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Abstract

A kerne! specification language called ASL is presented. ASL comprises five fundamental but powerful specification—
building operations and has a simple semantics. Behavioural abstraction with respect to a set of observable sorts can
be expressed, and {recursive) parameterised specifications can be defined using a more powerful and more expres—
sive parameterisation mechanism than usuval, A simpie notion of impiementation permitting vertical and horizontal
composition (i.e. it is transitive and monotonic) is adopted and compared with previous more elaborate notions, A
collection of identities is given which can provide & foundstion for the development of programs by transformation.

1 introduction

in recent years there has been & great deal of work on developing the slgebraic approach to specification of data
types and programs. Guttag [Gut 75] and others began by viewing an abstract data type as a class of
heterogeneous aigebras and showing how such a type can be specified by a signature (a coliection of sorts and
operators) together with & set of axioms., For quite simple data types (e.g. natural numbers) such an approach can
be used without problems. But it is more convenient to build large algebraic specifications in & structured fashion by
combining and modifying smaller specifications. Several specification languages have been developed to support this
structured approach, including Clear [8G 77, 80] (cf. [HKR 80]), CIP-L [Bau 81) and LOOK [ZLT 82, ETLZ 82].
Each language provides a certain set of operations for use in building specifications together with a convenient syntax
and a formal semantics.

We describe here (section 3) & kernel language for algebraic specification caled ASL (a significantly revised ver-
sion of the ASL in [Wir 82]). This language is nothing more than a collection of five fundamental but powerful
specification-building operations. it has a simple semantics in comparison with high—level specification languages like
Clear, CIP-L and LOOK. ASL is intended mainly as a kernel language rather than for writing specifications. That is,
it provides a solid foundation on top of which high—level specification languages can be built, The semantics of the
constructs of such a language would then be expressed by mapping them into ASL expressions.

ASL differs from previous specification languages in a number of important respects:

= ASL is a language for describing classes of algebras rather than for building sets of axioms (theories) like
most other specification languages. Some of the operations of ASL (e.g. abstract) cannot be viewed as
simple operations on theories.

- An ASL specification may be /oose (i.e. it may possess non-isomorphic modeis). Loose specifications are
aiso allowed by Clear, CIP-L and LOOK but not by some previous approaches {(e.g. the initial aigebra ap—
proach [ADJ 78, 78]). Loose specifications can be precise while leaving some freedom of choice (e.g.
to the implementator).

— ASL is ori d toward a ‘behavioural’ approach to specification rather than toward an initial or finai aigebra
approach. Along with [GGM 76] and others, we argue that it is usually irrelevant how values of a sort
are represented in an algebra as long as the desired input/output relstion is satisfied, ASL includes a
very general abstraction operation which can be used to behaviourally abstract from a specification, relax~
ing interpretation to those aigebras which are behaviourally equivaient to a model. This can be used to
write ‘abstract model' specitications as in [LB 77].

*The full version of this paper is available as Report CSR~131-83, Dept. of Computer Science, Univ. of Edinburgh.



=~ The approach to parameterisation in ASL (section §} is more general and flexible than in other languages.
The main difference is that the signature of the result of applying a parameterised specification may
depend on the signature of the actual parameter in a more flexible way than before. Since parameterised
specifications may be recursive we can write ‘abstract domain equations® as in [HR 80] and [EL 81].

Since ASL is a powerful specification language it is possible to adopt a simple nction of the implementation of one
specification by another (T—*T*) which can easily be extended to the case of parameterised specifications. Then the
transitivity of imp} tati {vertical ition == if T~3T* and T*~>T" then T~>T") foliows immediately and

P

the monotonicity of ASL's operations gives horizontal composition (specification-building operations preserve implemen—
tations, e.g. if PP and A~ A’ then P(A)~>P'(A’)). These results permit the development of programs from
ASL specifications in a gradual and modular fashion. A number of more elaborate notions of implementation can be

expressed using ASL, including noti which coincide with or approximate most previously proposed definitions.

An advantage of the kernel language approach is that facts about the basic operations (easy to prove becsuse of
the simple semantics) sut tically ext to facts ning the high-level constructs of any language built on top

of the kernel. Thus the ASL identities and relations given in section 7 extend to identities and relations on any lan—
guage built on top of ASL. These could be used as the basis for a methodology of program development by trans—
formation of specifications,

2 Algebraic background

In this section the algebraic definitions which will be needed throughout the rest of the paper are presented.

2.1 Signatures

In order to get a ciean mathematical semantics of parameterisation with fixad points of recursive parameterised
specifications (see section 5) we need a more elaborate definition of signatures and signature morphisms than the
standard one (as in e.g. [BG 80]). First, we need to fix the set of possible sorts and operators to ensure that the
possible signatures and signature morphisms form sets rather than classes, Then we extend the usual definition of a
signature morphism ~- as a total function from one (finite) signature to another —- to a partial function from the
(infinite) set of all sorts and operators into that set, Since we think that signature morphisms should be computable
we require them to be partial recursive functions. Formatly:

Fix arbitrary countably infinite sets A of sorts and I' of operators,
Def: A signature I is a pair <S,{1> where SCA is a set (of sorts) and {1 is a family of subsets of I' (operators)

indexed by §*XS. The index of a set O€fl is the type of every element of O, Let the universal signature Zuniv be

‘suniv' numv> where sun'w=A and nuniv is the family (mus eAXA"

Def: A signature morphism O is a pair <f,g> where hsuniv» svni v is a partial recursive function and g is a family of
. . . . * *, a% g% -

partial recursive functions gus. (nuniv)us-’ (Quniv)f* (u)(s)? where uESU niv* sesuniv and f ‘suniv suniv is the ex

tension of f to strings of sorts, We write 0: I L' if £=0"1(L") (i.e. L is the inverse image of L'}, Then
o:I- L implies that 0‘ 5 {0 restricted to the domain L) is a total function into L', Furthermore, we write O(s)
for #{s} and O{(w)} for 9, (W), where weﬂus.

Note that infinite signatures are permitted; for examples showing how this could be useful see [Wir 827.
Moreover, the definition of signature permits overloading (i.e. several operators having the same name but different
types) as does the definition in [BG 80].

According to the above definition, a signature morphism o:Z~» L' is almost the same as in {BG 80]; the dif-
ference is that a signature morphism O can simultaneously be O: LA~ LA and O: LB~ L8 for LA#ZB and LA'#LE'.
This difference is important. Signature morphisms are used for renaming the sorts and operators of a specification
(via the derive operation); since it is possible to define signature morphisms which ‘make sense’ over a range of sig-

natures, we can (for example) write a parameterised specification which systematically renames the sorts and
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operators of any specification it is given as an actual parameter, which is impossible in Clear, CiP-{, LOOK, or the
ADJ approach {o parameterisation [ADJ 78, 80]. This point is discussed at greater length in section §.

2.2 Algebras

The definitions of a (total) L-algebra A with carriers |A] and of a L-homomorphism are as usual, except that the
carrier [A| s is required to be non-empty for every s€sorts(L), The reason for this requirement is that permitting
such degenerate algebras would give rise to problems in later definitions (see the definitions of reachable and Ew in
soction 2.4). The class of all L-algebras will be denoted Alg(Xl).

Given a L'-algebra A' and an injective signature morphism o: L~ L', we can recover the L-algebra buried inside
A' (since A’ is just an extension of this algebra). The definition extends without modification to the case in which O
is not injective, where the I-algebra will contain multiple copies of some of the carriers and operations of A",

Def: If O=<f,g> is a signature morphism O:L-> L' and A" is & L'-algebra, then the O-restriction of A", written 3\'[ P
is the L-aigebra with carrier |A] s=1A'!f(s for each sesorts(I), and wA=g(m) A for each weopns(L). When O is

obvious we 4 use the notation A’ Z'

2.3 Terms and the term aigebra

L-terms, the translation ¢(t) of a L-term t by a signature morphism 0:L->L', and the term algebra Wz(x)
are defined as usual, For some choices of L a(td X, WZ(X) will have an empty carrier for some sort s€sorts(L)
(in this case WE(X) is not an algebra, strictly speaking). We then say that W}:(X) is emptly in 5. f we have a
Z-term t and an assignment @:X->{A| of values in A to variables then the value of t in A under ¢ is denoted c)#(t)
ti.e. eb#:wz(xHA is the unique h phism extending $).

Def: If L is a signature then let Xy be & sorts(L)-indexed set of variables with (Xy)=IN for each s€sorts(Z). I
L is obvious we will write X instead of XZ‘ We write Xys Koo Yo 8 etc, instead of 13, 2s ste, e(XZ) s

Notation: if Z is an S~indexed set and S'CS, then Zs, denotes the restriction of Z to §'. For example, the notation
IWZ(XS)I s refers to the (S'-indexed) set of L-terms of sorts in $' containing variables of sorts in 8.

2.4 Properties of algebras and W-equivalence

Def: If A is a Z~algebra and SCsorts(L) is a set of sorts, then A is reachable on S if for every sort s€S and every
carrier element a€|A} s there is a term te|w£(xs.ns and assignment ¢:XE—> |A] such that ¢#(t)za, where
S'=sorts{L}-8. Unreachable carrier elements are called junk. If an algebra is reachable on all sorts then it is
tinitely generated.

Equivalently, A is reachable on S iff there exists a surjective homomorphism f:wz(xs.)—w.

Def: A L-formula is a first~order equational formula on L; that is, a formula built from L-terms using = (term
equality), the logical connectives 71, A, V and =3 and the quantifiers ¥V and 3. Satisfaction of a L-formula e by a
L-slgebra A (Afe) is defined as usual.

In tact, any notion of L-formula will do; we only need to know when a L~formula is satisfied by & I~algebra.
The definition above gives one example of such a notion. The semantics of ASL can thus be viewed as
parameterised by the notions of formula and satisfaction. The semantics of Clear [BG 80] is parameterised by an
institution [GB 83] ~~ i.e. by notions of signature, aigebra, formula and satisfaction which must satisty certain
properties. The semantics of ASL can be made independent of the notion of aigebra and (io some extent) of the
notion of signature as wall, but the properties which the notions must satisty are different (see [SW 83] for
details).

Def: If A A" are L -algebras and WSIWZ(XH then A and A’ are W-equivalent (A Ew A’) if there are surjective as-
signments @:X— |A| and ¢':X—> |A'] such that vt,t'ew. (¥ ()=pB(t) & ¥ t)=pHn)),



This definition generalises the various notions of behavioural equivalence in the literature. If OBSCsorts(L) is a
set of observable sorts then two L-algebras are considered to be behaviourally equivalent with respect to OBS if all
computations yielding a result of observable sort give the same result in both algebras, There is some disagreement
over which class of inputs to these computations should be considered: |W2(X)|OBs—equivalence (all inputs) is be-
havioural equivalence according to [Rei 81] and [GM 82]; 'WX(XOBSHOB'S
is behavioural equivalence in the sense of [Sch 82] and [GM 83]; and lwzw)loss—equiva!ence {no inputs) is the
same as behavioural {or 1/0) equivalence in [BM B81] and [Kam 83] (and implied by {GGM 761} except that in

these three papers only finitely generated aigebras are considered. There are other choices for W which yield inter-

~aquivalence (inputs of cbservable sorts)

esting equivalences; one of these (used to define the junk operation) is given in the next section.

3 The language ASL and its semantics

ASL is & language for describing classes of algebras, # contains five constructs, each construct embodying &
primitive operation on classes of algebras. These are:
- Form a basic specification having a given signature L and given axioms E. This specifies the class of ail
S-algebras satisfying E.

- Take the sum T+T* of two specifications, specifying the class of aigebras obtained by combining a model of
T with a model of T*. This allows large specifications to be built from smailer specifications.

- Restrict interpretation to those modeis which are reachable on certain sorts, Requiring reachability is the
same as restricting by a certain second-order principle which is equivalent to structural induction.

- Derive & specification from a richer specification by renaming or forgetting some sorts and operators but
otherwise retaining the class of models. This can be used to hide the details of a constructive specifica-
tion to give a more abstract result.

— Abstract away from certain details of the specification, relaxing interpretation to those algebras which are
the same as a model with respect to some observability criterion, With an appropriate observability
criterion this amounts to behavioural abstraction with respect to a set of observable sorts.

These fundamenta!l and mutually independent operations can be composed to give higher—ievel operations for buitd-
ing specifications in a wide variety of ways. ASL is a kernel language which provides a foundation on top of which
high—level specification languages such as Clear, CIP-L and LOOK can be built, The semantics of the specification-
building constructs of these languages can be expressed by mapping them into ASL expressions. A specification lan-
guage has been defined on top of a previous version of ASL [Gau 83] and we have informally redefined the
specification part of CIP-L on top of ASL (see [Wir 82] for the basic idea), We do not intend that ASL itself be
used directly for writing specifications, aithough in the next section examples are given showing that this is possible.

Syntax

Expr 1:= Basic~Spec | Sum | Reachable | Derive | Abstract
Basic-Spec 1:= < signature, set of formulas >

Sum 1= Expr + Expr

feachable ::= reachable Expr on set of sorls

Derive ;1= derive from Expr by signature morphism

Abstract ::=  abstract Expr wrt set of terms

No special syntax is provided for signatures, sets, formulas or signature morphisms; the usual mathematical nota—

tion will be used in examples,

Semantics
The semantics of ASL is defined by two functi

Sig: Expr — signature
Mod: Expr = class of algebras

such that for any expression T, ModﬁTB is a class of sigKT]]—aigebras. We use square brackets [ ] to denote
classes. The definition of Sig below includes context conditions for each construct; if these are not satisfied then the
expression is invalid. It is easy to prove that for any specification T, MadﬁT]] is closed under isomorphism.
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Sig[[d:,b]] = L the operators and sorts used in € are in I,
siglter] = siglt] usiglr]

sigl] reachable T on 5] = siglt] sesorts(sigl T

sigllderive rom Tty 6]l = ¢ a:L-»sigl[T] trecan that Z=0-V(sigf rIn
sigfabstract Twrt wl = sigllv] WS Wy (X)], where L=sigl v ]l

Mmodl[<Z,E> ] = [ Acaig(E) | AEE ]

moa[Ter'] = [ AeaigsiglTer D | A}SigETB eMod[1] ana A}SigﬁT'ﬂeModKTlB ]
Mod [ reachabie Ton s = [ Aemod[T] | A is reachadte on & 3

mod[desive rom Ty o] = [ A}o i semodlT] 3

Mod [ abstract Twrt wl = [ Aeagesigl7]y | 3agemod[1]. (a; =, A) ]

The + operation is not quite the same as + in Clear, since no account is taken of shared subspecifications. This
feature of Clear is designed to make it easy to build specifications without worrying about the names of sorts and
operators. Such high-ievel features have no place in a kernel language like ASL., The same effect can be achieved
manually by use of + in conjunction with the derive operation.

The reachable construct restricts interpretation te models which are reachable on the given set of sorts S. It can
be used to express the data operation in ‘hierarchical’ Clear {SW 82] and the based on construct of CIP-L., The data
operation of ‘ordinary’ Clear [BG 80] and the constraining operation of LOOK {ETLZ 82] cannot be fully expressed in
ASL because they restrict to the class of /nitial models, We do not view this as a disadvantage. In our opinion the
initial algebra approach to specification [ADJ 76] adopted by Clesr and LOOK has more problems than advantages;
this view seems to be shared by others, e.g. [GGM 78], [Wand 79] and [Bau 81]. Some of these problems are:
initial models do not always exist for specifications having axioms which include V or 3; to prove that an inequality
t#t' holds, one must in general prove that the equality t=t' is not provable; implementations have unpleasant
properties in the presence of an operation for restricting to initial models [SW 82]; and in the stepwise development
of specifications and programs, the set of constructors for a data type is often fixed at an early stage, whereas the
inequalities satisfied by the type are only established once all design decisions have been made. No power is lost by
abandoning the initial algebra approach [BBTW 81].

The derive operation corresponds to derive in Clear. This already gives a hint of abstraction because it is possible
to construct a specification which employs auxiliary sorts and operators and then use the derive operation to forget
them, retaining only the semantics of the remaining sorts and operators. But this is not real abstraction, because

the structure induced by the auxiliary operators r ins ( pare the examples List and Impoverished-List in the next

section). The real abstraction is done by the abstract operation which ignores invisible structure {compare the ex-
amples Impoverished-List and Behaviourai-Set). The result of abstracting from T with respect to a set W of visible
terms is the class of sigebras which are W-equivalent to 8 model of T. No similar opoeration is found in any other
specification language, so far as we are aware.

An interesting use of abstract is to express behavioural abstraction with respect to a set of observable sorts:

behaviour T wrt OBS =, abstract T wrt |Wy(X where L=sigd 11 and oBSCsorts(D)

def oss’loss
(Please note that behaviour is only an abbreviation for a special case of abstract; it is not a new operation of ASL.)

This gives the class of ail algebras which are behaviourally equivalent (with respect to OBS) to a model of T, using a
tion of behavioural equival due to [Sch 82] and [GM 83] (this is the notion which seems to fit most gracefully
with our notion of implementation). This operation can be used to abstract from a concretely-specified input/output

behaviour as in the 'abstract model specifications’ of [LB 77]. it also allows us to adopt a very simple notion of im-
plementation, as discussed in section 6.



Another use of abstract is to express the junk operation:

junk Ton'S =, . abstract T wrt [Wy(Xg)|  where Z=sigll 7]l sCsorts(Z) and '=sorts(£)-s
This gives those algebras which are the same as models ¢f T except that they may contain arbitrary junk (non-reach-
able valves) in sorts §. It can be seen as a kind of dual to the reachable operation. Note that some of the models
of junk T on S will be reachable on S even if none of the models of T are. We can select these by applying the

reachable operation. This particular combination occurs often so we give it a name:

restrict T on § Zdef reachable (junk T on S) on S8  where SCsorts(T)

This gives the class of reachable (on S) subaigebras of models of T which are unchanged for sorts not in S.

The foliowing abbreviations will be convenient in the sequel:

reachable T =def reachable T on sorts(T) restrict to the finitely generated models of T
junk T “dof junk T on sorts(T) sifow arbitrary junk in all sorts
restrict T Zdef rostrict T on sorts(T) finitely generated subalgebras of models of T

Clear's enrich operation {add some sorts, operstors and axioms to a specification) can be expressed using the +

and basic~spec operations:

enrich T by sorts S opns F axioms & = def T+< <sorts{TYUS, opns(TYUF>, €>

The notation T=T' (where T and T' are ASL expressions) will be ysed to abbreviate Mod![TB =Mod[IT']];
v, TCT siglrJ=sig[ '] an¢ moall TBemoa ' ].

4 Examples

The specifications of booleans, natural numbers, and lists of natural numbers in ASL are much the same {except
for syntax) as they would be in CIP-.:

Bool = def reachable List = dof reachable
enrich § by enrich Bool + Nat by
sorts  bool sorts  list
opns true, false : bool opns nil : fist
axioms true # faise cons : nat, list -» list
head : fist = nat
Nat % gef roachabie tail 1 lst = list
enrich ¢ by € : nat, list = bool
sorts  nat axioms head(cons(a,l)) = a
opns O : nat tail (cons(a, )} = |
suce @ nat > nat a € nil = false
axioms 0 ¥ succ(x) a € cons(a,l) = true
succ(x) = succly) & x =y a#b ==> a €cons(b,l) = a €!
Al modeis of each of these specifications are isomorphic to the standard def. The axi in Boo! and Nat are re~

quired to avoid trivial models, in contrast to Clear and LOOK. The inequations in Bool and Nat together with the

of List ind inequations like cons(a,cons(a,!))}*cons(a,!} so it is not necessary to state them expiicitly.

Suppose LSet denotes the following signature:

sigl oot ]] U siglnat]]l U ¢ sorts  set
opns ¢ : set
add : nat, set — set
€ : nat, set ~* bool }

and G:ZSet—-’sigEListB is the signature morphism with O(set)=list, ¢(@)=nil, G(add)=cons and OT{x)=x for ali
other sorts and operators x in LSet. Then the specification

impoverished-List =, . derive from List by O

has exactly the same class of models as List except for the absence of head and tafl and the renaming of the sort list
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and some of the remaining operators. The formulas add(a,add(a,S))#add(a,S) and
a#b =3 add{a,add{b,S})*add(b, add(a,S)) stil! hoid in every model of Impoverished-List, although there is no
longer any context in which valves like [1,2], [2,1] and [2,2,1] can be distinguished,

Behavioural abstraction results in a broader class of models:

Behavioural—Set =d of behaviour impoverished-List wrt {nat, bool}

Models of Behavioural~Set include the models of impoverished-List as well as the algebra with a carrier consisting of
the set of bags of natural numbers (satisfying add(a,add(b,S))=add(b, add(a,S)) and add(a,add(a,S))#add(a,S))
and the standard model of finite sets with carrier P(IN) (where add(x,add(b,S))=add(b,add(a,S)) and
add{a,add(a,S}J=add(a,8}) and ail algebras isomorphic to them. All models may include arbitrary junk for the sort
get. Trivial models (satisfying e.g. add(a, @ )=¢) are still excluded, If we form a specification from List which is
similar to Behavioural~Sat but with the order of derive and behaviour reversed, the result is identical to
Impoverished-List except that its models may contain junk (and different from Behavioural-Set):

junk impoverished-List on {set} = derive from (behaviour List wrt {booi,nat}) by 0 C Behaviourai-Set

Behavioural-Set has almost the same class of models as the following more direct specification of sets:

Loose-Set = def enrich Bool + Nat by
sorts  set axiomeg a € ¢ = faise
opns ¢ : set a € add{(a,8) = true
add : nat, set - set a#b = a € add(b,S) = a €8S

€ : nat, set ~> bool

The only difference between the models of Behaviourai~Set and Loose~Set is that models of Behavioural~Set may con-
tain arbitrary junk of sort set, while any junk in models of Loose-Set must satisty the axioms of Loose-Set:

Behaviourai-Set = junk Loose-Set on {set} = behaviour Loose~-Set wrt {nat, bool}

In order to restrict interpretation to the standard mode} of sets we must add more information to Loose~Set:

Set = dof enrich reachable Loose-Set on {set} by
axioms add(a,add(b,S)) = add(b,add(a,$s))
add{a,add(a,8)) = add(s,$S)

The only model of Set (up to isomorphism) is the standard model. The same class of models results if the order of
enrich and reachable is switched. Now
Behavioural-Set = behaviour Set wrt {bool,nat} = behaviour (junk Set on {set}) wrt {bool, nat}

In fact, if Set is enrich Loose~Set by axioms E or enrich reachable Loose~Set on {set} by axioms E where E is any
set of axioms consistent with those in Loose-Set, then these identities stili hoid,

Set can be extended by adding a new value, an ‘infinite set' which contains every natural number:

Infinite~Set =def reachable enrich junk Set on {set} by
opns intset : set
axioms add(a,infset) = infset
a € infset = true on {set}
In every modei of Infinite-Set the value of infset will be different from every other vaiue of sort set. Apart from this
new valve, the models of infinite-Set are exactly the models of Set. This kind of extension (in which a new con-

structor is added to a previously hable-restricted sort) is not possible in Clear, CiP-L or LOOK.

if we use derive to forget the operator infset the result is aimost the same as Set; the onty difference is that
every model will contain a single junk element. We can apply restrict to obtain their reachable subalgebras:

Set = restrict (derive from Infinite~Set by O) on {set}

where o:Sig[[ set <> sig [ infinite-set ]| is the inctusion.

Suppose that Loose~Set is enriched as follows:
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Loose~-Bag =aef enrich Loose-Set by
opns  howmany : nat, set = nat
axioms howmany(a,¢) = 0
hewmany(a, add(a,8)) = succ(howmany(s,S))
a# b => howmany(a,add(b,S)) = howmany(a,S)

Recall that the models of Loose—Set included the standard model where add(a,add{s,$))=add(8,S) as well as modeis
where add(a,add(a,8))#add(a,$). The models of Loose~Set in which repeated elements are ignored cannot be ex-
tended to give models of Loose~Bag; if {a,a}={a} then howmany(a, {a, a})=howmany(s, {a}) so 2=1. The other
models of Loose~Set (extended by howmany) remain, The original modals of Loose-Set (along with models contain—
ing arbitrary junk of sort set) can be regained by forgetting howmany and applying behavioural abstraction:

behaviour (derive from Loose-Bag by O) wrt {nat,bool} = junk Loose~Set on {set}

where 0:8ig fI Loose-Set B‘-’Sig [[ Loose-Bag B is the inclusion.

Although the examples in this section are very small, they illustrate some of the things which can be accomplished
using ASL. Some of these things are impossible in any other algebraic specification language, viz behavioural
abstraction (as in the construction of Behavioural-Set from List) and the addition of a new element to a reachable-
restricted sort {as in the construction of Infinite~Set from Set).

5 Parameterised specifications with recursion

The semantics of a nonparameterised specification consists (as described in section 3) of a signature I, together

with & class M of L-algebras, that is:

Irl] =<5, M5 where Zc 2‘,““
The collection of isomorphism classes of (countable) L-aigebras forms a set for any T.. Therefore the coilection of
possible pairs <L, M> forms a set, which we will call SEM. If <Z,M> €SEM, then Sig< L, M>=Z and Mod< LoM>=M,

We will refer to classes of L-algebras which are closed under isomorphism as L-model classes,

and MIZAIg{Z) such that M is closed under isomorphism

The semantics of & parameterised specification is a function taking & member of SEM togethar with a signature
morphism as argument and giving 8 member of SEM as & result (similar to Clear):
f : SEM X signature morphism ~» SEM
The generalisation to multiple parameters is not difficult but this presentation will be confined to the 1-parameter
case, A parameterised specification is written AX:R[O].B where X is the formal parameter, R is the parameter
requirement (itself a specification), O is the formal fitting morphism and B is the body (a specification which normally
tains X, may tain O, and may refer to the sorts and operators of R}, Application is written
(AX:R[07.B)(ARG[p]) where p:Sigﬂ’,R]]-*Sig I[ARG ]] is the fitting morphism which matches the actual parameter
ARG with R. In contrast to Clear, the fitting morphism p is available for use in the body B via the formal fitting

morphism . The semantics of application is as follows (where B p[AF}G/X] is an abbreviation for
BIARG/X, p/0, p(w)/w for alt wesigll R 1 — the substitution into the body B of ARG for X and p for O, and of
p{w) for w for every sort or operator W in Sigﬂ:ﬂiﬂ ):

sigfl (ax:nrol.8ytararpn I = sigle_rarexa
mod [[ (AX:R[0].B)(ARGLR]) ]| ={ Mod[[Bp[ARG/X]]] i [ A'p | AeMod(ARG) 1 € Mod[[R ]
alg(sigl e [ARG/X] 1) otherwise

Note that ARG is a semantic object from SEM, not a specification; this is necassary for the semantics of recursion.

This semantics describes a parameterisation mechanism which is more powerful and more expressive than in other
languages. Using this we can define parameterised specifications in which the signature of the result depends on the
signature of the actual parameter in a more flexible way than previously possible. For example, suppose we want to

write a parameterised specification called Copy which produces a specification containing two copies of its actual
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parameter (i.e. two copies of ali its sorts and operators), iIn Clear, CiP-L, LOOK and the ADJ approach to
parameterisation this is impossible; the parameterised specification can oniy transform the part of the actual
parameter which corresponds to the formal parameter. The best we could do is to make two copies of this part of
the actual parameter, leaving the rest of the actual parameter alone. We can write Copy in ASL as follows:

Copy =g AX:9[0]. X + derive from X by O

where 01 L . - niv 1S defined by

L
p{s'ym‘!-' $ ?or s'€A

P} =WE I'81 for W' e I‘s,‘.

.. 8008 L. SN st
(this assumes that A and T are closed under *priming': s€A = s'eA and meI‘us == w'el"u.s.). Copy({Nat[ 1)
then has the sorts nalf and nat’' and operators 0: nat, 0 nat’, succ: nat> nat and succ’: nat*>» nat’. Note how heavily

this specification relies on the definition of signature morphisms in section 2.1,

But this specification is not quite correct; suppose T contains 2 s~>s and 1 8> 38'. Then Copy(T{$]) will inciude
the operators £ g~*s, 12828 and £ 8" s", In order to get two copies of each sort and operator, Copy has to
take account of the signature of the actuai parameter. So in fact we need p in Copy to be parameterised by the
signature of the actual parameter:

Capy =gof AX:@[0]. X + derive from X by p (Sig(X))
where pO:signature ~—» signsture morphism is defined by p(L) = pz

where pZ:Z'.U m—»z:um is in turn defined by
pz(s!;,;.:.}) =8 where n is the maximum number of
n+y
pz“"'é'ﬁ" = W primas on a sort or operator in L
n

In order to define the semantics of recursive parameterised specifications we need orderings on signatures, on
Z-~modsl classes and on signature morphisms. For these we use signature inclusion, set containment and the ‘less
defined® relation (I2) on partial functions respectively,

Theorem: All operators are tonic with respect to signature inciusion and contasinment of model classes.

Note that the operations are also continuous for signatures and (except reachable} for model classes.

The monotonicity of the operations implies that every fixed-point equation for signatures or for model classes (on
the same signature) has a least solution (taking the usual pointwise axtension of an ordering on a set to an ordering
on functions on the set). Therefore we define the semantics of recursive parameterised specifications (written
Yt(AX:R[0].B) whers B may contain t) as the least fixed point of the equation t=AX:R[0].8; that is:

Sig[[“( kx:R[a].B)B = the function (of type SEM X signature morphism — signature)
which is the teast solution of  sigllt] (ARG, p) = sigll (Ax:R{o1.B)(ARGLPD ]
Mod!{?t{kX:R{o}.B)B = the function (; SEM X signature morphism ~* model class)
which is the least solution (i.e. the "east' according to 2, which is actually the greatest) of
mod[[t] cara, p) = wmod{[ (Ax:R[61.BY(ARGLET) ]

in the class of functions taking a SEM-object ARG with signature I and a signature morphism p:Sigﬂ R =% and
giving a SiQIIYt().X:R[ al1.8) ]] (ARG, p) ~model class as result.

Then applying a recursive parameterised specification to an argument is just function application:

sigfvwox:rroy.Brtaratp ] = siglvoax:rro1.e ] arae, p)
mod [ e(ax:Rro).eyararpD 1 = moa[veax:rgol.8 ARG, o)

Generalisation to mutually recursive definitions is possible (see [Wir 82]).

Recursive parameterised specificstions can be used to write 'abstract domain equations’ as in [HR 80} and
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{EL 81]. By monotonicity, every such equation has & solution which can be computed within a finite number of
iterations (if specifications are finile and every signature morphism has finite domain).

6 implementation of specifications

The programming discipline of stepwise refinement advocated by Wirth and Dijkstra suggests that a program be
eveolved by working gradually via a series of successively lower-level refinements of the specification toward a
specification which is so low-level that it can be regarded as a program. This approach gusrantess the correctness
of the resuiting program, provided that each refinement step can be proved correct. A formalisation of this approach
requires a definition of the pt of refir t, i.e. of the implementation of one specification by another,

in programming practice, proceeding from a specification to a program (by stepwise refinement or by any other
method) means making a series of design decisions. These will include decisions concerning the concrete represen-
tation of abstractly defined data types, decisions about how to compute abstractly specified functions (choice of
algorithm) and decisions which select between the various possibilities which the high-level specification leaves open.
The foilowing very simple formal notion of implemeantation captures this idea; a specification T is implemented by
another specification T' if T’ incorporates more design decisions than T:

Def: If T and T' are specifications, then T is implemented by T', written T ~» T, if ¢ #T'C T.

For example, suppose SetChoose specifies the standard model of sets of natural numbers (like Set in section 4)
together with an operator choose: sef ~» nat constrained only by the following axiom:

choose (add(x,S)) € add(x,8) = true
That is, choose will select some arbitrary elemant of any non—-empty set. And suppose SetChoose' is SetChoose aug—
mented by axioms which further constrain choose to always select the minimal element. Then
Mod[[SatChoose']] c ModlISetChoose]] and so SetChoose~> SetChoose' (since SetChoose' is satisfiable).

As another exemple, Behavioural-Set from section 4 (recall Behavioural-Set = behaviour Set wrt {bool, nat}, where
Set specifies the standard model of sets) is implemented by List (lists of natural numbers together with the operator
€} once the ‘auxiliary’ operators head and fa// have been forgotten and the sort fist and operators nil and cons
renamed as sef, ¢ and add:

Behaviourai~-Set ~> derive from List by O

where c:Sig!IBehaviourat-Set B—-’sig{{ust]] is a signature morphism with O(sel)=fisf, O(@=nil, Oladd)=cons and
O(x)=x for ail other sorts and operators x in Behavioural-Set, But note:
Set 7+ derive from List by O

since Set itself (before behavioural abstraction) is satisfied only by sigebras isomorphic to the standard model,

Under most previ ti of impt tation (see below) Set ~» derive from List by O is a proper implemen-
tation. This was y b previ specification languages did not permit behavicura! abstraction, so the
tion of impl tation had to caplure it.
This notion of impl tati tends to give a notion of the impi tation of par: terised specifications:

Def: If P=AX:R[0].8B and P'=AX:R{0].8' are parameterised specifications, then P is implemented by P', written
P~>p', if for all actual parameters ARG €SEM with fitting morphism p:Sig[[R]]-éSig(ARG) such that
[Alp | A€Mod(ARG)] & vod[R]l. PeARGLP1) ~+ P(ARGLPD).

This definition can easily be generalised to parameterised specifications with multiple parameters.

An important issue for any notion of implementation is whether implementations can be composed vertically and

horizontally [GB 80]. Implementations can be vertically composed if the impl tation relation is transitive (T~T*
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and T'~—>T" implies T—+T") and they can be horizontally composed if the specification—building operations preserve
implementations (i.e. P~>P' and A~>A' implies P(A) ~> P'(A'); A~>A' and B~+B' implies A+8 ~> A4B";, and a
simitar rule holkds for each of the remaining operations). Our notion of implementation has both these properties
(the proofs are immediate by transitivity of © and monotonicity of ASL's operations):
Theorem (vertical composition): If T~T' and T'~>T"* then T~ T",
Theorem (horizontal composition): If A~+A’", B~8' and P=AX:R{].C ~ P=)AX:R[0].C', then:
1. A+ B~ A"+ B iff A' + B is satisfiable
. For any SCsoris(A), reachable A on S ~> reachable A’ on S iff reachable A’ on S is satisfiable
. For any g:Z->sig[a ], derive from A by g ~ derive from A’ by O
. For any WE;WZ(XH, abstract A wrt W ~—> abstract A' writ W
.t prsiglr»sigflA ] is a titting morphism such that [M

s WN

ol memod[all] ¢ Moa[r]

and [M'p i Memod[ A D1 € Mod[RT, then PraLpPI) ~ FaTOD

These two results allow large structured specifications to be refined in a gradual and modular fashion. All of the
individual small specifications which make up a large specification can be separately refined in several stages to give a
collection of lower—level specifications (this is easy because of their small size), When the low-level specifications
are put back together, the result is guaranteed to be an implementation of the original specification,

ASL can be used to express a number of other concepts of implementation as well, including notions which coin—
cide with or approximate most previously proposed definitions such as [EKMP 82], [EK 82], [GM 82] and [SW 82].
Only one of these is given below; see [SW 83] for some others.

Def: If A and A’ are L-~algebras, then AZA' if there exists a surjective homomorphism f:A-3A', T and T' are
specifications with Sig|IT]]=3ig[IT'I], then T' is a homomorphic image of T (T2T*') if for every AeMod[[T]] there
exists an A'eMod[[ T']] such that AZA".

Def: If T and T* are specifications, o:Sigll TH—>sig[ '] is a signature morphism, 08BS € sorts(T) and
reachable T = T then T ?%5 T'if ¢ # derive from T' by O > junk T.

This corresponds to the notion of implementation in [{Ebr 79], and is a simplified version of the notion in
{EK 82], Observe that Set ‘g{a List where O is an appropriate signature morphism, and note that this notion may

be extended to give a notion of the implementation of parameterised gpecifications,

When usging a powerful specification language one can adopt a simple notion of implementation. Previous lan~
guages and specification methods were less powerful (lacking operations hke behaviour) so a more complex notion of
implementation was necessary to handle cases fike the impiementation of sets by lists above. With ASL such com~
plexity is not required because all such cases can be handled by explicit use of the behaviour operation.

One benefit of such & simple notion of implementation is that one can reason about implementations in a formal
way using the specification language itself rather than at a metalevel using & metalanguage. For exampie, the iden-
tities in the next section can be used to prove the transitivity of ,'_:ﬁ (see [SW 83]). A second benefit is that with
this simple notion the specifier has more freedom to say exactly what is required. For example, in some situations
we might really want sets to be implemented only using a representation isomorphic to the standard model {e.g. in
cases where the choice of data representation infivences the complexity of an algorithm). in ASL one has the
freedom not to apply behavioural abstraction In cases such as these. Finally, the simple notion of implementation
permits vertical and horizontal composition of implementations, but this is generally not the case for the more compli-

cated notions unless rather strong conditions are imposed (see e.g. [EKMP 82], [SW 82] and [GM 82]).
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7 identities and transformation of specifications

Because the semantics of ASL is simple, it is easy to prove that certain identities and relations between specifica-
tions hold. For example {see [SW 83] for some others):
Theorem: 1. reachable (reachable T on §) on S' = reachable (reachable T on S') on S 2 reschable T on SU S’

2, W'C W implies abstract (abstract T wrt W) wrt W' = gbstract T wrt W'
= abstract (abstract T wrt W') wrt W

so &. behaviour (junk T on S) wrt OBS = behaviour T wrt 088 f SNOBS = ¢
b, junk {(junk TonS'JonS = junkTonS =junk (junk TornSjon S ¥S5CS
¢. behaviour (behaviour T wrt O88') wrt OBS = behaviour 7 wrt OBS if OBSC OBS®
4, junk (behaviour T wrt OBS) on S = behaviour Twit OBS f SNOBS = ¢

3, derive from (derive from T by O) by ' = derive from T by 0'« 0

4. behaviour (restrict T on 8§) wrt OBS = behaviour T wrt OBS
ifFSNOBS=¢ and Wz(xs.) is non~empty in all sorts of S, where £=Sig[[T]], S'=sorts(L)-S

5. abstract (derive from T by ) wrt W 2 derive from (abstract T wrt 0(W)) by O

6. abstract (abstract T wrt W) wrt W' ¢ abstract T writ W N wW*
so a. junk (junk Ton &) on 8'C junk T on SU S
b, behaviour (behaviour T wrt OBS) wrt 0BS' C behaviour T wrt 08S N OBS'

7. reachable (T + reachable T' on 8) on 8 = T + reachable T'on S if S'C S

8. reachable (enrich T by axioms E) on S = enrich reachable T on S by axioms E
9, T2 T implies junk Ton S 2 junk T' on §

10, T 2 T' implies derive from T by O 2 derive from T' by G

[ARG/X][Yt. (AX:R[ 0] .B)/t]
i [A[p | A€Mod(ARG)] € Mod[[R ]

11. Y. (\X:R[0].B)(ARG[P]) = B,

But it is possible to find counterexamples showing that the following inequations hold:
Fact: 1'. abstract (derive from T by 0) wrt W # derive from (abstract T wrt O(W)) by ©
2'. reachable (reachable T on $) on S' # reachable Ton SUS
3'. abstract (abstract 7 wrt W) wit W' # abstract T writ WO w*

4", behaviour (behaviour T wrt OBS) wrt OBS® # behaviour {(behaviour T wrt 0BS’) wrt 0BS
# behaviour T wrt OBS U OBS’

These properties can be useful for understanding the effects of ASL’s operations. For example, properties 2a and
4 together indicate that the behaviour operation disregards any junk of invisible sorts,

It is possible to carry out proofs concerning specifications using the above properties. For exampie, solutions of
domain equations can be computed. The following theorem can be proved in this way.

. . . o I« S c-0l .
Theorem {vertical composition for ﬁ'ﬁ)' T?‘*R) Trand T ﬁﬁf‘ implies TWT‘ .

These rules provide transformations for changing one specification into another specification which is equivalent (or
an implementation, using the rules containing ). Therefore they could be used as the basis of a method for

developing data structures and programs from specifications (see e.g. [Bau 81a]).

8 Concluding remarks

The smail set of operations in ASL seems to provide a powerful means for writing specifications. But some of the
operations we decided not to include are interesting as well, Here are two which together could replace abstract:
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Def: If A, A’ are L-algebras and WC 1wr_(xn then A is W-finer then A’ (A <W A'} if there are surjective assign-
ments $:X—>(A| and $":X-> |A'] such that Wt,tew. (p¥ (=¥ ) = o Fi=gF ),

The W-coarser relation >, is obtsined by replacing == in this definition by =,

w
sigltaw] = sgllrow] = siglit] if WEIWg(X)| where £=siglit]
mod[tawl]l = [ aeagesiglit I EAO(-:ModlIT]].(A Ky A 1
modlTowl = [ Aeagesiollr]h 3A°eMod[[T]].(A 3y Ag) ]
Then abstract Twrt W =, . TAW + TVW
hom T wrt S 4ot DeMaviour T wrt S ¢ TVIW5(X)| where z=sigfr]
T/eqns et <Sig[[T]],eqns> + W]Wz()()] where Z=SigﬁT]]

The hom operation is the same as behavioural abstraction except that it only permits models which are coarser than
modeis of T (i.e. in which more terms are identified). An operation permitting only finer medels can be defined
similarly. T/E is the quotient of T by the equations E as defined in [Wir 82] (not exactly the usual quotient, since
everything coarser than the quotient is included as well). Other interesting possibilities are:

sigfltutd = sgllvnt] = sigllt] it sigll TN=sig 7]
moaltut] [ aeatgesigltIh | 3A0€Mod|[T]],A'OeMod[[T'B.(A is the glb of Aj and AY) ]
ModlTnT] = [ acagsiglrlh | 3A°€Mod[[TD,A'0€ModHT'1].(A is the Iub of A and AY) ]

The lub (least upper bound) and gib (greatest lower bound) are with respect to the h phic image relation >
defined in section §. Note that the lub and glb are not defined uniquely but only up to isomorphism,

Then T4 et csiglith.e> nr Goe. TAIWgOOD)
™v = gt esiglvl.e> uT e TVIWg (X))
homTwts = behaviour T wrt S + TV

def
T/eqgns = def <Sigﬁl’]].eqns> + TV

Parameterised specifications with signature morphisms as parameters are a special case of parametarised specifica—
tions as defined here, This allows the expression of e.g. Clear-style procedure application with avoidance of name
clashes. But signature morphisms are not yet ‘first class citizens'; it is not possible to specify ‘requirements' for sig-
nature morphism parameters, For example, it should be possible to require that a signature morphism be defined at
least (or at most) on a particutar domain, or that it extends a given signature morphism. This should be a
straightforward extension, Another interesting generalisation would be to allow (recursive) higher-order
paramsterised specifications,

inference in ASL specifications is more complex than in a ‘Hat' equational specification or in an ordinary structured
theory as in LCF [GMW 79] or Clear. Besides the usual inference rules which aliow theorems to be derived by
combining axioms, inference rvies are needed which allow theorems in a specification (say T) to be converted to
theorems in a larger specification built from T (say T + T') as in [$B 83]. For example:

thmin T => thmin T+ T’

o(thm) in T =3 thm in derive from T by O

thm in T and Vteterms(thm).[teW and VxeFV(t)s.Vyexs.t[y/x] €W] ==> thm in abstract T wrt W
The last of these implies the following rule:

thm in T and thm contains only terms of sorts in OBS with variables of OBS sorts
== thm in behaviour T wrt OBS

The reachable operation gives rise to an induction principle,

Finally, it would be interesting to build a new high-level specification language on top of ASL, trying to make
available most of the power of ASL (e.g. behavioural abstraction) in higher-level specification-building operations
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while hiding some of the sharp edges (e.g. it probably should not be possible to get the effect of abstract T wrt W
for arbitrary W), The result should be more versatile and expressive than any present specification language.

To avoid confusion, it is important to point out the differences between the present paper and [Wir 82] which
alsc defined a language cafled ASL (we will refer to the two languages as new ASL and old ASL respectively). Apart
from details of synlax, the differences between the two languages are as follows:

- New ASL contains an important new operation (abstract) which alfows the expression of behavioural
abstraction. Old ASL includes a 'quotient® operation which is not provided in new ASL. This change gives
a language which is more oriented toward a behavioural approach to specification. The quotient operation
was difficuit to use in writing specifications [Gau 83] and did not easily extend from equationa! axioms to
general first—order axioms.

— New ASL includes & more general and flexible parameterisation mechanism than old ASL,

- Old ASL is a language for specifying partial algebras, while new ASL (as described here) is for specifying
total algebras, There is no difficuity in changing new ASL to specify partial algebras; we restricted atten—
tion to total algebras onily for simplicity of presentation.

Furthermore, the present paper develops and justifies an elegant and simple notion of implementation of ASL
specifications. This notion was mentioned briefly in [Wir 82], but here it is more appropriate because new ASL can
express behavioural abstraction.
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