Datatypes in Memory

David Aspinall’ and Piotr Hoffman?

L LFCS, School of Informatics, University of Edinburgh, U.K.
2 Institute of Informatics, Warsaw University, Poland

Abstract. Besides functional correctness, specifications must describe
other properties of permissible implementations. We want to use sim-
ple algebraic techniques to specify resource usage alongside functional
behaviour. In this paper we examine the space behaviour of datatypes,
which depends on the representation of values in memory. In particu-
lar, it varies according to how much values are allowed to overlap, and
how much they must be kept apart to ensure correctness for destructive
space-reusing operations.

We introduce a mechanism for specifying datatypes represented in a
memory, with operations that may be destructive to varying degrees.
We start from an abstract model notion for data-in-memory and then
show how to specify the observable behaviour of models. The method
is demonstrated by specifications of lists-in-memory and pointers; with
a suitable definition of implementation, we show that lists-in-memory
may be implemented by pointers. We then present a method for proving
implementations correct and show that it is sound and, under certain
assumptions, complete.

1 Introduction

This paper is part of an investigation into using simple algebraic techniques
to write specifications of resource usage alongside functional correctness, where
resources are quantitative measures such as time, space, power, and the like.
Resource usage is of course a relative notion, and depends on the computation
mechanism of an underlying machine as well as the representation of data on
that machine. We would like to write specifications which are as abstract as
possible with respect to these low-level details, but which nonetheless are able
to distinguish usefully between different algorithms and representations which
are not distinguished by classical algebraic specifications.

We start off here by considering memory as the prototypical resource, and
consider the behaviour of datatype operations which are implemented in memory.
Many standard algorithms make use of shared mutable data structures; these al-
gorithms have quite different resource usage behaviour compared with functional
versions that copy data instead. For mutating algorithms to work correctly, the
layout in memory of the data structures must satisfy certain conditions; for ex-
ample, some parts of these structures may occupy the same memory cells, some
may not. We provide a mechanism to specify layout constraints, which enable

or prevent mutating algorithms, and so restrict the class of models of our speci-
fications to ones which have certain resource behaviours.

We specify layout constraints by using preservation and disjointness predi-
cates which restrict the use of sharing in implementations. Intuitively, a memory-
altering operation preserves some data object in memory if after executing it the
object is still available in the new memory. Otherwise, the object is destroyed
and the operation considered destructive. If two objects are disjoint (separate)
in the memory, then destructive operations on the first object cannot affect the
second. Motivating examples follow in the body of the paper.

A key insight is that we need only be concerned by the behavioural, or observ-
able, consequences of a given data layout, not by the layout itself in a concrete
model. Both preservation and disjointness have behavioural characterisations,
and it turns out that for standard heap models these abstract characterisations
coincide with the natural, naive notions. We get sensible results for other mem-
ory models as well, which allow comparison between functional and imperative
implementations within the same logical framework, for example.

As well as mechanisms for specifying data structures, we define a notion of
implementation. Using a simple form of program, we show how to implement one
data structure in terms of another. We then give some basic ideas for proving
implementations correct by a form of equational reasoning. We show that this
method is sound, and, with restrictions, complete.

Contributions and related work. As far as we are aware, this is the first ex-
plicit attempt to study an approach to datatype space usage using algebraic
specification methods. There has been a wealth of recent activity in program
logics for pointer implementations datatypes in concrete memory models and
type theories or analyses for shape and layout description (to mention only a
few, e.g. [1-5]). Notably, Bunched Implications, BI, provides an abstract model
theory for resources, as well as a substructural logic for describing models [6].
Although we also aim at an abstract approach, we intentionally work from first
principles within the algebraic framework, rather than try to recast lines of work
based on different semantic foundations. More comments on related work are in
the conclusions.

Outline. The structure of the rest of this paper is as follows. In Sect. 2 we intro-
duce the abstract algebraic framework and two canonical example algebras. In
Sect. 3 we define the central behavioural equivalence relation which we use as a
basis for both specification and reasoning. The relation can express preservation
of data at the same time as behaviour of operations. We apply this to a specifica-
tion of lists in Sect. 4, which we write in a specially defined behavioural version
of conditional equational logic. Sect. 5 then shows how to use the behavioural
approach to define a natural disjointness relation which is also useful in specifi-
cations. Sect. 6 gives a specification for pointers and in Sect. 7 we define a notion
of implementation and show how pointers may be used to implement lists; we
sketch how this may be proved formally and prove that our approach is sound
and, in certain cases, complete. Sect. 8 concludes and gives some comparison
with the related work.

2 Memory Signatures and Algebras

Definition 1. A memory signature consists of the following components:

— disjoint sets of abstract sorts and memory sorts,
— a set of abstract operations of the form f :s1 X - X 8, — t1 X .-+ X i,
where n,k >0 and s1,...,Spy,t1,...,tr are abstract sorts,
— a set of memory operations of the form f:p X (s1 X -+ X 8,) — pu X (1 X
- X tg) where p is a special symbol representing the memory and where
n,k >0 and s1,...,8y,t1,...,tx are arbitrary sorts.

The idea here is that objects of abstract sorts are directly observable, whereas
objects of memory sorts can only be interpreted in the context of a memory via
the memory operations. Abstract operations have a purely auxiliary function and
are used in specifications. A memory operation is a form of “machine instruc-
tion”, representing the actual steps of computation of the considered machine.
The machine is modelled by a memory algebra over the signature.

Definition 2. A memory algebra A consists of the following components:
— a non-empty set A[u] of memories,
— for any sort s, a set A[s] of objects of type s,
— for any operation f, a partial function A[f] of appropriate type,
— for any memory sort s, a validity predicate Ay [s] C Afu] x A[s].

If (m,0) € Ay[s] we say o is valid in m and write o € m. Validity in a memory
1s extended pointwise to tuples of objects of arbitrary sort, considering objects
of abstract sort to be valid in any memory. A memory algebra must ensure that
memory operations preserve validity, i.e., whenever a € m and A[f](m,«) is
defined and equal to (m/,3), then B € m’.

The partiality of memory operations is intended to represent errors or non-
termination, but not out-of-memory exceptions. Although our approach is de-
signed to deal with out-of-memory conditions, in this paper we assume that they
do not occur. Out-of-memory exceptions can be included at the cost of some ex-
tra complexity, by adding another form of undefinedness so that non-termination
and lack of memory can be distinguished.

Validity allows us to model the destruction of data. Any memory operation
f(m, &) must produce a memory m’ and output § valid in m’, but we do not re-
quire the input a to remain valid in the new memory m’. Destructive operations,
such as disposing a pointer, can destroy their own arguments.

We illustrate these definitions with concrete examples. Consider the memory
signature with abstract sort bool and operationst, £ : bool and with memory
sort 1ist and the following memory operations:

nil:p — p X list isnil: p X list — p X bool
cons : it X bool X list — p X list hd: p X list — p X bool
tl:pu X list — p X list delete : pu X list — p

Define a memory algebra A over the above signature as follows. Let the abstract,
boolean components be defined as usual, and let the memories all be sequences

of pairs of natural numbers, which we treat as addresses: Aju] C N — N2, In
other words, a memory is an infinite address space with two addresses, the first
representing a boolean, stored at any location. If a is an address and m is a
memory, then the a-sequence in m is the sequence {a;};en defined by ap = a
and a;11 = m2(m(a;)). Now define A[u] to contain all m € N — N? such that
the 0-sequence in m does not contain any repetitions. The 0-sequence is called
the free list. Addresses in this sequence are called free addresses. Note that 0 is
always free. Finally, let A[list] = N and define a list a to be valid in a memory
m if in the a-sequence in m a free address occurs somewhere, and if the first
such address is 0.
Now the memory operations are defined as follows on valid arguments:
— nil(m) = (m,0), and isnil(m,a) is true if a = 0 and false otherwise;
— cons(m, b,a) = (m/,a’), where m’ is m with some free a’ removed from the
free list, with m’(a’) = (0,a) if b is false, and m’(a’) = (1,a) if b is true;
— hd(m,a) = (m,m1(m(a))) if a # 0; and t1(m,a) = (m,m2(m(a))) if a # 0;
— delete(m,a) = m’/, where m’ is m with all addresses from the a-sequence
in m added to the free list.
Here, the free list at the 0-sequence is treated as a pool of memory for allocation
and deallocation. In all cases not covered, the memory operations are undefined.
We call this model of lists the pointer model.

Another model of lists is the algebra B with the same boolean component
as A, but with Blu] = {+} a singleton set and B[list] the set of all finite
sequences of booleans. Then all the list operations work just as regular list oper-
ations, except that they additionally return * as the new memory. In particular,
delete(m,!) = m for all lists [. This model of lists is called the algebraic model.

3 Behavioural Equivalence

We now define a notion of behavioural equivalence for values in memory algebras.
We do this by conceiving a memory algebra as a machine which contains a
memory and a finite number of variables. The variables may keep data which is
directly observable (of an abstract sort), or data that may only be interpreted
using the memory (of a memory sort). The machine computes by applying a
memory operation to the existing memory and data, thereby obtaining a new
memory and new data. Two states of a machine should be considered equivalent
if no sequence of steps of the machine leads to any difference in observable data.

Formally, a state of a memory algebra is a pair (m,y), where m is a memory
and v = (91 : S1,.-.,7n : Sn) is a tuple of objects valid in m. Then n is the
length of the state, and (s1,..., S,) is the type of the state. If F: {1,...,N} —
{1,...,n} is any function, with n being the length of a state (m,~y) and N
arbitrary, then the composition (m, F'(y)) defined by F'(v); = vp(;) for1 <i < N
is a state as well. This is simply a rearrangement of the state (m,~), possibly
reordering, removing and duplicating objects. For any state (m,) and memory
m’, let |, be the tuple obtained by removing from v any objects not valid
in m’. Of course, (m',v|n) is a state. Finally, let “+” denote concatenation of
tuples.

Definition 3. The behavioural equivalence ~ in a memory algebra A is the
greatest relation on states of equal type such that if (my,71) ~ (ma,y2) then:

1. if vy, ve are abstract values in corresponding positions in y1, vz, then vy = vs.

2. if v is abstract, then (my,v1 + (v)) ~ (Mma,v2 + (v)).

3. if v1 and y2 have length n and F : {1,...,N} — {1,...,n} is any function,
then (ma, F(v)) ~ (ma, F(12)).

4. if y1 = m + 01 and yo = n2 + 62, M1 and ny have the same length and f
is an appropriately typed memory operation, then A[f](m1,m) is defined iff
A[fl(ma,n2) is. In this case, let A[f](m1,m1) = (m},n}) and A[f](ma,n2) =
(mb, nh); it is required that for all indices i, (y1); is valid in mY iff (y2); is
valid in my and (M4, 0y + Yilmy) ~ (M, 15 + y2lmy)-

The above relation is well-defined and is an equivalence. Intuitively:

abstract sorts are observable.

one may at any moment add arbitrary variables of abstract sort.

one may rearrange the variables.

one may apply memory operations to valid objects, but any objects invali-
dated in doing so are removed from the state; both undefinedness and de-
struction of data are observable.

= 02 bo =

Because invalid variables are removed from the state in clause 4, we forbid a
computation that holds a “dangling” pointer which later becomes valid again.
This doesn’t imply that some form of on-the-fly garbage collection is involved;
it just means that programs cannot assume anything about invalidated objects,
and specifications cannot express such assumptions.

In the algebraic model of lists there cannot be any interaction between two
lists; we have (mq,71) ~ (ma,72) iff (m1, (71):) ~ (ma, (72);) for all 1 < i < n,
where n is the length of v; and 5. In this case ~ is simply the identity relation,
because any pair of non-equal lists is differentiated by an appropriate number
of t1 operations and then a hd or isnil operation. This is true for any “non-
destructive” model, even if non-equal but equivalent lists exist in it.

Things are different in the pointer model, where we have a destructive oper-
ation and there can be overlaps between lists. Consider the two memories:

(LESSHE ST

I by
([F——r][]
Memory m; Memory m;

Here (mq, (a1,b1)) ~ (ma, (ag, b2)) doesn’t hold, although (my, (a1)) ~ (ma, (az2))
and (mq, (b1)) ~ (ma, (b2)) both hold. This is because the lists in mg interfere
in a way that can be observed by performing a delete operation.

For any state (= (m, (a1 : 1ist,...,a, : 1ist)) in the pointer model, let ¢
take any pair 1 < 4,5 < n to the list of booleans which is kept in the maximal
common part of a; and a; in m (in particular, ®¢(¢,4) is the list of booleans
corresponding to the list a; in m). Then ~ is the kernel of @, that is, for any
tuples ¢; and (s of length n of lists we have (; ~ (o iff ¢, = D¢, .

4 A Specification of Boolean Lists

We can specify memory algebras in two parts: a specification of the abstract
part, and a specification of the memory part. We suppose that the abstract part
(i.e., the booleans) is already specified, and concentrate on the memory part.

We use axioms of a very simple form, similar to conditional equational logic.
Of course, this does not mean that more complex logics cannot be used in our
approach. Formulae are given by the following grammar:

¢ = (m,a) ~ (m,a) | f(m,a) = L] f(m,a) # L]
zeEmM|Vm- - |V -¢| oA |
rem = ¢| f(m,a) = (ma) = ¢

Here m ranges over variables binding memories, x over other variables, and
« over tuples of variables. Variable typing is assumed but left implicit. The
variables x may be bound either to objects of a single sort or to finite tuples
of objects; such variables will usually be named -, 4, etc. So the quantification
Vy-v €m = ¢ says that for all tuples v of objects, if all these objects are
valid in m, then ¢ holds; we abbreviate this by writing ¥y € m - ¢. The formula
fmyzq, ..., xn) — (M y1,...,yx) = ¢ is true if whenever f(m,z1,...,2z,)
is defined, then after binding the result to m’ and y1, ..., yx, the formula ¢ holds.
If a variable y; is not used in ¢, we may write _ instead of y;.

As syntactic sugar we use equality, x = y, if x and y are of an abstract sort.
This can be expressed using the relation ~ as VYm - (m,x) ~ (m,y). For memory
sorts, our axioms make more use of the behavioural equivalence: we write m < m/
as a shorthand for the non-destructiveness assertion ¥y € m - (m,~) ~ (m’,7),
which says that all objects of m are preserved (observationally) in m'. To specify
additionally that some object a in m behaves equivalently to a’ in m’ we write
(m,a) < (m',a’) as a shorthand for Vy € m - (m,a,y) ~ (m’,a’,v)). This
generalises in the obvious way to a tuple of objects.

The specification of boolean lists begins with the following three axioms:

Vm-nil(m) # L A (nil(m) — (m',.) = m Sm’) (1)
VmVl € m - isnil(m,l) # L A (isnil(m,l) — (m/,.) = m <m') (2)
YmVbVl € m - cons(m, b,1) # L A (cons(m,b,l) — (m',)) = m <m') (3)

These say that nil, isnil and cons are always defined on valid arguments,
and that they are non-destructive. This does not mean that preexisting objects
can’t be changed at all: that can happen, so long as the result is behaviourally
equivalent to the original. Next we specify the behaviour of isnil, hd and t1:

Vm -nil(m) — (m',l) = isnil(m/,l) — (,,b) = b=t (4)
VmVbVl € m - cons(m,b,l) — (m',l') = isnil(m/,l') — (,,b) = b=f

()
VmVbVl € m - cons(m, b, 1) — (m/,l') = hd(m/,l') # L A
(hd(m/,1") — (m", V') = (m/,b) < (m", V) (6)

VmvVbVl € m - cons(m, b, 1) — (m',l') = t1(m/,l') # L A
(€1(m/, 1) — (m",1") = (m',1) < (m",1")) (7)

Note that axiom (6) says not only that the correct boolean value is returned, but
also that hd is non-destructive. Axiom (7) is even stronger: t1 is non-destructive
and the produced tail must fully share with the original tail.

We can give alternative axioms for hd and t1 that specify different amounts
of destructiveness. If instead of axiom (6) we wrote:

VmVbVl € m - cons(m, b, 1) — (m/,l') = hd(m/,l') # L A
(hd(m/,1") — (m", V') = (m,b) < (m",1))

then we would obtain lists in which hd is allowed (though not forced) to destroy
or modify the head of the list. Similarly, we could allow t1 to destroy or modify
the head of the list when computing the tail. Yet more possibilities exist, e.g., one
could allow t1 to fully destroy the old list. This would need an axiom somewhat
similar to the (forthcoming) axioms for delete, plus an axiom of the form:

VmVbvl € m - cons(m, b, 1) — (m',l') = t1(m/,l') — (m",l") =
(m, l) ~ (m//, ll/)

As for delete, the task would be easy with a disjoininess predicate 011,09
stating that two given objects are disjoint in a memory m (with respect to a
set of operations, see next section). Separation here means that manipulating oq
cannot have an effect on 0o and vice versa. Using this we could write:

VYmVl € m - delete(m,l) # L
Vmg - nil(mg) — (m,l) = Vv € mg - yLpl

The second formula states that a nil list and any further manipulation of it (e.g.
by cons and then delete), cannot have any effect on preexisting objects. The
separation predicate is introduced in the next section. However, without it we
can specify delete by the two axioms:

VYmo -nil(mgy) — (m,l) = delete(m,l) # L A
(delete(m,l) > m' = mo<m') (8)

VmVbVl € m - cons(m,b,l) — (m',l') = delete(m,l) — my =
delete(m/,l') # L A (delete(m/,l') »m" = mgy <m”) (9)

Axiom (8) says that deleting the nil list does not destroy preexisting objects.
Axiom (9) says that if we add an element and then delete the list, then objects
that wouldn’t have been destroyed if we deleted the list without adding the
element will be left intact. Thus, axiom (9) allows us to show that deleting a
longer list is like deleting a nil list, and axiom (8) shows that deleting a nil list
does not destruct unrelated objects. Together, they guarantee that preexisting

objects will be retained. Clearly these axioms do not force the model to be
a destructive one; delete may be a dummy operation, as in the algebraic list
model. But this would change if we introduced methods for counting the amount
of used memory, for example; then we could specify that delete decreases the
amount of memory used.

Our axiomatization of lists of booleans can be easily extended to an axiom-
atization of lists in which both booleans and other lists may be stored. In effect,
this would be an axiomatization of directed acyclic graphs (dags) — a datatype
in which sharing is really essential.

One could argue that our axioms are apparently rather complex for such
a simple datatype as lists. However, many of these axioms have a regular form
(e.g., idioms for non-destructiveness) and we could use further shorthands. More
importantly, we would claim that there is a range of non-equivalent specifications
of lists-in-memory, usefully describing different degrees of destructiveness, so the
axioms need to be complex enough to capture these differences.

5 Specifying Disjointness

A notion of disjointness is useful in specifying memory operations. The previous
section demonstrated this for the delete operation. Another example is a copy
operation, which should produce a new and disjoint copy of a given list. Using
our predicate for disjointness, this is captured by:

Ymvl € m - copy(m,l) # L A (copy(m,l) — (m',.) = m <m/)
Vmvl € m - copy(m,l) — (m/, ') = (m,l) ~ (m',I') AVyem-U' L,y

In a concrete model such as the pointer model, disjointness has a clear mean-
ing. Pleasingly, it turns out that disjointness may be defined in an abstract, be-
havioural manner for any memory algebra. This abstract notion, when applied
to pointer models of datatypes, yields the expected form of separation, and when
applied to other, e.g., functional models, also gives very natural results.

The disjointness predicate has the form ~1,,d, where v and ¢ are tuples of
of objects valid in m. Formally, we add the following new formula:

pu=..lalpa

We define the interpretation of disjointness coinductively using non-interference:
two objects may be treated as disjoint if manipulations on one of them cannot
affect the other, and vice versa. In particular, the disjointness of two objects is
relative to the operations one may use on them.

Definition 4. Let F be a set of memory operations from a memory signature.
Disjointness with respect to F is the greatest memory-indezed family of sym-
metric relations on valid tuples of objects and such that if v1,,6, then:

— if v is an object of abstract sort, then v+ (v) L0,

— if v is of length n, F : {1,...,N} — {1,...,n} is any function and f € F
is of the appropriate type, and if A[f](m, F(v)) = (m/,~), then:
(i) & is valid in m’, (i) (m',8) ~ (m,), and (iii) (Y|m + ') Lm/d.

Definition 4 imposes the frame condition that manipulation of objects cannot
affect other objects which are disjoint in the same memory. However, because
the disjointness notion is relativised to a particular memory, it is possible for an
operation to destructively combine two objects from one memory, and, in the
new memory, for those objects to be no longer disjoint, or to become invalid. An
example of the second case is the familiar destructive append, which invalidates
the first object; an example of the first case is smash_tails(ly, lo) which coalesces
two disjoint objects [; and [y so that they share the longest possible suffix.

Disjointness is anti-monotone with respect to the set of operations F, and
for F = () all valid tuples are disjoint in all memories. When it is left implicit,
we take all memory operations to be in F. In the pointer model of lists, dis-
jointness w.r.t. all the operations is just real disjointness of two lists in memory.
In particular, any list is disjoint with the nil list 0. In the algebraic model of
lists, meanwhile, the disjointness relation is the total relation — we even have
{10 for any list [. All this is not surprising. But if, in the pointer model, we
consider disjointness w.r.t. operations other than delete, then we also get the
total relation. This is true even when the “real” lists overlap in memory — the
overlap cannot have consequence and so is ignored. One could claim that a model
deserves the name “functional” just in case its disjointness relation is total.

At the other end of the spectrum, suppose we add zeromemory : p — p
to our signature, and implement it in the pointer model as a constant function
which takes any memory m to a memory in which all addresses are on the free
list. If we consider disjointness w.r.t. the set 7 = {zero_memory}, then only pairs
of sequences of nil lists and booleans are disjoint. We don’t have 0L,,l, where
0 is the empty list and [is non-empty, since zeroing memory on the left side
invalidates I. If we now set F to contain all of the operations, then even ()L,,()
no longer holds, since it is possible to first produce a non-empty list and then
invalidate it, as suggested above.

6 A Specification of Pointers

Now we specify a datatype of pointers. This is a purely “imperative” datatype,
with no functional aspects. In the next section we show how to use it to imple-
ment datatypes such as lists. The signature has a sort pointer and operations:
0:p — pu X pointer is0: p X pointer — pu X bool
new : g — p X pointer dispose : u X pointer — u
sety,sety : 4 X pointer X pointer — p
setbooly, setbool, : i1 X pointer X bool —
valy,valy : u X pointer — p X pointer
valbool;, valbooly : i X pointer — p X bool

The operation O returns a special, constant pointer, and isO tests identity of

this pointer. In any pointer two values may be stored and retrieved, each being

either another pointer or a boolean. Pointers may be created and disposed of.
The axioms specifying pointers are as follows:

Vin - new(m) £ L A (new(m) — (m',) = m <) (

VmVp € m -val;(m,p) # L A (val;(m,p) — (m',.) = m <m/) (11
VYmg - 0(mg) — (m,p) = isO(m,p) — (,,b) = b= (

VYmyg - new(mg) — (m,p) = is0(m,p) — (,b) = b=1= (13

These are similar to ones given earlier for list operations. An axiom analogous
to (10) is required for 0 and ones analogous to (11) for is0 and for valbool.

Vmg - new(mg) — (m,p) = Vq € m-set;(m,p,q) # L A
(seti(m,p,q) —m' = mo <m') (14)

Vmyg - new(mg) — (m,p) = dispose(m,p) # L A
(dispose(m,p) — m' = mo <m') (15)

VYmq - new(mi) — (me,p) = Vq € ma - set;(ma,p,q) — mg =
vali(ms,p) — (m4,q") = (m3,q) < (ma,q’) (16)

Axiom (14) says that storing in a pointer does not modify objects that existed
before the pointer was created; a similar axiom is needed for setbool. Axiom
(15) says that disposing a pointer does not affect objects that existed before
its creation. Axiom (16) and a similar axiom for the boolean case guarantee
that storing an object and then loading it gives the same (or a behaviourally
equivalent) object back. Behavioural equivalence for pointers is crucial: it means
that an implementation may keep internal information (e.g., needed for garbage
collection) in pointers, as long as the outside world cannot access it.

We can define a model for pointers by altering the model of lists as follows:

— memories must keep both addresses 0 and 1 on the free list (they are used to
denote booleans), and to keep 2 off the free list, initialised to (0,0) (it will
be used as the 0 pointer),

— the set of valid pointers in m is the greatest set of addresses not on the free
list and such that if a is valid and m(a) = (a1, az), then a; =0, a; =1 or a;
is valid in m (for i = 1, 2),

— 0 returns the address 2; is0 returns true called on 2, false otherwise,

— new allocates a new pointer and sets its fields to 0,

— val; and set; just return and set the appropriate fields under the given
address; the boolean versions do the same, with 0 as false and 1 as true,

— dispose adds the given address to the free list.

One could also imagine a “lazy” model, in which dispose would defer its work,
adding addresses to the free list later on when other operations are called.

10

7 Implementations

So far we haven’t said how memory specifications may be implemented, that is,
how one can define memory algebras. We now show how this can be done, and
show how the correctness of implementations may be proved. We do not consider
how to construct implementations “ex nihilo”, but rather how to implement one
datatype making use of other datatypes. This approach is reasonable, because
one may assume that simple datatypes are given as built-in.

Let A be a memory signature containing the abstract sort bool. Programs
over A are expressions Py of the following form:

Py :=\a)- P
P :=P;P|lz— x| f(a) = (a) |if e then P | return(c) | self ()

Here, o denotes tuples of variables, implicitly typed by sorts from A, e denotes
boolean expressions built using abstract operations and variables of abstract
sorts, and f denotes memory operations from A. No variable is allowed to appear
on the right hand side of the binding “—” more than once. The instruction
“self(«)” recursively calls the program being run, while “return(«)” terminates
the computation (all recursive calls). It is required that the last instruction in
any program is either a self, or a return. Type-soundness is also enforced, i.e., if a
memory operation f is invoked with arguments being variables of sorts s1, ..., sy,
and results being variables of sorts 1, . . ., tx, then we have f : ux(s1x-+-xs,) —
X (tp X -+ x t) in A. A program has type s1 X -+ X §, — 1 X -+ X Uy if
it binds, under the A, variables of sorts si,..., s,, if it passes variables of such
types via self, and if it invokes return with variables of type t1, ..., tk.

An implementation of a memory signature X' by A is a map I taking any
memory sort in Y to a memory sort in A, and any memory operation f : p x
(81X +++ X 8p) — X (t1 X -++ X t}) to a program over the signature A of type
I(s1) X <+ x I(sp) = I(t1) x -+ X I(tg).

For example, suppose we want to implement lists, as defined in Sect. 3, using
pointers, as defined in the previous section. We can define this by:

list := pointer hd := A(p) - valbooli(p) — b; return(d)
nil := A() -0 — p; return(p) tl := A(p) - vala(p) — p; return(p’)
isnil := A(p) - is0(p) — b; return(b) delete := A(p) - isO(p) — b;
cons := A(b,p) - new — ps; if b then return();
setbooli(p1,b) — (); vala(p) — p';
seta(p1,p) — (); dispose(p) — ();
return(p1) self(p’)

We define the semantics of programs in the obvious way, with infinitely loop-
ing programs causing non-definedeness, 1. The semantics of programs induces a
semantics of implementations: for any implementation I : X' — A and any mem-
ory algebra B over A, the semantics of A-programs gives us a memory algebra
B|; over X.

11

Proving that implementations are correct. An implementation of lists by pointers
is correct, if assuming that the pointer axioms of Sect. 5 hold, then so do the
list axioms of Sect. 3. This will guarantee that if B satisfies the pointer axioms,
then B|; satisfies the list axioms.

For any implementation I : ' — A one can define a set Sen(I) of formulas
over an extended signature AU X which define the operations in Y. For example,
the definition of nil leads to the two formulae:

Vm -nil(m) — (m',p) = 0(m) # L A
(0(m) — (m",p') = (m/,p) < (m",p"))

Vm - 0(m) — (m’,p) = nil(m) # L A
(nil(m) — (m",p") = (m',p) < (m",p"))

In a similar manner, definitions of other operations may be generated. Armed
with these formulas and the axioms defining pointers, we may now attempt to
prove the axioms defining lists. Consider, for example, axiom (6). Thanks to the
definition of cons and hd in Sen(I), this is equivalent to:

VmVbVp € m - new(m) — (my,p’) = setbooli(mq,p’,b) — my =
seta(ma,p’,p) — m' = valbool;(m’,p’) # L A
(valbooly(m/,p') — (m",b') = (m’,b) < (m",V)

This is indeed a consequence of the pointer axioms. Next consider axiom (8).
It is equivalent to the following two formulas, corresponding to two branches of
the if in delete’s definition:

Vmg - 0(mg) — (m,p) = is0(m,p) # L A (is0(m,p) — (m/,b) =
b=t = mo<m') (17)

VYmg - 0(mg) — (m,p) = is0(m,p) # L A (is0(m,p) — (m1,b) =
b=f = valy(mi,p) — (ma2,p’) = dispose(ma,p) — m3 —
delete(ms,p’) —»m' = mo <m') (18)

In this simple case, because the second branch of the if always holds, we can prove
the second formula even without again using the definition of delete, which
may be found in Sen(l). But in general, we may repeatedly use the definitions
in Sen(I) — this is, for example, necessary when proving that axiom (9) holds.

It can be shown that the method presented above is indeed sound. The
notation ¢ =5 ¢ below means that any X-algebra satisfying all the formulas
from the set @ satisfies ¢ as well. The notation @|; Ex ¢, where I : ¥ — A
is an implementation, @ is a set of A-formulas and ¢ is a Y-formula means
that for any A-algebra B satisfying all the formulas from @, the X-algebra
B|; satisfies the formula ¢. We say that I is an identity on a subsignature
Yo of X if it is an identity on sorts and if, for any symbol f in Xy, we have

I(f) = Ma) - f(a) — (B); return(5).

12

Theorem 1 If I : ¥ — A is an implementation which is an identity on X' N A,
D is a set of A-formulas and ¢ is a X-formula, and if @ USen(I) Exua ¢ then

2|1 Ex p

Proof (sketch). Assume B satisfies B =4 @. Let B’ be the union (amalgamation)
of B and B|;, i.e., an algebra over X’ UA. This union may be formed, since B and
B| coincide on X’ N A. All observations in B’ are also observations in B, because
operations in B|; are defined in terms of operations of B. Therefore B and B’
satisfy the same A-formulas; in particular, B’ Exua @. By construction of
Sen(I) we also have B’ =xua Sen(I). By assumption we then have B’ =xua .
It can be shown by induction on ¢ that this implies B’ =5 ¢, since there are
no more observations over X' than over X U A. a

This theorem provides a sound method of proving implementations correct.
In general, this method is not complete. This is because the relations ~ and
L, over the signature X' are coarser than the same relations over X' U A, where
more operations exist. Consider, e.g., sets implemented by lists, with repetitions
allowed in the representations. Then two lists differing only in the number of
repetitions will be considered equivalent over X' (i.e., with respect to the set
operations). But over X U A (i.e., with respect to the list operations) they are
not equivalent any more.

A second source of incompleteness is non-termination: the defining sentences
in Sen(/) don’t force non-terminating memory operations to actually return
1. To circumvent this problem, we consider, for a set of A-formulas @, only
implementations I : ¥ — A that are total w.r.t. @, that is, implementations
such that in B|; memory operations are total for any algebra B s.t. B Ea @.

Save for the above phenomena, the presented proof method is complete. In
other words, for total implementations, completeness is guaranteed if all obser-
vations in ' U A may be conducted in A as well:

Theorem 2 If [: X — A is an implementation, X contains A and I is an
identity on A, then for any set ® of A-formulas such that I is total w.r.t. @,
and for any X-formula ¢ we have ® U Sen(I) E=x ¢ iff @1 F=x ¢.

Proof. By the previous theorem and since [is an identity on > N A = A, only
the “if” direction needs to be shown. Assume B |5 @ U Sen(I) and let By be
the restriction of B to A. Then By|; =5 @, because By|; and B coincide on A
and all operations in X' are defined by I in terms of operations from A, so no
new observations exist in By|;. Thus By|r Ex ¢. We also have By =4 @, since
B Ex @ and By is a restriction of B. Since [is total w.r.t. @, this implies that
in Bg|r all operations are total. At the same time, B and By|; coincide on A
and B =5 Sen(I). But there can be only one total algebra which coincides on A
with B and satisfies Sen(I), and so B = By|;. Hence, B =5 ¢, as required. 0O

Another way to ensure completeness is to allow various versions of the re-
lations ~ and 1, to appear in axioms. If we tag these relations by the appro-
priate legal sets of observations (in the form of programs), and if by I(p) we

13

denote the formula with appropriate tagging, then we would get the equivalence
P USen(I) Exua I(p) iff |1 Ex ¢. The obvious downside of using I(yp) is
that we have to deal with a more complex logic. But consider a logic obtained
by allowing the relations ~ and 1., to appear as premises in implications in the
formulas: in this case the proposed proof method ceases to be sound, because the
new observations work both ways, harming both completeness and soundness.
If we use the translation I(y), soundness and completeness are preserved.

8 Conclusions

We introduced an algebraic scheme for specifying and proving correct pointer
programs using their observable behaviour. The mechanism is based on first-
order and behavioural principles, and so could be adopted within existing al-
gebraic specification frameworks. Further investigations are warranted, includ-
ing the study of a suitable proof system and extensions of the language. One
extension would be the aforementioned generalised equivalence and separation
relations; another would be a more expressive logic where coinductive predicates
such as disjointness are definable directly.

While we aimed at being more abstract than existing work based on con-
crete memory models, it is clear that we could be more abstract still. Recasting
our work in a higher-order setting would allow us to make comparisons with re-
lated work in programming language semantics based on monads and coalgebras
(e.g. [7,8]), as would studying model-theoretic foundations. It is natural to want
to specify parts of our models to be generated inductively and require an ini-
tial subalgebra interpretation, while the observational relations have coinductive
characterisations related to final coalgebras.

Finally, we would like to revisit our starting point of specifying interaction
between resources and their consumption in general. Although our focus was
on models of memory in this paper, there is nothing special about “memories”
in our approach that forces them to have this interpretation. Getting closer
to real machines, we might add stack operations to our memory signature. To
describe space usage and consider limited memories, we can add a size function
on memories together with an out-of-memory exception. Imagining a different
interpretation entirely, we could conceive of the sort p to denote a database of
statistical data in tables; computations on this data may interfere when data
sources are combined but not independent.

Related work. As mentioned at the start, there is much current activity in study-
ing pointer programs, their logics and correctness proofs, as well as more abstract
notions of resource. Space precludes a survey; we mention only a few connections.
First, program logics designed for managing aliasing (e.g., Reynolds’ Separation
Logic [1], Honda et al’s process algebra inspired approach [2]) aim to simplify
proofs of pointer manipulating programs, particularly for better modularity. Our
notion of machine generalises the concrete model considered by Separation Logic,
but our low-level language of assertions differs, in particular making the global
heap explicit. Nonetheless our equivalence notion allows both strong assertions

14

like m < m’ which amount to global frame conditions, as well as local equiva-
lences such as (m,a) ~ (m,a’) which, conceptually, are restricted to reachable
heap portions.

Elsewhere, other authors have found equivalence relations like ours useful.
For example, Calcagno and O’Hearn [9] pointed out a need for an observational
approach in Separation Logic in the presence of garbage collection, because oth-
erwise assertions in the logic can distinguish programs which ought to be consid-
ered identical. Benton [10, 5] studies correctness proofs for program analyses and
transformations using a relational Hoare logic, noting that in general desirable
program equivalences are context-sensitive.

In the algebraic domain, perhaps surprisingly, nobody seems to have begun
from the same simple definitions as we gave in Sect. 2. But there are certainly a
number of rich mechanisms for treating state in dynamic systems, for example,
Hidden Algebra [11] and SB-CASL [12], as well as work on notions of behavioural
equivalence between algebras and proof mechanisms (see e.g., [13]). We hope
that one of our contributions in this work is to open a way to bring together this
strand of work in algebraic specification with the recent work in program logics.

Acknowledgements. This work was supported by the British Council; DA was
also supported by the EC project MoBius (IST-15905), PH by the EC project
SENSORIA (IST-16004). We're grateful for feedback from referees and colleagues.

References

1. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In:
LICS 2002. (2002) 55-74

2. Honda, K., Yoshida, N., Berger, M.: An observationally complete program logic
for imperative higher-order frame rules. In: LICS’05. (2005) 270-279

3. Aspinall, D., Beringer, L., Hofmann, M., Loidl, H-W., Momigliano, A.: A program
logic for resources. Theoretical Computer Science (2007) Accepted.

4. Petersen, L., Harper, R., Crary, K., Pfenning, F.: A type theory for memory
allocation and data layout. In: POPL’03. (2003) 172-184

5. Benton, N., Kennedy, A., Hofmann, M., Beringer, L.: Reading, writing and rela-
tions. In: APLAS’06. Volume 4279 of LNCS. (2006) 114-130

6. Pym, D., O’Hearn, P., Yang, H.: Possible worlds and resources: The semantics of
BI. Theoretical Computer Science 315(1) (2004) 257-305

7. Jacobs, B., Poll, E.: Coalgebras and monads in the semantics of Java. TCS 291(3)
(2003) 329-349

8. Schréder, L., Mossakowski, T.: Monad-independent dynamic logic in HasCasl. J.
Log. Comput. 14(4) (2004) 571-619

9. Calcagno, C., O’Hearn, P., Bornat, R.: Program logic and equivalence in the
presence of garbage collection. TCS 298(3) (2003) 557581

10. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: POPL’04. (2004) 14-25

11. Goguen, J., Malcolm, G.: A hidden agenda. TCS 245(1) (2000) 55-101

12. Baumeister, H., Zamulin, A.: State-based extension of CASL. In: IFM 2000.
Volume 1945 of LNCS. (2000) 3-24

13. Hennicker, R., Bidoit, M.: Observational logic. In: AMAST’98. Volume 1548 of
LNCS. (1999) 263277

15

