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Algebraic constructions: a simple framework for complex
dependencies and parameterisation
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Abstract We propose a simple framework of algebraic constructions for software specification,
modular design and development. Algebraic constructions generalise (parameterised) modules by al-
lowing on one hand a rather arbitrary collection of elements to form the parameter and on the other
hand dependencies between the module elements to be spelled out explicitly. Algebraic constructions
are specified in a very natural way by means of ordinary algebraic specifications. They are combined
using a sum operation which captures as special cases various operations on (parameterised) modules
offered by standard specification and development frameworks. We show the expected composability
result for the sum of algebraic constructions and of their specifications.

Key words: Algebraic specification, Module, Parameterisation, Hierarchy, Dependency, Algebraic

construction

1 Introduction

SPECTRAL [KBS91] was an experiment in specification language design in which both pro-
grams (modelled as algebras) and their specifications, both simple and parameterised, were
viewed as first-class entities and could be arbitrarily used as parameters for each other. This
extended to higher-order parameterisation, where entities like specifications parameterised by
programs, specifications parameterised by parameterised programs, programs parameterised
by specifications that in turn are parameterised by programs, etc., could be expressed.

The power of SPECTRAL made it possible to present various complex examples in a
rather appealing way, but the full ramifications of this power meant that the details of the
semantics, including the extent to which static typechecking would be possible, had to be
left for subsequent work. Part of this was to be given by the kernel language for higher-
order parameterisation presented in [ST91, SST92], amounting to a subset of SPECTRAL,
which was equipped with a calculus for reasoning about higher-order parameterised programs
and their specifications. But this calculus was later shown to suffer from serious technical
problems [Asp97]. A “stratified” version in which these problems are absent is presented
in [ST12].

We take a different approach here, somewhat in the spirit of [Gog90]. We enhance param-
eterised programs [Gog84, SST92] and their specifications by relaxing the requirement that
the parameters of a module are, in a sense, complete (i.e., form an algebra over a parameter
signature) and by introducing an explicit record of the possible dependencies between the
various entities in the module. As it turns out, we may in this way capture some complex de-
pendencies between entities within a module, which typically require the use of higher-order
parameterisation in more standard approaches.
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Driven by this idea, we formalise the notion of an algebraic construction signature, of an
algebraic construction over such a signature, and of specifications of algebraic constructions.
We show that the category of algebraic construction signatures is finitely cocomplete, and
that the colimits of such signatures admit amalgamation; this allows us to combine compatible
algebraic constructions. Specifying algebraic constructions turns out to be very simple — any
mechanism to specify the underlying algebras will suffice. Colimits of algebraic construction
signatures allow us to define a sum operation both at the level of algebraic constructions and
at the level of their specifications. Crucially, the compatibility of sums at these two levels can
be shown.

The framework presented here is based on the ideas of the first author, see [Mar14] where
they are worked out somewhat differently, but in greater generality and detail.

Special acknowledgement: We dedicate this paper to Bernd Krieg-Brückner, our profes-
sional colleague, long-term collaborator and good personal friend — all the best, Bernd!
(DTS, AT)

2 Algebraic construction signatures

We will work here with the usual definition of algebraic (many-sorted) signatures — see for
instance [ST12] for a more detailed presentation — except that we restrict attention to finite
signatures and assume that all the symbols in a signature are unambiguous. In particular,
sort names and operation names are distinct, and operation names are not overloaded. Ad
hoc overloading of operation names could be added at the expense of the need for extra
decoration; on the other hand, adding some form of parametric polymorphism would lead us
to a different and interesting framework, where overloaded operations with the same names
would have to behave in the same way w.r.t. the extra structure to be introduced below and
its semantic consequences. Rather than trying to treat this in detail here, we view this option
as a special case of a further, more general development, where the ideas presented are recast
in the framework of an arbitrary institution [GB92, Mar14].

Hence, an algebraic signature is a quadruple Σ = 〈S,Ω, arity , sort〉, where S and
Ω are finite disjoint sets of sort and operation names, respectively, and arity : Ω → S∗,
sort : Ω → S give the profile of each operation name. Given an algebraic signature Σ as
above, we write f : s1 × · · · × sn → s for f ∈ Ω, arity(f) = s1 · · · sn and sort(f) = s.
Algebraic signature morphisms are defined as usual: σ : Σ → Σ′ maps sort names in Σ
to sort names in Σ′ and operation names in Σ to operation names in Σ′ preserving their
arities and result sorts. With the usual component-wise composition, this yields the well-
known, finitely cocomplete category AlgSig of algebraic signatures and their morphisms.
The obvious functor Symb : AlgSig → Set1, which maps any Σ = 〈S,Ω, arity , sort〉 to
Symb(Σ) = S ∪ Ω and any signature morphism to its underlying function, is cocontinuous.

To obtain algebraic construction signatures, we enhance algebraic signatures as above
with information of two kinds. First, we indicate which symbols in a signature are considered
defined and distinguish them from the remaining assumed symbols. Second, we introduce a
dependency relation on the symbols, given by a strict order (that is, a relation that is transitive
and irreflexive). The informal intuition is that an algebraic construction (to be introduced

1 Set is the usual category of sets; we will also refer to SET, the (quasi-)category of “large sets” (classes, discrete
categories).
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below) expects definitions for the assumed symbols to be obtained from the outside, while
defining itself its defined symbols. Moreover, the definition for a symbol may use only the
symbols below it in the dependency ordering.

Hence, an algebraic construction signature (or construction signature for short) is a triple
S = 〈Σ, D,≺〉, where Σ is an algebraic signature,D ⊆ Symb(Σ) is a set of symbols defined
in S, and≺ ⊆ Symb(Σ)× Symb(Σ) is a strict order of dependency in S such that for each
f : s1 × · · · × sn → s in Σ, s1 ≺ f , . . . , sn ≺ f , s ≺ f . The required dependencies s1 ≺ f ,
. . . , sn ≺ f , s ≺ f , for f : s1 × · · · × sn → s, are called basic in Σ.

We say that a construction signature S = 〈Σ, D,≺〉 is empty if D = ∅; it is complete if
D = Symb(Σ).

Consider a construction signature S = 〈Σ, D,≺〉. Let X ⊆ Symb(Σ) be a set of sym-
bols that are mutually independent w.r.t. ≺. The dependency structure below X is defined
as the construction signature SX⇓ = 〈Σ′, D′,≺′〉, where Σ′ is the unique subsignature of Σ
with Symb(Σ′) = {y ∈ Symb(Σ) | y ≺ x for some x ∈ X}, D′ = D ∩ Symb(Σ′) and
≺′ is the restriction of ≺ to Symb(Σ′). Then X ∩ Symb(Σ′) = ∅.

For any set X ⊆ Symb(Σ) of symbols, the dependency structure of X is defined as the
construction signature SX↓ = 〈Σ′′, D′′,≺′′〉, where Σ′′ is the unique subsignature of Σ with
Symb(Σ′′) = {y ∈ Symb(Σ) | y ∈ X or y ≺ x for some x ∈ X}, D′′ = D∩Symb(Σ′′)
and ≺′′ is the restriction of ≺ to Symb(Σ′′).

Given x ∈ Symb(Σ), we write Sx⇓ and Sx↓ for S{x}⇓ and S{x}↓, respectively.
Given two construction signatures S1 = 〈Σ1, D1,≺1〉 and S2 = 〈Σ2, D2,≺2〉, an (al-

gebraic) construction signature morphism σ : S1 → S2 is an algebraic signature morphism
σ : Σ1 → Σ2 such that:

• defined symbols are preserved: σ(D1) ⊆ D2,

• dependencies are preserved: σ(≺1) ⊆ ≺2,

• dependency down-closures are reflected: for all a1 ∈ Symb(Σ1) and b2 ∈ Symb(Σ2)
such that b2 ≺2 σ(a1) there exists b1 ∈ Symb(Σ1) such that b1 ≺1 a1 and σ(b1) = b2.

With the usual composition, this yields the category ConSig of construction signatures and
their morphisms, with the obvious projection functor Sig : ConSig→ AlgSig.

Fact 2.1. The category ConSig is finitely cocomplete, and the functor Sig : ConSig →
AlgSig is cocontinuous.

Proof. Coproducts of construction signatures in ConSig are essentially given as disjoint
unions of the underlying algebraic signatures, dependency relations and sets of defined sym-
bols. Hence, they are preserved by Sig : ConSig→ AlgSig.

Coequalisers are easy to build: consider construction signatures S1 = 〈Σ1, D1,≺1〉
and S2 = 〈Σ2, D2,≺2〉, and construction signature morphisms σ1, σ2 : S1 → S2. The co-
equaliser of σ1, σ2 is σ : S2 → 〈Σ2/≡, σ(D2), σ(≺2)〉, where ≡ is the least equivalence
relation on Symb(Σ2) such that σ1(x) ≡ σ2(x) for all x ∈ Symb(Σ1), Σ2/≡ is the obvi-
ous quotient of Σ2 by ≡, and σ maps each symbol y ∈ Symb(Σ2) to its equivalence class
[y]≡.

First notice that if for some x ∈ Symb(Σ1), y1 = σ1(x) and y2 = σ2(x), and y′1 ≺2 y1,
then since σ1 reflects dependency down-closures, there is x′ ∈ Symb(Σ1) such that x′ ≺1 x

and σ1(x′) = y′1, and hence σ2(x′) ≺2 y2 since σ2 preserves dependencies. This gives the
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basis for an easy inductive proof that for any y1, y2, y
′
1 ∈ Symb(Σ2) such that y1 ≡ y2 and

y′1 ≺2 y1 there exists y′2 ∈ Symb(Σ2) such that y′2 ≡ y′1 and y′2 ≺ y2.
We argue now that σ(≺2) is indeed a strict order. Suppose that there exists y1 ∈ Symb(Σ)

such that for some y2 ∈ Symb(Σ), y1 ≺2 y2 and y1 ≡ y2, and consider such a minimal
(w.r.t.≺2) y1. By the above remark though, we have then y′1 ∈ Symb(Σ2) such that y′1 ≡ y1

and y′1 ≺2 y1, which contradicts minimality of y1. Hence, σ(≺2) is irreflexive. Consider then
y1, y2, y3, y4 ∈ Symb(Σ2) such that y1 ≺2 y2, y2 ≡ y3, y3 ≺2 y4. By the above remark
again, there is y′1 ∈ Symb(Σ2) such that y′1 ≡ y1 and y′1 ≺2 y3, hence also y′1 ≺2 y4, which
shows that σ(≺2) is transitive.

Hence, 〈Σ2/≡, σ(D2), σ(≺2)〉 is a construction signature. Moreover, by definition, σ : S2 →
〈Σ2/≡, σ(D2), σ(≺2)〉 preserves defined symbols and dependencies, and reflects depen-
dency down-closures, and so is a construction signature morphism. Its coequaliser property
now follows easily from the fact that σ : Σ2 → Σ2/≡ is a coequaliser of σ1, σ2 : Σ1 → Σ2 in
AlgSig, and that for any construction signature morphism σ′ : Σ2 → Σ′ with σ1;σ′ = σ2;σ′,
the unique signature morphism σ0 : Σ2/≡ → Σ′ such that σ;σ0 = σ′ is in fact a construction
signature morphism.

The following lemma follows directly from the definition of a construction signature mor-
phism:

Lemma 2.2. Let σ : S1 → S2 be a construction signature morphism as above. Then for
each symbol x ∈ Symb(Sig(S1)), σ(Sig(Sx1⇓)) = Sig(Sσ(x)

2 ⇓) and σ(Sig(Sx1↓)) =
Sig(Sσ(x)

2 ↓).

A subsignature of a construction signature S = 〈Σ, D,≺〉 is a construction signature
S1 = 〈Σ1, D1,≺1〉 such that Σ1 is a subsignature of Σ, the inclusion ι : Σ1 ↪→ Σ is a
construction signature morphism ι : S1 → S and D1 = D ∩ Symb(Σ1) (it follows that ≺1

is ≺ restricted to Symb(Σ1)). Clearly, given a set X ⊆ Symb(Σ) of symbols in S, SX↓ is
a subsignature of S; if the symbols in X are independent then SX⇓ is also a subsignature of
SX↓ (as well as of S).

Example 2.3 (Ordinary signatures and algebras). A usual algebraic signature may be cap-
tured as a complete construction signature by marking all symbols as defined (so that a com-
plete construction signature is obtained) and taking basic dependencies only.

Example 2.4 (Parameterised modules). In many standard frameworks (see for instance CASL [BM04,
Mos04] or ACT ONE [EM85] — the latter is somewhat more general, but this does not change
the point made below) a parameterised module (or unit in CASL) has a “type” that identifies
a parameter signature ΣP and extends it to a result signature ΣR along a signature inclusion
ι : ΣP ↪→ ΣR. Here this is captured by a construction signature Sι = 〈ΣR, D,≺〉, where
D = Symb(ΣR) \ Symb(ΣP ) and ≺ is generated by basic dependencies in ΣR plus de-
pendencies p ≺ r for all p ∈ Symb(ΣP ), r ∈ D.

Parameterisation of this kind restricts attention to constructions where the assumed sym-
bols form a subsignature. Clearly, this is not necessarily the case with construction signatures.
We do allow construction signatures where an operation symbol is assumed (i.e., under the
above analogy, is part of the parameter) even if some of the sorts in its profile are defined
(i.e., under the above analogy, are defined by the construction, and are not part of the param-
eter).
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Example 2.5 (Complex dependencies). A more complex construction signature is S0 =
〈Σ0, D0,≺0〉, where the algebraic signature Σ0 has a unique sort Nat , unary operation
succ : Nat → Nat , and constants zero, a, b, c, d, e : Nat , D0 = {a, d, e} and ≺0 is gen-
erated by basic dependencies as well as succ ≺0 a, zero ≺0 a, a ≺0 b, a ≺0 c, b ≺0 d,
c ≺0 d, b ≺0 e, c ≺0 e. This may be depicted as follows, underlining the assumed symbols:

d : Nat e : Nat

b : Nat c : Nat

a : Nat

zero : Nat succ : Nat → Nat

Nat

������) ?

PPPPPPq?

Q
QQs

�
��+

�
��+

Q
QQs

Q
QQs

�
��+

The signature above illustrates more complex dependencies that may be captured in the
framework proposed. We will use it to illustrate the technical issues such dependencies may
involve. We refrain here from presenting any more practically meaningful case study, to keep
the example relatively compact and hopefully easy to follow.

The dependencies here cannot result as the dependencies given by the standard parameter-
isation mechanism as sketched in Example 2.4. Under some standard approaches (e.g., SPEC-
TRAL [KBS91]) we could resort to higher-order parameterisation, where we might capture
the intended dependencies by the following “type” (listing just the symbols of the algebraic
signatures involved):

{Nat , zero, succ} ×
(({Nat , zero, succ} → {Nat , zero, succ, a})→ {Nat , zero, succ, a, b, c})

→ {Nat , zero, succ, a, b, c, d, e}

We will not attempt any formal claims concerning this analogy. Let us just note rather infor-
mally that constructions over the above construction signature will correspond only to what
may be thought of as “cumulative” modules (where the result accumulates the parameters
and their applications to other parameters one by one), which is a rather restrictive form of
higher-order modules of the above higher-order type.

3 Algebraic constructions

The overall idea is that an algebraic construction over a construction signature S = 〈Σ, D,≺〉
gives a way to provide a meaning for any defined symbol in D in terms of the meanings of
the symbols in the dependency structure below this symbol. Our starting point is the usual
definition of an algebra, which gives interpretations to symbols in an algebraic signature, see
for instance [ST12].

Given an algebraic signature Σ = 〈S,Ω, arity , sort〉, Alg(Σ) stands for the class of all
Σ-algebras, defined as usual, except that we restrict attention to algebras with non-empty
carriers to avoid minor technical problems in the sequel, which are by now well-understood,
see [Tar11]. In fact, with the usual notion of Σ-homomorphism, Alg(Σ) is a category, but
we may disregard homomorphisms for our purposes here. As usual, each signature morphism
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σ : Σ → Σ′ determines a reduct functor σ : Alg(Σ′) → Alg(Σ),2 which is injective for
surjective σ. This yields a functor Alg : AlgSigop → SET, which is continuous, and in
particular maps signature pushouts to pullbacks in SET, so that we have the so-called amal-
gamation property: given a pushout in AlgSig

Σ

Σ1 Σ2

Σ′

@
@
@I

�
�
��

�
�
��

@
@
@I

σ1 σ2

τ1 τ2

and algebras A1 ∈ Alg(Σ1) and A2 ∈ Alg(Σ2) such that A1 σ1 = A2 σ2 , there exists a
unique algebra A′ ∈ Alg(Σ′) such that A′ τ1 = A1 and A′ τ2 = A2. When the pushout
diagram is evident from the context, we write A1 ⊕ A2 for A′ and call it the amalgamation
of A1 and A2. See [ST12] for a more detailed presentation.

Now, given an algebraic construction signature S = 〈Σ, D,≺〉, an algebraic S-construction
(or S-construction for short) is a class C ⊆ Alg(Σ) of Σ-algebras such that for any de-
fined symbol x ∈ D and any two algebras A,A′ ∈ C, if A Sig(Sx⇓) = A′ Sig(Sx⇓) then
A Sig(Sx↓) = A′ Sig(Sx↓). In other words: in a construction, the interpretation of each de-
fined symbol is unambiguously determined by the interpretation of the dependency structure
below this symbol. However, the interpretation of assumed symbols remains unconstrained,
and may vary within any construction.

A trivial S-construction is the empty class of algebras (which is an S-construction).

Lemma 3.1. Let σ : S1 → S2 be a construction signature morphism from S1 = 〈Σ1, D1,≺1〉
to S2 = 〈Σ2, D2,≺2〉. For any S2-construction C2 ⊆ Alg(Σ2), the σ-reduct C1 = C2 σ ⊆
Alg(Σ1) is an S1-construction.

Proof. Let x ∈ D1 be a defined symbol in S1. Given two Σ2-algebras A2, A
′
2 ∈ C2 such that

(A2 σ) Sig(Sx1⇓) = (A′2 σ) Sig(Sx1⇓), by Lemma 2.2 we haveA2 Sig(Sσ(x)
2 ⇓)

= A′2 Sig(Sσ(x)
2 ⇓)

.
Hence, since C2 is an S2-construction,A2 Sig(Sσ(x)

2 ↓) = A′2 Sig(Sσ(x)
2 ↓), and consequently, us-

ing Lemma 2.2 again, (A2 σ) Sig(Sx1↓) = (A′2 σ) Sig(Sx1↓).

We write Con(S) for the class of all S-constructions. By Lemma 3.1, a construction
signature morphism σ : S1 → S2 determines a reduct function σ : Con(S2) → Con(S1).
This yields a functor Con : ConSigop → SET.

We will work now to establish an amalgamation property for constructions. For the rest
of this section consider a construction signature pushout in ConSig and its projection on
algebraic signatures, which is a pushout in AlgSig:

2 For a class A′ ⊆ Alg(Σ′) of Σ′-algebras, A′
σ = {A′

σ | A′ ∈ A′} is the image of A′ w.r.t. σ . Reducts
ι w.r.t. a signature inclusion ι : Σs ↪→ Σt are denoted by Σs .
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Lemma 3.2. For any S1-construction C1 ⊆ Alg(Σ1) and S2-construction C2 ⊆ Alg(Σ2),
their amalgamation C1 ⊕ C2 = {A1 ⊕A2 | A1 ∈ C1, A2 ∈ C2, A1 σ1 = A2 σ2} ⊆ Alg(Σ′)
is an S ′-construction.

Proof. Let x′ ∈ Symb(Σ′) be defined in S ′; suppose that x′ = τ1(x1) where x1 ∈
Symb(Σ1) is defined in S1 (the other option, x′ = τ2(x2) where x2 ∈ Symb(Σ2) is defined
in S2, is symmetric). Consider A′, B′ ∈ C1 ⊕ C2, where A′ = A1 ⊕ A2 and B′ = B1 ⊕ B2,
for A1, B1 ∈ C1, A2, B2 ∈ C2, such that A1 σ1 = A2 σ2 and B1 σ1 = B2 σ2 . Suppose
A′ Sig(Sx′⇓) = B′ Sig(Sx′⇓). Then, by Lemma 2.2, A1 Sig(Sx1

1 ⇓) = B1 Sig(Sx1
1 ⇓), and so,

since C1 is an S1-construction, A1 Sig(Sx1
1 ↓)

= B1 Sig(Sx1
1 ↓)

. Hence, by Lemma 2.2 again,
A′ Sig(Sx′↓) = B′ Sig(Sx′↓).

Corollary 3.3. Constructions admit a weak amalgamation property: given an S1-construction
C1 ⊆ Alg(Σ1) and an S2-construction C2 ⊆ Alg(Σ2) such that C1 σ1 = C2 σ2 , their amal-
gamation C′ = C1 ⊕ C2 is an S ′-construction such that C′ τ1 = C1 and C′ τ2 = C2.

Proof. C′ is an S ′-construction by Lemma 3.2. Clearly, C′ τ1 ⊆ C1. Moreover, since C1 σ1 =
C2 σ2 , for each A1 ∈ C1 there is A2 ∈ C2 such that A1 σ1 = A2 σ2 , and so C′ τ1 = C1.
Similarly, C′ τ2 = C2.

In general, C′ = C1 ⊕ C2 need not be a unique S ′-construction such that C′ τ1 = C1 and
C′ τ2 = C2. There may exist “weaker” S ′-constructions C′′ ⊂ C′ with C′′ τ1 = C1 and
C′′ τ2 = C2 — this may be the case when C′′ allows only some combinations of the inter-
pretation of assumed symbols in S1 and S2, but some such combinations are missed. This
lack of uniqueness is not a major problem in our view, since the amalgamation operation
on constructions offers a natural canonical way to combine constructions over pushouts of
construction signatures.

Given a construction signature S = 〈Σ, D,≺〉, we say that an S-construction C ⊆
Alg(Σ) is well-grouped if any interpretations of symbols it permits may be arbitrarily com-
bined with each other, that is, for any set X ⊆ Symb(Σ) of symbols, for all Σ-algebras
A ∈ Alg(Σ), if A Sig(Sx↓) ∈ C Sig(Sx↓) for all x ∈ X then also A Sig(SX↓) ∈ C Sig(SX↓).
Any well-grouped construction is non-trivial (to see this, consider X = ∅). Also, since in
any construction the interpretation of the dependency structure below a defined symbol un-
ambiguously determines the interpretation of this symbol, the condition may be limited to
require arbitrary combinations of independent assumed symbols only.

Example 3.4 (Ordinary signatures and algebras). Recall Example 2.3. Given a complete
construction signature S, each non-trivial S-construction consists of a single Sig(S)-algebra.
Clearly, amalgamation of such constructions corresponds to the amalgamation of the alge-
bras, as expected, and similarly for reducts w.r.t. construction signature morphisms.

Example 3.5 (Parameterised modules). Recall Example 2.4. Given a “type” ι : ΣP ↪→ ΣR,
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a parameterised module over ι is a (perhaps partial) function F : Alg(ΣP )→ Alg(ΣR) that
is persistent, i.e., for each A ∈ Alg(ΣP ) such that F (A) ∈ Alg(ΣR) is defined, we have
F (A) ΣP = A. We may identify each such function F with its range CF = {F (A) | A ∈
Alg(ΣP )}. One may check now that CF is a construction over the construction signature Sι
that captures ι : ΣP ↪→ ΣR as in Example 2.4. Moreover, any Sι-construction determines a
persistent (possibly partial) function from Alg(ΣP ) to Alg(ΣR): given an Sι-construction
C, we define FC : Alg(ΣP ) → Alg(ΣR) by FC = {AP 7→ AR | AR ∈ C, AP = AR ΣP }.
This is a well-defined function, since all symbols in ΣR and not in ΣP are defined in Sι,
therefore each ΣP -algebra in C ΣP has a unique expansion to a ΣR-algebra in C.

Example 3.6 (Complex dependencies). Recall Example 2.5 and the construction signature
S0 defined there. An S0-construction may be built as follows. We start with an arbitrary col-
lection of interpretations for Nat , zero : Nat and succ : Nat . Then, each such interpretation
is uniquely extended by a value for a : Nat . Once this is given, interpretations for b : Nat
and c : Nat may be given freely again — but the choice of their values must not influence
the value of a : Nat . Finally, for each such interpretation of Nat , zero : Nat , succ : Nat ,
(a : Nat), b : Nat and c : Nat , unique values for d : Nat and e : Nat may be given.

Consider the following Σ0-algebras that interpret Nat , zero : Nat and succ : Nat in the
standard way, and:

A1 = {a = 1, b = 2, c = 3, d = 3, e = 4}
A2 = {a = 2, b = 3, c = 4, d = 4, e = 5}
A3 = {a = 1, b = 3, c = 4, d = 4, e = 5}
A4 = {a = 1, b = 3, c = 3, d = 4, e = 4}
A5 = {a = 1, b = 2, c = 4, d = 3, e = 5}

Now, {A1, A2, A3, A4} is not an S0-construction, since A1 and A2 define a differently even
though they interpret the dependency structure below a in the same way. On the other hand,
C = {A1, A3, A4} is an S0-construction: different values of d and e result from different
interpretations of the dependency structure below d and e. However, C is not well-grouped:
b and c are independent, but their values are not combined arbitrarily here, the combination
b = 2 and c = 4 is missing. C0 = {A1, A3, A4, A5} is a well-grouped S0-construction.

4 Construction specifications

We will not try to present here any specific framework for algebraic specifications — see
[ST12] for an overview, a presentation of such a framework and historical remarks. We as-
sume as given a class Spec of specifications with a semantics that for each specification
SP ∈ Spec yields its signature Sig [SP ] ∈ |AlgSig| and a class of models Mod [SP ] ⊆
Alg(Sig [SP ]). A specification SP is consistent if Mod [SP ] 6= ∅. Specifications SP with
Sig [SP ] = Σ will be referred to as Σ-specifications. Typically, specifications can be given
simply as theories of some standard logic (like equational logic, or first-order logic with
equality), perhaps with various forms of higher-order constraints added, as well as built from
such basic specifications by means of predefined specification-building operations.

We assume that the class of specifications is closed under the following specification-
building operations [ST88]; see [ST12] for extensive explanation and examples.
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union: Given two Σ-specifications SP1, SP2, we also have a specification SP1 ∪ SP2 with
Sig [SP1 ∪ SP2] = Σ, Mod [SP1 ∪ SP2] = Mod [SP1] ∩Mod [SP2].

translation: Given a Σ-specification SP and a signature morphism σ : Sig [SP ] → Σ′ we
also have a specification σ(SP) with Sig [σ(SP)] = Σ′, Mod [σ(SP)] = {A′ ∈ Alg(Σ′) |
A′ σ ∈ Mod [SP ]}.

hiding: Given a Σ-specification SP and a signature morphism σ : Σ′ → Sig [SP ] we also
have a specification SP σ with Sig [SP σ] = Σ′, Mod [SP σ] = {A σ | A ∈ Mod [SP ]}.

We use specifications of essentially this form to specify the constructions introduced in
Sect. 3: a construction specification SP = 〈S,SP〉 consists of a construction signature S and
a Sig(S)-specification SP . We write CSig [SP] for S, and somewhat ambiguously, Sig [SP]
for Sig(S) and Mod [SP] for Mod [SP ]. The definition of the construction models of SP is
somewhat more complex.

Given a construction specification SP = 〈S,SP〉, where S = 〈Σ, D,≺〉, we write
CMod [SP] ⊆ Con(CSig [SP]) for the class of its construction models, where an S-construction
C ⊆ Alg(Σ) is a model of SP if the following conditions hold:

(C is correct for SP): for all x ∈ D and A ∈ C, if A Sig(Sx⇓) ∈ Mod [SP Sig(Sx⇓)] then
A Sig(Sx↓) ∈ Mod [SP Sig(Sx↓)].

(C is complete for SP): for all x ∈ Symb(Σ) \ D and A ∈ Mod [SP ], if A Sig(Sx⇓) ∈
C Sig(Sx⇓) then A Sig(Sx↓) ∈ C Sig(Sx↓).

(grouping): C is well-grouped.
(C-dependency-wise): for allX ⊆ Symb(Σ) andA ∈ C, ifA Sig(Sx↓) ∈ Mod [SP Sig(Sx↓)]

for each x ∈ X then A Sig(SX↓) ∈ Mod [SP Sig(SX↓)].

Somewhat informally, the specification SP is used here to determine both the scope of the
construction (the requirements on the assumed symbols under which the construction must
work) as well as its results (the requirements on the defined symbols which the construc-
tion must ensure). C is correct for SP if for each interpretation of the dependency structure
below a defined symbol x that is allowed by SP , it interprets the symbol x in a way that
satisfies the requirements imposed by SP . C is complete for SP if any interpretation of as-
sumed symbols consistent with SP is allowed. The requirement that C is well-grouped was
discussed in Sect. 3: no combination of allowed interpretations of assumed symbols should
be excluded. Finally, the “C-dependency-wise” condition states that as far as algebras within
the construction are concerned, the requirements imposed by SP must reflect the dependency
structure: SP must not directly relate symbols that are mutually independent (although some
relationship between such symbols may follow via common symbols in their dependency
structures). However, this does not always concern sets of defined symbols, as in the mod-
els of the specification their interpretation is uniquely determined by the construction. This
remark notwithstanding, in a way, the C-dependency-wise requirement may be seen as con-
straining specifications rather than constructions.

A construction specification SP = 〈S,SP〉, where S = 〈Σ, D,≺〉, is dependency-wise
if for all X ⊆ Symb(Σ) and A ∈ Alg(Σ), if A Sig(Sx↓) ∈ Mod [SP Sig(Sx↓)] for each
x ∈ X then A Sig(SX↓) ∈ Mod [SP Sig(SX↓)].

Lemma 4.1. For any dependency-wise construction specification SP = 〈S,SP〉, any well-
grouped S-construction C ⊆ Alg(Sig(S)) that is correct and complete for SP is its con-
struction model: C ∈ CMod [SP].

9



Proof. If SP is dependency-wise then the C-dependency-wise condition holds as well.

Theorem 4.2. Every dependency-wise construction specification has a construction model.

Proof. Let SP = 〈S,SP〉, where S = 〈Σ, D,≺〉, be dependency-wise.
First note that SP is consistent: take any algebraA ∈ Alg(Σ), then since SP is dependency-

wise, A Σ∅ ∈ Mod [SP Σ∅ ], where Σ∅ is the empty algebraic signature, which implies that
Mod [SP ] 6= ∅.

Then, let n be the number of symbols in Σ and x1, . . . , xn be an enumeration of Symb(Σ)
consistent with ≺, that is Symb(Σ) = {x1, . . . , xn} and if xi ≺ xj then i < j. Then taking
X0 = ∅ and Xi = Xi−1 ∪ {xi}, Symb(Sxi⇓) ⊆ Xi−1 for i = 1, . . . , n, and SXi↓ is a
(proper) subsignature of SXk↓ for 0 ≤ i < k ≤ n.

Let C0 = Mod [SP ] and then, for i = 1, . . . , n, let Ci be defined as follows:

• if xi is assumed, Ci = Ci−1;

• if xi is defined, let Ci be a maximal subset of Ci−1 such that for all A,A′ ∈ Ci, if
A Sig(Sxi⇓) = A′ Sig(Sxi⇓) then A Sig(Sxi↓) = A′ Sig(Sxi↓). Such a Ci exists by the
Zorn-Kuratowski Lemma (since given any chain of subsets of Ci−1 that satisfy the re-
quirement, its union satisfies the requirement as well). Then we have a unique persistent
(along the inclusion Sxi⇓ ↪→ Sxi↓) function Fi : Ci−1 Sig(Sxi⇓) → Ci Sig(Sxi↓), which is
total by maximality of Ci. Moreover Ci = {A ∈ Ci−1 | A Sig(Sxi↓) = Fi(A Sig(Sxi⇓))}.
(In fact, choosing Ci is the same as choosing a total persistent functionFi : Ci−1 Sig(Sxi⇓) →
Ci−1 Sig(Sxi↓) and then defining Ci in this way.)

It follows by an easy induction that Ci = {A ∈ Mod [SP ] | A Sig(SXi↓) ∈ Ci} and that
Ck Sig(SXi↓) = Ci Sig(SXi↓) for 0 ≤ i < k ≤ n.

We show that Cn is a construction model of SP .
Clearly, Cn is a construction, and it is correct for SP . By Lemma 4.1, we have to show

that it is complete for SP and is well-grouped.
First, we show by induction on i = 0, . . . , n that Ci is complete for SP . This is obvious

for i = 0. Assume Ci−1 is complete for SP , 0 < i ≤ n. If xi is assumed, then Ci = Ci−1

is complete for SP as well. Thus, the interesting case is when xi is defined. Let then x =
xk ∈ Symb(Σ) \D be an assumed symbol, and A ∈ Mod [SP ] be such that A Sig(Sx⇓) ∈
Ci Sig(Sx⇓). We have to show that A Sig(Sx↓) ∈ Ci Sig(Sx↓).

Since Ci ⊆ Ci−1, we have A Sig(Sx⇓) ∈ Ci−1 Sig(Sx⇓), and so by the inductive assump-
tion, A Sig(Sx↓) ∈ Ci−1 Sig(Sx↓).

If k < i then Sx↓ is a subsignature of SXi−1↓. Then, since Ci Sig(SXi−1↓) = Ci−1 Sig(SXi−1↓),
we get Ci Sig(Sx↓) = (Ci SXi−1↓) Sig(Sx↓) = (Ci−1 SXi−1↓) Sig(Sx↓) = Ci−1 Sig(Sx↓). Hence
A Sig(Sx↓) ∈ Ci Sig(Sx↓).

If i < k and xi ≺ x then Sxi↓ is a subsignature of Sx⇓. Then since A Sig(Sx⇓) ∈
Ci Sig(Sx⇓), we have A Sig(Sxi↓) ∈ Ci Sig(Sxi↓), which together with A ∈ Mod [SP ] yields
A ∈ Ci, and A Sig(Sx↓) ∈ Ci Sig(Sx↓).

Finally, consider i < k and xi 6≺ x (so that xi and x are independent). Let Y =
Symb(Sig(Sx⇓)) ∪ {xi}. Then the following is a pushout in ConSig, with all four mor-
phisms being inclusions:
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Sx⇓

Sx↓ SY↓

SY ∪{x}↓

@
@
@I

�
�
��

�
�
��

@
@
@I

Since A Sig(Sx⇓) ∈ Ci Sig(Sx⇓), there is B ∈ Ci such that B Sig(Sx⇓) = A Sig(Sx⇓). Let
B0 ∈ Alg(Sig(SY ∪{x}↓)) be the amalgamation of A Sig(Sx↓) and B Sig(SY↓) (over the al-
gebraic signature pushout underlying the above construction signature pushout). Let B′ be
an expansion of B0 to a Sig(S)-algebra, that is, B′ ∈ Alg(Sig(S)) and B′ Sig(SY∪{x}↓) =
B0.3 Now, B′ Sig(Sx↓) = A Sig(Sx↓) ∈ Mod [SP Sig(Sx↓)] and B′ Sig(SY↓) = B Sig(SY↓) ∈
Ci Sig(SY↓) ⊆ Mod [SP Sig(SY↓)]. Hence, since SP is dependency-wise,B0 = B′ Sig(SY∪{x}↓) ∈
Mod [SP Sig(SY∪{x}↓)]. Therefore, there is A′′ ∈ Mod [SP ] such that A′′ Sig(SY∪{x}↓) = B0.
Since xi ∈ Y , we also have A′′ Sig(Sxi↓) = B0 Sig(Sxi↓) = B Sig(Sxi↓) ∈ Ci Sig(Sxi↓).
Consequently, A′′ ∈ Ci, and A Sig(Sx↓) = B0 Sig(Sx↓) = A′′ Sig(Sx↓) ∈ Ci Sig(Sx↓), which
proves that Ci is complete for SP , and so in particular Cn is complete for SP .

To show that Cn is well-grouped, consider an algebra A ∈ Alg(Σ) and a set X ⊆
Symb(Σ) such that for each x ∈ X , A Sig(Sx↓) ∈ Cn Sig(Sx↓). Since Cn ⊆ Mod [SP ] and
SP is dependency-wise, it follows thatA Sig(SX↓) ∈ Mod [SP Sig(SX↓)]. LetA′ ∈ Mod [SP ]
be such that A′ Sig(SX↓) = A Sig(SX↓). We prove that A Sig(SX↓) ∈ Ci Sig(SX↓) by induc-
tion, i = 0, . . . , n. Clearly, by definition of C0, A Sig(SX↓) = A′ Sig(SX↓) ∈ C0 Sig(SX↓).

Suppose now A Sig(SX↓) ∈ Ci−1 Sig(SX↓), for some i = 1, . . . , n. If xi is assumed then
A Sig(SX↓) ∈ Ci Sig(SX↓) since Ci = Ci−1. Otherwise xi is defined.

If xi ≺ x for some x ∈ X then A′ Sig(Sxi↓) = (A Sig(Sx↓)) Sig(Sxi↓) ∈ Ci Sig(Sxi↓),
since A Sig(Sx↓) ∈ Cn Sig(Sx↓) and Cn ⊆ Ci. Consequently, A′ ∈ Ci, and A Sig(SX↓) ∈
Ci Sig(SX↓).

Otherwise xi 6∈ Symb(Sig(SX↓)). Put Y = Symb(Sig(SX↓) ∪ Symb(Sig(Sxi⇓)).
The following is a pushout in ConSig, with all four morphisms being inclusions:

Sxi⇓

SY↓ Sxi↓

SY ∪{xi}↓

@
@
@I

�
�
��

�
�
��

@
@
@I

SinceA Sig(SX↓) ∈ Ci−1 Sig(SX↓), there isB ∈ Ci−1 such thatB Sig(SX↓) = A Sig(SX↓). By
the definition of Ci, there isB′ ∈ Ci such thatB′ Sxi⇓ = B Sxi⇓. LetB0 ∈ Alg(Sig(SY ∪{xi}↓))
be the amalgamation of B Sig(SY↓) and B′ Sig(Sxi↓) (over the algebraic signature pushout
underlying the above construction signature pushout). Let B′′ be an expansion of B0 to a
Sig(S)-algebra, that is,B′′ ∈ Alg(Sig(S)) andB′′ Sig(SY∪{xi}↓) = B0. Now,B′′ Sig(Sxi↓) =

3 If Σ is an algebraic subsignature of Σ′ than any Σ-algebra (with non-empty carriers, as we assume here) has an
expansion to a Σ′-algebra.
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B′ Sig(Sxi↓) ∈ Ci Sig(Sxi↓) ⊆ Mod [SP Sig(Sxi↓)] andB′′ Sig(SY↓) = B Sig(SY↓) ∈ Ci−1 Sig(SY↓) ⊆
Mod [SP Sig(SY↓)]. Hence, since SP is dependency-wise,B0 = B′′ Sig(SY∪{xi}↓) ∈ Mod [SP Sig(SY∪{xi}↓)].
Therefore, there is A′′ ∈ Mod [SP ] such that A′′ Sig(SY∪{xi}↓) = B0. Then A′′ Sig(Sxi↓) =
B0 Sig(Sxi↓) = B′ Sig(Sxi↓) ∈ Ci Sig(Sxi↓). Consequently, A′′ ∈ Ci, and A Sig(SX↓) =
B Sig(SX↓) = B0 Sig(SX↓) = A′′ Sig(SX↓) ∈ Ci Sig(SX↓).

This proves that Cn is well-grouped, and completes the proof of the theorem.

Perhaps surprisingly, even if C is a construction model of a construction specification
SP = 〈S,SP〉, it does not follow that all algebras in C are models of SP — we call C a
clean construction model of SP if C ⊆ Mod [SP ]. In general though, the idea is that we do
not require the construction to “work as specified” when the assumed symbols are interpreted
so that they do not satisfy the specification. We may want to “clean up” any construction
to cover only the models permitted by the algebraic specification SP , which we write as
cleanSP(C) = C ∩Mod [SP ]. Cleaning a construction model of a construction specification
yields a construction model of this construction specification as well, although this is not a
self-evident property:

Lemma 4.3. Given a construction specification SP = 〈S,SP〉 and a construction model C ∈
CMod [SP], cleanSP(C) is a construction model of SP as well, cleanSP(C) ∈ CMod [SP].

Proof. Clearly, since cleanSP(C) ⊆ C, if C is a construction then so is cleanSP(C). More-
over, if C if correct for SP then so is cleanSP(C), and the C-dependency-wise property
implies the cleanSP(C)-dependency-wise property. So, we have to prove that cleanSP(C)
is complete for SP and that cleanSP(C) is well-grouped.

Let S = 〈Σ, D,≺〉. As in the proof of Thm. 4.2, let n be the number of symbols in
Sig(S), x1, . . . , xn be an enumeration of Symb(Σ) consistent with ≺, X0 = ∅ and Xi =
Xi−1 ∪ {xi}.

First, by induction on i = n, . . . , 0 (reverse order!) we prove that cleanSP(C) Sig(SXi↓) ⊇
C Sig(SXi↓) ∩ Mod [SP Sig(SXi↓)]. Since the opposite inclusion is obvious, we will in fact
prove the equality of the two algebra classes in this way.

Since Xn = Symb(Σ), there is nothing to prove for i = n. Suppose now for some
i = n − 1, . . . , 0 that cleanSP(C) Sig(SXi+1↓) ⊇ C Sig(SXi+1↓) ∩ Mod [SP Sig(SXi+1↓)].
Consider a Sig(SXi↓)-algebra Ai ∈ C Sig(SXi↓)∩Mod [SP ] Sig(SXi↓). We have then A′ ∈ C
and A′′ ∈ Mod [SP ] such that A′ Sig(SXi↓) = Ai = A′′ Sig(SXi↓).

If xi+1 is defined, put Bi+1 = A′ Sig(SXi+1↓) ∈ C Sig(SXi+1↓). Then also Bi+1 ∈
Mod [SP Sig(SXi+1↓)], since C is correct for SP . If xi+1 is assumed, putBi+1 = A′′ Sig(SXi+1↓) ∈
Mod [SP Sig(SXi+1↓)]. Then alsoBi+1 ∈ C Sig(SXi+1↓), since C is complete for SP . In either
case,Bi+1 ∈ C Sig(SXi+1↓)∩Mod [SP Sig(SXi+1↓)], and soBi+1 ∈ cleanSP(C) Sig(SXi+1↓)
by the inductive hypothesis. Hence Ai = Bi+1 Sig(SXi↓) ∈ cleanSP(C) Sig(SXi↓).

This proves cleanSP(C) Sig(SXi↓) = C Sig(SXi↓)∩Mod [SP Sig(SXi↓)], for i = 0, . . . , n.
In fact, it follows immediately that for any setX ⊆ Symb(Σ) and Σ-algebraA, ifA Sig(SX↓) ∈
C Sig(SX↓) and A Sig(SX↓) ∈ Mod [SP Sig(SX↓)] then A Sig(SX↓) ∈ cleanSP(C) Sig(SX↓)

(just choose the enumeration x1, . . . , xn used above so that Symb(Sig(SX↓)) = Xi for
some i).

Now, back to the proof of the lemma: to see that cleanSP(C) is complete for SP , con-
sider x ∈ Symb(Σ) \D and A ∈ Mod [SP ] such that A Sig(Sx⇓) ∈ cleanSP(C) Sig(Sx⇓).
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Clearly, A Sig(Sx↓) ∈ Mod [SP Sig(Sx↓)], and since C is complete for SP , A Sig(Sx↓) ∈
C Sig(Sx↓). Consequently, by the above fact, A Sig(Sx↓) ∈ cleanSP(C) Sig(Sx↓).

To see that cleanSP(C) is well-grouped, consider a set X ⊆ Symb(Σ) and a Σ-algebra
A such that A Sig(Sx↓) ∈ cleanSP(C) Sig(Sx↓) for all x ∈ X . Since C is well-grouped,
A Sig(SX↓) ∈ C Sig(SX↓). Take any Σ-algebra A′ ∈ C such that A′ Sig(SX↓) = A Sig(SX↓).
Then for all x ∈ X , A′ Sig(Sx↓) ∈ Mod [SP Sig(Sx↓)], and so by the C-dependency-wise
property,A Sig(SX↓) = A′ Sig(SX↓) ∈ Mod [SP Sig(SX↓)]. HenceA Sig(SX↓) ∈ cleanSP(C) Sig(SX↓).

Example 4.4 (Ordinary signatures and algebras). Recall Examples 2.3 and 3.4. Consider
a construction specification SP = 〈S,SP〉, where S is a complete construction signature and
SP is a Sig(S)-specification. Then any algebra A ∈ Mod [SP ] yields a clean construction
model {A} ∈ CMod [SP]; all clean construction models of SP are of this form.

Note that in general SP need not be dependency-wise. However, the {A}-dependency-
wise property trivially holds.

Example 4.5 (Parameterised modules). Recall Examples 2.4 and 3.5.
A specification of parameterised modules over a “type” ι : ΣP ↪→ ΣR is typically given

by a parameter specification SPP with Sig [SPP ] = ΣP and result specification SPR with
Sig [SPR] = ΣR, such that Mod [SPR ΣP ] ⊆ Mod [SPP ] (or in other words, ι : SPP →
SPR is a specification morphism, see Sect. 5). A parameterised module, which is a persistent
partial function F : Alg(ΣP ) → Alg(ΣR), satisfies a specification so given if for all A ∈
Mod [SPP ], F (A) is defined and F (A) ∈ Mod [SPR]. Clearly, such a correct parameterised
module exists only if SPR is a conservative extension of SPP , i.e., each model in Mod [SPP ]
may be expanded to a model in Mod [SPP ], or in other words: Mod [SPR ΣP ] = Mod [SPP ]
— we assume below that this is the case.

Consider a construction specification SPι = 〈Sι,SPR〉, with SPP = SPR ΣP , where Sι
is the construction signature determined by ι as defined in Example 2.4.

Let C ⊆ Alg(ΣR) be a construction model of SPι, and let FC = {AP 7→ AR | AR ∈
C, AP = AR ΣP } be the parameterised module it defines, as in Example 3.5. Then, since C
is complete for SPι, and all the symbols in ΣP are assumed in Sι, C ΣP ⊇ Mod [SPP ], so
FC is defined on all algebras in Mod [SPP ]. Moreover, since all symbols in ΣR that are not
in ΣP are defined in Sι, each AP ∈ Mod [SPP ] has a unique expansion to a ΣR-algebra in
C, and this expansion is a model in Mod [SPR]. Hence, FC is indeed correct w.r.t. parameter
specification SPP and result specification SPR.

Conversely, consider a persistent partial function F : Alg(ΣP ) → Alg(ΣR) that is cor-
rect w.r.t. parameter specification SPP and result specification SPR, and define its corre-
sponding Sι-construction CF = {F (A) | A ∈ Alg(ΣP )}, as in Example 3.5. Unfortunately,
in general CF need not be a construction model of SPι. A minor problem is that CF need not
be well-grouped: we know nothing about how F works on algebras outside Mod [SPP ], and
so its domain need not be closed under arbitrary combination of interpretations of symbols in
the parameter signature allowed in some algebras in its domain. No harm is done though by
cleaning CF to leave models of SPR only, thus removing applications of F to algebras not in
Mod [SPP ] — or alternatively, by adding any ΣR-expansion as a result for any ΣP -algebra
needed to make the domain of F (and hence also CF ) well-grouped.

A more serious problem is that the CF -dependency-wise condition may not hold for sets
of symbols in the parameter signature. A remedy is to add to Sι enough dependencies between
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the symbols in ΣP to make SPP dependency-wise. This can always be achieved, for instance
by imposing any linear strict order on the symbols of ΣP . Once Sι is so redefined, call it
S ′ι, C′F = {F (A) | A ∈ Mod [SPP ]} is a (clean) construction model of the construction
specification SP ′ι = 〈S ′ι,SPR〉.

Example 4.6 (Complex dependencies). Recall Example 2.5, the construction signature S0

defined there, and Example 3.6, with sample Σ0-algebrasA1, . . . , A5, and the S0-construction
C0 = {A1, A3, A4, A5}.

Suppose we have a Σ0-specification SPN with all models interpreting Nat , zero : Nat
and succ : Nat in the standard way, and putting no constraints on the other constants in the
signature. Consider extensions of SPN by axioms that constrain the other constants (such
extensions, originating from CLEAR [BG81], may be defined easily as the union of SPN

with basic specifications listing the corresponding axioms, see CASL [BM04] or [ST12]).

SP1 = SPN then a = zero

SP2 = SPN then b = c

SP3 = SPN then d = succ(b) ∧ e = succ(c)

SP4 = SPN then (b = succ(a) ∨ b = succ(succ(a))) ∧
(c = succ(succ(a)) ∨ c = succ(succ(succ(a)))) ∧ d = succ(b) ∧ e = succ(c)

SP5 = SPN then b = succ(succ(a)) ∧ c = succ(succ(a)) ∧ d = e

SP6 = SPN then (b = succ(a) ∨ b = succ(succ(a))) ∧ c = succ(succ(a)) ∧ d = e

Put SPi = 〈S0,SP i〉, i = 1, . . . , 6.
SP1 is a dependency-wise construction specification, but clearly, C0 is not its construction

model (since it defines a inconsistently with SP1). SP2 is not dependency-wise (since for
each n there is a model of SP2 with b = n and another one with c 6= n, but no model of
SP2 with both b = n and c 6= n) and in fact SP2 has no construction model. SP3 is a
dependency-wise specification, but C0 is not its construction model (since C0 is not complete
for SP3). SP4 is a dependency-wise specification, and C0 is among its (clean) construction
models. SP5 is not a dependency-wise specification (since for each n there is a model of SP5

with d = n and another one with e 6= n, but no model of SP5 has both d = n and e 6= n);
nevertheless C0 is its construction model (it is not clean though). SP6 is another construction
specification which is not dependency-wise but it has some construction models; however, C0
is not among them.

5 Putting construction specifications together

In the usual algebraic specification framework, one defines a category Spec of specifications,
where a specification morphism σ : SP → SP ′ is a signature morphism σ : Sig [SP ] →
Sig [SP ′] such that for all modelsA′ ∈ Mod [SP ′],A′ σ ∈ Mod [SP ], see [ST88, ST12]. Then
the obvious projection functor from Spec to AlgSig lifts colimits: given a (finite) diagram
of specifications, to build its colimit in Spec one first constructs a colimit of its underlying
signature diagram in AlgSig, and then the colimit specification in Spec is built over the
colimit signature as the union of translations of the specifications in the diagram along the
corresponding signature morphisms of the colimiting cocone in AlgSig (this has its roots
in [BG77, GB92], see [ST88, ST12]). Colimits in the category of specifications, constructed
in this way, are often viewed as a basic way to combine specifications [BG77, BG81].
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One may want to take a similar approach here, for putting together construction specifi-
cations. However, problems are encountered already with the basic definition of a morphism
between construction specifications. To give a hint of the problems, consider two construction
specifications SP = 〈S,SP〉 and SP ′ = 〈S ′,SP ′〉, and a construction signature morphism
σ : S → S ′ that is also a specification morphism σ : SP → SP ′. Let C′ ∈ CMod [SP ′] be a
construction model of SP ′. Then in general C′ σ , which is an S-construction by Lemma 3.1,
is not a construction model of SP . This can be seen for instance when the two signatures
coincide, σ is the identity, and Mod [SP ] ⊇ Mod [SP ′]. The key problem is that weaker re-
quirements in SP concern not only defined, but also assumed symbols in the construction
signature, which makes some requirements concerning construction models of construction
specifications (e.g., the completeness condition) more difficult to meet. See Sect. 6 for some
further remarks on this topic.

Instead, we try to mimic this technique directly and provide compositionality results to
justify its usefulness. As in Sect. 3, consider a pushout of construction signatures in ConSig
and its underlying pushout in AlgSig of the following form:

S

S1 S2

S ′

@
@
@I

�
�
��

�
�
��

@
@
@I

σ1 σ2

τ1 τ2

Σ

Σ1 Σ2

Σ′

@
@
@I

�
�
��

�
�
��

@
@
@I

σ1 σ2

τ1 τ2

Now, given construction specifications SP1 = 〈S1,SP1〉 and SP2 = 〈S2,SP2〉, where SP1

and SP2 are specifications with Sig [SP1] = Σ1 and Sig [SP2] = Σ2, we may attempt to put
them together to form an S ′-construction specification of the form 〈S ′, τ1(SP1) ∪ τ2(SP2)〉.
However, not all such combinations make methodological sense, and certainly not all of them
lead to consistent specifications, even if both SP1 and SP2 have construction models. First,
no shared symbol should be defined simultaneously in S1 and S2. Second, requirements con-
cerning shared symbols in SP1 and SP2 must be compatible.

A span S1
σ1←− S σ2−→ S2 is a fitting between S1 and S2 if for each symbol x ∈

Symb(Σ), if σ1(x) is defined in S1 then σ2(x) is assumed in S2, and vice versa, if σ2(x)
is defined in S2 then σ1(x) is assumed in S1. It follows that the construction signature S is
empty (that is, all its symbols are assumed).4

Given construction specifications SP1 = 〈S1,SP1〉 and SP2 = 〈S2,SP2〉 and a fitting
ft = S1

σ1←− S σ2−→ S2 between their signatures, their sum SP1 ⊕ft SP2 is a construction
specification defined as SP1 ⊕ft SP2 = 〈S ′, τ1(SP1) ∪ τ2(SP2)〉, where τ1 : S1 → S ′ and
τ2 : S2 → S ′ form a pushout of σ1 and σ2 as above (the subscript ft will be omitted when the
fitting and hence the pushout are clear).

Still, in general the sum SP1⊕ft SP2 may be inconsistent, even if each of SP1 and SP2

is consistent on its own, since they may impose incompatible requirements on the shared
symbols.

4 This assumption may be dropped at the expense of complications in the exact formulation and proof of the com-
patibility result.
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We say that construction specifications SP1 = 〈S1,SP1〉 and SP2 = 〈S2,SP2〉 are
compatible w.r.t. the fitting ft = S1

σ1←− S σ2−→ S2 if:

• for all sets X ⊆ Symb(Σ) of mutually independent symbols in S such that σ1(x) is
assumed in S1 for all x ∈ X , and for all A2 ∈ Mod [SP2], if (A2 σ2) Sig(SX⇓) ∈
Mod [SP1 σ1 ] Sig(SX⇓) then (A2 σ2) Sig(SX↓) ∈ Mod [SP1 σ1 ] Sig(SX↓); and

• (vice versa) for all sets X ⊆ Symb(Σ) of mutually independent symbols in S such that
σ2(x) is assumed in S2 for all x ∈ X , and for allA1 ∈ Mod [SP1], if (A1 σ1) Sig(SX⇓) ∈
Mod [SP2 σ2 ] Sig(SX⇓) then (A1 σ1) Sig(SX↓) ∈ Mod [SP2 σ2 ] Sig(SX↓).

Informally the above requirements state that neither of the specifications excludes an inter-
pretation of shared symbols that is permitted by the other specification.

Theorem 5.1. Consider construction specifications SP1 = 〈S1,SP1〉 and SP2 = 〈S2,SP2〉
that are compatible w.r.t. a fitting ft = S1

σ1←− S σ2−→ S2. Let C1 ∈ CMod [SP1] and
C2 ∈ CMod [SP2] be their clean models. Then C1 ⊕ C2 is a clean model of SP1 ⊕ SP2.

Proof. Let τ1 : S1 → S ′ and τ2 : S2 → S ′ form a pushout of σ1 and σ2 as above. Recall that
SP1⊕SP2 = 〈S ′,SP ′〉, where SP ′ = τ1(SP1)∪τ2(SP2). Put C′ = C1⊕C2, Σ′ = Sig(S ′),
Σ1 = Sig(S1) and Σ2 = Sig(S2).
C′ is an S ′-construction by Lemma 3.2. By definition of C1 ⊕ C2, for each A′ ∈ C′,

A′ τ1 ∈ C1 and A′ τ2 ∈ C2. Hence, since C1 and C2 are clean construction models of SP1

and SP2, respectively, C′ ⊆ Mod [SP ′], and so if C′ is a construction model of SP1 ⊕ SP2

then it is its clean construction model.
We have to show that C′ is indeed a construction model of SP1 ⊕ SP2.
To show that C′ is correct for SP1 ⊕ SP2, consider x ∈ Symb(Σ′) defined in S ′

and a Σ′-algebra A′ ∈ C′ such that A′ Sig(Sx⇓) ∈ Mod [SP ′ Sig(Sx⇓)]. In fact, since C′ ⊆
Mod [SP ′], the latter requirement follows from A′ ∈ C′; but so does the required conclusion
that A′ Sig(Sx↓) ∈ Mod [SP ′ Sig(Sx↓)].

A similar argument as above for the correctness condition, using the fact that C′ ⊆
Mod [SP ′], easily yields the C′-dependency-wise condition.

To show that C′ is complete for SP1⊕SP2 and is well-grouped, we will use an auxiliary
lemma:

Lemma 5.2. Under the notation introduced above, consider any X ⊆ Symb(Σ′) and let
X1 = {x1 ∈ Symb(Σ1) | τ1(x1) ∈ X} and X2 = {x2 ∈ Symb(Σ2) | τ2(x2) ∈ X}. Then
for all Σ′-algebrasA′ ∈ Alg(Σ′), if (A′ τ1)

Sig(SX1
1 ↓)
∈ C1 Sig(SX1

1 ↓)
and (A′ τ2)

Sig(SX2
2 ↓)
∈

C2 Sig(SX2
2 ↓)

then A′ Sig((S′)X↓) ∈ C′ Sig((S′)X↓).

Proof. Given a Σ′-algebra A′ satisfying the assumptions in the statement of the lemma, we
need an algebra B′ ∈ C′ such that B′ Sig((S′)X↓) = A′ Sig((S′)X↓). Since X = τ1(X1) ∪
τ2(X2), by construction of C′ it is enough to show that there exist B1 ∈ C1 and B2 ∈
C2 such that B1 σ1 = B2 σ2 and B1 Sig(SX1

1 ↓)
= (A′ τ1)

Sig(SX1
1 ↓)

and B2 Sig(SX2
2 ↓)

=
(A′ τ2)

Sig(SX2
2 ↓)

; then B′ = B1 ⊕B2 ∈ C′ satisfies the above requirement.

Let Y = {x ∈ Symb(Σ) | σ1(x) ∈ X1}. Then also Y = {x ∈ Symb(Σ) | σ2(x) ∈
X2} = {x ∈ Symb(Σ) | τ1(σ1(x)) = τ2(σ2(x)) ∈ X}. Let then, similarly as in the proof
of Thm. 4.2, x1, . . . , xn be an enumeration of Symb(Σ) \ Y consistent with the dependen-
cies in S. Put Y 0 = Y and Y i = Y i−1 ∪ {xi} for i = 1, . . . , n, and Xi

1 = σ1(Y i) and
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Xi
2 = σ2(Y i). Clearly, Y n = Symb(Σ). By Lemma 2.2, Sig(SX

i
1

1 ↓) = σ1(Sig(SY i↓)),
Sig(Sσ1(xi)

1 ⇓) = σ1(Sig(Sxi⇓)), and Sig(Sσ1(xi)
1 ↓) = σ1(Sig(Sxi↓)).

By induction on i = 0, . . . , n, we construct algebras Bi1 ∈ C1 and Bi2 ∈ C2 such
that (Bi1 σ1) Sig(SY i↓) = (Bi2 σ2) Sig(SY i↓) and Bi1 Sig(SX1

1 ↓)
= (A′ τ1)

Sig(SX1
1 ↓)

and

Bi2 Sig(SX2
2 ↓)

= (A′ τ2)
Sig(SX2

2 ↓)
. Once this is done, putting B1 = Bn1 and B2 = Bn2

will complete the proof of the lemma.
Let B0

1 ∈ C1 be such that B0
1 Sig(SX1

1 ↓)
= (A′ τ1)

Sig(SX1
1 ↓)

(such B0
1 exists, since

(A′ τ1)
Sig(SX1

1 ↓)
∈ C1 Sig(SX1

1 ↓)
). Similarly, let B0

2 ∈ C2 be such that B0
2 Sig(SX2

2 ↓)
=

(A′ τ2)
Sig(SX2

2 ↓)
. Clearly, B0

1 and B0
2 satisfy the inductive hypothesis for i = 0.

Now, for the induction step, let for some i = 1, . . . , n, Bi−1
1 ∈ C1 and Bi−1

2 ∈ C2 satisfy
the inductive hypothesis.

By our assumptions, either σ1(xi) ∈ Symb(Σ1) is assumed in S1 or σ2(xi) ∈ Symb(Σ2)
is assumed in S2. Suppose σ1(xi) ∈ Symb(Σ1) is assumed in S1 — the other case is sym-
metric and we omit it here.

Put Bi2 = Bi−1
2 . Since C2 is a clean model of SP2, Bi2 ∈ Mod [SP2]. Moreover, since

Symb(Sig(Sxi⇓)) ⊆ Y i−1 and C1 is a clean model of SP1, we have (Bi2 σ2) Sig(Sxi⇓) =
(Bi−1

1 σ2) Sig(Sxi⇓) ∈ Mod [SP1 σ1 ] Sig(Sxi⇓). By compatibility of SP1 and SP2 w.r.t. the
fitting considered, (Bi2 σ2) Sig(Sxi↓) ∈ Mod [SP1 σ1 ] Sig(Sxi↓). Let Ai1 ∈ Mod [SP1] be
such that (Ai1 σ1) Sig(Sxi↓) = (Bi2 σ2) Sig(Sxi↓).

The following is a pushout in ConSig, with all four morphisms being inclusions:

Sσ1(xi)
1 ⇓

SX
i−1
1

1 ↓ Sσ1(xi)
1 ↓

SX
i
1

1 ↓

@
@
@I

�
�
��

�
�
��

@
@
@I

Let B′′1 ∈ Alg(Σ1) be an expansion of the amalgamation (over the algebraic signature
pushout underlying the above construction signature pushout) ofBi−1

1 S
X
i−1
1

1 ↓
andAi1 Sσ1(xi)↓.

Then, for each x ∈ Symb(Sig(SX
i
1

1 ↓)), either x ∈ Symb(Sig(SX
i−1
1

1 ↓)) and soB′′1 Sig(Sx1↓) =

Bi−1
1 Sig(Sx1↓) ∈ C1 Sig(Sx1↓), or x ∈ Symb(Sig(Sσ1(xi)

1 ↓)) and soB′′1 Sig(Sx1↓) = Ai1 Sig(Sx1↓) ∈
C1 Sig(Sx1↓). Consequently, since C1 is well-grouped, B′′1

Sig(S
Xi1
1 ↓)

∈ C1
Sig(S

Xi1
1 ↓)

. There-

fore, there isBi1 ∈ C1 such thatBi1
Sig(S

Xi1
1 ↓)

= B′′1
Sig(S

Xi1
1 ↓)

. We have (Bi1 σ1) Sig(SY i−1↓) =

(Bi−1
1 σ1) Sig(SY i−1↓) = (Bi−1

2 σ2) Sig(SY i−1↓) = (Bi2 σ2) Sig(SY i−1↓) and (Bi1 σ1) Sig(Sxi↓) =
(Ai1 σ1) Sig(Sxi↓) = (Bi2 σ2) Sig(Sxi↓).

It follows now easily that the pair of algebras Bi1 ∈ C1 and Bi2 ∈ C2 satisfies the require-
ments: (Bi1 σ1) Sig(SY i↓) = (Bi2 σ2) Sig(SY i↓) and Bi1 Sig(SX1

1 ↓)
= (A′ τ1)

Sig(SX1
1 ↓)

and

Bi2 Sig(SX2
2 ↓)

= (A′ τ2)
Sig(SX2

2 ↓)
.

This completes the proof of Lemma 5.2. (Lemma)

Now, back to the proof of the main theorem.
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To show that C′ is complete for SP ′, let x be an assumed symbol in S ′ and A′ ∈
Mod [SP ′] be such that A′ Sig((S′)x⇓) ∈ C′ Sig((S′)x⇓). Let X1 = {x1 ∈ Symb(Σ1) |
τ1(x1) = x} and X2 = {x2 ∈ Symb(Σ2) | τ2(x2) = x}. Then A′ τ1 ∈ Mod [SP1], and
for all x1 ∈ X1, (A′ τ1) Sig(Sx1

1 ⇓) ∈ C1 Sig(Sx1
1 ⇓). Since x is assumed in S ′, all x1 ∈ X1 are

assumed in S1. Hence, since C1 is complete for SP1, (A′ τ1) Sig(Sx1
1 ↓)
∈ C1 Sig(Sx1

1 ↓)
for all

x1 ∈ X1. Now, since C1 is well-grouped, (A′ τ1)
Sig(SX1

1 ↓)
∈ C1 Sig(SX1

1 ↓)
. Similarly we get

that (A′ τ2)
Sig(SX2

2 ↓)
∈ C2 Sig(SX2

2 ↓)
. Thus, by Lemma 5.2, A′ Sig((S′)x↓) ∈ C′ Sig((S′)x↓)

as required.
To see that C′ is well-grouped, consider X ⊆ Symb(Σ′) and let A′ ∈ Alg(Σ′) be such

that for all x ∈ X , A′ Sig((S′)x↓) ∈ C′ Sig((S′)x↓). Let again X1 = {x1 ∈ Symb(Σ1) |
τ1(x1) ∈ X} and X2 = {x2 ∈ Symb(Σ2) | τ2(x2) ∈ X}. Then for all x1 ∈ X1,
(A′ τ1) Sig(Sx1

1 ↓)
∈ C1 Sig(Sx1

1 ↓)
, and since C1 is well-grouped, (A′ τ1)

Sig(SX1
1 ↓)
∈ C1 Sig(SX1

1 ↓)
.

Similarly we get that (A′ τ2)
Sig(SX2

2 ↓)
∈ C2 Sig(SX2

2 ↓)
. Thus, by Lemma 5.2,A′ Sig((S′)X↓) ∈

C′ Sig((S′)X↓) as required.

Example 5.3 (Ordinary signatures and algebras). Recall Examples 2.3, 3.4 and 4.4. Con-
sider construction specifications SP1 = 〈S1,SP1〉 and SP2 = 〈S2,SP2〉, where S1 and S2

are complete construction signatures, SP1 is a Sig(S1)-specification and SP2 is a Sig(S2)-
specification. The only fitting between S1 and S2 is S1

ι1←− S∅
ι2−→ S2, where S∅ is the

entirely empty signature with no symbols at all. Construction specifications SP1 and SP2

are compatible w.r.t. such fitting whenever SP1 and SP2 are consistent.
The pushout of ι1 and ι2 is the disjoint union of S1 and S2. Given two algebras A1 ∈

Mod [SP1] and A2 ∈ Mod [SP2], {A1} is a construction model of SP1 and {A2} is a con-
struction model of SP2, as explained in Example 3.4. Then the sum {A1} ⊕ {A2} is a con-
struction model of SP1 ⊕ SP2. It consists of a single algebra which is essentially a disjoint
union of A1 and A2.

Example 5.4 (Parameterised modules). Recall Examples 2.4, 3.5 and 4.5. Consider a “type”
ι : ΣP ↪→ ΣR for parameterised modules, ΣP -specification SPP and ΣR-specification SPR
with Mod [SPR ΣP ] = Mod [SPP ]. Let SP ′ι = 〈S ′ι,SPR〉 be a corresponding dependency-
wise construction specification, as explained in Example 4.5. Put S ′P = (S ′)Symb(ΣP )↓ =
〈ΣP , ∅,≺P 〉 for some dependency relation ≺P ; then ι : S ′P → S ′ι is a construction signature
inclusion.

Consider any construction specification SPA = 〈SA,SPA〉, where SA is a total con-
struction signature that shares with S ′P the algebraic signature and the dependency relation,
and SPA is a ΣP -specification. Then the identity morphism idΣP on ΣP is a construction

signature morphism from S ′P to SA. Moreover, this yields a fitting SA
idΣP←− S ′P

ι−→ S ′ι
between SA and S ′ι. If Mod [SPA] ⊆ Mod [SPP ] then construction specifications SPA and
SP ′ι are compatible w.r.t. this fitting. We may define their sum explicitly: SPA ⊕ SP ′ι =
〈S ′ι,SPR ∪ ι(SPA)〉.

Consider now a clean construction model C of SP ′ι. The parameterised moduleFC : Alg(ΣP )→
Alg(ΣR) it defines, FC = {AP 7→ AR | AR ∈ C, AP = AR ΣP }, is correct w.r.t. pa-
rameter specification SPP and result specification SPR, see Example 4.5. Therefore, given
A ∈ Mod [SPA] ⊆ Mod [SPP ], FC(A) is defined and, since FC is persistent, FC(A) ∈
Mod [SPR ∪ ι(SPA)]. This is also captured at the level of construction models: {A} is a con-
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struction model of SPA, and its amalgamation with C yields {A} ⊕ C = {FC(A)}, which is
a clean construction model of SPA ⊕ SP ′ι by Thm. 5.1.

More generally, we may mimic the standard pushout approach to parameterisation, cf. [BG77,
EM85, ST12]. Let SPA = 〈SA,SPA〉 be a construction specification with total construc-
tion signature SA, and let ϕ : S ′P → SA be a fitting morphism. Suppose Mod [SPA ϕ] ⊆
Mod [SPP ]. Then construction specifications SPA and SP ′ι are compatible w.r.t. the fitting
SA

ϕ←− S ′P
ι−→ S ′ι. Moreover, given A ∈ Mod [SPA] (so that {A} is a construction model

of SPA) and a clean construction model C of SP ′ι, the amalgamation {A} ⊕ C = {A′},
where A′ amalgamates A and FC(A ϕ), is a clean construction model of SPA ⊕ SP ′ι.

In a similar way we may mimic other typical operations on parameterised modules, for
instance various forms of partial application of a parameterised module to a “part” of its
required argument via a fitting morphism from a subsignature of the parameter signature, etc.

Example 5.5 (Complex dependencies). Recall Examples 2.5, 3.6 and 4.6, and the construc-
tion signature S0 with Sig(S0)-algebrasA1, . . . , A5, the S0-construction C0 and construction
specifications SP1, . . . ,SP6 with construction signature S0.

Let S ′0 = Sd0↓ (so that Σ′0 = Sig(S ′0) contains all symbols in S0 except for e : Nat ,
with definedness and dependencies in S ′0 inherited from S0) and let S ′′0 be as Se0↓ except
that a : Nat is assumed in S ′′0 (so that Σ′′0 = Sig(S ′′0 ) contains all symbols in S0 except for

d : Nat). We have the obvious fitting S ′0
ι′←− (S ′′0 )e⇓ ι′′−→ S ′′0 between S ′0 and S ′′0 , where

ι′ and ι′′ are signature inclusions, and the pushout of ι′ and ι′′ yields S0 with inclusions
τ ′ : S ′ → S0 and τ ′′ : S ′′ → S0.

Consider then the following two specifications:

SP ′4 = SP ′N then (b = succ(a) ∨ b = succ(succ(a))) ∧
(c = succ(succ(a)) ∨ c = succ(succ(succ(a)))) ∧ d = succ(b)

SP ′′4 = SP ′′N then (b = succ(a) ∨ b = succ(succ(a))) ∧
(c = succ(succ(a)) ∨ c = succ(succ(succ(a)))) ∧ e = succ(c)

SP ′5 = SP ′N then b = succ(succ(a)) ∧ c = succ(succ(a)) ∧ d = succ(c)

SP ′′5 = SP ′′N then b = succ(succ(a)) ∧ c = succ(succ(a)) ∧ e = succ(c)

where SP ′N and SP ′′N are SPN (see Example 4.6) rewritten to the signature Σ′0 and Σ′′0 , re-
spectively (equivalently, take SP ′N = SPN τ ′ and SP ′′N = SPN τ ′′ ). Let SP ′4 = 〈S ′0,SP ′4〉,
SP ′′4 = 〈S ′′0 ,SP ′′4〉, SP

′
5 = 〈S ′0,SP ′5〉 and SP ′′5 = 〈S ′′0 ,SP ′′5〉.

SP ′4 and SP ′′5 are not compatible; neither are SP ′5 and SP ′′4 .

On the other hand, SP ′4 and SP ′′4 are compatible, and their sum SP ′4⊕SP
′′
4 = 〈S0, τ

′(SP ′4) ∪ τ ′′(SP ′′4)〉
is equivalent to SP4 (see Example 4.6): Mod [τ ′(SP ′4) ∪ τ ′′(SP ′′4)] = Mod [SP4].

The S ′0-construction C′0 = C0 τ ′ is a (clean) construction model of SP ′4. Perhaps surpris-
ingly, the S ′′0 -construction C′′0 = C0 τ ′′ is not a construction model of SP ′′4 — since a : Nat
is assumed here, and SP ′′4 does not constrain its value, C′′0 is not complete for SP ′′4 . Consider
the following Σ′′0 -algebras that interpret Nat , zero : Nat and succ : Nat in the standard way,
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and for i = 0, 1, . . .:

Ai1 = {a = i, b = i+ 1, c = i+ 2, e = i+ 3}
Ai3 = {a = i, b = i+ 2, c = i+ 3, e = i+ 4}
Ai4 = {a = i, b = i+ 2, c = i+ 2, e = i+ 3}
Ai5 = {a = i, b = i+ 1, c = i+ 3, e = i+ 4}

Then C′′ = {Ai1, Ai3, Ai4, Ai5 | i = 0, 1, . . .} is a (clean) construction model of SP ′′4 . More-
over, C′0 ⊕ C′′ is a construction model of SP ′4 ⊕ SP

′′
4 by Thm. 5.1 – hardly surprising, since

in fact C′0 ⊕ C′′ = C0.
SP ′5 and SP ′′5 are compatible as well. Their sum SP ′5⊕SP

′′
5 = 〈S0, τ

′(SP ′5) ∪ τ ′′(SP ′′5)〉
is stronger than SP5 (see Example 4.6) in the sense that every construction model of SP ′5 ⊕
SP ′′5 is a construction model of SP5, CMod [SP ′5⊕SP

′′
5 ] ⊆ CMod [SP5] (this is a stronger

property than Mod [τ ′(SP ′5)∪τ ′′(SP ′′5)] ⊆ Mod [SP5]). Construction models of CMod [SP ′5⊕
SP ′′5 ] may be built by amalgamating clean construction models of SP ′5 and SP ′′5 . For in-
stance, {A4 Σ′0

} is a clean construction model of SP ′5 and {Ai4 | i = 0, 1, . . .} is a clean
construction model of SP ′5. Their amalgamation is {A4}which is a clean construction model
of SP ′5 ⊕ SP

′′
5 (and of SP5 as well).

6 Final remarks

We propose an algebraic framework to uniformly deal with modules that covers non-parameterised
and parameterised cases, as well as capturing complex dependencies between parts of mod-
ules which cannot be captured in standard approaches to parameterisation without using
higher-order dependencies. The advantage of this proposal is that it keeps constructions,
the semantic objects modelling the modules considered, relatively simple — they just are
classes of algebras, subject to a simple technical condition which reflects the role of the mod-
ule elements defined by the module (see Sect. 3). To specify such constructions, classified by
construction signatures (see Sect. 2), we propose the use of construction specifications, essen-
tially denoting classes of algebras (as in [ST12]). The definition of what it means for a con-
struction to satisfy such a construction specification may appear a bit complex (see Sect. 4)
but in our view they quite intuitively capture both the parameterisation mechanism and the
dependency structure involved in specifying a construction. Theorem 4.2 offers simple and
methodologically justified sufficient conditions to ensure that a construction specification has
a construction model. We introduce the sum operation (see Sect. 5) as a basic tool to combine
construction specifications, and show that under simple expected conditions, the operation is
compositional in the sense that for any construction specifications, their respective construc-
tions may be combined to yield a construction model of their sum. This operation is shown
to cover typical uses of algebraic specifications of standard parameterised modules.

There are a number of directions which require further investigation and development.
Perhaps most importantly, we have not provided any notion of refinement for construction

specifications. While simple refinements that just require classes of construction models to
be narrowed in refinement steps (cf. [ST12]) may be used here, it soon turns out that this is
unsatisfactory. The problem is that reducts along construction signature morphisms, a typical
construct allowing auxiliary symbols to be introduced in the course of stepwise specification
refinement, do not in general preserve construction models of a construction specification
(see the remarks at the beginning of Sect. 5, with a specific instance of the problem hidden
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in Example 5.5). The solution must be to consider construction signature morphisms of a
different kind, with different properties than those used here for putting together construc-
tion specifications. This was done in [Mar14], and used there to propose a construction-based
approach to architectural design and development, in the style of architectural specifications
and refinements in CASL [BST02, MST04]. It would be interesting and potentially useful to
develop a uniform treatment of both kinds of construction signature morphisms. Useful suffi-
cient conditions that ensure compatibility of reducts w.r.t. construction signature morphisms
with hiding and translation for constructor specifications are needed here.

We assumed from the beginning that we deal with finite algebraic signatures only. Fur-
ther developments, partially carried out in [Mar14], are needed to remove this assumption
and allow the use of infinite signatures as well (for instance, to algebraically model polymor-
phism, or modules with higher-order operations). An arbitrary mixture of infinite signatures
and strict dependency orders may raise methodological doubts and leads to technical trou-
bles, see [Mar12] for discussion and a proposed solution to use dependency structures of a
bounded height. In fact, the essence of the proofs here indicates that the induction on the
number of signature elements used in the key proofs may be replaced by induction on the
height of the dependency chains in the construction signatures, see [Mar14].

We worked in this paper with standard algebraic signatures and algebras. An important
further task should be to follow [Mar14] and move developments to an arbitrary institu-
tion [GB92] equipped with additional structure to introduce the sets of symbols used in the
signatures, similarly as in the semantics of CASL [Mos04]. We refrained from doing this here
to keep the intuition, presentation and technicalities a bit clearer — we hope!

Finally, more examples and case studies are needed to better illustrate the use of the
framework proposed as well as to evaluate its potential strengths and weaknesses.
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