
Heap Bounded Assembly Language

David Aspinall (da@ed.ac.uk)
LFCS, Division of Informatics, University of Edinburgh, King’s Buildings,
Edinburgh EH9 3JZ, U. K.

Adriana Compagnoni (abc@cs.stevens-tech.edu)
Department of Computer Science, Stevens Institute of Technology, Castle Point on
Hudson, Hoboken, NJ 07030, U. S. A.

Abstract. We present a first-order linearly typed assembly language, HBAL, that
allows the safe reuse of heap space for elements of different types. Linear typing
ensures the single pointer property, disallowing aliasing, but allowing safe in-place-
update compilation of programming languages. We prove that HBAL is sound for a
low-level untyped model of the machine, using a satisfiability relation which captures
when a location correctly models a value of some type. This interpretation is closer
to the machine than previous abstract machines used for typed assembly language
models, and we separate typing of the store from an untyped operational semantics
of programs, as would be required for proof-carrying code.

Our ultimate aim is to design a family of assembly languages which have high-
level typing features which are used to express resource bound constraints. We want
to link up the assembly level with high-level languages expressing similar constraints,
to provide end-to-end guarantees, and a viable framework for proof-carrying code.
HBAL is a first exemplifying step in this direction. It is designed as a target low-
level language for Hofmann’s LFPL (Hofmann, 2000b) language. Programs written
in LFPL run in a bounded amount of heap space, and this property carries over
when they are compiled to HBAL: the resulting program does not allocate store or
assume an external garbage collector. Following LFPL, we include a special diamond
resource type which stands for a unit of heap space of uncommitted type, similar in
spirit to Tofte-Talpin’s notion of region.

1. Introduction

Resource awareness is a crucial asset. Despite powerful computing hard-
ware and effective optimizing compilers, efficiency concerns are often
still paramount, particularly when computing resources are limited,
such as in embedded and real-time systems or for applications to be run
across the Internet. For embedded and real-time systems, programmers
traditionally resorted to assembler code (or assembler-close fragments
of ‘C’) to ensure a close control over resource consumption. For Inter-
net applications, and lately for more powerful small devices, high-level
languages such as Java are used, but it remains the responsibility of
the programmer to argue that any resource bounds are met.

Programming with low-level languages is tedious and error prone.
Recent research on typed assembly languages (Morrisett et al., 1999;

c© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

hbal.tex; 4/04/2002; 18:59; p.1



2 D. Aspinall and A. Compagnoni

Crary and Morrisett, 1999; Crary et al., 1999; Xi and Harper, 1999),
and type-safe versions of C (Necula et al., 2002; Jim et al., 2002)
has begun to make the prospect of type-safe low-level programming
a reality. But these frameworks provide no way of guaranteeing that
resource bounds are met, and anyway, we would rather program in
high-level languages to begin with.

Our research is into the design of type-systems for both high-level
and low-level languages which can provide end-to-end static guarantees
of resource-boundedness. We see a type system as a convenient and
elegant way of expressing a semantic constraint such as particular forms
of resource boundedness. For us, the proof in proof-carrying code is a
typing derivation (or annotations sufficient to easily reconstruct it) in a
type system for the low-level code. This typing derivation is generated
by a compiler for the high-level language with a related type system.

The particular resource we are concerned with in this paper is heap
space. To provide an end-to-end guarantee, we want to add resource-
bounded type systems both to high-level languages and to low-level
languages. Any compilation from high-level to low-level must be shown
to preserve the resource bound.

In the first half of the paper we describe a first-order heap-bounded
assembly language, dubbed HBAL. The type system of HBAL allows
for safe reuse of heap space for elements of different types, which can be
used to capture in-place update compilation of functional programming
languages with similar type systems, providing a static guarantee of
bounded heap-space usage. We illustrate this claim in the second half of
the paper with a compiling function from Hofmann’s LFPL (Hofmann,
2000b) into HBAL. The type system of HBAL was designed to marry
well with that of LFPL, to provide a direct demonstration of an end-
to-end guarantee.

1.1. Relation to other typed assembly languages

Before introducing HBAL, we will briefly relate our contribution to
existing work. Typed assembly languages have been an active subject
of study for several years now, and experimentation with different
ideas is still taking place. Contributions include TAL (Morrisett et al.,
1999; Crary et al., 1999), STAL (Morrisett et al., 1998), DTAL (Xi
and Harper, 1999), and Alias Types (Smith et al., 2000; Walker and
Morrisett, 2000). So far, new type systems have been introduced to
type more programs than was possible in previous systems.

hbal.tex; 4/04/2002; 18:59; p.2



Heap Bounded Assembly Language 3

TAL began with higher-order functions and polymorphism, consid-
ering System F as a high-level language.1 But TAL assumed a particular
compilation technique, continuation-passing style, which is not used by
every compiler. STAL addressed this by modelling stacks with stack
polymorphism. DTAL introduced the possibility for making some array
bounds-checking optimizations, using dependent types. Alias Types
allowed for areas of store to be reused in ways that TAL prohibited,
tracking aliasing of locations to allow for safe memory management.

HBAL does not set out to type more low-level programs than pre-
vious systems. Instead, we begin with a deliberately restricted type
system which reflects in the low-level the state-of-the-art of a type-
system approach to dealing with resource bounds in a high-level lan-
guage, following Hofmann’s work in programming languages captur-
ing complexity classes (Hofmann, 1999b; Hofmann, 2000a; Hofmann,
1999a; Hofmann, 2000b).

The motivation behind HBAL is to bring a type system approach
to resource bounds to a low-level language. The restricted type sys-
tem means that we can provide an end-to-end guarantee that space
bounds are respected in the compiled code, by preservation of typing.
Ultimately, we will be interested in richer typing constructs at the low-
level, but only once we know how to deal with these in our higher-level
language with resource-sensitive typing.

Whereas previous systems rely on a garbage collector to reclaim
unreachable data on the heap, HBAL uses linear typing to prevent
aliasing, and includes pseudo-instructions for safely altering the types
of heap locations. The idea of linear typing is not new; even for typed
low-level languages it was mentioned as a possibility for solving the
alias problem by Crary and Morriset (Crary and Morrisett, 1999). Lin-
ear typing may seem rather restrictive for typing arbitrary low-level
programs, but of course it is ideal for the low-level programs which
arise from compiling our intended high-level language, since that is
also linearly typed. (In fact, the system is not purely linear, and the
combination of linear typing with the resource type

�
seems to offer a

promising new direction for linear schemes; more is said later).
Linear typing means that we do not need to assume an external

garbage collector (or other memory allocator), and we can provide a
static guarantee that every program runs in a fixed amount of heap
space. This is useful when space is limited, such as for embedded
systems or smart card applications. Programs in those domains often
follow the pattern of initializing memory at start-up and then working

1 although the type system of System F already goes beyond most present day
programming languages!

hbal.tex; 4/04/2002; 18:59; p.3



4 D. Aspinall and A. Compagnoni

within that memory during execution, which fits well with our typing
discipline.

As an aside, we mention that HBAL is certinaly not incompatible
with garbage collection; it can easily be extended with malloc and
free if desired, although necessarily sacrificing the guarantee of heap
boundedness (see Section 5.2). One advantage of doing this would be
that the memory-allocating initialization part of an application could
be typed within the system.

Some more comparisons between HBAL and other typed assembly
languages are given at the end of the paper, in Section 6.

1.2. The type structure of HBAL

HBAL has high-level types in its syntax, with fixed memory layout
schemes and pseudo-instructions for constructors and destructors. The
advantage of this is that we push data abstraction closer to the machine
model: by restricting the assembly language to use type-safe pseudo-
instructions we know that data abstraction cannot be violated, and our
end-to-end guarantees are precise. The disadvantage of this method is
that it may obscure some low-level optimizations. These could be de-
ferred to a final untyped phase, but we would rather eventually include
them within our analysis. See (Crary and Morrisett, 1999) for more
discussion of this tradeoff.

As prototypical examples of high-level types we use lists and binary
trees. We could easily instead adopt general notions of recursive data
type and mechanisms for specifying layout conventions, following ideas
like those used in FLINT (Shao, 1997) and other typed assembly lan-
guages. We use a uniform boxed representation for lists and trees, with
the same layout for each case in a sum datatype. So a leaf always takes
as much space in memory as a node. For lists, we have empty lists or
cons cells:2

nil :
0 : int

: A
: [L(A)]

cons(a, l) :
1 : int
a : A

l : [L(A)]

For trees, we use labelled leaves and labelled nodes:

leaf(a) :

0 : int
a : A
: [T (A)]
: [T (A)]

node(a, l, r) :

1 : int
a : A

l : [T (A)]
r : [T (A)]

2 This is not the most efficient representation, but it follows an easily generalized
pattern. Using a slightly different formulation of LFPL, one can use the more familiar
null pointers for nil, see Section 4 and (Aspinall and Hofmann, 2002).

hbal.tex; 4/04/2002; 18:59; p.4



Heap Bounded Assembly Language 5

HBAL types make the use of pointers explicit: one of the cells above
has type L(A) (list of A) or T (A) (tree of A), whereas a pointer to such
a cell has type [L(A)] or [T (A)].

The resource type ♦ (diamond) stands for some fixed amount of
space on the heap, and it is motivated by its introduction in LFPL,
where it represents an abstract notion of space manipulated by the
programmer. A diamond is used to store a cell from one of the struc-
tured types (a list element or tree node). Diamonds need to be big
enough to store the largest cell of any datatype; their size is statically
determined from the program being assembled. If the largest type used
is T (int × int × int), for example, then size(♦) = 6 (one word for
the tag, one workd for each subtree pointer and 3 words for the data).
Notice that there is an amount of wastage inherent in this scheme; in
return for this we have a simple and direct scheme for managing heap
space via the type system, and the guarantee of heap boundedness by
using in-place update rather than multiple allocation. Section 5.3 has
some ideas for reducing wastage by generalizing to allow different sizes
of diamonds.

When some location m has type ♦ we know that we have a small
region beginning at m, which can be used to store an element in some
heap-allocated data-structure. If a register ri contains a pointer to some
heap space, its type is [♦] (pointer to a diamond). The instruction
use ri L(A) then signifies the intention to use ri for holding a pointer
to an element in a list type. The use instruction is purely a typing
directive which is erased by the assembler. It changes the type of ri to
be an uninitialized version of L(A), which exposes its structure as a
product type.

The type structure also includes the idea of initialization flags as
in TAL (Morrisett et al., 1999), so that int0 is the type of uninitial-
ized integers, which cannot be read from, whereas int1 is the type of
initialized integers. We also use initialization flags to help ensure the
linearity constraints.

Here is a code fragment which constructs the list 2::nil, using
two diamonds. We show the register typing assumptions at each step,
underlining the changes which should be thought of as the typing effect

hbal.tex; 4/04/2002; 18:59; p.5



6 D. Aspinall and A. Compagnoni

of executing the instructions:

r1 : [♦], r2 : [♦] use r1 L(int1)

r1 : [int0 × int0 × [L(int1 )]
0
], r2 : [♦] fold-nil

int1 r1[0]

r1 : [L(int1 )], r2 : [♦] arithi r3 ←− r0 + 2

r1 : [L(int1 )], r2 : [♦], r3 : int use r2 L(int1)

r1 : [L(int1 )],

r2 : [int0 × int0 × [L(int1 )]
0
], r3 : int store r2[1] ←− r3

r1 : [L(int1 )],

r2 : [int0 × int1 × [L(int1 )]
0
], r3 : int store r2[2] ←− r1

r2 : [int0 × int1 × [L(int1 )]
1
, r3 : int] fold-cons

int1 r2[0]

r2 : [L(int1 )], r3 : int · · ·

(we assume that r0 always holds 0 and omit the assumption r0 : int).
The first use instruction transforms a diamond into an uninitialized list
of integers, which exposes its three-tuple representation. The pseudo-
instruction fold-nil makes the list nil, by setting the tag to 0. The
next four instructions prepare the cons cell. Notice that the second store
causes r1 to disapear from the context, preserving the single pointer
property. The final fold-cons instruction sets the tag on the cons cell
to 1, folding the components into an initialized list.

To inspect a structured type, we break it apart using case instruc-
tions which are inverse to the fold instructions. If we have a pointer to
a node of structured type in ri, we can use the instruction discard ri

to change the type back to [♦] again.
The full HBAL language includes pseudo-instructions for managing

the stack and for doing procedure calls. We show HBAL code using all
of these constructs in Section 4.

The rest of this paper is structured as follows. We describe HBAL
in detail in Section 2. In Section 3 we define a machine model and
establish type-soundness of well-typed HBAL programs with respect
to the model. In Section 4 we briefly review LFPL and its compilation
to HBAL. The compilation preserves typing, which means that the
resource usage model in LFPL is preserved in HBAL. By the soundness
of HBAL typing with respect to the machine model, this means that the
resource constraints are really met by executing programs. Section 6
concludes the paper and mentions some related and future work.

hbal.tex; 4/04/2002; 18:59; p.6



Heap Bounded Assembly Language 7

2. HBAL

2.1. Types and contexts

The types of HBAL are given by the grammar:

A ::= code | w z | A×A | L(A) | T (A) | ♦

w ::= int | [A]
z ::= 0 | 1

We use A to range over structured types, which may use many words of
memory, and w to range over word types, which always use one word of
memory. A word type (w) is either an integer or a pointer ([A]). Word
types are tagged with an initialization flag, z, which can be either 0
or 1 indicating an uninitialized or an initialized value respectively. The
special type code indicates the type of an assembly opcode; our system
distinguishes code from data.

We assume the machine has some number of registers r0 . . . rn. We
use r, ri, rj to range over registers, and assume dedicated registers for
the program counter pc and stack pointer sp. A context Γ is a finite
mapping of registers ri to word types w , treated as a set of type as-
signments ri : w . We write the initial context as {}, and we assume by
convention that this context contains the type assignment r0 : int.

When we write the extended context Γ, ri : w , it is understood that
ri does not already appear in Γ. We assume that the program counter,
register pc, never appears in any context. The context Γ\ri

is defined
to be the same as Γ except undefined on ri. Notice that there are no
outermost initialization flags in contexts; the accessibility of a register
is determined by whether it appears in Γ.3

2.2. Operations and notations for types

We define size(A) to be the size of the type A as it is laid out in
memory, given by induction on the structure of A: size(code) = 1,
size(w z) = 1, size(A×A′) = size(A)+size(A′), size(L(A)) = 2+size(A),
and size(T (A)) = 3 + size(A). As we mentioned before, size(♦) is a
constant which can be determined statically from the program.

When A is a compound type and c is a non-negative integer, we use
the notation A[c] to denote the type of the cth word in the layout of
A in memory. However, we want the type system to prevent accessing

3 This is merely a design choice to emphasise a link with linear type systems; one
could just as well include outermost initialization flags in contexts and include all
registers. This approach would be more familiar to those who know TAL.

hbal.tex; 4/04/2002; 18:59; p.7



8 D. Aspinall and A. Compagnoni

arbitrary words inside a structured type; instead we should only be
allowed to access “top-level” words in a type. We formalize this by
defining A[c] as a partial function, by induction on A:

wz [0] = wz

(A×A′)[c] = A[c] if c < size(A)
(A×A′)[c] = A′[c− size(A)] if c ≥ size(A)

We allow access to memory locations only if they have a type of the
form A[c], precluding directly reading from locations with types code,
♦, or the high-level list and tree types; we can only manipulate pointers
to those kinds of data. Additionally, we sometimes restrict to code-free
types, which are types in which code appears only as [code], if at all.

Because the type system only allows fixed constant offsets to be used
for c, forbidding pointer arithmetic, and because the same amount of
space is used for each variant in a sum type, we can tell statically if A[c]
is defined. When A[c] is defined, the notation Ac:=1 denotes A with the
initialization flag set on the cth word, and Ac:=0 denotes A with the
cth initialization flag cleared. Uninitialization of whole types is defined
as follows:

code:=0 = code

(wy):=0 = w0

(A×B):=0 = A:=0 ×B:=0

(L(A)):=0 = int0 ×A:=0 × [L(A)]0

(T (A)):=0 = int0 ×A:=0 × [T (A)]0 × [T (A)]0

♦:=0 = ♦

Some examples may help: L(int0) is the type of lists of uninitialized
integers. If we had such a list, we should be able to traverse it and store
integers into it, but not be able to read integers from it beforehand.

An uninitialized list has an unfolded type, so L(int0)
:=0

= int0 ×

int0 × [L(int0)]
0
. The last component is not unfolded because it is a

pointer to a structured type, not directly a structured type. Only this
last component gives away the intended use of the type; compare with

an uninitialized list of initialized integers, L(int1)
:=0

= int0 × int0 ×

[L(int1)]
0
.

2.3. Subtyping

We define a subtyping relation on types, given by the contextual, reflex-
ive, and transitive closure of the uninitialization operation, so B(A) ≤
B(A:=0). The relation can be defined more explicitly by induction on
types, as below.

hbal.tex; 4/04/2002; 18:59; p.8



Heap Bounded Assembly Language 9

DEFINITION 1 (Subtyping). A ≤ A′ is defined by the following rules.

code ≤ code

♦ ≤ ♦

A ≤ A′

[A]0 ≤ [A′]0

A ≤ A′

[A]1 ≤ [A′]1

A ≤ A′

L(A) ≤ L(A′)

int0 ≤ int0

int1 ≤ int1

int1 ≤ int0

A ≤ A′

[A]1 ≤ [A′]0

A ≤ A′ B ≤ B′

A×B ≤ A′ ×B′

A ≤ A′

T (A) ≤ T (A′)

As particular cases we have, for example, that w1 ≤ w0, [int1]1 ≤
[int0]1, and L(int1) ≤ L(int0).

Subtyping is introduced in the type system by explicitly changing
the context. We write Γ′ ≤ Γ if for every typing ri : w in Γ there exists
ri : w′ in Γ′, such that w′1 ≤ w1.

2.4. Assembly language programs

A program P consists of a sequence of instructions p and labels l. We
use a small set of standard instructions, together with several pseudo-
instructions.

P ::= 〈〉 | p ; P | l ; P

p ::= load r ←− r[c] | store r[c] ←− r
| arithi r ←− r � c | arith r ←− r � r
| bnz r l | bez r l | jmp l
| call l | ret l
| salloc A | sfree c
| use r A | discard r
| fold-nilA r[c] | fold-consA r[c]
| fold-leafA r[c] | fold-nodeA r[c]
| caselistA r[c] l | casetreeA r[c] l

� ::= + | − | ∗ | /

We use c to range over (non-negative) constant offsets used in the load
and store instructions; the type system does not allow us to find the
type of a negative offset from a location. As far as typing is concerned,
there is no difference between the arithmetic operations, so we use the

hbal.tex; 4/04/2002; 18:59; p.9



10 D. Aspinall and A. Compagnoni

generic arithi instruction, where � ∈ {+,−, ∗, / } ranges over the
arithmetic operators.

The pseudo-instructions (salloc onwards) are either typing direc-
tives which are erased by the assembler, or macros which are expanded
into short sequences of untyped ordinary instructions. The idea is to
replace certain otherwise untypable instruction sequences with type-
safe pseudo-instructions. To compile recursive functions, we use the
pseudo-instructions call and ret, which expand to instructions which
manipulate the stack and program counter. For heap and stack man-
agement, we have four pseudo-instructions: use and discard, which are
are typing directives erased by the assembler, and salloc and sfree

(“stack allocate”, “stack free”), which the assembler replaces with addi-
tion or subtraction instructions which move the stack pointer. We also
have pseudo-instructions for manipulating data with high-level types,
as mentioned before; the fold instructions expand to instructions which
set a tag field for the datatype and the case instructions expand to a
test-and-branch sequence of code which allows the assembly language to
process different cases of a sum datatype in a type-safe way. Expansions
of the pseudo-instructions are shown in Section 3.1.

A program must be given together with a signature, Σ. The signature
assigns either procedure types or contexts to labels. Labels are given
for subroutines and branch targets. For subroutine labels l, Σ(l) is a
procedure type, which has the form A1, . . . , An → A for n ≥ 0. A
procedure type gives rise to a type for the stack pointer:

sp : [A1 × · · · ×An × [code]1 ×A:=0]

which supports a simple calling convention. The stack frame contains
space for the return value of type A, followed by the return pointer,
and then the subroutine arguments at the top. We begin typing the
subroutine with A:=0 on the stack, but when the return statement is
hit we must find A.

For labels l which are branch targets, Σ(l) is a context containing
typing assumptions for live registers. When we write code fragments,
we give Σ(l) next to l itself. For type-checking we will assume that the
signature is supplied with the program, although in reality a separate
first pass could be made to infer some parts of it.

In the sequel we will usually assume a fixed program and associated
signature.

2.5. Typing rules

Our rules define a judgement Γ ` P which means that P is a well-
typed assembly program in context Γ. By convention, Γ ` 〈〉. To find a

hbal.tex; 4/04/2002; 18:59; p.10



Heap Bounded Assembly Language 11

context to begin type-checking P , we use the trivial operation Ctxt(P ):

Ctxt(l ; P ) = Γl when Σ(l) = Γl

Ctxt(l ; P ) = {} when Σ(l) = A1, . . . , An → A
Ctxt(〈〉) = {}
Ctxt(P ) = undefined, otherwise

Subroutine labels begin from the empty context; the type-checking rule
for the label itself sets the context. Branch labels, on the other hand,
check the current context is a subtype of Σ(l), which is why we need
this operation. We say that a program P is well-typed if Ctxt(P ) ` P .

Typing rules for load and store instructions

A[c] = int1 Γ\ri
, rj : [A], ri : int ` P

Γ, rj : [A] ` load ri ←− rj [c] ; P

A[c] = [B]1 ri 6= sp Γ\ri
, rj : [Ac:=0], ri : [B] ` P

Γ, rj : [A] ` load ri ←− rj [c] ; P

A[c] = intz Γ, ri : int, rj : [Ac:=1] ` P

Γ, ri : int, rj : [A] ` store rj[c] ←− ri ; P

A[c] = [B]z ri 6= sp Γ, rj : [Ac:=1] ` P

Γ, ri : [B], rj : [A] ` store rj [c] ←− ri ; P

At the heart of the type system, there is the distinction between
pointers and non-pointers, and the typing rules for the load and store
instructions reflect this. Notice that by the conventions for contexts,
each of the four rules assumes the source register is distinct from the
destination register.

The first load rule allows us to read a non-pointer word (an integer)
into a register ri with impunity, provided that the word is a top-level
word in the type of the source register rj, and that it is flagged as
initialized. The context is updated to assign ri the non-pointer (int)
type. The second load rule allows us to read any word, but it enforces
a linearity constraint. Once the word has been read, we adjust the
typing for the source register rj to treat the location as uninitialized,
so it cannot be read again. This prevents the aliasing which could occur
by reading a pointer from memory into two different registers.

The first store rule lets us store an integer word at an offset from
a register, again corresponding to a top-level word in type of rj . When
we type the following portion of program, we modify the context to

hbal.tex; 4/04/2002; 18:59; p.11



12 D. Aspinall and A. Compagnoni

treat the location rj + c as initialized. The second store lets us store
any word, but enforces a linearity constraint. Once the word has been
written, the typing assumption for the source register ri is removed
from the context before typing the following portion of program. This
prevents the aliasing which could occur by writing a pointer from a
register into two different memory locations. This rule cannot be used
with the stack pointer; the stack is always uniquely referenced from sp.

To summarise the linearity constraints: once a pointer is read from
memory, we can no longer refer to its location; once a pointer is stored
into memory, we can no longer use the register containing it. Fur-
thermore, we cannot copy a pointer in one register to another: our
underlying instruction set could achieve pointer copying with an arith-
metic instruction like addi ri ←− rj + 0, but this is not typable
when rj is a pointer, as we see next.

Typing rules for arithmetic instructions

Γ\ri
, ri : int, rj : int ` P

Γ, rj : int ` arithi ri ←− rj � c ; P

Γ\ri
, ri : int, rj : int, rk : int ` P

Γ, rj : int, rk : int ` arith ri ←− rj � rk ; P

The arithmetic rules only allow us to type arithmetic on integers,
preventing copying a register containing a pointer to another register,
or pointer arithmetic in general.

The only places we allow pointer arithmetic are for sp: we can move
the stack pointer up with the pseudo-instruction sfree (which corre-
sponds to an add instruction) and we can move it down with salloc

(a subtraction).

A is code-free Γ, sp : [A:=0 ×Asp ] ` P

Γ, sp : [Asp ] ` salloc A ; P

Γ, sp : [Asp ] ` P size(A) = c

Γ, sp : [A×Asp ] ` sfree c ; P

The stack has a product type of varying length: each time we push
something, an extra component is added to the left. The rule for salloc
makes space for pushing something, ensuring that the space is treated
as uninitialized by typing the rest of the program with the type A:=0

for the new space. The rule for sfree removes c-words of space by
matching the stack type with a type A that has size c to find the type
of remainder, Asp . Often we shall write sfree A as a short-hand for
sfree size(A).

hbal.tex; 4/04/2002; 18:59; p.12



Heap Bounded Assembly Language 13

The expansions of pseudo-instructions including salloc and sfree

are shown later in Section 3.1.

Typing rules for jumps and branches

Γ ≤ Σ(l) Σ(l) ` P

Γ ` l ; P

Γ ≤ Σ(l) Ctxt(P ) ` P

Γ ` jmp l ; P

Γ, ri : int ≤ Σ(l) Γ, ri : int ` P

Γ, ri : int ` bnz ri l ; P

(The rule for bez ri l is like that for bnz ri l).
These rules let us type-check programs with non-linear control paths,

and also introduce subtyping into the system. We rely on typing an-
notations already provided in the program signature (which might be
inferred with the help of an extra pass and some live variable analysis).
The first rule type-checks a label l in some context Γ. This rule is
encountered when control drops in at l. The label context Σ(l) is used
to type-check the following code in P . For this to be sound, the register
typings in Σ(l) must already appear in the current context Γ, possibly
with subtypes. The rules for jumps and branches are similar. If there
is a possibility of control passing to a point labelled l, then all of the
register typings assumed in the context Γl should be present in the
current context Γ. In the case of a branch, we must assume that the
branch might not be taken, and check the following instructions in
context Γ again. In the case of a jump, control always passes elsewhere,
so we begin checking the following code P with the appropriate context
Ctxt(P ).

Typing rules for subroutines

Σ(l) = A1, . . . , An → A

Γ ≤ {sp : [A1 × · · · ×An × [code]1 ×A:=0]}

sp : [A1 × · · · ×An × [code]1 ×A:=0] ` P

Γ ` l ; P

Σ(l) = A1, . . . , An → A sp : [[code]0 ×A×Asp ] ` P

Γ, sp : [A1 × · · · ×An × [code]0 ×A:=0 ×Asp ] ` call l ; P

Σ(l) = A1, . . . , An → A Ctxt(P ) ` P

Γ, sp : [[code]1 ×A] ` ret l ; P

hbal.tex; 4/04/2002; 18:59; p.13



14 D. Aspinall and A. Compagnoni

The rule for subroutine labels checks the following code in a context
which has a typing for the appropriate stack frame, preventing access
beyond the frame. For a call instruction, the stack must be set up
to match the subroutine label Σ(l) following the calling convention.
The space for the return value, A:=0, is uninitialized. We don’t know
exactly what type the stack will have when we meet a call instruction,
because we want to allow the call to work from any point, including
recursively. So, as with the sfree rule, we let Asp stand for the rest
of the stack type. After the subroutine returns, control passes into
P , which is type-checked in a context which assumes that the stack
frame has been cleaned to just leave the return value, now set by the
subroutine to have the correct type A.

At the end of the procedure body we hit the return instruction,
where the stack must be cleaned to the point of the return location,
and the return value has the correct type. We type-check the following
code starting from the appropriate context, using Ctxt(P ). The return
instruction has to be annotated with the subroutine label it corresponds
to match the types here.

The calling convention does not describe a way of saving registers
across calls, but it can be achieved inefficiently by passing extra values
into the function, and retrieving them as part of the return type A.
(Another possibility would be to annotate subroutines with registers
used, and allow some of Γ to be saved in the premise of the call rule).
Notice that compared with STAL (Morrisett et al., 1998), we avoid
stack polymorphism in favour of hard-wiring our calling convention
with pseudo-instructions, keeping the type structure of HBAL simple.

Typing rules for memory pseudo-instructions

A is code-free rj 6= sp Γ, rj : [A:=0] ` P

Γ, rj : [♦] ` use rj A ; P

A is code-free rj 6= sp Γ, rj : [♦] ` P

Γ, rj : [A:=0] ` discard rj ; P

The use instruction changes the type of a pointer rj to be a pointer to
some uninitialized space with a given type. Dually, if we have a diamond
pointed to by rj, we can reassign its type by using discard, which
means we can use it again later with another type. Neither instruction
works with the stack pointer. When the discard is encountered, the
type system ensures that there are no other pointers to the location
rj, so it is safe to alter the type. Type soundness is crucial for the
memory safety of this instruction, to prevent runtime type errors. The

hbal.tex; 4/04/2002; 18:59; p.14



Heap Bounded Assembly Language 15

use instruction ensures that the new type is uninitialized, as A:=0, so
nothing can be read from it.

Typing rules for data pseudo-instructions

Γ, ri : [C × L(A)×B] ` P size(C) = c

Γ, ri : [C × int0 ×A:=0 × [L(A)]0 ×B] `
fold-nilA ri[c] ; P

Γ, ri : [C × L(A)×B] ` P size(C) = c

Γ, ri : [C × int0 ×A× [L(A)]1 ×B] `
fold-consA ri[c] ; P

Γ, ri : [C × int1 ×A:=0 × [L(A)]0 ×B] ` P

Γ, ri : [C × int1 ×A× [L(A)]1 ×B] ≤ Σ(lcons) size(C) = c

Γ, ri : [C × L(A)×B] ` caselistA ri[c] lcons ; P

Γ, ri : [C × T (A)×B] ` P size(C) = c

Γ, ri : [C × int0 ×A× [T (A)]0 × [T (A)]0 ×B] `
fold-leafA ri[c] ; P

Γ, ri : [C × T (A)×B] ` P size(C) = c

Γ, ri : [C × int0 ×A× [T (A)]1 × [T (A)]1 ×B] `
fold-nodeA ri[c] ; P

Γ, ri : [C × int1 ×A× [T (A)]0 × [T (A)]0 ×B] ` P

Γ, ri : [C × int1 ×A× [T (A)]1 × [T (A)]1 ×B] ≤ Σ(lnode)
size(C) = c

Γ, ri : [C × T (A)×B] ` casetreeA ri[c] lnode ; P

The typing rules for structured data operate at some arbitrary lo-
cation within a type pointed to by ri. The rules either make a new
list or tree at ri[c], or decompose the existing one there. The fold rules
match the type of ri with fields which are suitably initialized for the
constructor concerned. The pseudo-instruction itself is responsible for
setting the tag (see Section 3.1), so this appears uninitialized before
folding. The other uninitialized fields are needed in the nil and leaf
case because each variant of a sum type has the same size and layout
in memory.

hbal.tex; 4/04/2002; 18:59; p.15



16 D. Aspinall and A. Compagnoni

The case rules begin with a list or tree at ri[c]. The argument to a
caselist or casetree is a label which is the destination of a branch
instruction taken in the case of a cons or node constructor, respectively.
The code immediately following the case instruction is followed for
a nil or leaf constructor; it is typed in a context with a type for ri

corresponding to an unfolded nil or leaf. The label lcons or lnode imposes
a constraint on the branch context from Σ, to ensure it is compatible
with the present context modified with a type for ri for an unfolded
cons or node.

It should be clear how to generalize the pattern here to deal with
arbitrary recursive data types built with products and sums. For a
datatype type with n summands, we would have n fold rules and a case
rule with n− 1 label arguments. For each datatype, we must design a
uniform layout scheme which is the same for each constructor.

3. Type soundness of HBAL

Our goal in this section is to show a type soundness property for HBAL.
We begin from a semantics for the untyped assembly instructions,
operating on the register file R and a heap H in a machine model.
Then we give an interpretation for HBAL types which captures the
way datatypes are implemented in memory. With this we can express
assertions like “r1 contains a pointer to a list of integers”. Finally, these
ingredients allow us to prove a type soundness theorem that establishes
that the execution of a typable HBAL program modifies structures on
the heap correctly.

The interpretation for types is the central part of our proof. We
define a relation H |=K m : A between locations m, heaps H (functions
from locations to integers), types A, and a heap portions K ⊆ dom(H).
The heap portion K is the set of locations which are reachable from
m, according to the type A. We use K to enforce the single pointer
property.

3.1. Translation of pseudo-instructions

The first thing to do is to explain the pseudo-instructions. Our pseudo-
instructions are macros which abbreviate small pieces of code which
are not typable directly in HBAL, or which would only have a weaker
typing. We define a function Asm(p) on pseudo-instructions p, which
defines the sequence of ordinary untyped instructions which results
from assembling p. The code fragments below define Asm(p) by showing
a pseudo-instruction on the left and its untyped expansion on the right.

hbal.tex; 4/04/2002; 18:59; p.16



Heap Bounded Assembly Language 17

The memory management instructions use and discard are simply
erased. The stack instructions modify the stack pointer:

salloc A arithi sp ←− sp − (size(A))

sfree A arithi sp ←− sp + (size(A))

More realistically, we might include a check in salloc to prevent a
stack overflow. In the machine model, we will assume that the stack is
unbounded and never clashes with other locations in memory.

For the subroutine instructions, we assume that the assembler has
resolved each label l to a memory location within the program, written
LAdr(l). This is formalized in the machine model in the next section.
The expansions are:

call l arithi r1 ←− pc + 6
store sp[m] ←− r1

arith pc ←− r0 + LAdr(l)

ret l load pc ←− sp[0]

where m = size(A1) + · · · + size(An) if Σ(l) = A1, . . . , An → A, and
we assume that the three machine instructions for call take 6 words of
memory, so pc + 6 points to the instruction following the call.

The data instructions for lists and trees expand as:

fold-nilA ri[c] store ri[c] ←− 0

fold-consA ri[c] store ri[c] ←− 1

caselistA ri[c] lcons load r1 ←− ri[c]
bnz r1 lcons

fold-leafA ri[c] store ri[c] ←− 0

fold-nodeA ri[c] store ri[c] ←− 1

casetreeA ri[c] lnode load r1 ←− ri[c]
bnz r1 lnode

The fold instructions each have a stronger typing than their expan-
sions would; the special way that they are used guarantees that a
valid list or tree element is made at ri[c]. Similarly, the case testing
instructions have a stronger typing than the test and branch state-
ments would achieve, allowing the list or tree to be unfolded and
considered in two separate cases in the code. This technique allows sum
datatypes to be handled without needing dependent types in the source

hbal.tex; 4/04/2002; 18:59; p.17



18 D. Aspinall and A. Compagnoni

language. (However, it has the disadvantage of needing additional ab-
stract pseudo-instructions, preventing some optimizations being made
directly on the typed code.)

3.2. The machine model

First, let Loc ⊆ Z stand for the set of memory locations on our ma-
chine, Reg = { 0, 1, . . . ,Rmax } be the register indices, Wrd be the set
of machine words that can stand for integers or locations, and Code

be the set of machine words which can stand for machine instructions.
To simplify the presentation, we will assume that Wrd is disjoint from
Code; our model keeps code separate from data, which allows us to
establish safety properties about non-modification of code, for example.

A machine configuration M is a pair (R,H) where H : Loc ⇁
Wrd ] Code is a heap configuration and R : Reg → Wrd is a register
configuration, such that R(0) = 0 and some further conditions hold,
as follows. Apart from R(0), two other registers are distinguished: the
program counter, R(pc), and the stack pointer, R(sp). We talk loosely
of H as the “heap” configuration, but it actually covers all memory por-
tions of interest, including the space where the program and stack are
kept. We make the unbounded stack assumption that every machine has
the space to grow its stack downwards indefinitely, which is formalized
by saying that H is defined to be data for all values below R(sp), i.e.,
∀m ≤ R(sp),H(m) ∈Wrd. To ensure that the stack does not clash with
the heap data or program code, we will assume that R(sp) ≤ 0 while
locations used for program and heap data are positive. Now we can
define the effect of each machine instruction (i.e., an untyped assembly
language instruction) on a machine configuration.

DEFINITION 2 (Machine transitions). Given
a machine M = (H,R) we define M � M ′, using the table below, by
case analysis on the instruction at H(R(pc)) ∈ Code:

load ri ←− rj[c] R′ = R[i 7→ H(R(j) + c)]

store rj [c] ←− ri H ′ = H[R(j) + c 7→ R(i)]

arithi ri ←− rj � c R′ = R[i 7→ R(j) � c]

arith ri ←− rj � rk R′ = R[i 7→ R(j) � R(k)]

jmp x R′ = R[pc 7→ x]

bnz ri x R =

{

R if R(i) = 0
R[pc 7→ x] otherwise

bez ri x similarly to bnz

hbal.tex; 4/04/2002; 18:59; p.18



Heap Bounded Assembly Language 19

First, M ′ differs from M by incrementing R(pc) according to the length
of the instruction. Then the transformation given in the table above is
applied, to give the new value H ′ or R′ for an instruction that affects the
register or heap configuration respectively. For the load and arithmetic
instructions we assume that i > 0; for i = 0 the operations on r0 have
no effect.

Notice that the relation M � M ′ is a partial function on machines
M . There may be no valid instruction at H(R(pc)), or one of H ′ or
R′ may be undefined because of an attempt to access a location not
in the domain of H. The type soundness result guarantees that a well-
typed program only reads or writes memory locations which are already
defined in H, and doesn’t write to locations containing code.

Given a program P , a machine assembled for P is a machine con-
figuration M which contains a representation of the assembly language
program, with machine instructions are stored in some designated con-
tiguous portion(s) of the heap. The assembly process is the obvious
one: the assembler erases typing information from the program by ex-
panding (or erasing) every pseudo-instruction p to the sequence Asm(p)
described in Section 3.1. Supposing P = 〈p1, . . . , pn〉, the assembly
process defines a function PAdr : 1, . . . , n → dom(H) which gives the
destination location for the code when assembling the typed instruction
pu, where 1 ≤ u ≤ n. (If pu isn’t erased, PAdr(u) will contain a machine
instruction corresponding to or beginning pu). For each of the locations
m where P is stored, H(m) ∈ Code. The assembly process also defines
the function which yields the code location for each label, such that if
pu = l, then LAdr(l) = PAdr(u). This value is used as the address in
the machine instruction for jump and branch instructions (written as x
in Definition 2). To slightly simplify the next definition and the proofs,
we assume that every code location LAdr(l) has at least size(♦) code
words following it in the heap, if necessary by expanding the program
with dummy instructions.

3.3. Imposing types on the model

Given a machine configuration M = (R,H), we define the satisfaction
relation H |=K m : A which captures when the location m represents
a valid element of type A in heap H.

DEFINITION 3 (Heap typing rules).

H(m) ∈ Code

H |={m} m : code

H(m) ∈Wrd

H |={m} m : intz

hbal.tex; 4/04/2002; 18:59; p.19



20 D. Aspinall and A. Compagnoni

H(m) ∈Wrd

H |={m} m : [A]0
H |=K m : ♦/0

H |=K m : ♦

c ≤ size(♦) H(m + c) ∈Wrd · · · H(m + size(♦)− 1) ∈Wrd

H |={m+c,...,m+size(♦)−1} m : ♦/c

H |=K H(m) : A m /∈ K,Kd

H |=Kd
H(m) : ♦/size(A) K ∩Kd = {}

H |=K∪Kd∪{m} m : [A]1

H |=K1
m : A1 H |=K2

m + size(A1) : A2 K1 ∩K2 = {}

H |=K1∪K2
m : A1 ×A2

H(m) = 0 H |=K m : int1 ×A:=0 × [L(A)]0

H |=K m : L(A)

H(m) = 1 H |=K m : int1 ×A× [L(A)]1

H |=K m : L(A)

H(m) = 0 H |=K m : int1 ×A× [T (A)]0 × [T (A)]0

H |=K m : T (A)

H(m) = 1 H |=K m : int1 ×A× [T (A)]1 × [T (A)]1

H |=K m : T (A)

Definition 3 formalizes the meaning of HBAL types. The heap is
partitioned between code and data. Uninitialized pointers are uncon-
strained, but pointers which are initialized must point to a location with
the correct type on the heap. Any pointer is associated with enough
space for a diamond. The conditions on K ensure that the single pointer
property holds, so there cannot be sharing or cycles in data-structures
stored in H, and the spare space in diamonds is not referenced (the ♦/c
construct is used to pick out this spare space). Note that even locations
with uninitialized word types are defined in H; the heap models the
whole memory available to the program. (With the untyped machine
of Definition 2, we can’t expect to precisely track the behaviour of
initialization flags in types.)

hbal.tex; 4/04/2002; 18:59; p.20



Heap Bounded Assembly Language 21

3.4. Type soundness

We begin from a notion of satisfiability M |= Γ, which expresses that
a machine configuration M is consistent with a typing assignment Γ.
Registers pointing into the heap must have types which are valid for
the heap, and with the exception of the stack pointer, point somewhere
where there is a diamond-sized portion of space available. Addition-
ally, satisfiability requires a heap separation property, that there is no
overlap between the portions of the heap accessible from the registers
declared in Γ.

DEFINITION 4 (Satisfiability). Given M = (H,R), we define the re-
lation M |=K ri : w by cases:

M |={} ri : int
H |=K R(sp) : A R(sp) ≤ 0

M |=K sp : [A]

H |=K R(i) : A R(i) > 0
H |=Kd

R(i) : ♦/size(A) K ∩Kd = {} ri 6= sp

M |=K∪Kd
ri : [A]

Then M |= Γ holds iff for each ri ∈ Γ, there exists a Ki such that
M |=Ki

ri : A, and moreover, the Ki are pairwise disjoint.

Fix a typable program P = 〈p1, . . . , pu, . . . , pn〉. The derivation of
Ctxt(P ) ` P determines a series of contexts Γ1, ...,Γn which occur
before each pu in the conclusion of the typing rule for pu, i.e., we have
sub-derivations of the form Γu ` pu ; 〈pu+1, . . . , pn〉. The context
Γu must be satisfied before executing pu.

DEFINITION 5 (Type Safety). Given a machine M = (R,H) we say
that M is type safe (for P ) at u if:

1. M is assembled for P

2. R(pc) = PAdr(u) (M is about to execute near pu)

3. M |= Γu (M satisfies the typing context for pu)

The typing rules should preserve type safety. To state this formally,
it helps to relate execution in the machine M with the control paths
in the typed program P . We introduce a non-deterministic transition
relation for the typed program.

hbal.tex; 4/04/2002; 18:59; p.21



22 D. Aspinall and A. Compagnoni

DEFINITION 6 (Program transitions). For
a program P = 〈p1, . . . , pn〉, we define a relation pu � pv which holds
between pairs of instructions indexed by the set:

{ (i, i + 1) pi 6= jmp, call, ret, and i < n }
∪
{

(i, j)
pj = l, pi = bnz ri l, bez ri l, jmp l,
call l, caselistA ri[c] l, or casetreeA ri[c] l

}

∪
{ (i, j + 1) pi = ret l, pj = call l and j < n }.

The program transitions pu � pv are an approximation to execu-
tion in the typed program; we don’t have an operational semantics
directly for the typed program but only for the untyped machine.
Recall that Asm(pu) stands for the sequence of ordinary untyped ma-
chine instructions which is the result of assembling the instruction
pu, expanding pseudo-instructions as described in Section 3.1. We will
write M � Asm(pu) M ′ if M executes to M ′ through the instructions
in Asm(pu), by zero or more transitions in M . When pu is a typing
directive such as use, then Asm(pu) is empty, and M ′ = M .

The following properties will be used in the main correctness theo-
rem.

LEMMA 1 (Properties of heap typing).

1. Heap definedness. If H |=K m : A then {m, . . . ,m + size(A) −
1} ⊆ K ⊆ dom(H). Moreover, if A[c] is defined, then H(m + c) ∈
Wrd, and if A is code-free, then H(m + d) ∈ Wrd for all 1 ≤ d <
size(A).

2. Subword access. Suppose H |=K m : A and A[c] is defined.
Then there exists Kc such that H |=Kc m + c : A[c], Kc ⊆ K
and {m, . . . ,m + c− 1} ∩Kc = {}.

3. Integer modification. Suppose H |=K m : A and A[c] = intz and
∀l ∈ (dom(H) \ (m + c)), H(l) = H ′(l). Then H ′ |=K m : Ac:=z′

.

4. Pointer uninitialization. Suppose H |=K m : A and A[c] = [B]1.
Then for some Kb, Kd, H |=K\Kb\Kd

m : Ac:=0, H |=Kb
H(m+c) :

B and H |=Kd
H(m + c) : ♦/size(B), with Kb ∩Kd = {}.

5. Pointer initialization. Suppose H |=K m : A, A[c] = [B]0, and
for some Kb,Kd st Kb ∩ K = ∅, Kd ∩ K = ∅, H |=Kb

mb : B
and H |=Kd

mb : ♦/size(B). Then H ′ |=K∪Kb∪Kd
m : Ac:=1, where

H ′ = H((m + c) 7→ mb).

hbal.tex; 4/04/2002; 18:59; p.22



Heap Bounded Assembly Language 23

6. Uninitialized types. Suppose H(m) ∈Wrd, . . . ,H(m + size(A)−
1) ∈Wrd and A is code-free.
Then H |={m,...,m+size(A)−1} m : A:=0.

7. Product types. H |=K m : A×B×C holds iff there exist pairwise
disjoint sets Ka, Kb, Kc such that H |=Ka m : A, H |=Kb

m +
size(A) : B, H |=Kc m+ size(A)+ size(B) : C, with K = Ka∪Kb∪
Kc.

Proof: Each part is proved by induction or cases on the definitions of
H |=K m : A, A[c], or the type concerned.

�

LEMMA 2 (Subtyping).

1. If H |=K m : A and A ≤ A′, then H |=K′ m : A′ for some K ′ ⊆ K.

2. If Γ ≤ Γ′ and M |= Γ, then M |= Γ′.

Proof: Part 2 follows from Part 1. Part 1 is proved by induction on
the size of the derivation of H |=K m : A, using the inductive definition
of A ≤ A′ (Definition 1). We show the case for pointers.

Consider proving the statement for [A]1 ≤ [A′]z. Suppose we have
H |=K∪Kd∪{m} m : [A]1 derived from the assertions H |=K H(m) : A
and H |=Kd

H(m) : ♦/size(A), where m /∈ K,Kd and K∩Kd = {}. For
uninitialized pointers z = 0, we immediately have H |={m} m : [A′]0

and since {m} ⊆ K ∪Kd ∪ {m} we’re done. For an initialized pointer
z = 1, we use the induction hypothesis to derive H |=K′ H(m) : A′

for some K ′ ⊆ K and since size(A) = size(A′), we still have H |=Kd

H(m) : ♦/size(A′) for the same Kd. Since m /∈ K ′ and K ′∩Kd = {}, we

have H |=K′∪Kd∪{m} m : [A′]1 with K ′ ∪Kd ∪ {m} ⊆ K ∪Kd ∪ {m}

as required. The other cases, for A = A′ = code or [A]0 ≤ [A′]0, are
trivial.

�

LEMMA 3 (Preservation of unreachable data).
Suppose M is type-safe at u and M � Asm(pu) M ′. Suppose further
that H |=K m : A for some heap region K which is disjoint from the
regions Ki corresponding to ri for registers which appear in Γu. Then
H ′ |=K m : A also.

Proof: Similar to the proof of Theorem 1.
�

Our first theorem establishes that a type safe machine can always
progress to a new machine by executing the next typed instruction.

hbal.tex; 4/04/2002; 18:59; p.23



24 D. Aspinall and A. Compagnoni

THEOREM 1 (Progress). Suppose M is type safe at u. Then there
exists a machine M ′ such that M � Asm(pu) M ′.

Proof: By cases on the rule used to type-check pu, using the fact that
the context Γu for pu is satisfied in M . The only way we may fail to
reach an M ′ is if we attempt to access some undefined portion of the
heap. We rely on a property of heap typing that H |=K m : A implies
that {m, . . . ,m+ size(A)− 1} ⊆ dom(H) to guarantee that portions of
the heap accessed in reaching M ′ are always defined.

�

The second theorem is the main result: whenever a type safe ma-
chine progresses to a new machine, the new machine is also type safe,
provided we followed a typed path within the program P (a final return
instruction may leave P , for example).

THEOREM 2 (Safety preservation). Suppose M is type safe at u and
M � Asm(pu) M ′. Then either

− ∃ pv such that pu � pv and M ′ is type safe at v, or

− R′(pc) /∈ dom(PAdr) (the machine has left P ).

Proof: Suppose that R′(pc) ∈ dom(PAdr) so we must establish the
first case. By case analysis on pu, we can show that M must have
followed one of the typed paths pu � pv, and whichever one it followed,
M ′ is sound at v.

To establish this last thing we must show the three items in Defi-
nition 5 are satisfied. The first part, that M ′ is also assembled for P ,
is satisfied because the type system prevents the program overwriting
any code area: a register can never contain anything of type code. The
second part, that R′(pc) = PAdr(v), is satisfied by the definition of the
assembly process. The third part, that M ′ |= Γv, is proved by case
analysis on the typing rule used to type pu, and choice of pv. This part
of the proof relies on the previous lemmas which establish relations
between H |= Γu and H ′ |= Γv. See Appendix A for more details.

�

The safety preservation theorem proves that executing sequences of
instructions in the untyped machine which correspond to typed instruc-
tions from the HBAL program preserves type safety, most crucially,
that the heap can be safely typed according to the typing assumptions
from the program. This proves that run-time type errors cannot occur.

hbal.tex; 4/04/2002; 18:59; p.24



Heap Bounded Assembly Language 25

4. LFPL and its compilation

In (Hofmann, 2000b), Hofmann defines a linearly typed first-order func-
tional language called LFPL. It has the following grammar of types and
terms:

A ::= N |
�
| L(A) | T(A) | A1 ⊗A2 | A1 + A2

e ::= x (variable)
| f(e1, . . . , en) function application
| c integer constant
| e1 ? e2 infix op., ? ∈ {+,−,×,=,≤ . . .}
| if e then e′ else e′′ conditional
| inl(e) left injection
| inr(e) right injection
| e1 ⊗ e2 pairing
| nil empty list
| cons(e1, e2, e3) cons with res. arg.
| leaf(e) leaf constructor
| node(e1, e2, e3, e4, e5) node constr. w. two res. args.
| match e1 with nil⇒e2|cons(d, h, t)⇒e3 list elimination
| match e1 with leaf(a)⇒e2|

node(d1, d2, a, l, r)⇒e3 tree elim.
| match e1 with x⊗ y⇒e2 pair elim.
| match e1 with inl(x)⇒e2|inr(x)⇒e3 sum elim.

Heap space in LFPL is explicitly manipulated through high-level
constructs; to construct a value of a recursive datatype, the programmer
must supply an argument of type ♦ for every sub-instance of the recur-
sive type. For example, a list cell is constructed by writing cons(d, h, t)
where h and t are the head and tail as usual, and d is a value of type ♦

which is used to store the tail.4 On the other hand, when a list e cell
is decomposed with match e with nil ⇒ en | cons(h, t, d) ⇒ ec the
space that was used to store the tail is recuperated.

A simple LFPL example is the following program to reverse a list:

def list reverse_aux(list l,list acc) =

match l with

nil -> acc

4 Here we follow the original presentation and compilation method of LFPL in
(Hofmann, 2000b). An alternative scheme is described in (Aspinall and Hofmann,
2002) which uses the diamond d in cons(d, h, t) to store the cons cell, and uses a
nullary pointer for empty lists. This alternative scheme is the more familiar one
usually used for compiling lists, but involves a small change to the language.

hbal.tex; 4/04/2002; 18:59; p.25



26 D. Aspinall and A. Compagnoni

| cons(d,h,t) -> reverse_aux(t,cons(d,h,acc))

def list reverse(list l) = reverse_aux(l, nil)

The compilation scheme translates this into assembly code which uses
in-place update. Linearity in LFPL (and HBAL) ensures that after
calling reverse(l), the list l cannot be referred to again.

Programs in LFPL are compiled using a signature Σ which declares
arities for a number of recursive functions. As an example of the typing
rules, we consider those for list constructors and destructor:

Γ `Σ nil : L(A)

Γd `Σ ed :
�

Γh `Σ eh : A Γt `Σ et : L(A)

Γd,Γh,Γt `Σ cons(ed, eh, et) : L(A)

Γ `Σ e : L(A)
∆ `Σ enil : B
∆, d :

�
, h : A, t : L(A) `Σ econs : B

Γ,∆ `Σ match e with nil⇒enil|cons(d, h, t)⇒econs : B

Notice the way that contexts are handled: when Γ1,Γ2 is written it
is understood that the domains of the Γ1 and Γ2 are disjoint. This
prevents sharing of variables in sub-expressions of cons, for example.
The rule for match, however, allows variables to be shared between the
two branches, since only one branch will be evaluated.

LFPL can express non trivial functions such as insertion sort, quick
sort, and breadth first traversal using queues, among many others, yet
heap space of LFPL is bounded; in fact, it is fixed for any given pro-
gram. In (Hofmann, 2000b), Hofmann describes a compilation scheme
where programs in LFPL are translated into ‘C’ programs which do not
use malloc, but instead perform all computation by in-place update.
Here we follow a similar compilation scheme to compile LFPL into
HBAL.

4.1. Compiling LFPL to HBAL

We define a type-preserving translation from well-typed LFPL pro-
grams into HBAL. Functions written in LFPL are compiled into as-
sembly language procedures which run in constant heap space. To do
computation on real data structures, we need some stub code to first
define those structures and invoke the HBAL code. A larger assembly
language program might make use of HBAL procedures as well-behaved
library functions.

hbal.tex; 4/04/2002; 18:59; p.26



Heap Bounded Assembly Language 27

LFPL and HBAL are closely related, but have important differences
(besides the obvious, that LFPL is a high-level functional language).
In LFPL, structured types are treated as units which are copied atom-
ically, but in the assembly language we need to instantiate their com-
ponents piece-by-piece, and wrap-up the final result into a structured
object. In the case of lists, for example, this is obtained by the pseudo-
instructions fold-nil and fold-cons which fold a product into a
structured type. LFPL uses linear typing rules and the notion of heap-
free type to indicate whether memory space can be shared. A heap-free
type is one which can reside solely on the stack and involves no pointers
into the heap; for example, products of integers are heap free, but
lists are not. In HBAL, we use a combination of linear typing and
initialization flags to control sharing.

The interpretation
�
e : A � η of a term e in an environment η is

some piece of HBAL code which leaves a value of type A on top of
the stack, and may use any registers. Allocating data structures on
the stack allows the compilation to be described in a simplistic way as
a stack-based evaluation. In practice, we would want to use a more
sophisticated compilation scheme, which might need more powerful
typing rules; see Section 5 for further consideration.

An environment η is a partial mapping from variables to natural
numbers. For a variable x, if η(x) is defined, it is an offset from sp
pointing the location where the variable is stored on the stack. The
environment [x 7→ c]η updates η to map x to c. When items are pushed
on or off the stack (sp is decremented or incremented), we need to
adjust the positions of variables in the corresponding environment η.
We define η+c as the environment η′ where η′(x) = η(x)+ c for all x in
the domain of η. Similarly, η−c subtracts c from the offsets in η.

Interpretation of LFPL types
Types in LFPL map almost directly onto HBAL types:

�
int � = int1

�
♦ � = [♦]1�

A×B � =
�
A � × �

B ��
L(A) � = L(

�
A � )�

T (A) � = T (
�
A � )

We will often abuse the notation and write A when we mean
�
A � .

hbal.tex; 4/04/2002; 18:59; p.27



28 D. Aspinall and A. Compagnoni

A copy instruction
The translation uses a copy instruction to copy data items. To preserve
the single pointer property, pointers in the source must be uninitialized
after the copy. But we can’t uninitialize the whole type because of heap-
free types, which are treated non-linearly; variables of heap-free type
may be referred to (hence copied) many times. We define an operation
Ahp:=0 to do the right amount of uninitializion:

codehp:=0 = code

(inty)hp:=0 = inty

([A]y)hp:=0 = [A]0

(A×B)hp:=0 = (Ahp:=0)× (Bhp:=0)

L(A)hp:=0 = L(A):=0

T (A)hp:=0 = T (A):=0

♦hp:=0 = ♦

Here is the typing rule for copy:

size(A1) = c size(B1) = d
rj [c] and ri[d] do not overlap for size(A) words
{rj : [A1 ×A:=0 ×A2], ri : [B1 ×A×B2]} ⊆ Γ1

{rj : [A1 ×A×A2], ri : [B1 ×Ahp:=0 ×B2]} ⊆ Γ2

Γ1\ri,rj
≡ Γ2\ri,rj

Γ2 ` P

Γ1 ` copy rj[c] ←− ri[d], A ; P

The rule is complicated by allowing the source and destination registers
to be the same (prohibited in the primitive rules), which is needed in
the translation for copying up and down the stack. The side condition
that there is no overlap between source and destination is statically
decidable: if ri 6= rj it holds immediately by the linearity of the system;
if ri = rj then we can compare the offsets c and d to ensure they differ
by at least size(A).

The copy instruction isn’t a primitive in HBAL, but using induction
over the type A, we can define it as a macro whose expansion is typable,
and which copies from source to destination piecemeal, breaking apart
structured types and ignoring uninitialized or unreadable types (see
Appendix B for details). This shows that we can safely add copy to the
system. In an implementation it would be more realistic to treat copy
as a pseudo-instruction which expands into the obvious loop.

Interpretation of LFPL programs
A program in LFPL consists of a set of function definitions of the form

f(x1 : A1, . . . , xn : An) : A = e

hbal.tex; 4/04/2002; 18:59; p.28



Heap Bounded Assembly Language 29

where the typing

x1 : A1, . . . , xn : An `Σ e : A

holds in LFPL. Let the program

p = { f1(x1 : A1
1, . . . , xn1

: A1
n1

) : A1 = e1,
. . . ,
fk(x1 : Ak

1 , . . . , xnk
: Ak

nk
) : Ak = ek }

Then the interpretation of p under environment η is

�
p � η = {

�
f1(x1 : A1

1, . . . , xn1
: A1

n1
) : A1 = e1 � η,

. . . ,�
fk(x1 : Ak

1 , . . . , xnk
: Ak

nk
) : Ak = ek � η }

using the compilation of function definitions given next.

Compiling function definitions and calls
The stack management for function calls works as follows: the stack
contains the actual parameters at the top, followed by return address,
followed by space made for the return value.

�
f(x1 : A1, . . . , xn : An) : A = e � η =

lf�
e � [xi 7→ 1 + Σi−1

j=1size(Aj)]η

copy sp[size(A) + (Σn
j=1size(Aj)) + 1] ←− sp[0], A

sfree A

sfree A1

. . .

sfree An

ret lf

In words: the code sequence evaluates the body of the function in a
context containing the values for the arguments, copies the return value
into the caller’s frame, pops the result and arguments from the stack
and returns.

hbal.tex; 4/04/2002; 18:59; p.29



30 D. Aspinall and A. Compagnoni

�
f(e1, . . . , en) : A � η =

salloc A

salloc [code]�
en : An � η+size(A)+1

...�
ei : Ai � η+size(A)+1+Σn

j=i
size(Aj)

...�
e1 : A1 � η+size(A)+1+Σn

j=1
size(Aj)

call lf
sfree [code]

The call first makes space for return value and return address, calculates
arguments from last to first, stores the return address onto the stack,
calls the function, and finally pops the return address from the stack.

Compiling constants and variables�
c : int � η =

salloc int

addi r1 ←− r0 + c

store sp[0] ←− r1

�
x : A � η =

salloc
�
A �

copy sp[0] ←− sp[η(x)],
�
A �

Integer constants are straightforward. To compile a variable we allocate
space for a copy and copy the value of the variable from higher up in
the stack. To prevent aliasing, this may make parts of the original copy
unreadable, but the linear typing scheme in the source language ensures
that variables which contain pointers are used at most once.

hbal.tex; 4/04/2002; 18:59; p.30



Heap Bounded Assembly Language 31

Compiling pairs�
(e1, e2) : A1 ×A2 � η =�

e2 : A2 � η�
e1 : A1 � η+size(A2)�

match e with (x, y) ⇒ ep : A � η =

salloc A�
e : A1 ×A2 � η�
ep � [y 7→ size(A1)][x 7→ 0]η+size(A1×A2)

copy sp[size(A) + size(A1) + size(A2)] ←− sp[0], A

sfree A

sfree A1 ×A2

To translate a pair, first evaluate the second component, then the first
one, which leaves their values on the stack. To match a pair, first
calculate the pair, and then compute body of match in the new context.

Compiling lists�
nil : L(A) � η =

salloc int×A× [L(A)]

fold-nilA sp[0]

�
cons(h, t, d) : L(A) � η =

salloc [L(A)]�
h : A � η
salloc int�
t : L(A) � η�
d : ♦ � η
load r2 ←− sp[0]

use r2 L(A)

copy r2[0] ←− sp[1], L(A)

sfree [♦]0

sfree L(A)

store sp[size(A) + 1] ←− r2

fold-consA sp[0]

hbal.tex; 4/04/2002; 18:59; p.31



32 D. Aspinall and A. Compagnoni

�
match e with nil ⇒ en | cons(h, t, d) ⇒ ec : A′ � η =

salloc A′
�
e : L(A) � η+size(A′)

caselistA sp?[0] mcons

sfree int×A× [L(A)]

sfree A′
�
en : A′ � η
jmp mdone

mcons

load r2 ←− sp[1 + size(A)]

salloc L(A)

copy sp[0] ←− r2[0], L(A)

discard r2

salloc [♦]

store sp[0] ←− r2�
ec � δ
copy sp[size(A′) + 1 + 2 ∗ size(L(A))] ←− sp[0], A′

sfree A′

sfree [♦]

sfree L(A)

sfree L(A)

mdone

where
δ = [d 7→ 0][t 7→ 1][h 7→ 1 + size(L(A)) + 1]η+x and x = size([♦] ×
L(A)× L(A)×A′).

Compiling a nil cell first allocates space on the stack for a list and
creating a nil cell with fold-nil, which initializes the tag to 0.

Compiling a cons cell consists of allocating space on the stack for a
list, computing the head and copying it in the stack dedicated space.
Followed by computing the tail, finding the space to store the tail (

�
d :

♦ � η), copying the tail to the heap, and storing the pointer to the tail.

Once all the components are in place, the compilation ends by folding
the prefix of the stack onto a list, which consists of setting the tag to
1 and folding the corresponding part of the type of sp into a list.

Notice that because the compilation scheme leaves a list cell at the
top of the stack, as opposed to a pointer, the diamond argument to the
cons is used to store the tail of the list t, not the whole cell; this follows
the scheme in (Hofmann, 2000b) (see the footnote on page 25).

hbal.tex; 4/04/2002; 18:59; p.32



Heap Bounded Assembly Language 33

Compiling a match starts by computing the list, and branching ac-
cording to the caselist instruction, the nil case follows caselist the
cons case follows at label mcons .

The compilation of trees is similar to the compilation of lists.

4.2. Type correctness of compilation

DEFINITION 7.
Given Γ = x1 : A1, ..., xn : An

1.
�
Γ � =

�
A1 � × ...×

�
An �

2. η |= (Γ,∆) if x : A in Γ implies ∆[η(x)] =
�
A � , where ∆[n] is the

nth projection of the product ∆.

3. The initial and final contexts of a program follows {Γ}P{Γ′} are
defined by:

a) {Γ}〈〉{Γ}

b) {Γ}(i;P ){Γ′} if Γ ` i;P , Γ′′ ` P , and {Γ′′}(i;P ){Γ′}.

We consider r0 : int as an implicit assumption for HBAL contexts,
since r0 always contains 0. We also assume an implicit Σ that contains
typing information for labels and subroutines.

THEOREM 3 (Type correctness).
If Γ `Σ e : A in LFPL then
for all η and for all ∆ such that η |= (Γ,∆) and ∆ = B ×

�
Γ � × C

(where B,C can be empty), it follows that
{sp : [∆]}

�
e : A � η{sp : [

�
A � ×∆]}

The theorem says that after executing the translation of an expres-
sion, at the top of the stack there is an element of the corresponding
type, and whatever was on the stack before remains untouched.

The proof is by induction on the derivation of Γ `Σ e : A in
LFPL. The general ∆ as opposed to

�
Γ � is necessary in the case of

function applications to be able to apply the induction hypothesis on
the arguments.

A corollary of the previous theorem is that the translation of a
typable LFPL program(set of function definitions) is typable in HBAL.

Although here we prove only type preservation of the compilation
scheme, it would be straightforward to prove correctness of the scheme,
using a variation of Definition 3 which also relates a semantic value in a
denotational interpretation of LFPL. In fact, we consider the possibility

hbal.tex; 4/04/2002; 18:59; p.33



34 D. Aspinall and A. Compagnoni

of proving full correctness as an advantage of our approach: we maintain
the abstractions of the high-level language all the way to the low-level.
Of course, establishing correctness would be harder in the case of a
more sophisticated compilation scheme or optimization stages.

5. Variants of HBAL

We have deliberately kept the presentation of HBAL simple, mainly
for the sake of exposition. We provided a type structure and inference
rules which suffice for a naive type-safe translation from the high-
level language LFPL, and which illustrate our method of pushing the
high-level type abstractions firmly into the low-level code. For other
applications of HBAL, or for more sophisticated compilation schemes
involving optimizations or representation changes, we would need a
more flexible language and type system. In this section we sketch some
desirable improvements to HBAL, many of which are straightforward,
or which could be adopted from other typed assembly languages. Some
others require further research.

5.1. More expressive types and subtyping

As we mentioned earlier, a real system would include a general scheme
for defining high-level types apart from just lists and trees, perhaps
using a datatype mechanism mirroring facilities in the high-level lan-
guages. Furthermore, we could use additional constructors to allow
more flexible layout in memory, including null pointers in represen-
tation with an extra caseptr descriminator.

The subtyping relation could also be made richer. For example: at
present, we are strict about following the scheme to dedicate memory
to a particular type using pseudo-instructions, before storing data with
the correct type. This could be relaxed by adding subtyping assertions
such as ♦ ≤ A:=0 and [A] ≤ [♦] for structured types A, which would
allow us to omit the use and discard instructions. Adding subtypings
w1 ≤ w′0, would allow us to freely change word types in a safe way. We
could also include product-length subtyping A×B ≤ A. These changes
are not technically difficult, but they make the connection between the
high-level types and low-level ones in the assembly language harder to
track; this is a motivation for retaining a simpler, more verbose system.

As more substantial extensions of the type language, one could con-
sider polymorphic and higher-order types as in TAL (Morrisett et al.,
1999), dependent types as in DTAL (Xi and Harper, 1999), and object
types. It is a matter for further research to integrate these notions into

hbal.tex; 4/04/2002; 18:59; p.34



Heap Bounded Assembly Language 35

HBAL, considering the resource usage implications and connection with
high-level languages. A recent result in (Hofmann, 2002) shows that a
large class of functions on lists definable in a system with higher-order
functions can be computed in bounded space.

5.2. Dynamic memory management

It isn’t in keeping with our approach, but we mention that it is straight-
forward to add malloc and free instructions to LFPL which interface
with an external memory manager. The malloc instruction fetches a
diamond from the memory manager, and a free returns a diamond.

Γ, rj : [♦] ` P

Γ ` malloc rj ; P

Γ ` P
Γ, rj : [♦] ` free rj ; P

The single-pointer property guarantees the safety of free. Using malloc
allows for a range of possibilities from schemes which rely wholly on
garbage collection (without free) to schemes which rely wholly on
programmer-level memory management (using free). In between, schemes
for compile-time garbage collection would insert free at automatically
determined places.

5.3. Different sized diamonds

In the high-level language LFPL, diamond types are an abstract way
of dealing with heap space: one which is consistent with functional
semantics, yet allows efficient in-place update. The simplification to a
“one size fits all” diamond means that we can easily write functions
which map between different kinds of datatype. The disadvantage is a
potentially large waste of space, in case the program contains any large
datatypes; the needed space would be multiplied by some constant
factor. For example, if we mostly computed with integer lists but once
used lists of 10-tuples of integer lists, then (following the translation
of types used in Section 4), size(♦) = 32, so most cells would contain
wasted space. We view this as a trade-off which one might accept in
return for an absolute guarantee of heap-boundedness which is provided
by the system.

To improve the wastage we could introduce diamonds in a range
of sizes: ♦k occupying k words, in some way mimicking the schemes
of traditional memory allocators. A k-sized diamond would be large
enough to store any type A such that size(A) ≤ k. To keep track of
the size of diamond used for a structured type, we would also need to
annotate the type with the size of the diamond used, writing L(A)♦k .

hbal.tex; 4/04/2002; 18:59; p.35



36 D. Aspinall and A. Compagnoni

The rules for use and discard would become:

k′ ≤ k A = L(−)♦k′ , T (−)♦k′ Γ, rj : [A:=0] ` P

Γ, rj : [♦k] ` use rj A ; P

A = L(−)♦k , T (−)♦k Γ, rj : [♦k] ` P

Γ, rj : [A] ` discard rj ; P

Types for subroutines will also need need extra constraints, for example
a function which maps lists to trees using in place update may not have
enough space to work unless the list cells are big enough to store the
result tree cells. Some static inference could be performed on the source
program to determine the distribution of diamonds needed to make sure
functions have enough space to compute their result; we suspect that
most programs could be compiled to use a small range of diamond sizes
according to the flow of data between functions.

5.4. Allowing limited aliasing

Linear type systems are restrictive in practice. Some high-level lan-
guages mix both worlds, distinguishing linear and non-linear variables
by static inference or by programmer control. Our methodology is to
provide static guarantees as part of the language; instead of relaxing
linearity completely we want to restrict to programs which can be im-
plemented safely (i.e., consistently with the functional interepretation)
using in-place update.

HBAL already allows unrestricted copying of non-pointer values,
but we would like to allow limited aliasing of types containing pointers
too. A promising approach is to use a relaxed linear system which
allows sharing of data when it is used in a non-destructive context. In
(Aspinall and Hofmann, 2002) a mechanism is given for LFPL, based
on the idea of usage aspect. This allows a variable to be used several
times in a read-only fashion, before being used in a destructive way.
Like linear typing, we assume a single-threaded execution, but we take
into account a particular order of evaluation as well.

Other related work includes as (Smith et al., 2000; Kobayashi, 1999;
Wilhelm et al., 2000).

5.5. Stack bounds and iteration

HBAL provides a static guarantee about heap usage, but no bound on
the size of the stack. In virtual machines and runtime systems stacks
are often allocated on the heap, and in real machines, stack space is

hbal.tex; 4/04/2002; 18:59; p.36



Heap Bounded Assembly Language 37

hardly unbounded. To be serious about resource bounded programming
we need to address this.

It might be imagined that the salloc could be treated just like
a malloc during compilation; however this is forbidden if we insist
on a compilation strategy which produces a program consisting of a
collection of properly terminated subroutines, since the typing rules
ensure that the stack contains the same number of items at the end of
the subroutine as it did at the start (just like the constraints imposed
in the Java Virtual Machine (Stata and Abadi, 1999)).

However, stack space is still not bounded since arbitrary recursion is
allowed. A idea then would be to restrict to the tail recursive fragment
in which general recursion is prohibited, at the expense of restricting
the computational power of the system. This might involve either op-
timization after HBAL typing, or better, improvement of the HBAL
typing rules to allow typing of iterative algorithms.

An alternative strategy is to consider inferring concrete bounds,
where the number of recursive invocations (and space usage) of a func-
tion can be described as a function of its input, along the lines described
by Crary and Wierich (Crary and Weirich, 2000).

6. Conclusions, Related Work and Future Research

HBAL allows for safe reuse of memory without relying on a garbage
collector or a block structure region policy. A type system with linearity
constraints ensures type safety, by preventing aliasing of heap locations.
Special pseudo-instructions allow types to be altered at isolated points
in the code. HBAL’s type system prevents self-modifying programs
using the special type code. To prove type soundness, we defined a
machine model and proved that execution of a program typable in
HBAL preserves the type safety of machine configurations; this is our
main result (Theorem 2).

We showed how to translate Hofmann’s LFPL into HBAL.
The mechanism for memory reuse was motivated by the functional

programming language LFPL defined by Hofmann. In HBAL, the con-
trol and re-typing of memory is made explicit in a simple protocol. In
HBAL extended with malloc,free, a memory location is first allocated
and assigned type diamond (malloc); it is then assigned a type and
declared uninitialized (use); then it is initialized (store,fold) and
uninitialized (case,load) repeatedly during execution; finally it may
be discarded (discard), which causes it to lose its type to become a
diamond. Once it is a diamond, it can be reused at a different type,
or freed (free). This explicit tracking mechanism is a novel aspect of

hbal.tex; 4/04/2002; 18:59; p.37



38 D. Aspinall and A. Compagnoni

HBAL. The linearity constraints of the type system make it safe to
discard memory space, because any location is accessible through at
most one register.

Another novel aspect of HBAL is its treatment of structured types.
Recursive types such as list and tree, are considered different from their
unfoldings; other accounts of structured types explain how such types
are laid out in memory, but do not consider these types as abstract
data types. Lists in HBAL can only be constructed with fold-cons

and fold-nil, and destructed with caselist.
In Section 5 we discussed possible variants of HBAL with more

expressive typing and subtyping relations, different size diamonds, dy-
namic memory management, controlled aliasing, stack bounds and it-
eration.

6.1. Related work

Typed assembly languages have been an active subject of study for
several years now. Contributions already mentioned include TAL (Mor-
risett et al., 1999; Crary et al., 1999), DTAL (Xi and Harper, 1999),
STAL (Morrisett et al., 1998), and Alias Types (Smith et al., 2000;
Walker and Morrisett, 2000).

Both HBAL and Alias Types use substructural typing to control
aliasing, but the systems differ substantially. For example, HBAL has
traditional assembly language control flow intructions such as condi-
tional branches and jumps, and allows subroutines in a similar way
to STAL; Alias Types, like TAL, relies on a transformation into con-
tinuation passing style. More importantly, HBAL preserves the single
pointer property well-known from abstract machines for linear lambda
calculi: every location can be reached from at most one live pointer in
a register or on the heap. Alias Types allows pointer aliasing, using
a type system close to O’Hearn and Pym’s logic of bunched impli-
cations (O’Hearn and Pym, 1999). Alias Types therefore allows more
efficient data representations using sharing, but does not come with
a guarantee of bounded space usage. (In future we plan to extend
HBAL to allow limited sharing, as mentioned in Section 5.4.) HBAL’s
restriction to first-order types is also important for guaranteed space
bounds, since (unless we assume continuation-passing style) dealing
with higher-order types may require storing closures on the heap.

Wider afield, a central idea among related work is to use typing
information at different stages of compilation such as in the study of
type systems for the Java Virtual Machine (Stata and Abadi, 1999).
The work done in the Fox project on typed intermediate languages
(Harper and Morrisett, 1995; Morrisett, 1995; Tarditi et al., 1996) was

hbal.tex; 4/04/2002; 18:59; p.38



Heap Bounded Assembly Language 39

a major contribution, which inspired the FLINT (Shao, 1997) typed
intermediate representation. FLINT was designed to make the inter-
mediate representation sufficiently general to support not only ML but
a wide variety of other programming languages, such as Java and C, and
with attention to engineering issues (Shao et al., 1998). By contrast,
our approach is to design a deliberately restricted assembly language,
which is customized for LFPL in a similar way to the way that JVML
is customized for Java.

The semantic model of types presented in (Appel and Felty, 2000)
describes high-level types like those in HBAL, allowing the traversal, al-
location, and initialization of values. Again heap space is never updated,
assuming the presence of a garbage collector.

Tofte-Talpin’s region calculus (Tofte and Talpin, 1997; Tofte and
Birkedal, 1998) proposes an alternative to traditional garbage collec-
tion by dividing the heap into a list of regions which are allocated
and deallocated according to a stack discipline derived from the block
structure of the program. A type system ensures that the deallocation
of a region does not destroy accessible data. (Banerjee et al., 1999)
shows a translation of a version of the region calculus into a variant of
the polymorphic lambda calculus, justifying region re-use. The diamond
type used in HBAL is similar in spirit to regions, but does not involve
a stack discipline. Diamonds are a first-class type, and can be stored
and retrieved from data structures.

6.2. Typed-assembly languages for proof-carrying code

Another difference between HBAL and the TAL family of languages
is in the handling of the store. In TAL, the contents of the store is
formalized as part of the static semantics, and the type safety of a
program is only tested once the contents of memory are known.

By contrast, HBAL has a clear distinction between its syntax and its
operational semantics: the store is not mentioned in our syntax or static
semantics and the well typedness of a HBAL program is independent
of the memory contents. The store is introduced later, in an untyped
machine model (Section 3.2), and we prove that any well typed HBAL
program preserves memory safety in the machine model (Section 3.4).

Typed assembly languages have been advocated for proof-carrying
code, but it is unrealistic to expect to know the content of the memory
where mobile code will be run to be able to establish its safety. Our
approach splits the concerns as one might expect: the code producer
can build the safety proof for execution on any safe memory, and the
consumer only needs to check that the initial memory is safe.

hbal.tex; 4/04/2002; 18:59; p.39



40 D. Aspinall and A. Compagnoni

To be fair to TAL, the appearance of types in the operational se-
mantics forms part of the proof technique used to prove the type
preservation property. (Indeed, we also considered presenting a typed-
operational semantics for our model and might need to do that if we
added polymorphism.) It seems straightforward to erase types from the
TAL operational semantics, and also to quantify a typing proof over all
heaps which satisfy some initial typing property, instead of including a
heap in the typing judgement. Nevertheless, we believe it is useful to
draw attention to this point, as well as to introduce a slightly different
formulation of the typed assembly paradigm.

Acknowledgements We thank Martin Hofmann, Healfdene
Goguen, Andrew Appel, Amal Ahmed, and Peter O’Hearn for help,
comments, and suggestions. Members of the New Jersey Program-
ming Languages and Systems Seminar made helpful remarks, includ-
ing Kathleen Fisher, Dave MacQueen, Michael Hicks, and Dan Wang.
Matthieu Lucotte provided helpful feedback and implemented a HBAL
typechecker. DA was partially supported by UK EPSRC grant no.
GR/N28436. AC was partially supported by the New Jersey Commis-
sion on Science and Technology and by the NSF project CAREER:A
formally verified environment for the production of secure software.

References

Appel, A. W. and A. P. Felty: 2000, ‘A Semantic Model of Types and Machine In-
structions for Proof-Carrying Code’. In: Proceedings of the 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’00). pp.
243–253.

Aspinall, D. and M. Hofmann: 2002, ‘Another Type System for In-place Update’.
In: Proceedings ESOP 2002 - European Symposium on Programming. To appear.

Banerjee, A., N. Heintze, and J. G. Riecke: 1999, ‘Region analysis and the polymor-
phic lambda calculus’. In: Proceedings, Fourteenth Annual IEEE Symposium on
Logic in Computer Science. pp. 88–97.

Crary, K., N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker, S. Weirich, and
S. Zdancewic.: 1999, ‘TALx86: A Realistic Typed Assembly Language.’. In: 1999
ACM SIGPLAN Workshop on Compiler Support for System Software Atlanta,
GA, USA. pp. 25–35.

Crary, K. and G. Morrisett: 1999, ‘Type Structure for Low-Level Programming
Langauges’. In: Proceedings of the International Colloquium on Automata,
Languages, and Programming, Prague, Czech Republic. pp. 40–54.

Crary, K. and S. Weirich: 2000, ‘Resource bound certification’. In: Proc. 27th Symp.
Principles of Prog. Lang. (POPL). pp. 184–198.

Harper, R. and G. Morrisett: 1995, ‘Compiling Polymorphism Using Intensional
Type Analysis’. In: Proceedings of the ACM Symposium on Principles of
Programming Languages, San Francisco, pages 130-141.

hbal.tex; 4/04/2002; 18:59; p.40



Heap Bounded Assembly Language 41

Hofmann, M.: 1999a, ‘Linear types and non-size-increasing polynomial time compu-
tation’. In: Proceedings of the 14th Symposium on Logic in Computer Science
(LICS ’99).

Hofmann, M.: 1999b, ‘Typed lambda calculi for polynomial-time computation’.
Habilitation thesis, TU Darmstadt, Germany. Edinburgh University LFCS
Technical Report, ECS-LFCS-99-406.

Hofmann, M.: 2000a, ‘Programming languages capturing complexity classes’.
SIGACT News Logic Column 9. 12 pp.

Hofmann, M.: 2000b, ‘A type system for bounded space and functional in-place
update’. Nordic Journal of Computing 7(4), 258–289. An extended abstract
appeared in Programming Languages and Systems, G. Smolka, ed., Springer
LNCS, 2000.

Hofmann, M.: 2002, ‘The strength of non size-increasing computation’. In:
Proceedings ACM Principles of Programming Languages.

Jim, T., G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang: 2002,
‘Cyclone: A Safe Dialect of C’. In: USENIX Annual Technical Conference,
Monterey CA.

Kobayashi, N.: 1999, ‘Quasi-Linear Types’. In: Proceedings ACM Principles of
Programming Languages. pp. 29–42.

Morrisett, G.: 1995, ‘Compiling with Types’. Ph.D. thesis, Carnegie Mellon
University, Pittsburgh. Tech Report CMU-CS-95-226.

Morrisett, G., K. Crary, N. Glew, and D. Walker: 1998, ‘Stack-Based Typed As-
sembly Language’. In: Second International Workshop on Types in Compilation.
Kyoto, pp. 95–117. Published in Xavier Leroy and Atsushi Ohori, editors, Lecture
Notes in Computer Science, volume 1473, pages 28-52. Springer-Verlag, 1998.

Morrisett, G., D. Walker, K. Crary, and N. Glew.: 1999, ‘From System F to
Typed Assembly Language’. ACM Transactions on Programming Languages
and Systems 21(3), 528–569.

Necula, G. C., S. McPeak, and W. Weimer: 2002, ‘CCured: Type-safe retrofitting of
legacy code’. In: Proceedings ACM Principles of Programming Languages.

O’Hearn, P. W. and D. J. Pym: 1999, ‘The Logic of Bunched Implications’. Bulletin
of Symbolic Logic 5(2), 215–243.

Shao, Z.: 1997, ‘Typed Common Intermediate Format’. In: 1997 USENIX Confer-
ence on Domain-Specific Languages. Santa Barbara, CA.

Shao, Z., C. League, and S. Monnier: 1998, ‘Implementing Typed Intermediate Lan-
guages’. In: Proc. 1998 ACM SIGPLAN International Conference on Functional
Programming (ICFP’98). Baltimore, Maryland, pp. 313–323.

Smith, F., D. Walker, and G. Morrisett: 2000, ‘Alias Types’. In: G. Smolka (ed.):
Ninth European Symposium on Programming, Vol. 1782 of lncs. pp. 366–381,
Springer-Verlag.

Stata, R. and M. Abadi: 1999, ‘A Type System for Java Bytecode Subroutines’. In:
ACM Transactions on Programming Languages and Systems 21, Vol. 21(1).

Tarditi, D., G. Morrisett, P. Cheng, C. Stone, R. Harper, , and P. Lee.: 1996, ‘TIL: A
Type-Directed Optimizing Compiler for ML’. In: Proceedings of 1996 SIGPLAN
Conference on Programming Language Design and Implementation. pp. 181–192.

Tofte, M. and L. Birkedal: 1998, ‘Region Inference Algorithm’. ACM Transactions
on Programming Languages and Systems 20(5), 724–767.

Tofte, M. and J.-P. Talpin: 1997, ‘Region-based memory management’. Information
and Computation 132(2), 109–176.

Walker, D. and G. Morrisett: 2000, ‘Alias Types for Recursive Data Structures’. In:
Third International Workshop on Types in Compilation. Montreal, Canada.

hbal.tex; 4/04/2002; 18:59; p.41



42 D. Aspinall and A. Compagnoni

Wilhelm, R., M. Sagiv, and T. Reps: 2000, ‘Shape Analysis’. In: Proceedings
Compiler Construction, CC 2000.

Xi, H. and R. Harper: 1999, ‘A Dependently Typed Assembly Language’. Technical
Report OGI-CSE-99-008, Oregon Graduate Institute of Science and Technology.

hbal.tex; 4/04/2002; 18:59; p.42



Heap Bounded Assembly Language 43

Appendix

A. Proof of Theorem 2

The theorem states: supposing M is type safe at u and M � Asm(pu) M ′.
Then either

− ∃ pv such that pu � pv and M ′ is type safe at v, or

− R′(pc) /∈ dom(PAdr) (the machine has left P ).

Here we prove that in the case pu � pv, M ′ |= Γv, where Γv is the
context for the next instruction pv. The proof is by case analysis on the
typing rule used to type pu, and the possible next instruction pv.
Let M = (H,R) and M ′ = (H ′, R′).
Recall M is type safe at u implies that M |= Γu, where Γu is the context
for pu. This means that there are pairwise disjoint sets Ki such that
M |=Ki

ri : Ai for each ri : Ai in Γu. We must show that there are
pairwise-disjoint sets K ′

i such that M ′ |=K′

i
ri : [A′

i] for each ri : [A′
i] in

Γv. Notice that M ′ |=∅ ri : int.
We consider each of the cases below, in varying detail.

load non-linear

A[c] = int1 Γ\rk
, rj : [A], rk : int ` P ′

Γ, rj : [A] ` load rk ←− rj [c] ; P ′

In this case, H ′ = H and R′ = R[k 7→ H(R(j) + c)]. The next
instruction is the next instruction in P ′.

We take K ′
i = Ki for all i 6= k.

load linear

A[c] = [B]1 ri 6= sp Γ\rk
, rj : [Ac:=0], rk : [B] ` P ′

Γ, rj : [A] ` load rk ←− rj [c] ; P ′

Again, H ′ = H and R′ = R[k 7→ H(R(j)+c)]. The next instruction
is the next instruction in P ′.

To prove M ′ |=K′

i
ri : [C], we have to consider the following cases.

[i 6∈ j, k ] By the definition of satisfiability we have to distinguish
between ri = sp and ri 6= sp

ri 6= sp We have to prove:

1. H ′ |=K′ R′(i) : C

hbal.tex; 4/04/2002; 18:59; p.43



44 D. Aspinall and A. Compagnoni

2. H ′ |=K′

d
R′(i) : ♦/size(C)

3. R′(i) > 0

4. K ′ ∩K ′
d = {}

and take K ′
i = K ′ ∪K ′

d

Since M |=Ki
ri : [C] we have that H |=K R(i) : C

implies H ′ |=K R′(i) : C because H = H ′ and R(i) =
R′(i). Also, H |=Kd

R(i) : ♦/size(C) implies H ′ |=Kd

R′(i) : ♦/size(C). Furthermore, ri 6= sp and Kd ∩K = ∅
by assumption. Finally, take K ′

i = Kd ∪K = Ki, which
were already pairwise disjoint.

[ ri = sp ] Similar to the previous case, take K ′
i = Ki, given

that M |=Ksp
sp : [C].

[i = j ]

[rj 6= sp ] We know from M |=Kj
rj : [A] by satisfiability,

that Kj = KA ∪KA
d , where H |=KA R(j) : A, H |=KA

d

R(j) : ♦/size(A), KA ∩KA
d = ∅ and R(j) > 0.

By Lemma 1(4), H |=KA \Kb \KB
d R(j) : Ac:=0, H |=KB

d

H(R(j) + c) : ♦/size(B), H |=Kb
H(R(j) + c) : B,

H(R(j) + c) > 0, and Kb ∩KB
d = ∅.

We have to prove M ′ |=K′

j
rj : [Ac:=0] for some K ′

j . Take

K ′
j = K ′ ∪K ′

d. By definition of satisfiability, we have to
prove:

H ′ |=K′ R′(j) : Ac:=0 Since H = H ′ and R′(j) = R(j),
take K ′ = KA \Kb \KB

d .

R′(j) > 0 Because R′(j) = R(j) > 0.

H ′ |=K′

d
R′(j) : ♦/size(A) Since H = H ′, R′(j) = R(j)

and size(A) = size(Ac:=0), take K ′
d = KA

d .

K ′ ∩K ′
d = ∅ KA \ Kb \ KB

d ⊆ KA implies K ′ ∩ K ′
d ⊆

KA ∩KA
d = ∅. Then K ′

j = (KA \Kb \KB
d ) ∪KA

d .

It only remains to prove that K ′
j∩K ′

l = ∅ for all l 6∈ {j, k}.
Since Kj ∩Kl = ∅ for all such l, then K ′

j ∩Kl = ∅.

[rj = sp ] We have to prove M ′ |=K′

sp
sp : [A] for some K ′

sp .

This follows by definition of satisfiability, since H = H ′

and R(sp) = R′(sp).

[i = k ] We know rk 6= sp. We have to prove that M ′ |=K′

k
rk : [B].

By definition of satisfiability we have to prove:

1. H ′ |=Kb
R′(k) : B.

2. R′(k) > 0.

3. H ′ |=KB
d

R′(k) : ♦/size(B).

hbal.tex; 4/04/2002; 18:59; p.44



Heap Bounded Assembly Language 45

4. Kb ∩KB
d = ∅.

Since R′(k) = H(R(j)+c) and H = H ′ then, by Lemma 1(4),
all four conditions are satisfied.

Take K ′
k = Kb∪KB

d . Disjointness of K ′
j and K ′

k is immediate
from the definition of K ′

j and K ′
k. Furthermore, K ′

k ∩ K ′
l =

∅ for all l 6∈ {j, k}, follows from K ′
l = Kl,K

′
k = Kk, and

Kk ∩Kl = {Kb ∪KB
d } ∩Kl = ∅ for all l 6∈ {j, k}.

store non-linear

A[c] = intz Γ, rk : int, rj : [Ac:=1] ` Pv

Γ, rk : int, rj : [A] ` store rj [c] ←− rk ; Pv

In this case, H ′ = H[R(j) + c 7→ R(k)] and R′ = R.

We take K ′
i = Ki for all i. By Lemma 1(3), H ′ |=Kj

R(j) : Ac:=1.

store linear

A[c] = [B]z rk 6= sp Γ, rj : [Ac:=1] ` P

Γ, rk : [B], rj : [A] ` store rj [c] ←− rk ; P

The untyped semantics is the same as the previous case, so H ′ =
H[R(j) + c 7→ R(k)] and R′ = R.

We take K ′
i = Ki for i 6= k, j. By assumption, we have M |=Kk

rk : B, and Kj ∩Kk = ∅. Since R(j) + c ∈ Kj , we have H ′ |=Kk

R′(k) : B too, where Kk = K ∪Kd with H ′ |=Kd
R′(k) : ♦/size(B)

and Kk ∩Kd = {}.

By Lemma 1(5), we can take K ′
j = Kj ∪Kk to get H ′ |=K′

j
R′(j) :

Ac:=1.

arith c,arith Easy, since satisfaction for registers with type int is
trivial.

salloc By the definition of the pseudo-instruction, we have R′ = R[sp 7→
(R(sp)− size(A))].

By the unbounded stack assumption, we have H(R′(sp)) ∈Wrd, . . . ,H(R′(sp)+
size(A) − 1) ∈ Wrd. By Lemma 1(6), H ′ |=K R′(sp) : A:=0 for K
st K ∩Ksp = {}. Then we have H ′ |=K′

sp
R′(sp) : A:=0 ×Asp for

K ′
sp = Ksp ∪K.

sfree Straightforward.

branch label The underlying machine does not change when a label
is “executed”. The soundness of the context change follows from
Lemma 2 and definition of satisfaction.

hbal.tex; 4/04/2002; 18:59; p.45



46 D. Aspinall and A. Compagnoni

jmp In this case we must consider a different flow of control. The next
instruction pv is the instruction with context Σ(l). By Lemma 2
again.

bnz There are two possible next instructions, depending on R(i). The
typing rule guarantees that the context for either one is sound, by
Lemma 2 or trivially.

call The next instruction executed will be the instruction after the
subroutine label l. We must prove that the context

sp : [A1 × · · · ×An × [code]1 ×A:=0]

is satisfied. This is straighforward by the assumed type for sp, and
the effect of the pseudo-instruction which sets the return pointer.

ret The next instruction executed may be any instruction which fol-
lows a call to this subroutine. We must prove that the context for
typing any instruction following each use of call l is satisfied. To
do this we need some additional reasoning about the preservation
of the stack during execution of the subroutine, proved with the
help of Lemma 3.

use This instruction does not change the machine. Soundness is straight-
forward using Lemma 1(6).

discard This instruction does not change the machine. Its soundness
follows from Lemma 1(1).

fold-nil,fold-cons,fold-leaf,fold-node Each of the fold instructions
is straightforward to prove sound, using the assumption about ri

and the effect of the pseudo-instruction, to use the corresponding
heap typing rule, with the help of Lemma 1(7).

caselist, casetree Each case instruction has two possible next in-
structions. By the assumption, we know that the tag H(m) = 0
or H(m) = 1 and the assumption used to prove the heap typing
justifies the unfolded type used in either branch, with the help of
Lemma 1(7).

�

hbal.tex; 4/04/2002; 18:59; p.46



Heap Bounded Assembly Language 47

B. Copy as a macro

To define the compilation of LFPL in Section 4, we used a copy instruc-
tion for copying elements of an arbitrary type. Here we show that this
instruction can be defined, somewhat tediously, as a macro. The point
of demonstrating this is to show that the additional pseudo-instruction
can be considered as a derived instruction.

The copy has this typing rule:

size(A1) = c size(B1) = d
rj [c] and ri[d] do not overlap for size(A) words
{rj : [A1 ×A:=0 ×A2], ri : [B1 ×A×B2]} ⊆ Γ1

{rj : [A1 ×A×A2], ri : [B1 ×Ahp:=0 ×B2]} ⊆ Γ2

Γ1\ri,rj
≡ Γ2\ri,rj

Γ2 ` P

Γ1 ` copy rj[c] ←− ri[d], A ; P

Here is the definition of copy as a macro, given inductively on the
structure of the type it copies. The macro does not copy uninitialized or
unreadable fragments of data of a given type. So for the types code, ♦,
and w0, copy has no effect (the macro expands to an empty intstruction
sequence). The expansion of copy for other types is shown below:

copy rj [c] ←− ri[d], w1 =

load r1 ←− ri[d]

store rj[c] ←− r1

copy rj [c] ←− ri[d], A1 ×A2 =

copy rj [c] ←− ri[d], A1

copy rj [c + size(A1)] ←− ri[d + size(A1)], A2

copy rj [c] ←− ri[d], L(A) =

caselistA ri[d] cpconsd
fold-nilA rj[c]

jmp cpdoned

cpconsd
copy rj [c + 1] ←− ri[d + 1], A× [L(A)]1

fold-consA rj [c]

cpdoned

hbal.tex; 4/04/2002; 18:59; p.47



48 D. Aspinall and A. Compagnoni

copy rj [c] ←− ri[d], T (A) =

casetreeA ri[d] cpnoded

copy rj [c + 1] ←− ri[d + 1], A

fold-leafA rj [c]

jmp cpdoned

cpnoded

copy rj [c + 1] ←− ri[d + 1], A× [T (A)]1 × [T (A)]1

fold-nodeA rj [c]

cpdoned

Where Σ(cpdoned ) assigns ri a type of the form A1 × L(A):=0 × A2

or similarly for trees. Subtyping is needed to type-check jmp cpdoned

when copying a list, to unify the types of the head element (which is
uninitialized as A:=0 in the nil case but only Ahp:=0 after copying, in
the cons case).

hbal.tex; 4/04/2002; 18:59; p.48


