
Towards Formal Proof Metrics

David Aspinall, University of Edinburgh
Cezary Kaliszyk, University of Innsbruck

FASE, 7th April 2016



Outline

Motivations

From Software Engineering to Proof Engineering

Proof developments, abstractly

Metrics for formal proof

Experiment and analysis

Conclusions



Interactive therorem proving

Interactive Theorem Proving (ITP) is now middle aged.

Can produce large formal proof developments:
establish complex properties in mathematics or
software verification, indefeasibly.

Large developments consist of many lines of “source
code”, a form of program, developed interactively
(think read-eval-print, scripting languges, rich IDEs).

A number of competing proof languages exist, each
unique to a system. Popular examples: HOL4, HOL
Light, Isabelle, Mizar, Coq.



Heroic formal proofs

2003-2014: Thomas Hales
led the Flyspeck project to
formalise his proof of the
Kepler Conjecture in HOL
Light.

Took circa 20 person years,
the text part of the proof
consists of 14,185 HOL
Light theorems.



Heroic formal proofs

2003-2014: Thomas Hales
led the Flyspeck project to
formalise his proof of the
Kepler Conjecture in HOL
Light.

Took circa 20 person years,
the text part of the proof
consists of 14,185 HOL
Light theorems.



Heroic formal proofs

2003-2014: Thomas Hales
led the Flyspeck project to
formalise his proof of the
Kepler Conjecture in HOL
Light.

Took circa 20 person years,
the text part of the proof
consists of 14,185 HOL
Light theorems.



Heroic formal proofs II
2009: Gerwin Klein and
team announced the formal
verification of the seL4
Microkernel in Isabelle.

Kernel is 8700 lines of C,
600 assembler. Size of
proof is 200k lines.
Verification effort 12 py
(+12 py for tooling).



Sample verification condition statement



Why are these efforts so heroic?

Large formal proofs in mathematics or software
verification are inherently challenging:

▶ big formal-informal gap
▶ statements may be overly complex
▶ proofs hard to understand
▶ pioneering, needs new techniques
▶ . . .
▶ engineering at scale is poorly supported



Outline

Motivations

From Software Engineering to Proof Engineering

Proof developments, abstractly

Metrics for formal proof

Experiment and analysis

Conclusions



Proof Engineering

Many of the issues faced [. . . ] are similar to those in
software engineering: there is the matter of merely
browsing, understanding [. . . ]; there are dependencies
between lemmas, definitions, theories, and other proof
artefacts that are similar to dependencies between
classes, objects, modules, and functions; [. . . ] there is the
issue of refactoring existing proofs either for better
maintainability or readability, or even for more generality
and additional purposes; and there are questions of
architecture, design, and modularity in proofs as well as
code.

Gerwin Klein, Proof Engineering Considered
Essential, International Symposium on Formal Methods,

2014.



Open questions in Proof Engineering

▶ How should a large proof be broken into modules?
▶ How can we tell if a proof is well-structured?
▶ How can we improve its understandability?
▶ ...or maintainability?
▶ If one part is changed, how much will break?

To approach these questions, we need to understand
what works better and what doesn’t. To do that, we
need to measure.



What can we measure?

Dream future: we can find measurements that help
predict effects that can be empirically validated.

Possible future: we define metrics which correspond
to or correlate with observed effects.

Current point: we start with candidate metrics with
sensible properties and that can be tested against
current data, refuted and refined.

Potential starting inspiration: software metrics.



OO Design: Chidamber and Kamerer, 1994
Rather dated and much debated!
But (AFAWK) no single newer generic better suite.

Six functions, each a metric on a class in a design:

1. Size of the class
2. Role within design: depth in hierarchy
3. Role within design: oversight in hierarchy
4. Responsibility of methods in class
5. Lack of Cohesion within modules
6. Coupling between modules

Generally: interval scale, higher → concerning.

S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design.

IEEE Trans. on Software Engineering 20.6, 1994.



A loose analogy: OOP vs Proof Languages

Proof languages use in-the-large modular structure.

We can match this against OOD structure.

OOP Formal proof

class proof module
class inheritance proof module import
instance variable declaration of a type or constant
method theorem
method type theorem statement
method body theorem proof



Outline

Motivations

From Software Engineering to Proof Engineering

Proof developments, abstractly

Metrics for formal proof

Experiment and analysis

Conclusions



Module dependencies

nums

theorems

pair trivia

class

bool



Theorem dependencies

bool/
FORALL_DEF

theorems/
EQ_REFL

theorems/
REFL_CLAUSE

theorems/
EQ_SYM

theorems/
EQ_SYM_EQ

theorems/
EQ_TRANS

bool/
TRUTH

bool/
IMP_DEF

bool/
AND_DEF



Features

∀V. packing V ⟹ (∃c. ∀r. & 1 ≤ r
⟹ &(CARD(V INTER ball(vec 0,r))) ≤

pi * r pow 3 / sqrt(&18) + c * r pow 2)

fea(kepler_conjecture) =

{packing, sqrt,ball,pi,BIT0,BIT1,NUMERAL,0,
real_add, real_div, real_le, real_mul, real_of_num
real_pow,CARD, INTER,3, cart,num,prod, real}.



Proof Development Metamodel

▶ Module: (M,T), M is a name, T a set of names t
▶ Development: set of modules P = {(M,TM)}
▶ Module dependency: M1 →

M M2

▶ Theorem dependency: t1 →
T t2

▶ Statement features: fea(t)

Dependencies are direct (one-step); ≤M is the reflexive,
transitive closure of →M.
A development must obey the “well-formed imports”
condition:

t1 →
T t2 ⟹ mn(t1) ≤M mn(t2).



Outline

Motivations

From Software Engineering to Proof Engineering

Proof developments, abstractly

Metrics for formal proof

Experiment and analysis

Conclusions



Out analogues of C&K

1. WTM: Weighted Theorems Per Module
2. DIT: Depth in Tree
3. NOC: Number of Children
4. TDM: Total Dependencies for Module
5. CBM: Coupling between Modules
6. LCOM: Lack of Cohesion in Module

Each metric is a function on proof modules.



TDM: Total Dependencies for Module

TDM(M) = ∣ { t′ ∣ t →T t′ ∧ t ∈ TM} ∣

TDM counts the number of theorems depended on in a
given theorem’s definition, both inside and outside the
module.

Intuitively we expect that higher values may indicate
more “brittle” modules.



CBM: Coupling between Modules

CBM(M) = ∣ {M′ ∣ M →
M M′

∨ M′
→

M M} ∣

High CBM indicates a module that is more closely
bound in the hierarchy, suggesting it may be difficult to
understand in isolation, or to move around.



LCOM: Lack of Cohesion in Module

Jaccard index measures statement similarity:

sim(M) =
n

∑
i=1

n

∑
j=i+1

∣ fea(ti) ∩ fea(tj) ∣
∣ fea(ti) ∪ fea(tj) ∣

LCOM is the average dissimilarity:

LCOM(M) = 1 −
sim(M)

1
2 (n2 − n)

.

High LCOM suggests a module that gathers together
many unrelated things.



Outline

Motivations

From Software Engineering to Proof Engineering

Proof developments, abstractly

Metrics for formal proof

Experiment and analysis

Conclusions



Experimental study in three systems

The Kepler formal proof, FlySpeck in HOL Light,
including HOL Light’s libraries.

Isabelle HOL Main (core library), and three proofs:
Auth, Bali, Probability.

The Mizar Mathematical Library, in particular the
libraries of formalized topology and theory of lattices.

This experiment is non trivial! It needs specially modified versions of ITP

kernels to gather proof objects, extract features and count dependencies.

We reused a number of powerful tools from other work.



Average of metrics over large developments

mods thms WTM TDM NOC DIT CBM LCOM

Mizar MPTP2078 33 3646 110 270 9 10 26 74

HOL Light Core 21 2618 125 391 7 7 14 75
Multiv 19 11093 584 3091 7 8 34 76

Flyspeck 237 12999 55 1582 12 28 44 62

Isabelle Main 73 12731 174 357 8 18 18 72
Auth 38 4282 209 202 2 4 13 57
Bali 25 6946 502 261 4 5 17 67

Multiv 50 7821 287 245 2 4 17 61
Probab’y 45 5928 246 460 4 8 27 63



Average of metrics over large developments

mods thms WTM TDM NOC DIT CBM LCOM

Mizar MPTP2078 33 3646 110 270 9 10 26 74

HOL Light Core 21 2618 125 391 7 7 14 75
Multiv 19 11093 584 3091 7 8 34 76

Flyspeck 237 12999 55 1582 12 28 44 62

Isabelle Main 73 12731 174 357 8 18 18 72
Auth 38 4282 209 202 2 4 13 57
Bali 25 6946 502 261 4 5 17 67

Multiv 50 7821 287 245 2 4 17 61
Probab’y 45 5928 246 460 4 8 27 63

▶ Flyspeck: smaller modules, but not “shallow”



Average of metrics over large developments

mods thms WTM TDM NOC DIT CBM LCOM

Mizar MPTP2078 33 3646 110 270 9 10 26 74

HOL Light Core 21 2618 125 391 7 7 14 75
Multiv 19 11093 584 3091 7 8 34 76

Flyspeck 237 12999 55 1582 12 28 44 62

Isabelle Main 73 12731 174 357 8 18 18 72
Auth 38 4282 209 202 2 4 13 57
Bali 25 6946 502 261 4 5 17 67

Multiv 50 7821 287 245 2 4 17 61
Probab’y 45 5928 246 460 4 8 27 63

▶ Flyspeck: good cohesion (LCOM) but highest
coupling (CBM).



Average of metrics over large developments

mods thms WTM TDM NOC DIT CBM LCOM

Mizar MPTP2078 33 3646 110 270 9 10 26 74

HOL Light Core 21 2618 125 391 7 7 14 75
Multiv 19 11093 584 3091 7 8 34 76

Flyspeck 237 12999 55 1582 12 28 44 62

Isabelle Main 73 12731 174 357 8 18 18 72
Auth 38 4282 209 202 2 4 13 57
Bali 25 6946 502 261 4 5 17 67

Multiv 50 7821 287 245 2 4 17 61
Probab’y 45 5928 246 460 4 8 27 63

▶ Isabelle: WTM > than (thms/mods): more derived
and auxiliary thms.



Average of metrics over large developments

mods thms WTM TDM NOC DIT CBM LCOM

Mizar MPTP2078 33 3646 110 270 9 10 26 74

HOL Light Core 21 2618 125 391 7 7 14 75
Multiv 19 11093 584 3091 7 8 34 76

Flyspeck 237 12999 55 1582 12 28 44 62

Isabelle Main 73 12731 174 357 8 18 18 72
Auth 38 4282 209 202 2 4 13 57
Bali 25 6946 502 261 4 5 17 67

Multiv 50 7821 287 245 2 4 17 61
Probab’y 45 5928 246 460 4 8 27 63

▶ Multivariate in HOL, Isabelle: look very different,
why?



LCOM Histograms per system

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Mizar

M
od

u
le

s

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

HOL Light

M
od

u
le

s

0 0.2 0.4 0.6 0.8 1
0

10

20

30

Isabelle

M
od

u
le

s



Metrics over time

We examined five years of development of the HOL
Light core library from its svn history.

Generally: see increase in sizes and complexity,
sometimes improvement in cohesion.

Very stable code base so not the best test case. But we
uncovered a change in modular structure, when a
module ind_defs was removed.

We also examined the impact of a refactoring
mentioned in the svn logs (see paper).



Metrics over time

60 80 100 120 140 160 180 200 220 240
60

65

70

75

80

HOL Light SVN version

M
ea

n
LC

O
M

(i
n

%
)

Mean LCOM

0

100

200

300

400

M
ea

n
TD

M
an

d
W

TM

Mean TDM
Mean WTM
Lines of Code (×100)



Outline

Motivations

From Software Engineering to Proof Engineering

Proof developments, abstractly

Metrics for formal proof

Experiment and analysis

Conclusions



Conclusion

Proposed some first ideas for Proof Metrics.

▶ Inspired by well-investigated C&K Software Metrics
▶ Given formal definition
▶ Have some of Weyuker’s properties (see paper)

Studied metrics over several large developments:

▶ Results restricted (core libs) but interesting
▶ Not argument for validity

A fairly new direction (see paper for related work).

Much more to do, even with current metrics/data.


	Motivations
	From Software Engineering to Proof Engineering
	Proof developments, abstractly
	Metrics for formal proof
	Experiment and analysis
	Conclusions

