Navigation and Dialogue
HCI Lecture 7

David Aspinall

Informatics, University of Edinburgh

12th October 2007
Outline

Navigation Design

Dialogue Design

Dialogue Analysis

Exercise

References
Interface Design Roadmap

<table>
<thead>
<tr>
<th>Conceptual Design</th>
<th>Physical Design</th>
<th>Interaction Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>what is the conceptual model?</td>
<td>what physical environment?</td>
<td>what styles are appropriate?</td>
</tr>
</tbody>
</table>

- High-level to low-level, task-oriented refinement
- Data and presentation-oriented sometimes better:
 - task focus may suggest long tedious dialogues
 - instead: compact and interactive data presentation

This lecture: notations to describe navigation and dialogue design
Interface Design Roadmap

Conceptual Design what is the conceptual model?
Physical Design what physical environment?
Interaction Modes what styles are appropriate?
Navigation Design how is the interface structured?
Dialogue Design how to link interactions?
Information Presentation how to show feedback/results?
Screen Layout best grouping/structure/alignment?
Interface Design Roadmap

Conceptual Design what is the conceptual model?
Physical Design what physical environment?
Interaction Modes what styles are appropriate?
Navigation Design how is the interface structured?
Dialogue Design how to link interactions?
Information Presentation how to show feedback/results?
Screen Layout best grouping/structure/alignment?

- High-level to low-level, task-oriented refinement
- Data and presentation-oriented sometimes better:
 - task focus may suggest long tedious dialogues
 - instead: compact and *interactive* data presentation
Interface Design Roadmap

Conceptual Design
what is the conceptual model?

Physical Design
what physical environment?

Interaction Modes
what styles are appropriate?

Navigation Design
how is the interface structured?

Dialogue Design
how to link interactions?

Information Presentation
how to show feedback/results?

Screen Layout
best grouping/structure/alignment?

- High-level to low-level, task-oriented refinement
- Data and presentation-oriented sometimes better:
 - task focus may suggest long tedious dialogues
 - instead: compact and interactive data presentation
- This lecture: *notations* to describe navigation and dialogue design
Outline

Navigation Design

Dialogue Design

Dialogue Analysis

Exercise

References
Navigation Design

- Golden rules — the $Where^3 What$ of navigation:
 - Where you are
 - Where you’re going (or what will happen)
 - Where you’ve been (or what has been done)
 - What you can do now
Navigation Design

- Golden rules — the $Where^3$ $What$ of navigation:
 - Where you are
 - Where you’re going (or what will happen)
 - Where you’ve been (or what has been done)
 - What you can do now

- Often, navigation is goal seeking:

start

try to avoid these bits!

goal
Navigation Design

- **Golden rules** — the $Where^3 What$ of navigation:
 - Where you are
 - Where you’re going (or what will happen)
 - Where you’ve been (or what has been done)
 - What you can do now

- Often, navigation is goal seeking:

- Different levels of structure, according to domain:
 - *app*: widgets; screens; application; environment
Navigation Design

- Golden rules — the Where3What of navigation:
 - Where you are
 - Where you’re going (or what will happen)
 - Where you’ve been (or what has been done)
 - What you can do now

- Often, navigation is goal seeking:

- Different levels of structure, according to domain:
 - app: widgets; screens; application; environment
 - web: HTML; page layout; site; browser+www
Navigation Design

- Golden rules — the $Where^3 \text{What}$ of navigation:
 - Where you are
 - Where you’re going (or what will happen)
 - Where you’ve been (or what has been done)
 - What you can do now

- Often, navigation is goal seeking:

- Different levels of structure, according to domain:
 - **app**: widgets; screens; application; environment
 - **web**: HTML; page layout; site; browser+www
 - **device**: controls; physical layout; modes; real world
Static Structure Diagrams

Screen hierarchy

- the system
- info and help
- management
- messages
- add user
- remove user

- shows structure/relationship
- system-oriented
- remember: deep is difficult!
Static Structure Diagrams

Screen hierarchy

- shows structure/relationship
- system-oriented
- remember: deep is difficult!

Navigation network

- show different paths through system
- including branches
- more task-oriented
● Old-fashioned technology and limited
● . . . but easily understood
● close connection to HTA
Outline

Navigation Design

Dialogue Design

Dialogue Analysis

Exercise

References
Dialogue in UIs

- **Dialogue** is the pattern of interaction between users and system
 - may be schematic (fill in blanks, e.g. names in wedding vows)
 - but course may change according to responses
Dialogue in UIs

- **Dialogue** is the pattern of interaction between users and system
 - may be schematic (fill in blanks, e.g. names in wedding vows)
 - but course may change according to responses
- In UIs, Dialogue Design:
 - refers to *structure* of interaction
 - often low-level (cf cognitive models)
 - not only conversing, also for instructing, manipulating, etc
Dialogue in UIs

- **Dialogue** is the pattern of interaction between users and system
 - may be schematic (fill in blanks, e.g. names in wedding vows)
 - but course may change according to responses

- In UIs, Dialogue Design:
 - refers to *structure* of interaction
 - often low-level (cf cognitive models)
 - not only conversing, also for instructing, manipulating, etc

- Recall levels:
 - *lexical*: key or button presses/releases, icon shapes
 - *syntactic*: order of inputs/outputs
 - *semantic*: actual effect on application/data
Dialogue Notations

- Dialogue can get buried in the program or designed carelessly “on-demand”
Dialogue Notations

- Dialogue can get buried in the program or designed carelessly “on-demand”
- Instead we may describe it alone, precisely using:
 - diagrammatic notations
 - textual notations
 - specific programming tools

Formal notations useful for testing, esp if executable
Also allow analysis, e.g., to find:
- difficult to reverse actions
- missing actions
- inconsistent actions
- unreachable or unrecoverable states
- likely errors

To give semantics, descriptions can be linked (maybe mechanically) to behaviour or presentation.
Dialogue Notations

- Dialogue can get buried in the program or designed carelessly “on-demand”
- Instead we may describe it alone, precisely using:
 - diagrammatic notations
 - textual notations
 - specific programming tools
- Formal notations useful for testing, esp if executable

Also allow analysis, e.g., to find:
- difficult to reverse actions
- missing actions
- inconsistent actions
- unreachable or unrecoverable states
- likely errors

To give semantics, descriptions can be linked (maybe mechanically) to behaviour or presentation.
Dialogue Notations

- Dialogue can get buried in the program or designed carelessly “on-demand”
- Instead we may describe it alone, precisely using:
 - diagrammatic notations
 - textual notations
 - specific programming tools
- Formal notations useful for testing, esp if executable
- Also allow **analysis**, e.g., to find:
 - difficult to reverse actions
 - missing actions
 - inconsistent actions
 - unreachable or unrecoverable states
 - likely errors
Dialogue Notations

- Dialogue can get buried in the program or designed carelessly “on-demand”
- Instead we may describe it alone, precisely using:
 - diagrammatic notations
 - textual notations
 - specific programming tools
- Formal notations useful for testing, esp if executable
- Also allow **analysis**, e.g., to find:
 - difficult to reverse actions
 - missing actions
 - inconsistent actions
 - unreachable or unrecoverable states
 - likely errors
- To give semantics, descriptions can be linked (maybe mechanically) to *behaviour* or *presentation*.
Dialogue Notation Formalisms

- **State Transition Networks**
 - graphical notation
 - easy to understand
 - limited expressivity
Dialogue Notation Formalisms

- **State Transition Networks**
 - graphical notation
 - easy to understand
 - limited expressivity

- **Grammars**
 - textual
 - can be harder to understand
 - good expressivity
Dialogue Notation Formalisms

- **State Transition Networks**
 - graphical notation
 - easy to understand
 - limited expressivity

- **Grammars**
 - textual
 - can be harder to understand
 - good expressivity

- **Process Calculi**
 - textual, primarily
 - harder to understand
 - good expressivity, esp for concurrency

- Many others
 - flowcharts, JSD diagrams
 - production rules (actions guarded by events)
 - Petri Nets
 - State charts, State and activity diagrams (UML)
Dialogue Notation Formalisms

- **State Transition Networks**
 - graphical notation
 - easy to understand
 - limited expressivity

- **Grammars**
 - textual
 - can be harder to understand
 - good expressivity

- **Process Calculi**
 - textual, primarily
 - harder to understand
 - good expressivity, esp for concurrency

- Many others
 - flowcharts, JSD diagrams
 - production rules (actions guarded by events)
 - Petri Nets
 - State charts, State and activity diagrams (UML)
State Transition Network (STN)

- Like a finite state machine with I/O (a transducer)
 - edges are input events and resulting actions
- Good for capturing sequential behaviour of dialogues
- Poor at capturing concurrency, escape, errors
 - State or edge “blow up”
- Diagrams can become cluttered and obscure
 - clutter: too many states, use hierarchical STNs
 - obscure: state names somewhat arbitrary
Modes (where control mappings change) are introduced by event timings. Modes have obvious drawbacks but economise on controls.
STN for a Drawing Program

Start → Menu
- select 'circle'
 - click on centre
 - rubber band
 - finish

Menu → Circle 1
click on circumference
draw circle

Circle 1 → Circle 2
click on centre
rubber band
draw circle

Circle 2 → Finish
click on circumference
draw circle

Finish → Line 1
double click
draw last line

Line 1 → Line 2
- click on point
draw a line
- click on centre
 - rubber band

Line 2 → Finish
click on first point
draw last line

Finish
Hierarchical STNs

- Combining all operations would give clutter
- Simple structuring solves this, but what are the problems?
STNs for toggles

- **NO bold** → **bold**
 - Click on ‘bold’

- **NO italic** → **italic**
 - Click on ‘italic’

- **NO u’line** → **u’line**
 - Click on ‘underline’
STNs: concurrency problem

Representing toggles concurrently leads to state explosion. Inherent problem: needs a richer notation (e.g., UML state diagrams) or convention (separate STN for “microdialog” in DM).
STNs: concurrency problem

- Representing toggles concurrently leads to state explosion
- Inherent problem: needs a richer notation (e.g. UML state diagrams) or convention (separate STN for “microdialog” in DM).
Grammars

- Regular expressions useful for making compound actions, e.g.

\[
\text{selectline} + \text{click} + \text{click}^* + \text{doubleclick}
\]

Same computation model as JSD.

- BNF and extensions:
 - good for low-level detail, command line syntax
 - more powerful than STNs

BNF with “visual terminals”

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENU ITEM SELECT := point to item + mouse down + MENU RESPONSE</td>
<td></td>
</tr>
<tr>
<td>MENU RESPONSE := invert item</td>
<td>blink item</td>
</tr>
</tbody>
</table>

- Grammars may have cognitive validity
- Still not good for concurrency, pervasive commands

NB: non-standard + used for sequence
CSP dialogue specification

\[
\begin{align*}
A\text{dder} &= \text{add-prompt!} \rightarrow \\
& \quad (\text{quit?} \rightarrow \text{skip} []) \\
& \quad \text{zero?} \rightarrow \text{show(total)} \rightarrow A\text{dder} [] \\
& \quad \text{num?} \rightarrow \text{show(total + num)} \rightarrow A\text{dder}) \\
D\text{atabase} &= \text{db-prompt!} \rightarrow \\
& \quad (\text{quit?} \rightarrow \text{skip} []) \\
& \quad \text{set?} \rightarrow \text{Getkey ; Getval} [] \\
& \quad \text{get?} \rightarrow \text{Getkey ; Printval}) \\
G\text{etkey} &= \text{key-prompt!} \rightarrow \text{getkey?} \\
G\text{etval} &= \text{val-prompt!} \rightarrow \text{getval?} \\
S\text{ystem} &= A\text{dder} \parallel D\text{atabase} \\
\end{align*}
\]
Outline

Navigation Design

Dialogue Design

Dialogue Analysis

Exercise

References
We can use descriptions to check some precise properties, of individual states or whole dialogue:

- **Completeness**
 - What happens on event X in state Y?

- **Reversibility**
 - How do we reverse action Z (e.g. “select line”)
 - ... maybe navigation through dialog; *not undo*

- **Reachability**
 - Can you get anywhere from anywhere?
 - How easily?

- **Dangerous states**
 - Some states *should* be hard to get to
 - Perhaps guarded by warning dialogue
 - ... although obvious problem if overused
We can also analyse descriptions informally:

- check style guidelines, usability requirements
- consider *lexical* syntax
 - differentiation and visibility of modes/states
 - verb-noun (menu style) versus noun-verb (direct)
 - physical layout (e.g. key sequence convenience, accidents)
 - not independent of dialogue
- consider semantic intention
 - ways of attaching/checking semantics
 - maximising syntactic description
Outline

Navigation Design

Dialogue Design

Dialogue Analysis

Exercise

References
Exercise: Dialogue Notation

1. Pick your favourite application program — a word processor, drawing program, web browser
2. Considering the high-level static structure
 ▶ give a fragment of a screen hierarchy diagram
3. Considering some low-level interaction structure
 ▶ enumerate some input events and interface reactions
 ▶ produce some hierarchical STNs
4. What did you find difficult to capture? Do your diagrams help you suggest any improvements to the program’s interactions?
5. Many programs allow multiple windows (e.g. showing documents, or tool options) at once. Investigate ways of capturing this using dialogue notations.
These slides are mainly based on:
 - Dix et al, Chapters 5 (esp. 5.6), 16.