
Software Software Software Software
Deployment and Deployment and Deployment and Deployment and

ConfigurationConfigurationConfigurationConfiguration

www.dcs.ed.ac.uk/~paul/publications/deployment.pdf

Paul Anderson
Division of Informatics

University of Edinburgh
<paul@dcs.ed.ac.uk

Configuration And DeploymentConfiguration And DeploymentConfiguration And DeploymentConfiguration And Deployment
! Configuration (in this context) is the process

of customizing an instance of a software
package for:
� A particular site
� A particular host
� A particular user (we will not address this)

! Deployment involves the installation of the
software, usually on multiple, remote hosts

! Configuration can occur at different stages:
� Build (compile) time
� Deployment (install) time
� Runtime

! The package has an INSTALL script
� Runs unknown commands as root
� Expects an interactive dialog
� Edits inappropriate system files
� Installs a daemon

! The package attempts to install files:
� In a directory which is mounted read-only
� For an inappropriate architecture
� Into an automount point

! There is no way of identifying what has been
installed, and no way or removing it

Nightmare.Nightmare.Nightmare.Nightmare.tgztgztgztgz

~paul/Publications/Workshop_Report.pdf (1992!)

SummarySummarySummarySummary

! Choosing pathnames

! Compile-time configuration

! Packaging
� Package management tools
� Creating RPMs
� Install-time configuration

! Deployment

! Runtime configuration
� LCFG

Choosing PathnamesChoosing PathnamesChoosing PathnamesChoosing Pathnames
! Different areas of the filesystem have

different properties:
� Local or network mounted (or an automount point)
� Single or shared architecture
� Read-only or read-write
� Small or large filesystem

! Different pathnames will belong to different
areas at different sites

! Pathnames used at install time might not be
the same as the pathnames used at runtime!
� When installing onto a read-only network drive
� When building RPMS (we don�t have root access)

Pathname StandardsPathname StandardsPathname StandardsPathname Standards
! Filesystem Hierarchy Standard:

� Specifies guiding principles for each area of the
filesystem

� Specifies the minimum files and directories
required

� Enumerates exceptions to the principles
� Enumerates specific cases where there has been

historical conflict
! http://www.pathname.com/fhs/

! Individual sites or projects may have their
own standards

SummarySummarySummarySummary

"Choosing pathnames

! Compile-time configuration

! Packaging
� Package management tools
� Creating RPMs
� Install-time configuration

! Deployment

! Runtime configuration
� LCFG

CompileCompileCompileCompile----time Configurationtime Configurationtime Configurationtime Configuration
! It is not always practical to allow everything

to be configured dynamically at runtime
� Eg. Selecting a threading or non-threading library

! Some parameters must be fixed at compile
time

! Compile-time configuration leads to multiple
(different) versions of the binary package,
and care is required to distinguish between
these �flavours�.

! Configuration should be part of the standard
build process

CompileCompileCompileCompile----time Toolstime Toolstime Toolstime Tools
! In simple, cases, storing configuration information

in a single header file may be sufficient.

! In a multi-package project, simple ad-hoc scripts
might be used to substitute parameters from a
common configuration file
• www.dice.informatics.ed.ac.uk/doc/dice-
buildtools.pdf

! GNU autoconf is a tool based on an extensible set
of m4 macros which can automatically detect many
different aspects of the system.
� Discovered parameters can be used to generate C header

files, or substituted in other text files
� User-supplied parameters can be included
• http://www.gnu.org/software/autoconf/

SummarySummarySummarySummary

"Choosing pathnames

"Compile-time configuration

! Packaging
� Package management tools
� Creating RPMs
� Install-time configuration

! Deployment

! Runtime configuration
� LCFG

PackagingPackagingPackagingPackaging
! A (good) packaging tool supports:

� Bundling of files into an archive format
� Recording of filenames to enable de-installation
� Handling of version numbers to support upgrading
� File conflict detection
� Dependency management

� Run-time dependencies
� Build-time dependencies
� Install-time dependencies

� Execution of pre/post install/de-install scripts

Package Management IssuesPackage Management IssuesPackage Management IssuesPackage Management Issues
! Full benefits are only gained if all the

software on a system is handled by the same
package management system
� On many platforms, this is not always possible (and

required software may be unavailable in the
necessary format)

! Support for �flavours� is not well developed
and usually involves encoding in the package
filename.

! Some or all files in a package may be
�relocatable� so that a pathname prefix can
be set at install time

Pre/Post Install ScriptsPre/Post Install ScriptsPre/Post Install ScriptsPre/Post Install Scripts
! Pre/Post install scripts are a frequent source

of installation problems. They should be
avoided if possible. Otherwise:
� Ensure that actions taken at install time can be

(and are) reversed at de-install time
� Do not modify files belonging to other packages
� In particular, do not modify system configuration

files - /etc/passwd, /etc/inetd.conf, etc..
� Do not assume the availability of user-interaction,

or even a console device
! If some modifications to the system-wide

configuration are necessary is is useful to
document these, and/or to provide a separate
script.

Package Management ToolsPackage Management ToolsPackage Management ToolsPackage Management Tools
! RPM

� Manages all software packages on Redhat Linux
systems

• http://www.rpm.org/

! GPT
� The Globus packaging tool
• http://www-unix.globus.org/packaging/

! Solaris pkgadd
• http://sunsite.org.uk/
solaris_freeware/pkgadd.html

! Conversion between some formats is possible
automatically: Eg. GPT => RPM

RPMRPMRPMRPM
! An RPM package is created from:

� Packed source file (foo.tgz)
� Patches (foo1.patch)
� Spec file (foo.spec)

! A single command can build the package:
• rpm -ba foo.spec

! This creates a binary RPM with the architecture as
a �flavour� in the filename:
� foo-2.35-1.i386.rpm

! It also creates a source RPM (SRPM) containing
everything necessary to rebuild from the source:
• foo-2.35-1.src.rpm

Creating Creating Creating Creating RPMsRPMsRPMsRPMs
! Creating RPMs involves

� Packaging sources into a tar file
� Writing a specfile
� Using rpm -ba

! This process should be integrated with the
build process
� It is useful to be able to reconstruct a whole set

of RPMs from a CVS repository.
� This is possible, if each module supports, for

example: �make rpm”
! Building multiple package formats for the

same package may be necessary to support
multiple platforms

A Skeleton A Skeleton A Skeleton A Skeleton SpecfileSpecfileSpecfileSpecfile
Summary: .. description

Name: foo

Version: 2.35

Release: 2

Source: foo-2.35.tgz

%prep

%setup foo-2.35.tgz

%build

make

%install

make install

%files

/usr/bin/foo

Summary: change protection on Zip disk

Name: ziplock

Version: 1

Release: 2

Copyright: GPL

Group: Utilities/System

Source: ziplock-1-2.tgz

Packager: Paul Anderson<paul@dcs.ed.ac.uk>

BuildRoot: /var/tmp/ziplock-build

A Real A Real A Real A Real Specfile Specfile Specfile Specfile (1)(1)(1)(1)

A Real A Real A Real A Real Specfile Specfile Specfile Specfile (2)(2)(2)(2)
%description

This program

%prep

%setup ziplock-1.2

%build

make

A Real A Real A Real A Real Specfile Specfile Specfile Specfile (3)(3)(3)(3)
%install

rm -rf $RPM_BUILD_ROOT

mkdir -p $RPM_BUILD_ROOT/usr/bin

mkdir -p $RPM_BUILD_ROOT/usr/man/man1

make install PREFIX=$RPM_BUILD_ROOT

%files

%defattr(-,root,root)

%doc README ChangeLog TODO

%doc /usr/man/man1/ziplock.1

/usr/bin/ziplock

SummarySummarySummarySummary

"Choosing pathnames

"Compile-time configuration

" Packaging
� Package management tools
� Creating RPMs
� Install-time configuration

! Deployment

! Runtime configuration
� LCFG

InstallationInstallationInstallationInstallation
! A binary RPM can be installed with a single

command:
• rpm –i foo-2.35-1.i386.rpm

! This:
� Validates prerequisite dependencies
� Checks for file conflicts
� Executes and pre-installs scripts
� Installs the files
� Records the installed files in a database
� Executes and post-install scripts

! The rpm can later be removed with:
• rpm –e foo

DeploymentDeploymentDeploymentDeployment
! Large-scale deployment tools will manage the

packages on a cluster of machines by
automatically scheduling installs, de-installs
and the correct ordering for updates.
� Eg. updaterpms
• www.dcs.ed.ac.uk/home/ajs/
linux/updaterpms/index.html

! The required package sets for each machine
are specified in a central configuration file

! Correct dependency information is important
! Some tools will automatically monitor a

repository for newer versions

SummarySummarySummarySummary

"Choosing pathnames

"Compile-time configuration

" Packaging
� Package management tools
� Creating RPMs
� Install-time configuration

"Deployment

! Runtime configuration
� LCFG

RunRunRunRun----time Configurationtime Configurationtime Configurationtime Configuration
! Runtime configuration is typically performed

by reading configuration files
� (Although, a program might also use external data

sources such as LDAP)
! Any configuration files deployed with the

code can only be considered as a default
because they usually need to contain host-
specific information

! Normally, the local site will provide some way
of populating these configuration files

! Existing configuration files must not be
overwritten when updating an RPM version!

LCFGLCFGLCFGLCFG
! LCFG is a configuration framework developed At

Edinburgh University and currently being used by
the European DataGRID testbeds
• www.lcfg.org/

! Site-wide configuration information is specified in a
central configuration repository which is compiled
into individual host �profiles�

! The XML profiles are distributed to the clients
over HTTP

! Scripts on the clients substitute parameters from
the profile into individual configuration files

An LCFG Template FileAn LCFG Template FileAn LCFG Template FileAn LCFG Template File
The name of the maildrop file

mmdflfil: .mail

Hardcoded POP server name

pophost: <%mhpop%>

List of smtp servers

<%if:<%mhsmtp%>%><%else:%>#<%end:%>

servers: <%mhsmtp%>

Dynamic ReconfigurationDynamic ReconfigurationDynamic ReconfigurationDynamic Reconfiguration
! LCFG will normally update configuration files

as soon as a central configuration change
occurs

! Daemons must be prepared to reconfigure
�on-the-fly� wherever possible, either on
receipt of a signal, or by monitoring the
configuration file for changes

! Programs can access LCFG configuration
information directly

SummarySummarySummarySummary

"Choosing pathnames

"Compile-time configuration

" Packaging
� Package management tools
� Creating RPMs
� Install-time configuration

"Deployment

"Runtime configuration
� LCFG

Some Key PointsSome Key PointsSome Key PointsSome Key Points
! Use (global or local) standard pathnames, but

make them configurable
! Integrate compile-time configuration and

package construction with the build system
! Distribute software in a standard package

format
! Avoid intrusive install scripts

� If changes are required to other parts of the
system, allow the system manager flexibility in how
this is achieved

! Be prepared to reconfigure long-running
processes �on-the-fly�

