
Proof General Kit
White Paper.

Version 1.6, 2003/07/09 22:34:36

David Aspinall

February 2000 — July 2003

LFCS, University of Edinburgh, U.K.
Originated while visiting ETL, Osaka, Japan.

http://homepages.inf.ed.ac.uk/da

Abstract

This white paper describes proposals for the Proof General Kit , the evolution of
the Proof General project. The Kit introduces a new architecture for Proof General.
Instead of a monolithic implementation inside Emacs, Proof General will become a
collection of communicating components. The aim is to allow a flexible interoperability
between various user interface elements (including Emacs), proof engines, and other
proof tools. In the spirit of the present system, we want to achieve this using carefully
designed lightweight protocols, which are easily supported by a range of present and
future proof engines. The protocols and components will be developed in stages, by
successive generalization.
At the moment this white paper is a working document; it contains some incomplete
sections. It is intended to stimulate discussion and flesh out details. I welcome ideas
or suggestions for improvements. Please send mail to David.Aspinall@ed.ac.uk.

Contents
1 Introduction 2

2 A New Architecture for Proof General 2
2.1 Proof General Kit 3
2.2 Communication Protocols 4
2.3 Kit Components 4
2.4 Plan . 4

3 Protocols for interactive e-proof 5
3.1 PGML, the Markup Language 5

3.1.1 Overview of PGML 5
3.1.2 PGML documents 5
3.1.3 State displays 6
3.1.4 Term display 6
3.1.5 Information and Errors 8
3.1.6 Terms 8
3.1.7 Atoms 8
3.1.8 Symbols 9
3.1.9 Formatting 9
3.1.10 Summary 9

3.2 PGIP, the Interface Protocol 10
3.2.1 Basic proof mechanism with PGIP 10
3.2.2 Message packet 11
3.2.3 Proof and control commands 11
3.2.4 Configuration messages 11
3.2.5 Status and error messages 12
3.2.6 Proof blocks 13

3.3 Interface configuration with PGIP 13
3.4 Script management with PGIP 14

4 Components for Proof General Kit 14
4.1 PGCOM, the Communication Layer 15
4.2 PGFILT, the Filter 15
4.3 PGIP for Emacs Proof General 15
4.4 PGMEX, the Multiplexer 15
4.5 PGDISP, the Displayer 16
4.6 New Features for Proof General Kit 16

4.6.1 Theory browser 16
4.6.2 Completion mechanism 16
4.6.3 Favourites and history 17
4.6.4 Configurable menus and toolbar 17

5 Abstract syntax and pretty-printing 17
5.1 PGTERM, the Term Representation 18
5.2 PGSYN, the Syntax Representation 18
5.3 PGPP, the Pretty Printer 18
5.4 PGDE, the Display Engine 18
5.5 Other term-based features 18

6 Logic Genericity 19
6.1 Logic General 19
6.2 Proof languages for Logic General 19

7 Conclusions and related work 19
7.1 Related Projects, past and present 19
7.2 Credits . 21

A Schemas for PGIP and PGML 22
A.1 pgip.rnc . 22
A.2 pgml.rnc . 26

1 Introduction

Proof General is a generic interface for interactive proof assistants, based on Emacs [1, 2].
Proof General was first built to address the needs of a particular class of users of proof assistants.

Many proof assistants still have a primitive command line interface. Even when sophisticated GUI
alternatives are available, we noticed that expert users often prefer the command line interface, and
work more effectively with it. There are several possible reasons: because the GUIs are poorly
engineered, because they are overly restrictive or do not scale to large developments, or simply
because current experts do not want to change their working practices and waste effort on learning
an interface. Proof General targetted these expert users, by fitting closely with their existing models
of interaction, but making those interactions more efficient and comfortable by adding short-cuts and
centralising development around the target of the proof development, what Proof General terms the
proof script . Later improvements such as buttons, menus, and symbol fonts made Proof General
more accessible for novice users too. It now provides a middle ground in interface technology, largely
text-based rather than graphical, but with sophisticated features like script management and proof
by pointing. The present system is aimed at users of systems based on type theory and logical
frameworks, particularly LEGO, Coq, Isabelle, and HOL.1

The strategy of targetting experts as well as novices has been a success. Proof General is
now widely used in teaching as well as research, in industry as well as academia. Perhaps the
greatest and most unique aspect of the success of Proof General is its genericity. It exploits the
deep similarities between systems by hiding some of their superficial differences. Just as a web
browser presents a similar interface to different protocols — HTTP, FTP, or the local filesystem, so
Proof General presents a similar interface to different proof assistants. This genericity is no empty
claim or briefly tested design goal; Proof General is already in common use for the first three of the
proof assistants mentioned, and support for others is on the way.

An important factor in the success of Proof General appears to be its development by succes-
sive generalization (in software engineering parlance, as a product-line architecture). Proof General
began in 1997 as “LEGO mode”, an interface for one system. Then support for Coq was added, gen-
eralizing the system to “Proof Mode”. In 1999, support for Isabelle was added, generalizing further,
and giving birth to “Proof General.” Each stage of generalization involved some mix of modifying or
re-engineering the basic core of the system, and adding new features, all the while carefully main-
taining support for previous proof assistants. This process is synergistic: supporting a new system
typically improves support for the other systems, too, as features which are obvious or easy for the
new system also get added back to previous systems, as innovations there; cross-fertilization in a
novel and direct way.

I believe that this same engineering approach can be used for the future success of a new archi-
tecture for an improved Proof General.

2 A New Architecture for Proof General

Although it has been a success, the present Proof General has some drawbacks and scope for
improvement. For example, from the user’s point of view:

1. The Emacs-centric nature puts off some people who don’t use or don’t like Emacs.

2. Not enough system-specific options are provided, for example, to invoke common tactics or
commands in a system. The interface degenerates to offering a command-line prompt for these
cases.

3. There is no allowance for interoperability with other tools, and only restricted facility for internet-
based distributed development.

1Compared with some other proof systems, these systems have perhaps the strongest claim to fully formal proofs with
careful correctness claims, yet they also have the weakest user interfaces. Systems developed in other communities have
often had more elaborate UIs.

2

�� ��

�� ��
Proof

Assistant
ff

PGIPPA

--

II

os

��

Emacs
PG

ff

PGIP

&&LLLLLLLLLLLLL

Proof
Replayer

OO

PGIP

��

Display
Engine::

PGIP
}}

Proof General
Mediator

Display
Engine

//
PGIP
oo

�� ��

�� ��
Filesystem/Internet

Theory Store

vv

os
22

Java
PG

xx

PGIP

88rrrrrrrrrrrrrrr
Theory

Browser

��
PGIP

OO

Input
Engine

%%

PGIP

cc

Figure 1: Architecture of Proof General Kit

4. While Proof General presents a similar appearance for different proof assistants, ultimately the
user must be familiar with most commands of the underlying proof assistant. Further abstraction
should be possible.

From the implementors point of view, Proof General is not as easy to connect to proof assistants as
we might like:

1. Customization and extension is exclusively in Emacs Lisp. (It has been drastically simplified
with “easy-config” macros, but it still involves setting some tricky Emacs regular expressions and
numerous flags and options, and understanding how those control Proof General’s behaviour).

2. There is duplication of information in the interface and the proof assistant, and some information
is hard-coded into Emacs which would better belong in the proof assistant.

3. The implementor has too much choice, in a sense: each proof assistant is free to implement its
own markup scheme. This makes it more complicated to configure Proof General and inhibits
communication with other tools.

To address these drawbacks, we propose a new architecture for Proof General. First of all, we
recognize that not everybody shares a love for Emacs, and that Emacs Lisp is not the best language
for implementing some advanced aspects of the interface. To allow a yet more general system,
we envisage a collection of alternative pluggable components which can serve as display or input
engines of one sort or another. This architecture requires a common underlying interface language
and interaction protocol.

Taking things further, we want to deepen the abstraction that Proof General provides, so that the
logic and proof language, as well as the interaction model, become generic. Ultimately the choice of
logic and its syntax should fall under Proof General’s organization, and we envisage implementing
some aspects of logical frameworks: a logic morphism from the core logic of each supported proof
assistant into Proof General’s general form of the logic. Thus Proof General would really live up to its
name: a generic system for doing proofs, with the underlying proof engine being almost arbitrary.

2.1 Proof General Kit

The Proof General Kit introduces a new architecture for Proof General. Instead of a monolithic
implementation inside Emacs, Proof General will become a collection of communicating components.

An overview of the architecture of Proof General Kit is shown in Figure 1. The proof assistant and
filesystem are outwith the Kit; the other components are part of the system.

3

2.2 Communication Protocols

In the spirit of the present system, we want to use carefully designed lightweight protocols for Proof
General Kit, which are easily supported by a range of present and future proof engines.

The overall protocol is called PGIP (standing for Proof General Interactive Proof). This is the
protocol used to connect most of the components shown in Figure 1. PGIP is based on examining
and clarifying the mechanisms currently implemented. It is introduced in Section 3.2 and developed
through the rest of this white paper.

Part of PGIP protocol is concerned with transmitting documents representing information about
the proof in progress, including terms and formulae displayed by the interface. These documents
are annotated using PGML (standing for Proof General Markup Language). We give a description of
PGML in Section 3.1.

2.3 Kit Components

In Figure 1, we can see that the Mediator has a central role: it interfaces the various other compo-
nents to the proof assistant and filesystem. We expect that the other components have no access to
the proof assistant other than via the mediator. The other components may have direct access to the
filesystem (or internet) theory store, but this must be carefully sanctioned by the mediator. This sepa-
ration allows the Mediator to organize the synchronization messages needed for script management,
and maintain the set of locked files.

At the start of the project, the Mediator is even more important, because it provides extra inter-
facing mechanisms to connect to the proof assistant. This is because we begin from proof assistants
which do not natively or fully handle PGIP, explaining the PGIPPA label on the arrow in Figure 1.

The remaining components are examples only. First, we have two “complete” front-end applica-
tions, Emacs PG and Java PG. These are intended to behave much as the present Emacs Proof
General does, offering the user the possibility to edit proof scripts, process them with script manage-
ment and display the results, amongst other facilities.

As well as these integrated applications, the new architecture allows the different functions to be
split across different components. In a particular session we might connect several Display Engines
(perhaps running remotely, or displaying different aspects). Although several may be connected, only
one Input Engine is allowed to be active for scripting at a time, which means that it owns the current
proof development.2 The Proof Replayer is a restricted kind of input engine which only allows replay
of previous proofs, perhaps over the internet so there is no need to install the proof assistant remotely.
The Theory Browser is a component which allows browsing of the theory store and/or the theories
which are loaded into the running proof assistant.

2.4 Plan

The overall plan to build Proof General Kit is broken into four phases, described in more detail in the
following sections. The first two phases are covered in greatest detail; the second two phases require
further research. Section 3, describes PGML and introduces PGIP, the common markup language
and interaction protocol. Section 4 describes some of the basic components, and how they might be
connected with PGIP. It also considers some extensions to PGIP which go beyond what is possible
in the present Emacs Proof General. Section 5, marks the beginning of the “semantic aspect”. At
this point, we begin to consider features which require the interface to have more detailed semantic
representations of the data structures used in theorem proving, and propose ways to transmit this
information. Finally, Section 6 provides a sketch of the ideas for managing logics and syntax inside
Proof General. This phase is dubbed Logic General. It will be developed more fully elsewhere.

2This is because we assume that the proof assistant is single threaded and maintains only a single proof state. Later
on, we may treat proof assistants as a resource, and allow the Kit to connect to several at once; for the time being we will
work within the current model of just a single proof assistant instance.

4

3 Protocols for interactive e-proof

The first phase for Proof General Kit is to develop a common output markup language and protocol
for interactive electronic proof.

Previously, Proof General allowed each proof assistant to define its own markup and protocol
elements. The idea was to allow configuration for proof assistants which cannot themselves be
modified, perhaps because the source is not available, or simply because it would be an overly
complicated undertaking. However, in practice, we often needed to add extra mark-up to the output
of a proof assistant, anyway, to ensure robustness and implement extra features such as proof-by-
pointing.

For Proof General Kit, we will start off by enforcing a common markup language and interface pro-
tocol. This is needed because we want to open up the architecture to allow interoperability between
many components; a common interchange language is essential for sanity.

This phase involves some design (Sections 3.1–3.3) and some re-engineering (Sections 4.2–4.3).
The design should be fairly straightforward because we will adapt the emergent design that evolved
during the development of Proof General. The implementation effort is also relatively straightforward,
because in this phase we stick with the Emacs front end as primary.

3.1 PGML, the Markup Language

The Proof General Markup Language is used for markup of output from the proof assistant which is
to be displayed to the user. At this stage, we assume that the output is already in some concrete
syntax and the reason to markup is to allow decoration of the syntax with special fonts, colours, etc,
as well as to allow proof-by-pointing style interactions via subterm position annotations. We want to
use a logical markup mechanism to make these things possible.

3.1.1 Overview of PGML

Here is an overview of the markup scheme we propose. More precise details are given in the ap-
pendix, Section A.2, which gives a complete RELAX NG [4] schema specification for PGML.

To begin with, early versions of PGML will be custom XML-based document formats. Why do we
need a new format? HTML is too low-level, of course; we want to reflect the logical aspects of proof
displays. This will make it possible for different renderers to display proof assistant information in dif-
ferent ways, allowing variations in fonts, colours, special characters, hidden annotations, etc. On the
other hand, there are emerging standards for XML-based document formats designed for displaying
mathematics (MathML), and transferring mathematical content between applications (OpenMath).
Later on, we hope to use each of these languages with PGML. At the moment, it is much easier to
implement our own simple markup scheme since both MathML and OpenMath go further into the
structure of terms than we need or can easily accommodate in a generic way.3 So PGML begins as
being a marked-up version of the concrete syntax output from proof assistants. Later on we consider
richer forms of PGML when we consider the abstract syntax proposals in Section 5.1.

In summary, the first versions of our markup language, PGML 1.X, will be a decoration-oriented
logical markup scheme for concrete syntax of proof displays, logical formulae, and terms. This is
similar to the present ad hoc markup used by (some instances of) Proof General using non-ASCII
characters.

3.1.2 PGML documents

Markup in PGML uses the following elements and tags:

• <pgml version="ver ">text</pgml>

3A proof assistant must be equipped with a way of marking-up its output syntax with annotations expressing the term
structure; for some proof assistants this is highly non-trivial, and not supported at present. We believe that more proof
assistants will provide structured output in the future.

5

• <statedisplay systemid="id " name="nm " kind="kd ">state text</statedisplay>

• <termdisplay name="nm " kind="kd ">state text</termdisplay>

• <information name="nm " kind="kd ">text</information>

• <warning name="nm " kind="kd ">text</warning>

• <error name="nm " kind="kd ">text</error>

• <statepart name="nm " kind="kd ">part text</statepart>

• <term pos="p " >term text</term>

• <type kind="kd ">type text</type>

• <action kind="kd ">action text</action>

• <atom kind="kd " fullname="fn ">name</atom>

• <sym name="nm " alt="SYM ">

•

A PGML document is enclosed in a <pgml> element and may contain any number of <statedisplay>,
<information>, <error>, and <warning> elements. The next few subsections describe these el-
ements in more detail.

Notice that markup (and the induced decoration) applies uniformly to miscellaneous messages
from the proof assistant, as well as to the logical information presented in state displays.

3.1.3 State displays

The main display item is a statedisplay, which is some text which gives some indication of the current
status of a proof. We assume that a state display refers to a particular internal state of the proof
engine. Proof-by-pointing (for example) only makes sense in some particular state. The display of a
help message, or the a definition of an input term, might or might not.4

The state display may be freely split into a sequence of (possibly nested) <statepart> elements.
Both <statedisplay> and <statepart> have optional tags giving a unique system-level identifier, a
user-level name, and a classifying kind. The identifier will be important for ensuring synchronization:
for example, it should reflect the internal position of the proof progress within the proof assistant, so
that proof commands are anchored to a reference to the appropriate state of the proof assistant. For
the top-level <statedisplay>, the user-level name is like the <title> tag in HTML; it might be used
for a window title, or to navigate in a cache of previous states. For nested <statepart> elements, it
serves similarly as a name which may help the display engine fold or unfold structure, for example.

Figure 2 shows an example of a state display for Isabelle with PGML markup.

3.1.4 Term display

A term display is like a state display except that it doesn’t rely on an internal state of the proof system.
(E.g. print output for a theorem, etc).

4It might not depend on the internal state in a way that matters for the interaction.

6

Original display in shell window:

Level 3 (2 subgoals)

A & B --> B & A

1. [| A; B |] ==> B

2. [| A; B |] ==> A

Skeleton of a marked-up version:

<statedisplay name="Level 3"

systemid="avocado.dcs.ed.ac.uk/951858790/12480/101">

Level 3 (2 subgoals)

<statepart kind="initialgoal">

A & B --> B & A

</statepart>

<statepart kind="subgoal" name="1"> 1.

<statepart kind="asms"> [| A; B |] </statepart>

==>

<statepart kind="body"> A </statepart>

</statepart>

<statepart kind="subgoal" name="2"> 2.

<statepart kind="asms"> [| A; B |] </statepart>

==>

<statepart kind="body"> B </statepart>

</statepart>

</statedisplay>

Isabelle has only one kind of proof state display, so there is no need for an outermost kind tag. On
the other hand, it has a rich structure on the subgoal display, always including the overall goal and a
list of local assumptions for each subgoal. The markup above makes this structure apparent within
the concrete syntax. Notice that it is only a “skeleton” markup, because a full markup could also
contain term-structure information, or variable kind annotations. But this is optional.

Figure 2: Example of proof state markup for Isabelle

7

3.1.5 Information and Errors

Apart from state displays, the proof engine may output other subsidiary bits of information to the
user, which are also marked in PGML. The distinction is the way they are displayed: a state display
will be considered as a primary concern that the user is always interested in (it persists), while the
subsidiary pieces of information are considered more transient and displayed in a less prominent
window, a transient way, etc. This should be customizable to some extent.5

Subsidiary display items are triggered by <information> and <error> elements, which may
also be tagged with user-level names and/or kind classifications. These serve to indicate what the
information or error is. For example, information may be a system message, or the result of a user
interaction of some kind. An error message may be a warning message or some fatal message.
These auxiliary pieces of information could appear in a separate window on the screen, a popup
window, or they could be shown on the same window as the proofstate display.

3.1.6 Terms

Terms can appear anywhere inside PGML text, marked with the <term> element and nested arbitrar-
ily. To begin with, the <term> will be optional: its use is to add enough structure to annotate subterm
position information, for mouse-sensitivity and proof-by-pointing actions. The optional pos annotation
achieves this. It is not displayed or interpreted by the display engine, but should be recoverable by
mouse pointing, so that it can be sent back to the proof engine. A character on the display has the
pos annotation of the smallest enclosing <term> element, if there is one. As a configuration option,
the display engine should be able to concatenate pos annotations on nested subterms when it indi-
cates the position of the mouse, so that the proof assistant does not need to annotate with complete
path information.

Some terms may be designated as being types with the <type> element; a print engine may
allow for types to be coloured specially, optionally hidden, or displayed in balloon popups. A type is
attached to a term by the convention of appearing immediately before a closing </term>. This is
supposed to be compatible with the usual concrete syntax for types, as a:T or similar.

Terms may have action texts attatched to them. The convention is that one or more <action>
texts appear immediately after an operning <term>. Different kinds of action tags are distinguished
by their (compulsory) kind settings kd. A character has the actions of the smallest enclosing subterm,
if it has any. The idea behind actions is that they allow additional hidden annotations which may be
revealed to the user (e.g. proof hints), or used to generate commands to the proof assistant to allow
finer-grained proof-by-pointing style interactions. At the moment, we leave unspecified the kinds of
actions available.

3.1.7 Atoms

Atoms in terms can be decorated by the display engine to indicate their logical status and to attach
extra information.

The logical status is suggested by the kind name, which may be used by the display engine to
generate different colours or balloon popups. It is particularly appropriate to use different kinds when
the atom is named from a distinct (system) namespace (e.g. if we want to help the user distinguish
between a free variable “x” and a bound variable “x”).

By convention, certain kinds are predefined. For variables, there are ordinary variables var, also
metavariables mvar, free variables fvar, bound variables bvar, scheme variables svar, and parameters
pvar. For constants, there are ordinary const, definition names dconst, and reserved keywords rconst.

One piece of extra information which can be attached to atoms is their full names. This may be
useful when concrete syntax uses symbols, or hides path names to components in substructures, for
example.

5In Proof General at present, one can choose between retaining a history of all information messages, or just keeping
the latest one. One can also choose to hide the information messages as soon as possible, or keep them around on the
screen.

8

Remember that this is a markup language only: the kinds of atoms are hints of logical distinctions
without any precisely defined concrete semantic notion understood by Proof General. Different proof
systems may use these tags in different ways according to their underlying logical framework.

3.1.8 Symbols

Proof General at present can use the X Symbol package to display a variety of mathematical symbols,
greek letters, etc, which are not part of ASCII. PGML will allow these extra characters to appear via
the <sym> tag.

For PGML 1.0, we will follow the X Symbol names for symbols (which are close to names used in
LaTeX). For example,

<sym name="forall" alt="ALL">

<sym name="longrightarrow" alt="-->">

would display a ∀ symbol and a −→ symbol if they were available, otherwise use the ASCII alter-
natives ALL and �>. The alt attribute is optional; the other alternative is to display an Isabelle-style
escape sequence based on the X-Symbol name, like \<forall> or \<longrightarrow>.

This mechanism is somewhat simplistic, of course; it assumes symbols always correspond to
some ASCII equivalent. For later versions of PGML, we may use mechanisms from other markup
languages (MathML) for mathematical symbols.

3.1.9 Formatting

We specify that PGML markup is not completely free-form, but that multiple spaces are obeyed in
most circumstances. Specifically, spaces are ignored when:

1. At the start of a line;

2. At the end of a line;

3. Between successive opening tags;

4. Between successive closing tags.

This may need to be changed to fit with markup language standards for XML/SGML, in which case
we will introduce an explicit tag to cause multiple horizontal spaces.6

Carriage returns are always ignored; the
 tag causes an explicit carriage return and new
line.

Moreover, we expect for PGML 1.0 that if all the tags are stripped, then the text is plain 7-bit
ASCII.7 In future version we may allow for other character sets or encodings (beyond the symbol
scheme mentioned above).

We do not require that the stripped version of the text necessarily makes sense to display, al-
though that would be a pleasant aspect. At the moment, only the <sym> tag would require special
treatment.

3.1.10 Summary

This markup scheme legitimizes the antiquated way “special” 8-bit characters are used presently as
markup in Emacs Proof General. Moreover, compared with that markup scheme, PGML is richer.
The display of proof states can have more structure; <type> and <action> elements are new, and
the classification of variables and constants is less ad hoc.

6Eventually, using a table formatted output in the prover would be a better solution.
7There should be no problem with 8-bit characters but to begin with we want to avoid confusion because of their historical

use in Proof General.

9

3.2 PGIP, the Interface Protocol

PGIP is a protocol for conducting interactive proof. It makes certain assumptions about the way proof
is conducted with a proof assistant. The essential aspect is that proof proceeds in steps, and that
the proof assistant can be “fed” a step at a time, without needing to see the whole proof text at once.
More details are given in Section 3.2.1 below.

PGIP is implemented via XML message passing. Although XML was original invented as a format
for documents, the suggestion to use it for communication protocols was soon made. An example
is the XML-RPC [6] remote procedure call protocol; the a prominent example, which has been taken
forward into the defacto standard for web services, SOAP [5]. For PGIP it is ideal, since our messages
are typically small, but they may contain embedded PGML documents.

In the future, it might be extended to a web service, for example, by wrapping the PGIP messages
in SOAP envelopes. A RELAX NG schema for PGIP messages is given in the appendix, Section A.1.8

3.2.1 Basic proof mechanism with PGIP

PGIP makes an abstraction that the proof assistant is in one of several states.
[Unfinished] [diagram to be inserted]
The states of PGIP correspond to the progress of a proof, assuming that:

• A proof begins by issuing some target goal

• A proof proceeds by issuing successive proof steps

• To reverse the effect of a proof step, the proof engine has a command to undo.

• A proof is closed, abandoned and revoked, or left unfinished by issuing a save-goal, quit-goal,
or forget-goal, respectively.

We consider the goal, save-goal, and forget-goal operations to be proof steps themselves, whereas
undo and quit-goal are not. Together the proof steps form a language for writing proof scripts.9

Proof scripts may have additional elements outside proofs, for example, to make definitions or
assumptions. (If definitions and assumptions are allowed inside proofs we just consider them as
proof steps and they must be undoable). Moreover, proof scripts may have additional structure both
inside and outside proofs, to allow sections or block structure.10

As well as controlling the progress of the interactive proof, PGIP is responsible for certain initial-
ization and book-keeping tasks which require communication between the proof assistant and Proof
General.

PGIP is a protocol, but for the moment we will only deal with the messages on each side of the
protocol and only hint at the rules of the interaction are. That remains for later elaboration.

Also for the moment, we show PGIP also in terms of an XML markup scheme, and consider it to
be an extension of PGML, in the sense that PGML texts may appear as messages of the protocol.
(However, this occurs in only one direction: we do not expect the proof assistant to receive PGML
text.) Later on we may wish to implement a different format for encoding the protocol, particularly
when we consider a communication medium for PGIP other than stream based i/o (see Section 4.1).
However, since PGIP is not expected to be bandwidth intensive, and in any case, there exist methods
for compression-on-thy-fly, passing XML messages will probably be fine.

8July 2003: experiments with PGIP are underway; the appendix and comments therein currently supersede the descrip-
tion below.

9Although we call the object of our developments proof scripts, they may well be declarative rather than procedural
descriptions of proofs. It matters little to Proof General whether they are forwards or backwards proofs, or whether they
use tactics or some more readable description of proof steps.

10At the moment, Proof General allows such additional structure but usually doesn’t understand it, which can result in
confusion with undo. There is an outstanding unimplemented mechanism proposed to solve this.

10

3.2.2 Message packet

A PGIP message is sent in a “packet”, which is an XML document with root <pgip>.

• <pgip version="ver "class="cls "origin="orig "systemid="id ">text</pgip>

The optional version attribute describes the version of PGIP being used. The required class de-
scribes the intended receiver(s) of the message. Standard classes are “pg”, standing for Proof Gen-
eral (for messages sent from the proof assistant), and “pa”, standing for the proof assistant. The
optional origin attribute is a tag which may be added to identify the sender of the message. Finally,
the message may be tagged with an optional id identity tag.

Several messages may be enclosed in the same packet.
We do not say anything here about how the communication stream is established between Proof

General and the proof assistant, nor how sychronization is achieved or errors and re-transmission is
dealt with. Instead we assume for the moment that these low-level details are dealt with properly, so
that messages are always free of transmission errors, and arrive in the sequence in which they were
sent. Managing these aspects this will be the concern of PGCOM, see Section 4.1.

3.2.3 Proof and control commands

[Unfinished] [details of responses from prover; types of control command]
Here are the PGIP messages which may be sent to the proof assitant to control proof:

• <proofcmd >command text</proofcmd>

• <controlcmd >command text</controlcmd>

It is the responsibility of the proof assistant to tell Proof General what kind of proof command
has been issued. On the other hand, Proof General knows about several different kinds of control
commands.

3.2.4 Configuration messages

Configuration messages allow Proof General to configure itself to the proof assisant to which it is
connected. They also allow some amount of configuration in the opposite direction, so Proof General
can adjust the setup of the proof assistant in certain ways.

When Proof General is first connected to a proof assistant, configuration messages will be sent
before anything else.11 Proof General drives this configuration phase by sending queries to the proof
assistant, which responds by advertising the facilities it has available. The configuration will take
a short time, before the prover and Proof General agree that they are both ready for work; how
much configuration occurs depends on the sophistication of the proof assistant and its Proof General
interface.

Here are the PGIP configuration messages which may be sent from the proof assistant:

• <usespgml version="ver "/>
Advertises the version of pgml this proof assistant will use.

• <haspref type="tp "default="def "class="cls "descr="dsc "name="nm "/>
Advertises that the proof assistant has a preference setting, called name, which should be
unique.

• <prefval name="nm ">value</prefval>
Advertises the current value of the named preference setting.

11At the moment we do not preclude configuration messages being sent at other times, although it is likely that restrictions
may be made on some configuration messages when the protocol is specified in detail.

11

• <idtable class="cls ">table</idtable>
Advertises an identifier class “cls” with a completion table consisting of space-separated iden-
tifiers.

• <addid class="cls ">ident</addid>
Advertises the addition of an identifier ident in the given class.

• <delid class="cls ">ident</delid>
Advertises the removal of an identifier ident in the given class.

• <menuadd path="p "name="nm ">text</menuadd>

• <menudel path="p "name="nm ">text</menudel>

Here are the PGIP configuration messages which may be sent to the proof assistant:

• <askpgml/>
Ask the proof assistant which version of PGML it supports

• <askprefs class="cls "/>
Ask the proof assistant for a list of preferences it supports

• <resetprefs class="cls "/>
Reset preferences to their defaults.

• <setpref name="nm ">value</setpref>
Set a preference.

• <getpref name="nm "/>
Ask for the value of a preference

PGML configuration Proof General will begin by asking the prover which version of PGML it sup-
ports, by sending the <askpgml> message. The prover will advertise using a <usespgml> message.

Preferences The proof assistant may advertise preference settings using the element <haspref>.
This has a mandatory type attribute. Types understood are “boolean”, “nat”, “int”, “string”, and
“choice(c1, . . . , cn)” where c1 to cn are identifiers. More types may be added later. The <haspref>
element has optional attributes default for specifying a default value for the preference, descr for
giving a description for what the preference controls, and class, to categorize the preference. Unless
a class is given, it is assumed that the kind is “user”, indicating a user preference. Other kinds may be
given to specify “internal” preferences are not adjustable by the user, or perhaps “expert” settings
which are only revealed to “expert” users.

The current value for a particular preference may be advertised with a <prefval> message.
With the <askprefs> message, Proof General can ask for a complete list of the preference

settings available, optionally restricted to those in a given class.
Preferences are set and retrieved from Proof General using the <setpref> and <getpref>

messages.

3.2.5 Status and error messages

Status messages output from the proof assistant are simply <information> elements, which have
particular kinds. Similarly, error messages are <error> elements of particular kinds.

• <information kind="kd " location="loc ">message</information>

kind="message" — general information message to user

kind="urgentmessage" — important status message to user

12

kind="display" — text in PGML

• <error kind="kd "location="loc ">message</error>

kind="warning" — warning message, non-fatal

kind="fatal" — fatal error message, e.g. failed command

kind="interrupt" — signals an interrupt occurred

The optional location tag specifies a position in a file or some previous input, which indicates the
position of the cause of the information, error or whatever. The loc should be a URL.12

3.2.6 Proof blocks

[Unfinished] Basics:

• Set-position messages, with names.

• Open-block and close-block messages, perhaps with names.

• Usually, the first open-block will be followed by a goal.

Motivations: we may have sections in proof script, as in Coq or LEGO. One can undo to start
of a particular section. We may have block structure in proof, as in Isar. Each block represents a
particular subtree of the proof. The degenerate case is the present Proof General, where we only
consider a top-level block. For nested blocks, perhaps one can undo within a block, or block by block,
and even switch context between blocks. This might break the current fixed linear constraint of Proof
General a bit, and needs an enhancement of script management to consider several blue regions
within a buffer, rather than just beginning up to finished point. But it seems manageable.

Suggestions?

3.3 Interface configuration with PGIP

We would like to allow interface configuration as part of PGIP. At present, (some aspect of) the syntax
of the command language and proof script language of each proof assistant is hard-wired inside
Emacs Proof General. Extra menu entries and special commands are also hard-wired. We want
to lift this kind of configuration and add it to PGIP, so that the interface components can configure
themselves.

Proof General now has about 80 configuration variables. These are currently set in the prover-
specific Emacs lisp files. Some examples of the settings for prover syntax and interface configuration
are shown in Table 1.

proof-comment-start String which starts a comment in the proof assistant command language.
proof-terminal-char Character which terminates a command. Added to every command
proof-assistant-home-page Web address for information on proof assistant.
proof-info-command Command to ask for help or information in the proof assistant.
proof-showproof-command Command to display proof state in proof assistant.

Table 1: Interface configuration in PGIP (incomplete)

For the first version of the self configuration part of PGIP, we will simply use the present Emacs
regular expression syntax and substitution mechanisms (for example, using a string with % s as a
placeholder). Later on we could replace with standard regular expressions, since the semantics of
Emacs regular expressions is a bit fuzzy at the edges. Some of the configuration variables are ac-
tually function variables, defining operation hooks, so we will need to invent new ways of configuring

12But we need special extensions to allow line numbers and character positions (no present standard for such a thing?),
and to give a special name for unsaved files kept in an editor’s memory (e.g. for Emacs, a machine name, process id and
buffer name).

13

those. Examining the present use of function hooks, it looks likely that many functions can be re-
placed by a generalised schema which can be customized. Other configurations can be reduced to
a choice of pre-defined functions.

At present, the configuration variables of Proof General are classified as follows:

1. User options, including faces (i.e. colours and fonts)

2. Menu entries and user-level commands

3. Script settings (controlling the syntax of proof script files)

4. Shell settings (controlling the interface protocol)

5. Goal display (the markup of term output)

There are subgroups according function and a couple of other miscellaneous groups.
For Proof General Kit, some of these settings become fixed. The goal display configuration will

correspond to PGML, and most of the shell settings will correspond with the core of PGIP. The
remainder of the settings are for the self-configuration extension of PGIP. We will design a similar
partitioning of the settings to the one used above, but making some more careful separations, bearing
in mind the future intention that different components may be built which will only understand a subset
of the configuration.13

The interface configuration part of PGIP is solves one of the original drawbacks of Proof General:
the duplication of information in the proof assistant and the interface.

3.4 Script management with PGIP

[Unfinished] Ideas:

• Add script management for files into the protocol. Just as we have proof blocks, we could have
file blocks for opening and closing files.

• Unsaved development buffer can be a special file

• Add a specific feedback from the proof assistant to indicate a command is processed, rather
than relying on output which is a “non-error”.

• Something to interface to configuration management systems?

For the feedback messages, we could decorate each proof command with a line positions in a file,
or in the case of the development buffer, a marker. Using a marker instead of a line position allows
for the case of several locked regions in a buffer corresponding to subtrees of proofs, and then the
possibility of editing a subproof which appears above the one currently being processed.

4 Components for Proof General Kit

The second phase for Proof General Kit is to build and connect together components which com-
municate using PGIP. This involves using some transport level for sending PGIP messages, as well
as the infrastructure for connecting components together across this transport. A central component
here is the mediator.

We also want to add more features to PGIP in this stage of the project, to implement some of the
extensions that people have suggested or wanted for Proof General over the years.

13For example, Proof General presently overloads proof-terminal-char to mean both a character which terminates
proof engine control commands, and a character which appears in the syntax of proof scripts to separate proof commands.
Overloadings like this should be removed, to allow more freedom for proof script languages.

14

4.1 PGCOM, the Communication Layer

[Unfinished] Some ideas and notes:

• Want to be network transparent, should run across internet. In that case will need mechanisms
for identification and authentication, but would hope to lift these from other tools (e.g. ssh?).

• Perhaps use sockets.

• Want Microsoft Windows compatibility.

• Component-based architecture.

• What are the possible frameworks to use?

– CORBA — Markus suggests this is too heavyweight and complicated to expect people to
understand. But maybe this objection goes away if we provide easy hooks into using it
transparently, such as PGMEX.

– COM or its successor.

– Others?

Please make suggestions and comments here.

4.2 PGFILT, the Filter

The PGFILT component translates the interaction protocol used by a particular proof assistant into
PGIP. It it used to connect systems which do not (yet) speak PGIP natively. Each such system needs
a specific filter, which may be implemented in any suitable language.

For systems which already have support in Proof General, one possibility is to implement the filter
inside Emacs using the settings which are already there. But this could lead to some confusion! A
better idea is probably to translate the Emacs settings into Perl (or some other scripting language),
and implement a configurable filter there.

4.3 PGIP for Emacs Proof General

As PGFILT is implemented and customized for one or more proof assistants, we can implement PGIP
inside Emacs Proof General, as the first example interface component to use PGIP.

This implementation will consist largely of a new instantiation of Emacs Proof General, that is,
some “prover specific” Emacs Lisp which in fact configures for the standard protocol PGIP. This
prover-specific Elisp will suffice for the core of PGIP and the extension to script management. For
the extension to self-configuration, a new class of messages must be added. This will also be a
straightforward adaptation of the current implementation.

The other important aspect is interpreting PGML and displaying it inside Emacs. (It may be
appropriate to use other tools to help with that).

4.4 PGMEX, the Multiplexer

The PGMEX component is intended to connect existing proof assistants into the new communication
framework PGCOM, by translating between the message-passing communication mechanism and
the stream-based command line interfaces.

New proof assistants may choose to implement PGCOM directly, others may move to it if it proves
successful. But we expect to use PGMEX components in many cases.

We will need a PGMEX instance for each proof assistant which is connected, but since we have
a standard language and protocol by now, the PGMEX component does not need to be configured
specially itself. It may connect to a different PGFILT for each proof assistant.

15

4.5 PGDISP, the Displayer

PGDISP will be the first new application (or applet) which displays the status of the proof as it pro-
ceeds. Primarily, this involves rendering the PGML transmitted for each proof state display. The
display application could be more flexible than just displaying, however. It ought to allow the copy-
ing action of cut-and-paste, proof-by-pointing actions, and perhaps extra features such as printing or
saving the current display, and caching a history of displays.

One way to implement PGDISP would be inside a web browser, using an embedded scripting
language with an interface to PGCOM (e.g. PHP), or perhaps a CGI script. In the latter case, some
way to trigger display and refreshes would be needed. The job of rendering PGML in this case
reduces to translation to HTML.

Another possibility would be to implement PGDISP directly as a Java application or KDE appli-
cation; this is reasonably feasible as the markup language PGML is quite restricted. But it might not
allow for future improvements so easily.14

Finally, although a brand new display application would be nice, we plan to maintain the Emacs
based one, making it more modular now that we have introduced PGCOM.

Since the display is mostly passive, several displays could be connected at once (perhaps re-
motely).

4.6 New Features for Proof General Kit

There are several features not found in Proof General that we would like to integrate into Proof
General Kit. Here is a brief outline of some of them.

4.6.1 Theory browser

Proof General currently has limited mechanisms for helping the user find theorems and definitions
during a proof. It has notion of displaying a “current context” for a proof, and configuration with a
proof engine command for searching for theorems. It would be useful to extend these facilities with a
theory browser for investigating the theories available, by querying a running proof assistant.

There is a conceptual distinction over whether the querying examines the filesystem to find the-
ories, or is limited to the theories which have been loaded into the proof assistant’s memory in the
present session. Proof General can safely ignore this distinction and leave the issue to the underlying
proof assistant.

Work here involves designing a generic extension of PGIP for theory browsing, and perhaps extra
markup components in PGML to display theories. Then the PGDISP component could be augmented
or specialised to display theories.

Inside Emacs, a nice way to fit in theory browsing might be to use a dired-like buffer, by instanti-
ating the virtual file system mechanism of dired. Note that theories usually have a dag-like structure
rather than a tree-like structure. We could incorporate theories into a virtual file system viewer like
dired by using a virtual sub-directory for each of the parent theories (in plase of ..), and a special
sub-directory children for the child theories of a theory (if the children are directly available in the
system).

4.6.2 Completion mechanism

Some proof assistants rely on the user remembering and typing long names for theorems, constants,
or tactics. It would be useful to introduce a completion table mechanism to provide completion and
selection menus for these names.

One way to do this would be to add transmission of completion tables to PGIP, treating it as an
aspect of the interface configuration. But it is important that it should be dynamic, and that there is
way of adding and removing names incrementally.

14For example, one can imagine adding support for the “flag” style of natural deduction proof output, which would need
support for tables and hence more advanced layout engines.

16

Completion may also need to be context-sensitive, if the system uses several name spaces. In
case parsing proof scripts is too difficult and not included in Proof General, an approximate way to
deal with this would be to consider just the flattened name space for completion. There is no problem
with selection from menus, the different namespaces could still be reflected in the interface.

4.6.3 Favourites and history mechanisms

The user should be able to record his or her own commonly used proof commands, and select them
from a menu. Additionally, a history mechanism for repeating an earlier proof step would be useful.15

The favourites and history mechanisms are purely interface issues.

4.6.4 Configurable menus and toolbar

An important extension of the interface configuration in PGIP would be to allow configurable menus
for the proof assistant.

At present, a default menu and toolbar is provided for Proof General, with little or nothing that is
proof assistant specific. There is some strength in this poverty: it enforces the generic feel to the
interface. But we recognize that in practice there are many useful commands and settings which
are particular to the underlying engine, and that to be a good interface for the engine, Proof General
should provide better access to them.16

One particularly easy (but low-level) way of adding menu configuration to PGIP would be to en-
code calls to the Emacs functions add-menu and remove-menu.

5 Abstract syntax and pretty-printing

The third phase of Proof General Kit will considerably widen the scope of Proof General, incorporating
more features into the generic setting. Because we propose to add some features here which are
implemented already in existing underlying proof engines, the components built in this phase may be
more appropriate for new proof assistants in development, or ones which are weak in some area.

There is less re-engineering here and more fresh work than in the first two phases, since the
programs needed perform functions that are not done at present in Proof General. But a starting
point for implementing some of these would be to borrow good implementations from existing theorem
proving systems.

By now, it is accepted that can be a good idea to separate a user interface for a proof assisstant
(or other tool) from its underlying proof engine. This means a choice of interfaces can be provided,
and it allows the implementor to focus on the logical and computational aspects of the proof engine
using a language which is appropriate for that task, but maybe less appropriate for constructing a
GUI. The question is: where should the division be? How much is a question of interface and how
much should be deferred to the underlying proof engine?

We answer that question here by suggesting that more of the interface machinery should be
pushed from the proof engine into the interface. But, because it is a design goal of Proof General to
do as much as possible using lightweight protocols, we want to be careful before rushing in to do too
much at this level, and avoid transmitting semantical information when it’s not needed. This requires
careful management of complexity and genericity, achieved using both design and experimentation.

15Proof General actually has some history mechanisms at the moment, but they ought to be more available and easier
to use. One mechanism allows copying proof commands by a single click, higher up in a proof. Another mechanism allows
repetition of previous non-proof commands, via the standard Emacs prompt history mechanism.

16One could always provide a way of switching off the engine specific menus, perhaps to provide a simpler interface for
beginners.

17

5.1 PGTERM, the Term Representation

To begin with, we need to decide on a representation format for terms in the abstract syntax of a
proof language.

Possible starting points:

• OpenMath, see http://www.nag.co.uk/projects/openmath/omsoc/

• MathML, see http://www.w3.org/Math/

Having decided the format for representing terms, we need to decide which terms are to be
transmitted in this way. A starting point will be simply to take the part of PGML before which was
annotated as concrete syntax for terms, with the <term> element. Note that in this case, the abstract
syntax may already be enriched with annotations from the proof assistant providing hooks for proof-
by-pointing, display of types, etc.

5.2 PGSYN, the Syntax Representation

To allow display of the terms, we must have some way of specifying the concrete syntax desired. The
format for doing this is called PGSYN.

It isn’t clear where we want to use PGSYN. But it seems likely that it must be integrated with the
proof assistant since we may desire context-sensitive concrete syntax, when syntax is attached to
particular theories (as in Isabelle).

5.3 PGPP, the Pretty Printer

PGPP takes syntax representations in PGSYN and terms in PGTERM and renders them into PGML.
PGPP will alleviate proof systems from implementing concrete syntax, and it will automatically

implement term-structure markup used for proof-by-pointing and similar features.

5.4 PGDE, the Display Engine

We have the mechanisms for outputting abstract syntax (PGTERM), representation of concrete syn-
tax (PGSYN), and printing from the two (PGPP). The last piece is to connect everything together, and
for that we use the display engine, PGDE.

The job of the display engine is to sit following the PGIP communication (which must be extended
to cope with the transmission of syntax specifications), and control the generation of PGML as nec-
essary, because the display component(s) PGDISP only understand PGML.

One possibility is to use a display engine for each display. This makes sense because different
displays may have different aspects. (We might even use voice rendering or natural language output
as a “display”). The PGDISP component must become capable of informing others of its capabilities.

On the other hand, the job of pretty-printing may be fairly expensive, so another possibility is to
retransmit the marked-up concrete syntax, so that several displays can be connected without needing
to duplicate the pretty-printing effort. But then per-display customization of the pretty-printer is more
difficult.

5.5 Other term-based features

Once Proof General has some access to the abstract structure of terms, it opens the way to many
useful features, based on examining or transforming the trees.

However, to do anything really exciting, we must take another leap and attach some meaning to
the terms. This happens in the final phase.

18

6 Logic Genericity

This phase of development approaches the pure idea behind Proof General: that one can have a
generic front-end for conducting proof, connected to an arbitrary back-end proof assistant. The front-
end hides the specifics of the proof assistant as far as possible, by using a common logic and a
common proof language.

This phase is more tentative than the others and involves more research and much greater im-
plementation efforts, really a project in itself. It may be possible or appropriate to link with one of the
other projects in the theorem proving community (see Section 7.1).

6.1 Logic General

Logic General will be a family of “standard” logics (syntax and proof rules) which have adequate
embeddings from the logics of each of the proof assistants we’re interested in. For instance, HOL
Logic General (HOL-LG for short) would be a version of higher-order logic with a particular syntax
and set of proof rules. To use HOL-LG with Isabelle, we must provide an effective mapping into the
syntax of Isabelle/HOL, and a careful argument that any proof in Isabelle/HOL could be mapped onto
a proof in HOL-LG. Similarly for any other proof assistant we wish to use.

In the first instance we will be concerned with provability in a particular system, rather than proofs,
since we consider the proof text constructed in Proof General to be the primary justification. Later
on, we could consider an extension to construct proof objects which could be validated by a small
and efficient independent proof checker.

6.2 Proof languages for Logic General

Logic General will be provided with one or more proof languages for conducting proofs. Just as a
logic of Logic General must be connected to the underlying proof assistant logic, we must map the
proof language onto the underlying proof commands of the proof assistant.

[Unfinished]

• Idea to have both “traditional” goal-tactic-qed scripts and “vernacular” scripts which look like
read readable proofs.

• Wenzel’s Isar may be a candidate.

7 Conclusions and related work

I have described a plan for Proof General Kit, a design for a open architecture of communicating
interactive proof components, with an emphasis on constructing proof scripts as the target of proof
developments.

So far, there is not yet a complete implementation of Proof General Kit. However, various ex-
periments have been made, including the addition of PGML support to Isabelle, and the on-going
development of an graphical interface based on ideas from the IsaWin interface [3].

Proof General Kit seeks to be an open, international collaborative effort. In the same way that
Emacs Proof General was built by recruiting an experienced user for each of the supported systems,
we hope to draw on the expertise of both implementors and users of each the currently supported
systems. Additionally, we welcome new collaborators with or without system-specific affiliations.

7.1 Related Projects, past and present

There are several projects which are loosely related to Proof General Kit, especially in some of the
later stages suggested above. These include:

19

OMEGA http://www.ags.uni-sb.de/~omega/

OMEGA connects together various theorem proving systems, using an extension of OpenMath
called OMDoc, which adds additional semantical content to OpenMath’s content dictionaries.
The architecture is based on translations between native tool syntax and OMDoc documents,
based on XML. Translations between the logics of different systems are supported by relativiza-
tions.

(By contrast with OMEGA, Proof General Kit begins with less ambition, and aims to connect together
systems from the bottom up. The later phases of Proof General Kit which are only touched upon here
begin to approach ideas used in OMEGA, and indeed, it may be appropriate to use some of the OMEGA
technology in achieving our aims there.)

Prosper http://www.dcs.gla.ac.uk/prosper/

Prosper was an Esprit IV collaboration primarily between Glasgow, Cambridge, and Edinburgh.
The resulting Prosper Toolkit allows various theorem proving tools (e.g. model checkers, BDD
packages) to communicate data with the HOL theorem prover. Prosper is an enabling tech-
nology to allow engineers to build custom theorem proving systems by connecting different
systems together.

(Prosper and Proof General Kit address different domains; whereas Prosper helps with building custom
theorem provers, Proof General Kit helps with interacting with theorem provers.)

OMRS http://www.mrg.dist.unige.it/omrs/index.html

A project to support the construction of reasoning systems incrementally. The architecture of
a system built this way is specified in terms of a logic part, a control part (describing inference
strategies) and an interaction part (describing client-server interactions).

(Proof General Kit is probably most closely related to the interaction part of an OMRS, which the OMRS
project hasn’t addressed much so far.)

HELM http://helm.cs.unibo.it/

HELM aims to integrate tools for the automation of formal reasoning and the mechanization of
mathematics (proof assistants and logical frameworks) with the most recent technologies for the
development of web applications. Work so far has included the Coq-on-line effort of producing
XML versions of Coq libraries which can be navigated with a web borwser.

Apart from projects specifically to do with theorem proving, there are some more general projects
underway which have a broader scope, applying to many mathematics-related activities on computer:

OpenMath http://www.nag.co.uk/projects/openmath/omsoc/

OpenMath is a project instigated by the computer algebra community, as an attempt to define
standards for representing mathematical objects on the web. Individual symbols (e.g. RR) are
given by a name and a content dictionary from which they are taken (e.g. Real). The content
dictionary can contain textual descriptions of the symbols meaning. There are some standard
content dictionaries.

MathWeb http://www.mathweb.org

MathWeb follows the approach of OMEGA, using OMDoc and an XML-RPC protocol as en-
abling mechanisms to facilitate connections of mathematical tools to the web.

MathML http://www.w3.org/Math/

MathML is a markup language for mathematical text. It contains constructs to allow the descrip-
tion of display formulae and symbols. Plugins for browsers are beginning to appear.

There are a couple of aspects which set Proof General Kit apart from the projects already un-
derway in the theorem proving community. First, we are aiming to do something slightly different.
We take proof scripts and interactive development as our primitive concepts; then we build protocols
and software to enable user-interaction with theorem proving systems. The second thing that sets
Proof General Kit apart is that we (at least initially) address a different sub-community from some

20

of these projects. It is an unfortunate fact of life that the theorem proving community is somewhat
fragmented at the moment. However, there are signs that this is changing and we hope that inter-
operability projects such as those above, and Proof General Kit, will bring various groups and tools
closer together.

7.2 Credits

I’m grateful for feedback from past and present Proof General users and developers, some of whose
ideas have found their way into this white paper. Particular mention is due to Paul Callaghan, Pierre
Courtieu, Christoph Lüth, and Markus Wenzel. I wrote much of this paper in February 2000 while
visiting ETL, Osaka, Japan, and I’m grateful to the people I spoke with when visiting Tokyo, Kobe and
Kyoto and at the Arima Onsen Workshop, for stimulating discussions about Proof General.

I welcome ideas or suggestions for improvements. Send mail to David.Aspinall@ed.ac.uk.

References

[1] D. Aspinall, H. Goguen, T. Kleymann, and D. Sequeira. Proof General, 2001. System documen-
tation, see http://www.proofgeneral.org.

[2] David Aspinall. Proof General: A generic tool for proof development. In Susanne Graf and Michael
Schwartzbach, editors, Tools and Algorithms for the Construction and Analysis of Systems, Lec-
ture Notes in Computer Science 1785, pages 38–42, 2000.

[3] David Aspinall and Christoph Lüth. Proof General meets IsaWin. Informal proceedings of Work-
shop on User Interface for Theorem Provers, UITP’03, September 2003.

[4] OASIS RELAX NG technical committee. RELAX NG Specification, December 2001. http://

relaxng.org/spec-20011203.html.

[5] Simple Object Access Protocol (SOAP) 1.1. W3C Note, May 2000. See http://www.w3.org/TR/

SOAP/.

[6] Dave Winer. XML-RPC Specification. Published on the web site of UserLand Software, Inc., June
1999. See http://www.xmlrpc.com/spec.

21

A Schemas for PGIP and PGML

A.1 pgip.rnc

1 #
2 # RELAX NG Schema f o r PGIP , the Proof General I n t e r f a c e Pro toco l
3 #
4 # Authors : David Asp ina l l , LFCS , U n i v e r s i t y o f Edinburgh
5 # Chr is toph Lueth , U n i v e r s i t y o f Bremen
6 #
7 # Vers ion : $ I d : pgip . rnc , v 1 .3 2003 /07 /09 17 :42:33 da Exp $
8 #
9 # S ta tus : Exper imental .

10 # For a d d i t i o n a l commentary , see the Proof General K i t whi te paper ,
11 # a v a i l a b l e from h t t p : / /www. proo fgenera l . org / k i t
12 #
13 # Adver t ised v e r s i o n : 1 . 0
14 #
15

16 # ========== PGIP MESSAGES ==========
17

18 pgip = element pgip { # A PGIP packet c o n t a i n s :
19 pg ip_a t t r s , # a t t r i b u t e s w i th header i n f o rma t i on ;
20 (provermsg # e i t h e r a message sent TO the prover ,
21 | k i tmsg) } # or an i n t e r f a c e message
22

23 p g i p _ a t t r s =
24 a t t r i b u t e o r i g i n { t e x t } ? , # name of sending PGIP component
25 a t t r i b u t e i d { t e x t } , # session i d e n t i f i e r f o r component process
26 a t t r i b u t e c lass { pg ip_c lass } , # general c a t e g o r i z a t i o n o f message
27 a t t r i b u t e re fseq { x s d : p o s i t i v e I n t e g e r } ? , # message sequence t h i s message responds to
28 a t t r i b u t e r e f i d { t e x t } ? , # message i d t h i s message responds to
29 a t t r i b u t e seq { x s d : p o s i t i v e I n t e g e r } # sequence number o f t h i s message
30

31

32 pgip_c lass = " pa " # f o r a message sent TO the proof a s s i s t a n t
33 | " pg " # f o r a message sent TO proof general
34 | s t r i n g # something else
35

36 provermsg =
37 prove rcon f i g # query Prover c on f i gu ra t i on , t r i g g e r i n g i n t e r f a c e c o n f i g u r a t i o n
38 | p r o v e r c o n t r o l # c o n t r o l some aspect o f Prover
39 | proofcmd # issue a proof command
40 | f i l ecmd # issue a f i l e command
41

42 ki tmsg =
43 k i t c o n f i g # messages to con f igu re the i n t e r f a c e
44 | p roverou tpu t # output messages from the prover , usua l l y d i sp lay i n i n t e r f a c e
45 | f i l e i n f o m s g # in fo rma t i on messages concerning
46

47

48

49

50 # ========== PROVER CONFIGURATION ==========
51

52 prove rcon f i g =
53 askpgip # what vers ion o f PGIP do you support?
54 | askpgml # what vers ion o f PGML do you support?
55 | askconf ig # t e l l me about ob jec ts and opera t ions
56 | askprefs # what preference s e t t i n g s do you o f f e r ?

22

57 | s e t p r e f # please set t h i s preference value
58 | ge tp re f # please t e l l me t h i s preference value
59

60 askpgip = element askpgip { empty }
61 askpgml = element askpgml { empty }
62 askconf ig = element askconf ig { empty }
63 askprefs = element askprefs { c l a s s _ a t t r ? }
64 s e t p r e f = element s e t p r e f { name_attr , c l a s s _ a t t r ? , t e x t }
65 ge tp re f = element ge tp re f { name_attr ? }
66

67

68 # ========== INTERFACE CONFIGURATION ==========
69

70 k i t c o n f i g =
71 usespgip # I suppor t PGIP , vers ion . .
72 | usespgml # I suppor t PGML, vers ion . .
73 | haspref # I have a preference s e t t i n g . .
74 | p r e f v a l # the cu r ren t value o f a preference i s
75 | addids # in form the i n t e r f a c e about some known ob jec ts
76 | d e l i d s # r e t r a c t some known i d e n t i f e r s
77 | menuadd # add a menu en t ry
78 | menudel # remove a menu en t ry
79 | g u i c o n f i g # con f igu re the f o l l o w i n g ob jec t types and opera t ions
80

81 # vers ion r e p o r t i n g
82 v e r s i o n _ a t t r = a t t r i b u t e vers ion { t e x t }
83 usespgml = element usespgml { v e r s i o n _ a t t r }
84 usespgip = element usespgip { v e r s i o n _ a t t r }
85

86 # Types f o r con f i g s e t t i n g s
87 pgipbool = element pg ipbool { empty }
88 p g i p i n t = element p g i p i n t { empty }
89 p g i p s t r i n g = element p g i p s t r i n g { empty }
90 pgipchoice = element pgipchoice { pg ipcho ice i tem + }
91 pgipcho ice i tem = element pg ipcho ice i tem { t a g _ a t t r , t e x t }
92 t a g _ a t t r = a t t r i b u t e tag { t e x t } ?
93

94 # preferences
95 d e f a u l t _ a t t r = a t t r i b u t e d e f a u l t { t e x t }
96 d e s c r _ a t t r = a t t r i b u t e descr { t e x t }
97 c l a s s _ a t t r = a t t r i b u t e c lass { t e x t }
98 name_attr = a t t r i b u t e name { t e x t }
99

100 # FIXME: change haspref to empty
101 t y p e _ a t t r = a t t r i b u t e type { t e x t }
102 haspref = element haspref { t y p e _ a t t r ? , d e f a u l t _ a t t r ? , d e s c r _ a t t r ? , c l a s s _ a t t r ? , t e x t }
103 p r e f v a l = element p r e f v a l { name_attr , t e x t }
104

105 # menu i tems (incomplete)
106 p a t h _ a t t r = a t t r i b u t e path { t e x t }
107

108 menuadd = element menuadd { p a t h _ a t t r ? , name_attr ? , t e x t }
109 menudel = element menudel { p a t h _ a t t r ? , name_attr ? , t e x t }
110

111 # GUI c o n f i g u r a t i o n i n f o r m a t i o n : ob jec ts , types , and opera t ions
112

113 # da: here we may want to requ i re t h a t c e r t a i n standard opera t ions
114 # are a v a i l a b l e : e . g . to cons t ruc t a proof opera t ion f o r opening a
115 # new theory . We might even assume t h a t the proof c o n t r o l and
116 # f i l e commands descr ibed l a t e r are given using g u i c o n f i g .
117 # (perhaps g u i c o n f i g could be " u i c o n f i g " ?)

23

118 #
119 # da 1 .12 : I ’ ve changed ob j type to inc lude icon data o p t i o n a l l y i n s i d e
120 # another element , as we l l as a descr element which could be used as
121 # a ba l loon popup h i n t f o r the ob jec t type .
122

123 i con = element icon { t e x t } # FIXME: xsd type f o r i conda ta : ?
124 descr = element descr { t e x t } # FIXME: could set max s t r i n g leng th
125

126 ob j type = element ob j type { name_attr , icon ? , descr ? }
127 o b j t y p e _ a t t r = a t t r i b u t e ob j type { t e x t } # the name of an ob j type
128

129 opsrc = element opsrc { t e x t } # source types : a space separated l i s t
130 opt rg = element opt rg { t e x t } # the s i n g l e t a r g e t type
131 opcmd = element opcmd { t e x t } # prover command , w i th p r i n t f −s t y l e "%1"−args
132

133 opn = element opn { name_attr , opsrc , optrg , opcmd }
134

135 # proof opera t ions (no t a r g e t s o r t : r e s u l t i s a proofcmd f o r s c r i p t)
136 proofopn = element proofopn { name_attr , opsrc , opcmd }
137

138 # i n t e r a c t i v e opera t ions − r equ i re some in pu t
139 iopn = element iopn { name_attr , input form , opsrc , optrg , opcmd }
140 i npu t fo rm = element inpu t fo rm { f i e l d + }
141

142 # a f i e l d has a PGIP con f i g type (i n t , s t r i n g , bool , choice (c1 . . . cn))
143 # and a name ; under t h a t name , i t w i l l be s u b s t i t u t e d i n t o the command
144 # Ex . f i e l d name=number opcmd=" r t a c %1 %number "
145

146 # the PCDATA i s the prompt f o r the i np u t f i e l d
147 f i e l d = element f i e l d { t ype_a t t r , name_attr , t e x t }
148

149 g u i c o n f i g =
150 element g u i c o n f i g { ob j type ∗ , opn ∗ , iopn ∗ , proofopn ∗ }
151

152

153 # i d e n t i f i e r t a b l e s : these l i s t known items of p a r t i c u l a r ob j type .
154 # Might be used f o r complet ion or menu s e l e c t i o n .
155 # May have a nested s t r u c t u r e (but ob j types do not) .
156

157 addids = element addids { o b j t y p e _ a t t r , (i d e n t i f i e r | i d t a b l e) ∗ }
158 d e l i d s = element d e l i d s { o b j t y p e _ a t t r , (i d e n t i f i e r | i d t a b l e) ∗ }
159

160 i d e n t i f i e r = element i d e n t i f i e r { t e x t }
161

162

163

164

165 # ========== PROVER CONTROL ==========
166

167 p r o v e r c o n t r o l =
168 p r o v e r i n i t # rese t prover to i t s i n i t i a l s t a t e
169 | p r o v e r e x i t # e x i t prover
170 | s t a r t q u i e t # stop prover sending proo f s t a t e d isp lays , non−urgent messages
171 | s t opqu ie t # tu rn on normal proo f s t a t e & message d isp lays
172

173 p r o v e r i n i t = element p r o v e r i n i t { empty }
174 p r o v e r e x i t = element p r o v e r e x i t { empty } # e x i t prover
175 s t a r t q u i e t = element s t a r t q u i e t { empty }
176 s topqu ie t = element s topqu ie t { empty }
177

178

24

179 # ========== GENERAL PROVER OUTPUT ==========
180

181 proverou tpu t =
182 ready # prover i s ready f o r i np u t
183 | c l e a r d i s p l a y # prover requests a d i sp lay area to be c leared
184 | normalresponse # prover outputs some d i sp lay t e x t
185 | e r ror response # prover i n d i c a t e s an e r r o r cond i t i on , w i th e r r o r message
186 | metaresponse # prover outputs some meta−i n f o rma t i on to i n t e r f a c e
187

188 ready = element ready { empty }
189

190 d isp layarea = " message " # the message area (response b u f f e r)
191 | " d i sp lay " # the main d i sp lay area (goals b u f f e r)
192

193 c l e a r d i s p l a y =
194 element c l e a r d i s p l a y {
195 a t t r i b u t e area {
196 d isp layarea | " a l l " } }
197

198

199 i nc lude " pgml . rnc " # inc lude PGML documents
200

201 d i s p l a y t e x t = (t e x t | pgml)∗ # grammar f o r d isp layed t e x t
202

203 normalresponse =
204 element normalresponse {
205 a t t r i b u t e area { d isp layarea } ,
206 a t t r i b u t e category { t e x t } ? , # o p t i o n a l ex t ra category (e . g . t r a c i n g)
207 a t t r i b u t e urgent { " y " } ? , # whether to re f resh d i sp lay
208 d i s p l a y t e x t
209 }
210

211 f a t a l i t y = " non fa ta l " | " f a t a l " | " panic " # degree of e r r o r s
212

213 error response =
214 element er ror response {
215 a t t r i b u t e f a t a l i t y { f a t a l i t y } ,
216 a t t r i b u t e l o c a t i o n { t e x t } ? ,
217 a t t r i b u t e l o c a t i o n l i n e { x s d : p o s i t i v e I n t e g e r } ? ,
218 a t t r i b u t e locat ionco lumn { x s d : p o s i t i v e I n t e g e r } ? ,
219 d i s p l a y t e x t
220 }
221

222 metaresponse =
223 element metaresponse {
224 a t t r i b u t e i n f o t y p e { t e x t } , # c a t e g o r i z a t i o n o f data
225 t e x t }
226

227

228 # ========== PROOF CONTROL COMMANDS ==========
229

230 proofcmd =
231 goal # open a goal i n ambient con tex t
232 | p roo fs tep # a s p e c i f i c proo f command (perhaps conf igured v ia opcmd)
233 | undostep # undo the l a s t proo f step issued i n c u r r e n t l y open goal
234 | c losegoa l # complete & close cu r ren t open proof (succeeds i f f goal proven)
235 | abor tgoa l # g ive up on cu r ren t open proof , c lose proof s ta te , d iscard h i s t o r y
236 | g iveupgoal # c lose cu r ren t open proof , record as proof ob l ’ n (so r ry)
237 | postponegoal # c lose cu r ren t open proof , r e t a i n i n g at tempt i n s c r i p t (oops)
238 | f o r g e t # f o r g e t a theorem (or named t a r g e t) , ou tda t ing dependent theorems
239 | r es to regoa l # re−open p rev ious l y postponed proof , ou tda t ing dependent theorems

25

240

241 thmname_attr = a t t r i b u t e thmname { t e x t } # theorem names
242 aname_attr = a t t r i b u t e aname { t e x t } # anchors i n proo f t e x t
243

244 goal = element goal { thmname_attr , t e x t } # t e x t i s theorem to be proved
245 proo fs tep = element proo fs tep { aname_attr ? , t e x t } # t e x t i s proo f command
246 undostep = element undostep { empty }
247

248 c losegoa l = element c losegoa l { empty }
249 abor tgoa l = element abor tgoa l { empty }
250 giveupgoal = element giveupgoal { empty }
251 postponegoal = element postponegoal { empty }
252 f o r g e t = element f o r g e t { thyname_att r ? , aname_attr ? }
253 res to regoa l = element res to regoa l { thmname_attr }
254

255

256 # ========== THEORY/ FILE HANDLING COMMANDS ==========
257

258 f i l ecmd =
259 l oad theory # load a f i l e poss ib l y con ta in ing a theory d e f i n i t i o n
260 | opentheory # begin c o n s t r u c t i o n o f a new theory .
261 | c lose theory # complete c o n s t r u c t i o n o f the c u r r e n t l y open theory
262 | r e t r a c t t h e o r y # r e t r a c t a theory . App l i cab le to open & closed t heo r i es .
263 | o p e n f i l e # lock a f i l e f o r c o n s t r u c t i n g a proof t e x t
264 | c l o s e f i l e # unlock a f i l e , suggest ing i t has been processed
265 | a b o r t f i l e # unlock a f i l e , suggest ing i t hasn ’ t been processed
266

267 f i l e i n f o m s g =
268 i n f o r m f i l e l o a d e d # prover in forms i n t e r f a c e a p a r t i c u l a r f i l e i s loaded
269 | i n f o r m f i l e r e t r a c t e d # prover in forms i n t e r f a c e a p a r t i c u l a r f i l e i s outdated
270

271 u r l _ a t t r = a t t r i b u t e u r l { t e x t } # t y p i c a l l y : f i lename
272 thyname_att r = a t t r i b u t e thyname { t e x t } # a corresponding theory name
273

274 l oad theory = element load theory { u r l _ a t t r ? , thyname_att r ? }
275 opentheory = element opentheory { thyname_attr , t e x t }
276 c lose theory = element c lose theory { thyname_att r }
277 r e t r a c t t h e o r y = element r e t r a c t t h e o r y { thyname_att r }
278 o p e n f i l e = element o p e n f i l e { u r l _ a t t r }
279 c l o s e f i l e = element c l o s e f i l e { u r l _ a t t r }
280 a b o r t f i l e = element a b o r t f i l e { u r l _ a t t r }
281

282 i n f o r m f i l e l o a d e d =
283 element i n f o r m f i l e l o a d e d { thyname_attr , u r l _ a t t r }
284 i n f o r m f i l e r e t r a c t e d =
285 element i n f o r m f i l e r e t r a c t e d { thyname_attr , u r l _ a t t r }

A.2 pgml.rnc

1 #
2 # RELAX NG Schema f o r PGML, the Proof General Markup Language
3 #
4 # Authors : David Asp ina l l , LFCS , U n i v e r s i t y o f Edinburgh
5 # Chr is toph Lueth , U n i v e r s i t y o f Bremen
6 # Vers ion : $ I d : pgml . rnc , v 1 .2 2003 /07 /09 17 :37:22 da Exp $
7 #
8 # S ta tus : Complete but exper imenta l vers ion .
9 #

10 # For a d d i t i o n a l commentary , see the Proof General K i t whi te paper ,
11 # a v a i l a b l e from h t t p : / /www. proo fgenera l . org / k i t
12 #

26

13 # Adver t ised v e r s i o n : 1 . 0
14 #
15

16 pgml_vers ion_a t t r = a t t r i b u t e vers ion { xsd:NMTOKEN }
17

18 pgml =
19 element pgml {
20 pgml_vers ion_a t t r ? ,
21 (s t a t e d i s p l a y | te rmd isp lay | i n f o rma t i on | warning | e r r o r)∗
22 }
23

24 termitem = ac t i on | nonact ion i tem
25 nonact ion i tem = term | pgmltype | atom | sym
26

27 pgml_name_attr = a t t r i b u t e name { t e x t }
28

29 k i n d _ a t t r = a t t r i b u t e k ind { t e x t }
30 sys tem id_a t t r = a t t r i b u t e systemid { t e x t }
31

32 s t a t e d i s p l a y =
33 element s t a t e d i s p l a y {
34 pgml_name_attr ? , k i n d _ a t t r ? , sys tem id_a t t r ? ,
35 (t e x t | termitem | s t a t e p a r t)∗
36 }
37

38 br = element br { empty }
39 pgml text = (t e x t | termitem | br)∗
40

41 i n f o rma t i on =
42 element i n f o rma t i on { pgml_name_attr ? , k i n d _ a t t r ? , pgml text }
43

44 warning = element warning { pgml_name_attr ? , k i n d _ a t t r ? , pgml text }
45 e r r o r = element e r r o r { pgml_name_attr ? , k i n d _ a t t r ? , pgml text }
46 s t a t e p a r t = element s t a t e p a r t { pgml_name_attr ? , k i n d _ a t t r ? , pgml tex t }
47 te rmd isp lay = element te rmd isp lay { pgml_name_attr ? , k i n d _ a t t r ? , pgml tex t }
48

49 pos_a t t r = a t t r i b u t e pos { t e x t }
50

51 term = element term { pos_a t t r ? , k i n d _ a t t r ? , pgml tex t }
52

53 # maybe combine t h i s w i th term and add ex t ra a t t r to term?
54 pgmltype = element type { k i n d _ a t t r ? , pgml text }
55

56 ac t i on = element ac t i on { k i n d _ a t t r ? , (t e x t | nonact ion i tem) ∗ }
57

58 f u l l n a m e _ a t t r = a t t r i b u t e fu l lname { t e x t }
59 atom = element atom { k i n d _ a t t r ? , f u l l n a m e _ a t t r ? , t e x t }
60

61 a l t _ a t t r = a t t r i b u t e a l t { t e x t }
62 sym = element sym { pgml_name_attr ? , a l t _ a t t r ? , t e x t }

27

