programs and specifications, based on a de-
pendently typed λ-calculus. ASL+ has an institution-independent se-
mantics, which leaves the underlying programming language and speci-
fication logic unspecified. To complete the definition, and in particular,
to study the type checking problem for ASL+, the language ASL+FPC
was conceived. It is a modified version of ASL+ for FPC, and institution
based on the paradigmatic programming calculus FPC. The institution
FPC is notable for including sharing equations inside signatures, remin-
iscent of so-called manifest types or translucent sums in type systems for
programming language modules [Ler94,HL94]. This allows type equalit-
ies to be propagated when composing modules. This paper introduces
FPC and ASL+FPC and their type checking systems.

1 Program Development with Institutions

A simple setup for program development with institutions [GB92] is to consider
programs to be syntactic expressions denoting models from an institution I,
and specifications to be syntactic expressions denoting classes of models. More
elaborate views are certainly possible (e.g., programming languages considered as
institutions whose satisfaction relation is a function), but perhaps unnecessary.

One issue that must be resolved is the relationship between identifiers in the
syntax, and their semantic equivalents. In particular, the possibility of aliasing,
or as it is known in the context of modular programming, sharing, should be
considered. While a real language may already include an understanding of shar-
ing, the usual institutional semantics of a specification language such as ASL in
equational logic EQ or first-order logic FOL does not, simply because there is
no way to specify sharing in algebraic signatures. For example, given

Σ =def sig
sorts s, t
opns c : s, d : t

end

the equation “c=d” is ill-typed because c and d have distinct sorts; so this
equation is not in Sen(Σ). However, flexible ways of parameter passing can



mean that the same sort can be referred to via several different identifiers, so
there are occasions when this equation should be considered well-typed. The
classical example is the “diamond-import” situation [Mac86], illustrated by the
Standard ML (SML) functor heading:

functor F (structure S1 : sig type intset ... end

structure S2 : sig type intset ... end

sharing type S1.intset = S2.intset) = ...

The parametrised program F has two parameter modules S1 and S2, but requires
that any actual parameters have identical implementations of the intset type.
This means that when type checking the body of the functor, the given type
equation can be assumed. In the algebraic case, sometimes we may want to
suppose that sorts s and t denote the same set, so c = d is type-correct.

This issue may seem simple, but propagating type equalities properly lies at
the heart of type-theoretic explanations of programming language module sys-
tems, an issue which researchers have worked on for well over a decade (contribu-
tions include [HMM90,HL94,Ler95,Ler96,Jon96,Rus99]). The design of a module
type system is affected both by the type system of the underlying language, and
by the flexibility of the module system: higher-order, first-class and recursive
modules have all been considered. The work reported here is a first attempt to
design a type system for a language which has higher-order parametrisation of
both programs and specifications.

With an institution-based semantics, we have two ways to go:

Ignore sharing: e.g., by extending the satisfaction relation |= to be three
valued, so that A |= ϕ ∈ { true, false,wrong }. Then Sen(Σ) is extended
to contain all formulae which could possibly have a denotation. So now
c = d ∈ Sen(Σ), but if Ac 6= Ad, then (A |= c = d) = wrong. This is
a bit like dynamic type checking in programming languages, and similarly
unattractive: nonsensical sentences accidentally become meaningful.

Handle sharing: e.g., by adding information to signatures, to maintain the
idea of static type checking. Then Sen(Σ) consists only of formulae which
have a denotation in the semantics, as usual. This approach seems desirable
when we have languages that can be statically type-checked.

Following the second choice, there are two ways of handling sharing:

External sharing: resolve sharing outwith the institutional notion of signa-
ture. For example, we could maintain a map from “external identifiers” to
“internal names,” the latter being names in an algebraic signature. This is
(a bit) like the 1990 SML semantics, and was suggested in the algebraic
semantics sketched for Extended ML in [ST86].

Internal sharing: make sharing part of the notion of signatures in the insti-
tution somehow. For example, to handle type sharing, signatures could be
equipped with an equivalence relation on sorts.

The advantage of external sharing is keeping our familiar institutions. The con-
siderable disadvantage is that we break the institution-independent framework:



for example, specification building operators of ASL must be lifted to operate
on the “external” part of algebraic signatures, and general results must be re-
proved. (Nonetheless, this route has been followed for the semantics of CASL by
introducing institutions with symbols [Mos99].)

The internal sharing alternative means that we must modify the institution.
But after that, we can apply the general institution-independent framework. We
treat signatures as static typing environments which contain all that’s needed to
type-check terms and formulae; Sen(Σ) is exactly the set of well-typed formulae
in the abstract syntax over Σ. This is the route that we follow for ASL+FPC .

ASL+FPC is an attempt to give a complete but small definition of a formal
development framework. We start from the fixed-point calculus FPC, which
is a prototypical expression language for higher-order functional programming.
Then we define syntax and semantics for a programming language, specification
language and logic, and fit these into a λ-calculus used for structuring, based on
ASL+ [SST92,Asp95b]. The syntax and semantics of each part are put together
in the same way:

FPC
LFPC

Programming
Language

Specification
Language

ASL+FPC

LFPC, the logic for FPC, is based on higher-order logic with an axiomatisa-
tion of the CPO order relation for the underlying fixed-point semantics of FPC.
The final result, ASL+FPC , allows higher-order parameterisation of both pro-
grams and specifications, as well as the specification of parametrised programs,
as studied in the abstract setting of ASL+ [SST92,Asp95b,Asp97].

In Section 2, we give the definitions of the institution FPC. Section 3 intro-
duces syntax and semantics for FPC signatures and programs in context, and
Section 4 describes the full module language ASL+FPC . Section 5 concludes.

2 An Institution for FPC

FPC [Plo85] is an extension of the simply-typed lambda calculus with products,
sums, and recursive types. The expressiveness of FPC is well-known: familiar
datatypes are built beginning from the empty type µa.a and we can define a
fixed point operator for each function type s −〉 p.

In practice, type expressions are too cumbersome to write out, so we need
type abbreviations. Similarly, real programming languages use definitions to
avoid repeating functions. So to the minimal FPC calculus we add type and term
constants (in algebraic terminology, these are the sort and operation names).

Let TyVar and TyConst be disjoint countable sets of type variables and type
constants. Types of FPC are given by the grammar:



t ::= c | a | t −〉 t | t× t | t+ t | µa.t

where a ∈ TyVar and c ∈ TyConst. Free and bound variables of a type are
defined as usual, and α-convertible types are considered syntactically identical.
Substitution of the type s for the type variable a in the type t is written [s/a]t.
(Similar conventions and notation are used henceforth without note). Given a
subset Ty ⊆ TyConst, we write ProgTypes(Ty ) for the set of closed types whose
type constants are contained in the set Ty .

Terms of FPC are parametrised on a notion of signature, which is equipped
with sharing equations for type constants. Let TmConst be a countable set of
term constants.

Definition 1. An FPC signature Σ is a triple (TyΣ ,ShΣ ,TmΣ) where

– TyΣ ⊆ TyConst
– ShΣ : TyΣ → Fin(ProgTypes(TyΣ))
– TmΣ : TmConst ⇀ ProgTypes(TyΣ)

We let Σ stand variously for any component when no confusion would arise,
and we write =Σ for the equality relation on ProgTypes(TyΣ) defined as the
compatible closure of equalities introduced by ShΣ (i.e., c = t for t ∈ Σ(c)).

The idea is that sharing equations induced by ShΣ are used during type check-
ing. In practice, useful signatures will have unifiable equations (considering TyΣ

as variables); we only want equalities which arise from abbreviations and aliased
names. Having ShΣ as a partial function would suffice for our purposes, but
defining ShΣ(c) instead as a set of equations allows signatures to be put to-
gether easily. Checking that a finite signature is unifiable is a simple first-order
unification problem (we do not unfold recursive types).

Terms in FPC are given by the grammar:

e ::= v | x | fun (x : t). e | e e
| 〈e, e〉 | fst(e) | snd(e)
| inlt+t(e) | inrt+t(e) | case e of inl(x)⇒ e or inr(x)⇒ e
| introµa.t(e) | elim(e)

where v ∈ TmConst ranges over term constants and x ∈ TmVar ranges over a
set of term variables.

Terms are type-checked with the standard rules, together with a rule for
typing term constants and a rule for using type equality:

Σ(v) = t

G .Σ v : t
G .Σ e : s s =Σ t

G .Σ e : t

As usual, the type checking judgement G .Σ e : t uses a context G of type
assignments x : t giving types t ∈ ProgTypes(Σ) to variables.

Definition 2. A signature morphism σ : Σ → Σ′ is a pair (Tyσ,Tmσ) where
Tyσ : TyΣ → TyΣ

′
and Tmσ : Dom(TmΣ) → Dom(TmΣ′) are functions such

that for all c ∈ Σ, t ∈ Σ(c) =⇒ σ(c) =Σ′ σ(t) and for all v ∈ Σ, Σ(v) = t =⇒
TmΣ′(σ(v)) =Σ′ σ(t).



A special case of signature morphism is the inclusion between a signature Σ and
a richer one Σ′ having more constants or equalities.

Definition 3 (FPC subsignatures and inclusions). A signature Σ is a sub-
signature of Σ′, written Σ ⊆ Σ′, if TyΣ ⊆ TyΣ

′
, t ∈ Σ(c) =⇒ c =Σ′ t, and

Σ(v) = t =⇒ TmΣ′(v) =Σ′ t . If Σ ⊆ Σ′, then there is a canonical morphism
ιΣ,Σ′ : Σ ↪→ Σ′, the inclusion of Σ in Σ′, comprising the evident inclusions.

Example 1. Define three signatures by:

Σ1 =def

sig
type c
val v : (c× bool)

×(c× bool)
end

Σ2 =def

sig
type c
type d
sharing d = c× bool
val v : d× d

end

Σ3 =def

sig
type c
type d
val v : (c× bool)× d

end

Then Σ1 ⊆ Σ2 and Σ3 ⊆ Σ2 but Σ1 and Σ3 are unrelated.

If Σ ⊆ Σ′ and Σ′ ⊆ Σ we consider Σ and Σ′ semantically equivalent. Under
this equivalence and a similar one on signature morphisms, we get the category
SignFPC . We usually work with particular concrete representatives.

2.1 FPC Algebras

FPC has a standard fixed-point semantics given using a universal domain (see
e.g., [Gun92]). Using this we define interpretations for FPC typesMJtKι in a type
environment ι and well-typed FPC terms MJe : tKιρ in a pair of environments
ι, ρ. The details are routine, except to require that a Σ-type environment ι is
defined on both type variables and constants, and respects the sharing relation
in Σ (if t ∈ Σ(c) then ι(c) = MJtKι). Similarly, we call ρ a (G,Σ, ι)-FPC
environment if it maps term constants and variables to appropriate domains as
required by G, Σ, and ι.

The interpretation of terms is preserved by signature change. This is the
main part of the satisfaction condition.

Definition 4 (Environment reducts). Let σ : Σ → Σ′ be a signature morph-
ism. Suppose ι is a Σ′-type environment and ρ is a (σ(G), Σ′, ι)-FPC environ-
ment. We define ι|σ and ρ|σ by:

ι|σ(c) =
{

ι(σ(c)) for c ∈ Σ,
undefined otherwise.

ι|σ(a) = ι(a)

ρ|σ(v) =
{

ρ(σ(v)) for v ∈ Σ,
undefined otherwise.

ρ|σ(x) = ρ(x)

for all c, a, v, x. It follows directly that ι|σ is a Σ-type environment and ρ|σ is a
(G,Σ, ι|σ)-FPC environment.



Proposition 1 (FPC meaning is preserved by signature change). Let
σ : Σ → Σ′ be a signature morphism. Suppose ι is a Σ′-type environment and
ρ is a (σ(G), Σ′, ι)-FPC environment. Then

– MJtKι|σ =MJσ(t)Kι and

– MJG .Σ e : tKι|σρ|σ =MJσ(G) .Σ
′
σ(e) : σ(t)Kιρ.

An FPC Σ-algebra A is now defined as a pair (ιA, ρA) of a suitable type envir-
onment and term environment for an FPC signature Σ. We can define a model
functor by setting ModFPC(Σ) to be the discrete category of FPC Σ-algebras.

2.2 LFPC, A Logic for FPC

A suitable logic for FPC can be based on Gordon’s HOL logic [GM93], which
has equality, implication, and a choice operator as primitive; other connectives
are definable. We add FPC types and the cpo order relation v inherited from
the fixed-point semantics, to give the types and terms of LFPC:

τ ::= t | prop | τ → τ
h ::= Λz:τ. h | h(h) | z | h = h | h =⇒ h | εz:τ. h | e v e

where t ∈ ProgTypes(Σ) and z ∈ LogVar ⊃ TmVar ranges over a new countable
set LogVar of logical variables. The typing judgement G .Σ e : τ is defined for
a fixed signature Σ and a context of bindings z : τ .

Notice that the logical function space is distinct from the programming lan-
guage one, and prop is distinct from any FPC type of booleans. No base type of
individuals is necessary because FPC already includes types denoting countably
infinite collections. Adding rules to axiomatise v gives us a higher-order logic of
computable functions (similar to e.g., [MNOS99]). By the anti-symmetry of v,
FPC terms are automatically embedded in the logic, since we may express e as
εx:t. x v e

∧

e v x . Because LogVar ⊃ TmVar , we can abstract over terms of
the programming language inside the logic, but not vice-versa.

The semantics of LFPC is given using the standard set-theoretic construc-
tion for HOL. Each type denotes a non-empty set: prop is a two element set,
τ → τ denotes a set of functions. The FPC type t is interpreted as the underly-
ing set of the domain which interprets t. To define a sentence functor for FPC,
we set SenFPC(Σ) to be the set of LFPC Σ-terms of type prop. The satisfac-
tion condition is straightforward to verify, extending signature morphisms and
Proposition 1 to terms of the logic.

Lemma 1 (Satisfaction condition for FPC). Let A be a Σ′-algebra and σ :
Σ → Σ′ a signature morphism. Then A|σ |=FPCΣ ϕ iff A |=FPCΣ′ σ(ϕ).

3 Syntax for Signatures, Algebras, and Renamings

When writing parametrised programs and specifications, or using separate com-
pilation of program parts, we have a context of declared programs and speci-



fications; the context corresponds to the formal parameters or module inter-
face. Working in a context, we use signature expressions which may not them-
selves be closed, but are closed when they are added to the context. Triples
(TyΣ ,ShΣ ,TmΣ) which have the same form as signatures but may not be closed
are called pre-signatures. There is an inclusion between the signature of the con-
text and the overall signature; if Σctx is the former, we write Σctx ⊆∪ Σ to
indicate that Σ is pre-signature such that Σctx ⊆ Σctx ∪Σ, where ∪ is “sequen-
tial” union of signatures. In this case, Σ is a signature-in-context. An algebra-in-
context is then given by a function f : Mod(Σctx ) →Mod(Σ) which expands
any Σctx -algebra A to a Σ-algebra f(A), so that f(A)|Σctx = A (such an f is
sometimes called a persistent constructor [ST88]).

Definition 5 (Signature morphism in context). Given Σ1, Σ2 such that
Σctx ⊆∪ Σ1 and Σctx ⊆∪ Σ2, a signature morphism in context Σctx between
them is defined to be an FPC signature morphism σ : Σctx ∪ Σ1 → Σctx ∪ Σ2

such that

Σctx Σctx

Σctx ∪Σ1 Σctx ∪Σ2

id

ι1 ι2

σ

(i.e., the action of σ on Σctx is the identity).

The grammar for syntactic signatures, signature morphisms, and algebras is:

S ::= sig sdec? end
sdec ::= type c | val v : t | sharing c = t
P ::= alg pdec? end

pdec ::= type c = t | val v : t = e
s ::= [renam?]

renam ::= c 7→ c | v 7→ v

Each form has a type checking judgement:

Σctx . S =⇒ Σ In Σctx , S has pre-signature Σ
Σctx . P =⇒ Σ In Σctx , P has pre-signature Σ
Σctx . s =⇒ Σ → Σ′ In Σctx , s is a renaming from Σ to Σ′

The first two judgements are inference judgements, since the pre-signature Σ is
determined by the syntactic signature S or the program P . A renaming, on the
other hand, does not determine its source or destination signature uniquely.

The typing rules are straightforward. They ensure that Σctx∪Σ and Σctx∪Σ′
are proper signatures. The rule for adding a sharing equation is this:

Σctx . sdecs =⇒ Σ
t ∈ ProgTypes(Σctx ∪Σ)
Unifiable(Σctx ∪Σ ∪ { c = t })

Σctx . sdecs sharing c = t =⇒ Σ ∪ { c = t }



The third premise ensures that the new equation is consistent with the equalities
known so far. For typable phrases, it is easy to give a semantics.

Definition 6 (Interpretation of syntax in context).

– JΣctx . S =⇒ ΣK is the signature in context Σctx ∪Σ.
– JΣctx . s =⇒ Σ → Σ′K is the signature morphism in context σ :

[Σctx ]Σ → Σ′ determined by s.
– JΣctx . P =⇒ ΣK is the functor fP : Mod(Σctx ) → Mod(Σctx ∪ Σ)

given by
fP (A) = PJΣctx . pdecs =⇒ ΣK(ιA, ρA)

where P ≡ alg pdecs end and PJ−K− is defined by induction on the deriva-
tion of Σctx . pdecs =⇒ Σ, extending ιA and ρA in an obvious way.

4 Modular Programs and Specifications in ASL+FPC

ASL+FPC is based on the syntax for FPC of the previous sections. This syntax
is combined using ASL-style specification building operators and a λ-calculus.
There is a single syntactic category of pre-terms:

M ::= X | P | S
| impose ϕ on M | derive from M by s : S
| translate M by s | enrich M with M
| λX:M.M | M X | ΠX:M.M | Spec (M)
| Let X = M in M : M

Variables X range over a countable set ModVar . Meta-variables SP , A, M are
all used to range over the set of pre-terms, with the hint that SP will denote a
specification (collections of FPC algebras), and A some arbitrary collection.

Space precludes a complete motivation and explanation of the ASL+ calcu-
lus; we give only a brief overview. First, the ASL operators impose, etc, have
their usual intentions in building specifications. The λ-calculus portion consists
of λ-abstraction, application to variables, and Π-quantification for parametric
(architectural) specifications. The Spec (−) operator formalizes specification re-
finement: SP ′ : Spec (SP) asserts that SP SP ′. This allows parametrised speci-
fications and programs which accept any refinement of their formal parameter,
written λX: Spec (SP).M (semantically, Spec (−) is understood as a powerset
operator). Finally, the let construct allows local definitions of modules, to relieve
the restriction on function applications. It also imposes a signature or specifi-
cation constraint: in Let X = A in M : SP , the constraining specification SP
may be used to hide some details of the implementation M ; in particular it must
hide any mention of X from the result signature of M . (This prevents exporting
a hidden symbol; module type systems solve this problem in varying ways).

Contexts for ASL+FPC contain declarations and definitions for module vari-
ables. They may also directly include specifications, to allow “pervasive” data-
types of the language which are visible everywhere (BOOLEAN, INTEGER, etc).



Γ ::= 〈〉 | Γ,X : A | Γ,X = M | Γ,SP

For type checking, we extract an FPC signature from a context Γ . This will
include all of the pervasive elements, but also, any variables which stand for
algebras will be included with their signatures, renamed using a “dot renaming”
function to prefix identifiers with the module variable name. (We must assume
the existence of suitable dot-renaming functions on TyVar , TmVar). Given a
signature Σ, we write X.Σ for the dot-renamed signature. Dot notation provides
a way for programs to refer to components of modules. The notation can only be
used on module variables because the syntax of FPC does not include ASL+FPC
expressions; this restricts type propagation in the higher-order case.

4.1 Type checking with Rough Types

Now we come to the main novelty in the development. ASL+ is equipped with
two formal systems: one for proving satisfaction of a specification by a program,
and the other for “rough” typing, which is designed to isolate the “static” type
checking component of satisfaction. We follow the same plan in ASL+FPC ,
except that rough types are improved to allow type equalities to be propagated
from argument to result in parametrised programs. This generalisation is really
the crux of the new system. Rough types have the syntax:

κ ::= Σ | πX : A.κ | P(κ)

where Σ ranges over pre-signatures. A program denoting a Σ-algebra will have
rough typeΣ; aΣ-specification expression will have type P(Σ). The π-types clas-
sify functions. The main way that sharing information is propagated is through
equations in pre-signatures that refer to the environment (e.g., c = X.c). The
reason that the domain A of a type πX : A.κ is a full ASL+ term is to account
properly for sharing propagation between successive specification and program
parameters; retaining a full term here allows rough types to be recalculated (see
[Asp97] for further explanation).

There are three typing judgements:

Γ =⇒sig ΣΓ ΣΓ is the underlying FPC signature of Γ
Γ . κ ≤ κ′ κ is a subtype of κ′

Γ . M =⇒ κ M has rough type κ

These judgements are defined in Figures 1–4, described in turn below.

Underlying signature (Figure 1). This judgement also serves to say that the
context is well-formed. The underlying FPC signature is made by combining pre-
signatures for the pervasive parts of the context, together with the dot-renamed
components X.Σ for variables X which range over Σ-algebras.1 Module variables
which have non-signature types (the rules assume κ is a non-signature) do not
contribute to the FPC signature of the context; there is no way to use them
directly in any FPC type or term.
1 a sort of “flattening” operation, reminiscent of the way Java treats inner classes.



〈〉 =⇒sig ∅

Γ =⇒sig ΣΓ Γ . SP =⇒ P(Σ)

Γ,SP =⇒sig ΣΓ ∪Σ

Γ =⇒sig ΣΓ Γ . SP =⇒ P(κ)

Γ,SP =⇒sig ΣΓ

Γ =⇒sig ΣΓ Γ . SP =⇒ P(Σ)

Γ,X : SP =⇒sig ΣΓ ∪X.Σ

Γ =⇒sig ΣΓ Γ . SP =⇒ P(κ)

Γ,X : SP =⇒sig ΣΓ

Γ =⇒sig ΣΓ Γ . M =⇒ Σ

Γ,X = M =⇒sig ΣΓ ∪X.Σ

Γ =⇒sig ΣΓ Γ . M =⇒ κ

Γ,X = M =⇒sig ΣΓ

Figure 1. Underlying signature of a context

Γ =⇒sig ΣΓ ΣΓ ⊆∪ Σ ΣΓ ⊆∪ Σ′ (ΣΓ ∪Σ′) ⊆sh (ΣΓ ∪Σ)

Γ . Σ ≤ Σ′

Γ . A1 =⇒ κ Γ . A2 =⇒ κ Γ,X : A2 . κ1 ≤ κ2

Γ . πX : A1.κ1 ≤ πX : A2.κ2

Γ . κ ≤ κ′

Γ . P(κ) ≤ P(κ′)

Figure 2. Subtyping rules for rough types

Subtyping rules (Figure 2). We write Σ1 ⊆sh Σ2 if Σ1 ⊆ Σ2 but TyΣ1 = TyΣ2

and TmΣ1 = TmΣ2 . In this case Σ2 only differs from Σ1 in having more sharing.
The subtyping rules lift this relation to a relation on rough types. The rule for
π-rough types appears as if it allows contravariancy in the domain; in fact, it
does not because the rough types of A1 and A2 are required to be the same.

Programs and ASL terms (Figure 3). The rules for rough typing ASL terms,
including FPC signatures and algebras, involve some signature calculation. The
first two rules invoke the type checking system for the core-level from Section 3.
The rule for impose checks that ϕ is a well-typed proposition.

The rules for derive and translate use renaming syntax, allowing some
polymorphism. Arguments of derive from − by s : S or of translate − by s
can have any signature which fits suitably with s, according to the type checking
rules for signature morphisms. The result signature of derive has to be given,
but the result of translate is inferred, as the smallest image2 of s. In fact, the
rule for translate can be understood as constructing a pushout by propagating
extra sharing; relying on the natural polymorphism of the syntax for renamings
(as opposed to a semantic signature morphism in SignFPC), this happens auto-

2 This means that translate only uses surjective signature morphisms; but we can
express translation along inclusions translate SP by ι : Σ ↪→ Σ′ using enrich.



Γ =⇒sig ΣΓ ΣΓ . S =⇒ Σ

Γ . S =⇒ P(Σ)

Γ =⇒sig ΣΓ ΣΓ . P =⇒ Σ

Γ . P =⇒ Σ

Γ,SP =⇒sig Σ .Σ ϕ : prop

Γ . impose ϕ on SP =⇒ P(Σ)

Γ . SP =⇒ P(Σ′) Γ =⇒sig ΣΓ

ΣΓ . S =⇒ Σ
ΣΓ . s =⇒ Σ → Σ′

Γ . derive from SP by s : S =⇒ P(Σ)

Γ . SP =⇒ P(Σ) Γ =⇒sig ΣΓ ΣΓ . s =⇒ Σ → s(Σ)

Γ . translate SP by s =⇒ P(s(Σ))

Γ . SP =⇒ P(Σ) Γ,SP . SP ′ =⇒ P(Σ′)

Γ . enrich SP with SP ′ =⇒ P(Σ ∪Σ′)

Figure 3. Rough typing programs and ASL terms

matically. The rule for derive, by contrast, is provided with an explicit target
signature, so any sharing in SP beyond that required by Σ′ will be disregarded.

The rule for enrich is similar to a rule for the dependent sum in type theory:
just as x occurs bound in B in the term Σx:A.B, so all the symbols of SP occur
bound in SP ′ in the term enrich SP with SP ′. This non-symmetry in enrich
isn’t revealed by its usual definition in terms of translate and union. The
directly defined semantics of enrich SP with SP ′ also shows the dependency:
models of the result are extensions of models of SP .

ASL+ terms (Figure 4). First, a variable which ranges over Σ-algebras is given
a special strengthened type. The signature Σ/X is defined as Σ with the sharing
equations augmented, so that ShΣ/X(c) = ShΣ(c)∪{ c = X.c }. This reflects the
sharing of X with the context, since it denotes a projection on the X.-named part
of the underlying environment. Strengthening was introduced by Leroy [Ler94]
and a similar rule is present in most module type systems.

Rules for λ-abstractions and Π-abstractions are straightforward. Applica-
tions are restricted to variables; it may be necessary to rename the bound vari-
able of the Π-type of the function to match the operand. The application rule
is the crucial place where type identities are propagated. Subtyping here allows
the actual parameter to have a richer type with more sharing equations than
the type of the formal parameter A. Propagation of the type identities occurs
because after application any mention of X.c in the result type κ′ will refer to a
variable declared in the context, possibly having more sharing equations, rather
than the bound variable of the Π-type.



Γ =⇒sig ΣΓ Γ . A =⇒ P(Σ)

Γ,X : A,Γ ′ . X =⇒ Σ/X

Γ =⇒sig ΣΓ Γ . A =⇒ P(κ)

Γ,X : A,Γ ′ . X =⇒ A

Γ, X : A . M =⇒ κ

Γ . λX:A.M =⇒ πX : A.κ

Γ,X : A . B =⇒ P(κ)

Γ . ΠX:A.B =⇒ P(πX : A.κ)

Γ . M =⇒ πX : A.κ′

Γ . A =⇒ P(κ)
Γ . X =⇒ κx
Γ . κx ≤ κ

Γ . M X =⇒ κ′

Γ . A =⇒ P(κ)

Γ . Spec (A) =⇒ P(P(κ))

Γ . M =⇒ κM
Γ,X : dκMe . N =⇒ κN
Γ . A =⇒ P(κ)
Γ,X : dκMe . κN ≤ κ

Γ . Let X = M in N : A =⇒ κ

Figure 4. Rough typing ASL+ terms

The rule for a binding Let X = M in N : A allows N to be typed in the
context extended by the typing of M and checks that the type of the constraint
A is correct. The rough type of A is typed in Γ , so the dependency on X must
be removed. The notation dκe in this rule embeds the rough type as a term of
the calculus, defined by replacing Σ by its syntax, πX : A.κ′ by ΠX:A. dκ′e
and P(κ)′ by Spec (κ′). This is simply a trick to avoid introducing a notion of
rough-context (context with rough typing assumptions); when we project from
the context, we get the rough type κ (or a strengthened version) again.

4.2 Brief Example

The following example shows how type equalities are propagated. We will build
up a context of declarations step-by-step. First:

Γ1 =def ELT = sig
type elt

end

If the denotation of this expression is ΣELT , then we have the rough typing
〈〉 . ELT =⇒ P(ΣELT ). Now we declare a parametrised program for building
lists over some ΣELT -algebra:

Γ2 =def Γ1, List = λ Elt : ELT . alg
type elt = Elt.elt
type list = listelt
val nil : list = . . .
val cons : list = . . .

end



(listelt is a type-expression in FPC which expresses the type of lists over the
type elt; the dots are filled with appropriate terms). This has the rough typing
Γ . List =⇒ ΠElt:ELT. ΣLIST [Elt.elt]. The inferred signature of the alge-
bra List is ΣLIST [Elt.elt], where the square brackets are informal notation to
indicate a dependency on Elt. To be more exact: this is the signature of lists ex-
tended with the equation elt = Elt.elt. Now we may apply the List program
to an algebra, for example:

Γ3 =def Γ2, Nat =alg
type elt = nat

end

(where nat is an FPC type expression for natural numbers). Then Γ3 . Nat =⇒
ΣELT [nat] where ΣELT [nat] = ΣELT ∪ { elt = nat }. Now we can derive Γ3 .
List Nat =⇒ ΣLIST [Nat.elt]. Define Γ4 = Γ3, ListNat = List Nat. In
the underlying FPC signature (such that Γ4 =⇒sig ΣΓ4), we have the equation
ListNat.elt = nat, which means that we can apply natural number functions
to elements of ListNat lists.

This very simple example demonstrates propagation of type equalities for the
application of List. To prevent it, we could define an opaque version of list:

OpaqueList = Let L = List in L : ΠElt:ELT. ΣLIST

In a declaration OList = OpaqueList Nat the type identity of the OList.elt is
unknown, so we could only pass elements of this list around.

4.3 Results and Further Developments

One important and non-trivial result is the decidability of rough type checking.

Theorem 1 (Decidability). If all signatures are finite, each of the rough typ-
ing judgements is decidable.

Proof. (Outline). First, observe that type checking in FPC and LFPC for finite
signatures is decidable. For a slightly different formulation of the rough typing
system viewed as an algorithm, we can give a measure on the inputs to each
judgement which decreases from conclusions to premises of each rule. ut

A set-theoretic semantics for ASL+FPC is given in [Asp97] together with a
soundness proof. It interprets each of the typing judgements given above. Ho-
wever, the interpretation function is partial: rough type checking alone cannot
guarantee that specifications are consistent, nor that actual arguments to para-
metrised programs or specifications meet the axiomatic requirements of their
formal parameters.

To guarantee the well-definedness of an ASL+FPC term, we may need to
do theorem proving. This is provided for with the satisfaction system, which
incorporates ideas from other research into proof in structured specification.



5 Further Work, Related Work

The work here is mostly taken from Chapters 6 and 7 of my PhD thesis [Asp97],
which contains additional results and full definitions. Theorem 1 is a new res-
ult. The work began from the conception of adding type equations to algebraic
signatures to explain sharing, an idea which occurred earlier to Tarlecki [Tar92].
The system here draws somewhat on later ideas of programming language re-
searchers in investigating type systems for program modules, particularly those
of Leroy [Ler95] and Harper and Lillibridge [HL94].

The most closely related and recent work in the algebraic specification com-
munity is on CASL’s architectural specifications [SMT+01]. This retains insti-
tution independence, but at the expense of complexity and for a language more
restricted than ASL+.

Research is still highly active in the programming languages community in
the quest to find more expressive type systems which are easier to understand
and have good properties such as decidability (which failed for [HL94]). See
e.g., [Sha98,Sha99,Jud97,Jon96,Rus99,DCH03]. Space precludes a detailed sur-
vey, but one aspect is worthy of note: several recent systems employ singleton
kinds [SH00,DCH03] as an alternative to manifest types, as a way of succinctly
internalising type equalities within the type system. The original version of
ASL+ [SST92] in fact included a singleton construct (isolated in [Asp95a]) to
allow a program to be turned into a trivial specification, and it was suggested
how the dot notation could be expressed using this construct. (There are also
connections here with the work of Cengarle [Cen94] who defined a syntax with
an operator Sig(−) for extracting the signature of an actual parameter; her work
is an older relative of ASL+FPC ).

In the end, it is a challenge to balance the various requirements and give a
feasible system for type checking. The solution here is not ideal and has draw-
backs outlined in [Asp97]. Typing modules for a specification language like ASL+
has different requirements to the programming case, and the system proposed
here should be regarded only as a first attempt at a type-theoretic solution.

Towards Edinburgh CASL

One future venture we would like to undertake is the design and implementation
of a CASL extension for a subset of Standard ML. While the specification con-
structs and CASL variations have received a great deal of attention, connection
to specific programming languages remains relatively unexplored. A significant
exception is the work at Bremen on HasCASL [SM02], which has parallels with
what we want to do (and connections with work described above). We have
early design ideas for a CASL extension called Edinburgh CASL, which is ded-
icated to specification for a subset of Standard ML, and constructed using a
type-theoretic approach similar approach to ASL+FPC . We go beyond FPC in
considering additional features of SML like polymorphism and pattern matching.

Since ASL+FPC was invented, improvements to generic institutional tech-
nology were developed which may allow a more abstract approach (for example,



using institutions with symbols and derived signature morphisms, instead of the
concrete sharing relation in FPC signatures); however, these may not help with
more advanced features such as first-class modules. And it remains important
to verify that abstract constructions produce the desired result in different scen-
arios, by experimenting with ways of adding programming languages to CASL.

Acknowledgements. I’m grateful to Don Sannella and Andrzej Tarlecki for their
guidance during development of this work, and the collaboration with Don since
on ideas for Edinburgh CASL described above. Thanks are also due to the Has-
CASL team in Bremen (especially Till Mossakowski) for discussions.

References

[Asp95a] David Aspinall. Subtyping with singleton types. In Proc. Computer Science
Logic, CSL’94, Kazimierz, Poland, LNCS 933. Springer-Verlag, 1995.

[Asp95b] David Aspinall. Types, subtypes, and ASL+. In Recent Trends in Data
Type Specification, LNCS 906. Springer-Verlag, 1995.

[Asp97] David Aspinall. Type Systems for Modular Programs and Specification. PhD
thesis, Department of Computer Science, University of Edinburgh, 1997.

[Cen94] Maŕıa Victoria Cengarle. Formal Specifications with Higher-Order Para-
meterisation. PhD thesis, Institut für Informatik, Ludwig-Maximilians-
Universität München, 1994.

[DCH03] Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-
order modules. In Proceedings of POPL 2003, New Orleans, 2003.

[GB92] J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for
specification and programming. Journal of the ACM, 39:95–146, 1992.

[GM93] M. J. C. Gordon and T. F. Melham. Introduction to HOL. Cambridge
University Press, 1993.

[Gun92] Carl A. Gunter. Semantics of Programming Languages. MIT Press, 1992.
[HL94] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-

order modules with sharing. In Conference Record of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’94), pages 123–137, Portland, Oregon, January 17–21, 1994. ACM
Press.

[HMM90] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules
and the phase distinction. In Conference record of the Seventeenth Annual
ACM Symposium on Principles of Programming Languages, pages 341–354,
San Francisco, CA, January 1990.

[Jon96] Mark P. Jones. Using parameterized signatures to express modular struc-
ture. In Conference Record of the 23rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL’96), St. Peters-
burg, Florida, 21–24, 1996. ACM Press.

[Jud97] Judicaël Courant. An applicative module calculus. In TAPSOFT, Lec-
ture Notes in Computer Science, pages 622–636, Lille, France, April 1997.
Springer-Verlag.

[Ler94] Xavier Leroy. Manifest types, modules, and separate compilation. In Proc.
21st symp. Principles of Programming Languages, pages 109–122. ACM
press, 1994.



[Ler95] Xavier Leroy. Applicative functors and fully transparent higher-order mod-
ules. In Conference Record of the 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL’95), pages 142–
153, San Francisco, California, January 22–25, 1995. ACM Press.

[Ler96] Xavier Leroy. A syntactic theory of type generativity and sharing. Journal
of Functional Programming, 6(5):667–698, 1996.

[Mac86] David MacQueen. Using dependent types to express modular structure. In
Proceedings, Thirteenth Annual ACM Symposium on Principles of Program-
ming Languages, pages 277–286, St. Petersburg Beach, Florida, January
13–15, 1986. ACM SIGACT-SIGPLAN, ACM Press.

[MNOS99] Olaf Müller, Tobias Nipkow, David von Oheimb, and Oskar Slotosch.
HOLCF = HOL + LCF. Journal of Functional Programming, 9:191–223,
1999.

[Mos99] Till Mossakowski. Specifications in an arbitrary institution with symbols.
In Proc. 14th WADT 1999, volume LNCS 1827, pages 252–270, 1999.

[Plo85] Gordon Plotkin. Denotational semantics with partial functions. Lecture at
C.S.L.I. Summer School, 1985.

[Rus99] Claudio V. Russo. Non-dependent types for standard ML modules. In
Principles and Practice of Declarative Programming, pages 80–97, 1999.

[SH00] Christopher A. Stone and Robert Harper. Deciding type equivalence in
a language with singleton kinds. In ACM Symposium on Principles of
Programming Languages (POPL), Boston, Massachusetts, pages 214–227,
19–21, 2000.

[Sha98] Z. Shao. Parameterized signatures and higher-order modules, 1998. Tech-
nical Report YALEU/DCS/TR-1161, Dept. of Computer Science, Yale Uni-
versity, August 1998.

[Sha99] Zhong Shao. Transparent modules with fully syntactic signatures. In Inter-
national Conference on Functional Programming, pages 220–232, 1999.

[SM02] Lutz Schrder and Till Mossakowski. HasCASL: Towards integrated speci-
fication and development of Haskell programs. In Proceedings of AMAST
2002, 2002.

[SMT+01] Lutz Schrder, Till Mossakowski, Andrzej Tarlecki, Bartek Klin, and Piotr
Hoffman. Semantics of Architectural Specifications in CASL. In Proc. FASE
2001, volume LNCS 2029, pages 253–268, 2001.

[SST92] Donald Sannella, Stefan Soko lowski, and Andrzej Tarlecki. Toward formal
development of programs from algebraic specifications: Parameterisation
revisited. Acta Informatica, 29:689–736, 1992.

[ST86] Donald Sannella and Andrzej Tarlecki. Extended ML: An institution-
independent framework for formal program development. In David H. Pitts,
editor, Proc. Workshop on Category Theory and Computer Programming,
LNCS 240, pages 364–389. Springer-Verlag, 1986.

[ST88] Donald Sannella and Andrzej Tarlecki. Toward formal development of pro-
grams from algebraic specifications: implementation revisited. Acta Inform-
atica, 25:233–281, 1988.

[Tar92] Andrzej Tarlecki. Modules for a model-oriented specification language: a
proposal for MetaSoft. In Proc. 4th European Symposium on Programming
ESOP’92, LNCS 582, pages 452–472. Springer-Verlag, 1992.


