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A formalism for constructing and using axiomatic specifications in an arbitrary 
logical system is presented. This builds on the framework provided by Goguen and 
Burstall’s work on the notion of an institution as a formalisation of the concept of a 
logical system for writing specifications. We show how to introduce free variables 
into the sentences of an arbitrary institution and how to add quantitiers which bind 
them. We use this foundation to define a set of primitive operations for building 
specifications in an arbitrary institution based loosely on those in the ASL kernel 
specification language. We examine the set of operations which results when the 
definitions are instantiated in institutions of total and partial tirst-order logic and 
compare these with the operations found in existing specification languages. We 
present proof rules which allow proofs to be conducted in specifications built using 
the operations we define. Finally, we introduce a simple mechanism for defining and 
applying parameterised specifications and briefly discuss the program development 
process. 1 1988 Academic Press. Inc. 

1. INTRODUCTION 

Much work has been done on algebraic specifications in the past 10 
years. Although much has been accomplished, there is still no general 
agreement on the definitions of many of the basic concepts, e.g., signature 
and algebra, and on which kinds of axioms should be used. The dis- 
agreement arises partly because different definitions are required to treat 
various special issues in specification, such as errors [Gog 77, GDLE 821, 
coercions [Gog 781 and partial operations [BrW 821; partly because some 
specification methods such as the initial algebra approach [GTW 761 only 
work under certain restrictions on, e.g., the form of axioms in 
specifications; and partly because of disagreements over matters of style or 
taste. These fundamental differences lead to difficulty in comparing the 
results achieved by different approaches and in building upon the work of 
others. 

The notion of an institution [GB 84a] provides a tool for unifying all 
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these different approaches to specification by formalising the concept of a 
logical system for writing specifications. An institution comprises 
definitions of signature, model, sentence (i.e., axiom), and satisfaction 
which obey a few internal consistency conditions (details in Section 2). 
Although it is often not obvious, much of the work which has been done 
on algebraic specification turns out to be independent of the particular 
definitions of these four notions. In such cases it would be highly desirable 
to make the generality explicit by basing everything on an arbitrary 
institution. This was done in the semantics of the Clear specification 
language [BG SO] (where an institution was called a “language”). 
Sometimes additional assumptions about the base institution are necessary, 
as in Clear where use of the initial algebra approach requires the 
assumption that the institution is liberal (forgetful functors induced by 
theory morphisms have left adjoints).’ Instantiating the base institution in 
different ways (and changing the low-level syntax accordingly) yields a 
family of specification languages: equational Clear, error Clear, continuous 
Clear, and so on. 

In early work on algebraic specification (e.g., [GTW 761) it was shown 
how a collection of algebras could be specified by a theory, i.e., a signature 
together with a set of axioms. For small specifications such an approach is 
adequate, but it is more convenient to build large and complex 
specifications in a structured way by putting together small specifications. 
Several specification languages in addition to Clear support such a struc- 
tured approach to specification. These include UP-L [Bau 811. Look 
[ZLT 82, ETLZ 821, ASL [Wir 82, SW 83, Wir 831, the constraint 
language of [EWT 831, and the Larch Shared Language [GH 831. None 
of these other languages were based on an arbitrary institution (although 
the possibility of a similar such generalisation was considered in [SW 831 
and [EWT 831) and so they are not general in the sense that Clear is. 
However, since they include features which seem desirable but which are 
not included in Clear, they are more useful as tools for writing 
specifications in the particular institutions they treat. Most useful of all 
would be an institution-based specification approach which incorporates 
the good ideas of all these languages. That is the goal of this paper. We 
define and carefully analyse a set of general specification-building 
operations based loosely (but not exclusively) on those in ASL. 

One novel feature of ASL is a specification-building operation abstract 
which can be used to hehaoiourall?~ abstract from a specification, closing its 
collection of models under behavioural equivalence [GGM 76, Rei 811. 
This allows abstract model specifications [LB 773, cf. [Suf 821, in which 
the desired behaviour is described in some concrete way, e.g., by giving a 

’ On this point, see the “technical digression” in Section 5 
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simple model which exhibits it. Such an operation is a necessary ingredient 
in an algebraic specification language since the specification of, e.g., an 
abstract data type is supposed to describe a behaviour (an input/output 
relation) without regard to the particular representation used and therefore 
ufl algebras which realise the desired behaviour should be permitted as 
models. However, this operation was defined in [SW 831 in such a way 
that it is not obvious how to generalise it to an arbitrary institution. (There 
are some remarks in [SW 831 which suggest how this might be done, but 
the proposed generalisation does not lit smoothly into the institutional 
framework and anyway the technical details are wrong.) 

The key to the institution-based definition of abstract turns out to be the 
introduction of free variables into the sentences of the institution. We show 
in Section 3 how this may be accomplished. Free variables are necessary 
because they provide a way of naming unreachable elements of models 
which cannot be referred to using the operations of the model alone. Such 
elements play an important role in the definition of behavioural abstrac- 
tion. Having introduced free variables into the sentences of an institution, 
we digress in the second part of Section 3 and show how to add quantifiers 
which bind them. This gives a construction for introducing quantified 
variables into the sentences of an arbitrary institution. 

Building on this foundation, we then define a set of primitive operations 
for building specifications in an arbitrary institution (Section 4). The set of 
operations we provide is based on those present in ASL; however, there are 
a number of significant differences. These derive both from difficulties in 
generalising some of the operations of ASL to an arbitrary institution (for 
example, since we cannot easily form the union of signatures in this setting 
the + operation is not generalised directly) and from extensions which 
arose naturally in the process of generalisation. A feature of ASL which 
remains is the expressive power and flexibility necessary to provide a kernel 
for building high-level specification languages. The convenient-to-use 
specification-building operations of the high-level language would be 
defined by composing these low-level operations (as for example in PLUSS 
[Gau 841 built over ASL, and in Extended ML [ST 851 built over the 
specilication-building operations presented here). It is natural for such 
high-level languages to hide some of the raw power of the primitives from 
the user. 

It is worth noting that specifications may themselves be viewed as logical 
sentences, written in a (more expressive) logical system developed over the 
underlying institution. In fact, it is easy to see that specifications built using 
our specification-building operations form an institution. 

In Section 5 we examine the set of operations which results when the 
general definitions are instantiated in an institution of first-order logic with 
equality as the only predicate and in an institution of partial first-order 
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logic. These operations are compared with those found in existing 
specification languages. 

In Section 6 we consider the problem of theorem proving in the context 
of specifications built using the operations defined in Section 4. Following 
[SB 831, we present an approach which enables the structure of proofs to 
reflect and exploit the structure of specifications. For each of the 
specification-building operations we provide inference rules which are 
independent of the particular institution in use, show that they are sound, 
and analyse their completeness. This is another case were, due to the quest 
for generality via institutions, something (part of a theorem prover) may be 
built once and for all. 

In Section 7 we introduce a mechanism for defining and applying 
parameterised specifications. In contrast to the usual way in which 
parameterised specifications are dealt with based on a pushout construc- 
tion (see, e.g., [BG SO] and [Ehr 79]), we adopt a different approach 
based on the mechanism of macro-expansion (B-conversion in the 
I-calculus). Finally, Section 8 concludes with remarks concerning the 
development of programs from specifications by stepwise refinement in this 
framework and the generality of our approach. 

We assume some familiarity with a few notions from basic category 
theory, although no use is made of any deep results. See [AM 75, 
MacL 711 for the definitions which we omit here. 

2. INSTITUTIONS 

Any approach to algebraic specification must be based on some logical 
framework. The pioneering papers [GTW 76, Gut 75, Zil743 used many- 
sorted equational logic for this purpose. Nowadays, however, examples of 
logical systems in use include first-order logic (with and without equality), 
Horn-clause logic, higher-order logic, inlinitary logic, temporal logic, and 
many others. Note that all these logical systems may be considered with or 
without predicates, admitting partial operations or not. This leads to dif- 
ferent concepts of signature and of model, perhaps even more obvious in 
examples like polymorphic signatures, order-sorted signatures, continuous 
algebras, or error algebras. 

There is no reason to view any of these logical systems as superior to the 
others; the choice must depend on the particular area of application and 
may also depend on personal taste. Another reason for choosing a par- 
ticular logical system to work in might be because useful tools are available 
which only work in that framework (e.g., the availability of a -Knuth-Ben- 
dix theorem prover might be an argument for working in equational logic). 

The informal notion of a logical system has been formalised by Goguen 
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and Burstall [GB 84a], who introduced for this purpose the notion of an 
institution. An institution consists of a collection of signatures together with 
for any signature C a set of C-sentences, a collection of C-models, and a 
satisfaction relation between C-models and C-sentences. Note that 
signatures are arbitrary abstract objects in this approach, not necessarily 
the usual “algebraic” signatures used in many standard approaches to 
algebraic specification (see, e.g., [GTW 761). The only “semantic” 
requirement is that when we change signatures, the induced transiations of 
sentences and models preserve the satisfaction relation. This condition 
expresses the intended independence of the meaning of a specification from 
the actual notation. Formally: 

DEFINITION [GB 84a]. An institution INS consists of 

- a category Sign,,, (of signatures), 

~ a functor Sen,,,: Sign,,, -+ Set (where Set is the category of all 
sets; Sen,,, gives for any signature C the set of C-sentences and for any 
signature morphism 0: Z -+ C’ the function Sen,,,(a): Sen,,,(C) + 
Sen,,,( 2’) translating Z-sentences to Z-sentences), 

~--- a functor Mod,,,: Sign,,, -+ CaP (where Cat is the category of 
all categories;* Mod INS gives for any signature Z the category of q-models 
and for any signature morphism (T: Z -+ E’ the a-reduct functor Mod,,,(a): 
Mod,,,(Z) + Mod,,,(S) translating Z-models to C-models), and 

- a satisfaction relation k z,INS G IMod,,d~)I x S%d~) for each 
signature Z 

such that for any signature morphism CJ: C -+ Z’ the translations ModINs 
of models and Sen,,,(o) of sentences preserve the satisfaction relation; i.e., 
for any cp E Sen,,,(Z) and M’ E jMod,,,(L’)l 

M’ t=r,1N~ SenlNs(o)(v) ifl Mod,,s(~)(M’) kZ,INS(P 

(Satisfaction condition). 

To be useful as the underlying institution of a specification language, an 
institution must provide some tools for “putting things together.” Thus, in 
this paper we additionally require that the category Sign has pushouts and 
initial objects (i.e., is finitely cocomplete) and moreover that Mod preserves 
pushouts and initial objects (and hence finite colimits), i.e., that Mod trans- 

z Of course. some foundational difficulties are connected with the use of this category, as 
discussed in [MacL 711. We do not discuss this point here. and we disregard other such 
foundational issues in this paper; in particular, we sometimes use the term “collection” to 
denote “sets” which may be too large to really be sets. 
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lates pushouts and initial objects in Sign to pullbacks and terminal objects 
(respectively) in Cat. 

In [GB 84a] the category Sign is not required to be cocomplete, but this 
is required there of any institution to be used as the basis of a specification 
language (as in Clear [BG SO]). Mod is not required there to preserve 
colimits; however, we feel that this is a natural assumption to make the 
semantics of specification-building operations consistent with our 
intuitions. A similar condition is required in [EWT 831. Note that both of 
these requirements are entirely independent of the “logical” part of the 
institution, i.e., of sentences and the satisfaction relation, and the fact that 
all standard examples of institutions (including all those in [GB 84a]) 
satisfy them indicates that they are not very restrictive in practice. 

The work of [Bar 741 on abstract model theory is similar in intent to the 
theory of institutions but the notions used and the conditions they must 
satisfy are more restrictive and rule out many of the examples we would 
like to deal with. 

Notational Conventions 

~ The subscript INS is omitted when there is no danger of con- 
fusion. 

~ We will write k instead of kz when Z is obvious. 

- For any signature morphism U: C + Z’, Sen(o) is denoted just by 
r~ and Mod(a) is denoted by -I,, (i.e., for cp~Sen(C), a(cp) stands for 
Sen(a)(cp), and for M’ E (Mod(Z’)(, M’(. stands for Mod(a)(M’)). 

~ For any signature C, @ sSen(C) and ME [Mod(C we write 
Ml=@ to denote that Mkq for all cp E @. 

All of the examples of logical systems mentioned at the beginning of this 
section (e.g., first-order logic, temporal logic) fit into the framework of an 
institution. The following simple example serves to illustrate this. Note that 
we can define institutions which diverge from logical tradition and have, 
for example, sentences expressing constraints on models which are not 
usually considered in logic, e.g., data constraints as in Clear [BG 801, 
which may be used to impose the requirement of initiality (cf. [Rei 87, 
EWT 831). 

Example: The institution GEQ of ground equations 

An algebraic signature is a pair (S, Sz), where S is a set (of sort names) 
and Q is a family of sets {Q,,,} WE S.,se s (of operation names). We write 
f’: M, -+ s to denote w E S*, s E S, f E Sz,.,,. An algebraic signature morphism O: 
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(S, Q ) -+ (S’, Q’ ) is a pair ( osorts, gOpns ) where gsorts : S -+ S’ and oOpns is 
a family of maps {(T...,: sZ,:,Y + SZb*(M.,,~(J)},,,ESt,,,ES, where a*(sl, . . . . sn) 
denotes rrsorts(.rl ), . . . . gsorts(.rn) f or $1, . . . . sn E S. We will write o(s) for 
c~~~,~(s), (T(U)) for a*(~,), and a(f) for a,,,,(f), where f~ Q.:,. 

The category of algebraic signatures AlgSig has algebraic signatures as 
objects and algebraic signature morphisms as morphisms; the composition 
of morphisms is the composition of their corresponding components as 
functions. (This obviously forms a category.) 

Let ,!I= (S, ~2) be an algebraic signature. 
A C-a/g&a A consists of an S-indexed family of carrier sets IAl = 

((A(S],ES and for each f: sl , . . . . sn -+s a function fA: IAIS, x . . x IAl,5, + 
/Al,,. A C-homomorphism from a C-algebra A to a Z-algebra B, h: A -+ B, 
is a family of functions {h,,},~es, where h,,: IAl.,+ lBl,y, such that for any 
f’~ sl, . . . . .VZ -+ s and CI, E [A[ ,,,,..., a,,~ /Al,,, 

The category of C-algebras Alg(E) has C-algebras as objects and 
.Z-homomorphisms as morphisms; the composition of homomorphisms is 
the composition of their corresponding components as functions. (This 
obviously forms a category.) 

For any algebraic signature morphism cr: 2 + 2’ and Z-algebra A’, the 
o-ueduct of A’ is the C-algebra A’/, detined as follows: 

For JES, IA’IA, =def IA’I,,,,. 

For f: MI -+ s in C, fA9,, = del cam,. 

Similarly, for a Z-homomorphism h’: A’ -+ B’, where A’ and B’ are 
Z’-algebras, the a-reduct of h’ is the Z-homomorphism h’l, : A’[,, -+ B’I, 
defined by (h’l,), = def h&, for s E S. 

The mappings A’c, A’(,, h’ t-+ h’(, form a functor from Alg(Z’) to 
AM-0 

For any algebraic signature 2, Alg(C) contains an initial object r, 
which is (to within isomorphism) the algebra of ground Z-terms; i.e., the 
carriers Ir,( contain terms of the appropriate sorts which are constructed 
using the operation symbols of Z (without variables) and the operations in 
T, are defined in the natural way (see, e.g., [GTW 763). A ground 
Z-equation is a pair (t, t’ ) (usually written as t = r’) where t, t’ are ground 
C-terms of the same sort; i.e., r, r’ E ) If,/, for some sort s of C. 

By definition, for any E-algebra A there is a unique Z-homomorphism h: 
T, + A. For any ground term t E I r,l, (for s in the sorts of C) we write r, 
rather than h,(t) to denote the value of t in A. For any Z-algebra A and 
ground Z-equation t = r’ we say that t = r’ holds in A (or A satisfies r = r’) 
written A+ t = t’, if r, = r;. 
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Let 0: Z + C’ be an algebraic signature morphism. The unique 
C-homomorphism h: T, + T,.I, determines a translation of Z-terms to 
Z-terms. For a ground Z-term t of sort s we write a(t) rather than /zY(t). 
This in turn determines a translation (again denoted by a) of ground 
C-equations to ground Y-equations: o(t = t’) = def a(t) = a( t’). 

All the above notions combine to form the institution of ground 
equations GEQ: 

SignGEQ is the category of algebraic signatures AlgSig. 

~ For an algebraic signature C, Sen,&C) is the set of all ground 
Z-equations; for an algebraic signature morphism cr: C-t C’, SenGEQ(o) 
maps any ground C-equation t = t’ to the ground Z/-equation a(t) = a( t’). 

- For an algebraic signature Z:, ModGEQ(C) is Alg(C); for an 
algebraic signature morphism cr: C -+ Z’, ModGEQ(o) is the functor -lU: 
Al&Z’) + Alg(C). 

~ For an algebraic signature C, +=-,oEQ is the satisfaction relation 
as defined above. 

It is easy to check that GEQ is an institution (the satisfaction condition 
is a special case of the satisfaction lemma of [BG SO]). The category 
AlgSig is finitely cocomplete (see [GB 84b, Prop. 51) and ModGEQ : 
AlgSig + CaP translates finite colimits in AlgSig to finite limits in Cat (see 
[SW 851). 

3. FREE VARIABLES IN INSTITUTIONS 

In logic, formulae may contain free variables (such formulae are called 
open). To interpret an open formula, we must provide not only an inter- 
pretation for the symbols of the underlying signature (a model) but also an 
interpretation for the free variables (a valuation of variables into the 
model). This provides a natural way to deal with quantifiers. The need for 
open formulae also arises in the study of specification languages. In fact, we 
will need them to define one of the specification-building operations 
(abstract) in the next section. But for this we need institutions in which 
sentences may contain free variables. 

Fortunately we do not have to change the notion of an institution-we 
can provide open formulae in the present framework (this idea was influen- 
ced by the treatment of variables in [Bar 741). Note that we use here the 
term “formula” rather than “sentence,” which is reserved for the sentences 
of the underlying institution. 

Consider the institution GEQ of ground equations. Let Z = (S, Sz) be 
an algebraic signature. For any S-indexed family of sets, X= {X,},, S, 
define Z(X) to be the extension of C by the elements of X as new constants 
of the appropriate sorts. 
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Now, any sentence over Z(X) may be viewed as an open formula over C 
with free variables X. Given a C-algebra A, to determine whether an open 
C-formula with variables X holds in A we must first fix a valuation of 
variables X into IA 1. Such a valuation corresponds exactly to an expansion 
of A to a X(X)-algebra, which additionally contains an interpretation of 
the constants X. 

Given a translation of sentences along an algebraic signature morphism 
CJ: C + C’ we can extend it to a translation of open formulae. Roughly, we 
translate an open Z-formula with variables X, which is a Z(X)-sentence, to 
the corresponding Z’(X)-sentence, which is an open Y-formula with 
variables x’. Here x’ results from X by an appropriate renaming of sorts 
determined by o (we also must avoid unintended “clashes” of variables and 
operation symbols). 

The above ideas generalise to an arbitrary institution INS. 
Let Z be a signature. 
Any pair (cp, O), where 0: C + Z’ is a signature morphism and 

cp ~Sen(z’), is an open C-formula with variables “C’- O(C)“. (Note the 
quotation marks--since z” - O(C) makes no sense in an arbitrary 
institution, it is only meaningful as an aid to our intuition.) When we use 
open formulae in specifications we will omit H if it is obvious from the 
context. 

If M is a Z-model, ME IMod(Z)[, then a valuation of variables 
“Z“ - O(Z)” into M is a Z-model M’ E IMod(C’)( which is a O-expansion of 
44, i.e., M’I (, = M. 

Note that in the standard logical framework there may be no valuation 
of a set of variables into a model containing an empty carrier. Similarly, 
here a valuation need not always exist (although there may be more 
reasons for that). For example, in GEQ if 0 is not injective then some 
models have no O-expansion. 

If 0: C + Zl is a signature morphism and (cp, 8) is an open Z-formula 
then we define the translation of (cp, 0) along f~ as 
d<m 0)) =def (a’(so), O’>, where 

C’ --L ,?J ’ 

H T T H’ 
c- Cl 0 

is a pushout in the category of signatures. 
There is a rather subtle problem we must point out here: pushouts are 

defined only up to isomorphism, so strictly speaking the translation of 
open formulae is not well-defined. Fortunately, from the definition of an 
institution one may easily prove that whenever I: Cl’ -+ Cl” is an 
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isomorphism in Sign with inverse r - ’ then Sen(l): Sen(Z1’) + Sen(C1”) is a 
bijection, Mod(z): Mod(Z1”) --t Mod(C1’) is an isomorphism in Cat, and 
moreover for any 23 ‘-sentence $ E Sen(Z1’) and any Cl ‘-model 
A41’~ IMod(Z1’)1, 

This shows that (at least for semantic analysis) we can pick out an 
arbitrary pushout to define the translation of open formulae and so we may 
safely accept the above definition of translation. 

Note that sometimes we want to restrict the class of signature 
morphisms which may be used (as second components) to construct open 
formulae. In fact, in the above remark sketching how free variables may be 
introduced into GEQ we used only algebraic signature inclusions I: C -+ 2”) 
where the only new symbols in Z’ were constants. To guarantee that the 
translation of open formulae is defined under such a restriction, we con- 
sider only restrictions to a collection A?’ of signature morphisms which is 
closed (at least) under pushing out along arbitrary signature morphisms, 
i.e., for any signature morphism G: C + Cl if 0: C -+ C’ E A then there is a 
pushout in Sign 

e 
I I 

H’ 

z-----+ Cl 0 

such that 8’ E A!. 
Examples of such collections A’ in AlgSig include the collection of all 

algebraic signature inclusions, the restriction of this to inclusions 8: Z -+ 2” 
such that C’ contains no new sorts, the further restriction of this by the 
requirement that C’ contains new constants only (as above), the collection 
of all algebraic signature morphisms which are onto w.r.t. sorts, the collec- 
tion of all identities, and the collection of all morphisms. Note that most of 
these permit variables denoting operations or even sorts. 

In the rest of this section we briefly sketch how to existentially close the 
open formulae introduced above (the construction is based on the notion 
of a syntactic operation in [Bar 741). It is therefore a bit peripheral to the 
main concern of this paper but we would like to add some logical meat to 
our treatment of free variables. 

Let A? be a collection of signature morphisms which is closed under 
pushing out along arbitrary morphisms in Sign. Let Z be a signature and 
let (cp, 0) be an open Z-formula such that 0 E A!. Consider the existential 
closure of (cp, 8), written 3((p, f3), as a new Z-sentence. The satisfaction 



SPECIFICATIONS IN AN ARBITRARY INSTITUTION 175 

relation and the translation of sentences 3( cp, 0) along a signature 
morphism are defined in the expected way: 

~ A C-model satisfies 3 (cp, 8 ) if it has a &expansion which satisfies 
cp; i.e., for any ME JMod(C)I, 

Mk3(q,O) iff thereexistsM’E (Mod( such that M’I,= MandM’+q. 

-- For any signature morphism 0: C + Cl, a(3( cp, 0)) = del 
3o(((p, O)), where a((~, 8)) = (o’(q), 0’) is the translation of (cp, 0) as 
an open Z-formula (with 0’ E JY). 

Note that in the above we have extended our underlying institution INS. 
Formally, we can define the extension of INS by existential closure w.r.t. 
.H, INS3(,&‘), to be the following institution: 

-- For any signature C, Sen,,s+,,(C) is the disjoint union of 
Sen,,s(L) with the collection of all existential closures 3((p, 0) of open 
C-formulae, where OE.N; for a signature morphism CJ: C-t El, 
Sen ,NSJ,,NJ(~) is the function induced by Sen,,,(o) on Sen,,,(Z) and by the 
notion of translation of existentially closed open formulae as defined above. 

~ Mod,,,+,, is Mod,,,. 

~ The satisfaction relation in INS3(,&‘) is induced by the satisfaction 
relation of INS for INS-sentences and the notion of satisfaction for existen- 
tially closed open formulae as defined above. 

The following theorem guarantees that INS3(.k) is in fact an institution 
(modulo the above remark about translations of open formulae). 

THEOREM (Satisfaction condition for INS3( c N)). For any signature 
morphism fs: Z + Xl, open ZTformula (cp, 0) and Cl-model 

Ml E IMod(C1 )I, 

Proqf: Recall that a(3((p, 0)) = 3(a’((p), W), where 

is a pushout in Sign. 
In the proof we need the following lemma, which is a consequence of our 
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assumption that the functor Mod translates pushouts in Sign to pullbacks 
in Cat (we omit the obvious proof based on the construction of pullbacks 
in Cat). 

LEMMA. For anal two models Ml E lMod(Z1 )I and M’E [Mod(L”)I such 
that MlI,=M’l, there is a unique model M~‘E lMod(Cl’)l such that 
Ml’l,. = M’ and Ml’l,,, = Ml. 

The proof of the theorem is now straightforward: 

(3): Assume that Ml I0 b=3( cp, 0). Thus, by the definition of the 
satisfaction relation for 3((p, t?), there exists M’ E IMod( such that 
WI,, = Ml I0 and M’kcp. By the above lemma, there is a Cl’-model Ml’ 
such that Ml ‘I U, = M’ and Ml ‘1 B9 = Ml. Now, by the satisfaction condition 
we have Ml ‘+ C’(P). Hence, Ml has a P-expansion which satisfies a’(q), 
i.e., Mll=!l(a’(cp), 0’). 

(e): Assume that M1+=3(a’(cp),fY). Thus, there is Ml’e 
IMod(Cl’)l such that Ml/I,,= Ml and Ml’+=o’(cp). By the satisfaction 
condition, Ml’l,.+~. Hence, Mll,,l=3(cp,0) since M1l,=M1’l,C,C= 
Ml’In:,,= (~1’l,*)l,. I 

Obviously, other quantifiers (for all, for almost all, there exists a unique, 
there exist infinitely many, . . . ) may be introduced to institutions in the same 
manner as we have just introduced existential quantifiers. In particular, in 
[Tar 861 it is shown in detail how to build over an arbitrary institution 
INS the institution of universally closed sentences, INS’(JLt) (for any class 
~2’ of signature morphisms as in the above construction of INS3(~)). It is 
also worth mentioning that one may similarly introduce logical connectives 
(cf. [Bar 741). By iterating these ideas we can, for example, derive the 
institution of first-order logic from the institution of ground atomic for- 
mulae. 

EXAMPLE. Let ,Y be the collection of morphisms r: C + C’ in AlgSig 
such that z is an algebraic signature inclusion and C’ contains new 
constants only. The institution GEQ3(.F) (resp. GEQ’(.Y)) is the 
institution of existentially quantified equations (resp. universally quantified 
equations--cf. [GB 84a]). If we additionally allow Z’ to contain new 
operation names (not just constants) then quantification along morphisms 
in 9 leads to a version of second-order logic. 

4. BUILDING SPECIFICATIONS 

Institutions provide an adequately general framework for dealing with 
basic problems such as what specifications are and how they may be built. 



SPECIFICATIONS IN AN ARBITRARY INSTITUTION 177 

In attacking these problems below we assume that we are working in the 
framework of a fixed but arbitrary institution INS. 

There are various levels at which specifications may be dealt with. We 
can consider 

- textual level, a sequence of characters on paper (or some other 
storage medium); 

-- presentation level, a signature and a set of sentences (axioms) 
over this signature (required to be finite or at least recursive or recursively 
enumerable); 

~ theory level, a signature and a set of axioms over this signature 
closed under logical consequence; 

-- model level, a signature and a class of models over this signature. 

Each approach to specification needs the textual level for actually writing 
down specifications. The meaning of a specification text is determined by 
giving a mapping from the textual level to one of the other levels. For 
example, specifications are mapped in Clear to theories, in ASL to classes 
of models, and in ACT ONE [EFH 831 to both presentations (the “first- 
level” semantics) and to classes of models (the “second-level” semantics). 
There are natural mappings from presentations to theories and from 
theories to classes of models (a presentation maps to the smallest theory 
containing it, and a theory maps to the class of models satisfying its 
axioms); the second-level semantics of ACT ONE is actually redundant 
since it is just the composition of the first-level semantics with these natural 
mappings, as proved in [EFH 831. However, not every class of models is 
the class of models of a theory, and not every theory has a (finite, recur- 
sive, or recursively enumerable) presentation. For example, Clear has no 
presentation-level semantics and neither ASL nor the set of specification 
building operations presented below has a presentation- or theory-level 
semantics. 

However, one thing which is certain is that each specification is a textual 
object describing a signature and a class of models over that signature 
(called the models of the specificution). And this is in the end all that really 
matters since the purpose of a specification is not to describe a presentation 
or a theory but rather to describe a class of models (actually, to describe a 
class of programs, but models are just what you get when you abstract 
away from the syntactic and algorithmic details of programs). 

To formalise this, for any specification SP we define its signature 
Sig[SP] E ISign and the collection of its models Mod[SP] G 
IMod(Sig[SP])l. If Sig[SP] = .Z then we call SP a Z-specification. 

We will not put any restrictions on the class of models described by a 
specification. Thus, specifications may be loose (having non-isomorphic 
models), so as to avoid premature design decisions. In contrast to many 
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approaches (e.g., CIP-L [Bau 811) we do not require models to be 
reachable (in the standard framework, an algebra is reachable if every 
element is the value of some ground term; for the generalisation to an 
arbitrary institution see [Tar 851). We do not even assume that the class of 
models of a specification is closed under isomorphism. On the other hand, 
these restrictions are not ruled out, and in fact we provide mechanisms to 
allow such restrictions to be included in specifications when required. 

In order to make big specifications easy to understand and use, we build 
them in a structured way from small bits using spec$cation-building 
operations. The semantics of each of these operations is a function on 
classes of models. A specification language may be viewed as a set of such 
operations, together with some syntax. Some operations correspond to 
functions at the presentation or theory level, but in general this need not be 
so-in any case they are described by functions at the model level. 

In choosing the set of operations there is a trade-off between the 
expressive power of the language and the ease of understanding and deal- 
ing with the operations. One way to circumvent this problem is to first 
develop a kernel language which consists of a minimal set of very powerful 
operations. Such a kernel language is difficult to use directly. We can build 
higher-level languages on top of the kernel, so that each higher-level con- 
struct corresponds to a kernel-language expression. This is analogous to 
the way that high-level programming languages are defined in terms of 
machine-level operations. 

In the rest of this section we describe a set of simple operations for 
building specifications in an arbitrary institution. Our intention is to 
provide low-level operations which collectively give sufficient power and 
flexibility to constitute a kernel for building high-level specification 
languages in any institution. In fact, we have already defined a high-level 
specification language called Extended ML [ST 851 on top of the 
operations described below. Another experiment of this kind is the 
language PLUSS [Gau 843 built on top of ASL. 

We do not claim that the notion of a kernel is mathematically well- 
defined in any sense. In referring to the operations defined below as form- 
ing a kernel we wish only to convey that we regard them as low-level 
operations which are not necessarily convenient to use, and which form an 
appropriate foundation for building higher-level specification languages in 
the manner just described. It would be interesting to look for some way of 
evaluating the “kernelness” of a set of specification-building operations. 
This would presumably be based on the number of different specilication- 
building operations which can be expressed using those in the kernel. Some 
work in this direction appears in [Wir 831 in which it is shown that (in the 
standard algebraic framework) ASL can be used to define any computable 
transformation of classes of algebras. 
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We intentionally do not define a formal specification language here but 
only the specification-building operations behind such a language. The dif- 
ference is mainly one of syntax; although we provide a suggestive notation 
for our operations, this is not a complete syntax yet because without fixing 
a particular institution the syntax of signatures, signature morphisms, and 
sentences cannot be fixed. We also do not care to define a notation for 
describing sets. This attitude admits a certain informality in the presen- 
tation below. However, we do take care to formally define the semantics of 
all our operations. In [Wir 833 a complete syntax for ASL in the standard 
algebraic framework is developed. 

4.1, Specification- Building Operations 

The operations we provide are the following: 

- Form a basic specification given a signature 2 and set @ of 
Z-sentences. This specifies the collection of Z-models that satisfy @. 

~ Form the union of a family of C-specifications {SP,}iE,, specify- 
ing the collection of C-models satisfying SP, for all i E I. 

- Translate a C-specification to another signature 2” along a 
signature morphism 0: C -+ Z’. This together with union allows large 
specifications to be built from smaller and more or less independent 
specifications. 

~ Derive a Y-specification from a specification over a richer 
signature ,E using a signature morphism g: Z’ + C. This allows details of a 
constructive specification to be hidden while essentially preserving its 
collection of models. 

- Given a Z-specification restrict models to only those which are 
minimal extensions of their a-reducts for a given g: Z’ -+ C. This imposes 
on the models of a specification an additional constraint which excludes 
models which are “larger” than necessary. 

- Close the collection of models of a specification under 
isomorphism. 

~ Abstract away from certain details of a specification, admitting 
any models which are equivalent to a model of the specification w.r.t. some 
given set of properties (defined using sentences of the institution). 

We defer discussion of the abstract operation to the next subsection. 
Here is a more formal description of the other operations (we discuss their 
instantiations in two typical institutions at a more intuitive level in 
Section 5 ). 

Basic specifications. Let .Z;E ISign/ be a signature and @ E Sen(Z) a set 
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of z-sentences. The pair (C, ~0) is then a specification with semantics 
defined as 

Sig[ (C, @)I = C 

Mod[(C, @)I = {ME IMod(C)I JM~@}. 

When the signature C is obvious from the context, we will sometimes write 
CD instead of (C, @). 

The union of a family of specifications. If (SPi}i,, is a family of 
z-specifications (so Sig[SP;] =z for all iEI) then ui.,SPi is a 
specification with the following semantics, 

(where n denotes set-theoretic intersection). Note that if each of the 
specifications SP, for in I is a basic specification (L’, Qi) then their union 
has the same collection of models as (C, lJie, Oj) (this time u denotes the 
usual set-theoretic union). As usual, when Z is finite we may use the usual 
infix notation; e.g., we may write SP, u . u SP, if I= { 1, . . . . n}. 

Translating a specijication along a signature morphism. If SP is a 
C-specification and cr: C -+ L” is a signature morphism then translate SP by 
cr is a specification with semantics defined as 

Sig[translate SP by a] = L” 

Mod[translate SP by a] = {M’E JMod(C’)I IM’I,EMod[SP]}. 

If SP is a basic specification (,E, @) then translate SP by o has the same 
collection of models as (27, a( @) ), where r~( @) is the image of @ under (T 
(i.e., Sen( D)). 

Note again that using union we can only “put together” specifications 
with the same signature. To combine specifications with different signatures 
we must form a “union signature” (renaming some of the signature symbols 
if necessary), translate the specifications into this “union signature” (using 
translate w.r.t. appropriate signature injections), and then form the union 
of the translated specifications. All this may be combined into one 
operation using an appropriate category of “signature inclusions” to form 
the “union signature” as a coproduct (R. Burstall, private communication; 
cf. also a remark in [GB 84a, Sec. 6.11). However, we decided to keep two 



SPECIFICATIONS IN AN ARBITRARY INSTITUTION 181 

simple, more elementary operations (which gives slightly more flexibility) 
rather than provide a single higher-level operation. 

Deriving one specification from another. If rs: C’ -+ C is a signature 
morphism and SP is a C-specification then derive from SP by c is a 
specification with the semantics 

Sig[derive from SP by a] = C’ 

Mod[derivefromSPbya]=(M1,1MEMod[SP]}. 

For @sSen(C), Mod[derive from (C, @) by a] c Mod[(C’, 0 -‘(@))I, 
where (T ~ ’ (@) is the coimage of @ under u (i.e., Sen(o)). Note however that 
this inclusion may be proper, since sometimes not all the properties of 
models of the derived specification are expressible using just Z-sentences. 
Although the semantics of our derive is different from the semantics of the 
derive operation in Clear [BG SO] (which produces the model class on the 
right-hand side of the above inclusion provided that Cp is closed under con- 
sequence) we have chosen to use the same name. The difference between 
the two will be explored further in the next section. 

Restricting to the minimal models oj’a specification. To define restriction 
to the minimal models of a specification we need the following notion: 

Let 0: 2” -+ C be a signature morphism and KG IMod( be a collection 
of C-models. We say that a model A4 is a-minimal in K if ME K and if M 
contains (to within isomorphism) no proper submodel from K with an 
isomorphic a-reduct, which we formalise as follows: for every Ml E K, any 
monomorphism m: Ml -+ M (in Mod(C)) such that ml0 is an isomorphism 
from MlI, to MI, (in Mod(Z)) is in fact an isomorphism (in Mod(C)). 

Now, for any signature morphism D: Z’ -+ C and C-specification SP, 
minimal SP wrt g is a specification describing the models of SP which are 
minimal extensions of their cr-reducts: 

Sig[minimal SP wrt C] = L 

Mod[minimal SP wrt o] = (MI M is a-minimal in Mod[SP]}. 

Closing the model class of a spec(fication under isomorphism. If SP is a 
C-specification then iso close SP is a specification with semantics defined by 

Sig[iso close SP] = C 

Mod[iso close SP] = (ME /Mod( 1 Mis isomorphic 
to some model Ml E Mod[SP]}. 

Observe that there is no guarantee in the definition of an institution that 
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the satisfaction relation is preserved under isomorphism of models. Thus, 
even the collection of models of a basic specification need not be closed 
under isomorphism. Also note (see Section 5) that the collection of models 
of derive from SP by g need not be closed under isomorphism even if the 
collection of models of SP is. 

4.2. Observational Abstraction 

A concept which has (not) been extensively (enough) studied in the con- 
text of algebraic specifications is that of the behaviour of a program or 
model. Intuitively, the behaviour of a program is determined just by the 
answers which are obtained from computations the program may perform. 
Switching for a while to the usual algebraic framework, we may say infor- 
mally that two C-algebras are behaviourally equivalent with respect to a set 
OBS of observable sorts if it is not possible to distinguish between them by 
evaluating Z-terms which produce a result of observable sort. For example, 
suppose C contains the sorts nat, bool, and bunch and the operations 
empty: --t bunch, add nat, bunch + bunch, and E : nat, bunch + boo1 (as well 
as the usual operations on nat and boo!), and suppose A and B are 
C-algebras with 

IA bunch I = the set of finite sets of natural numbers 

IB bunch( = the set of finite lists of natural numbers 

with the operations and the remaining carriers defined in the obvious way 
(but B does not contain operations like cons, car, and cd). Then A and B 
are behaviourally equivalent with respect to { bool) since every term of sort 
boo1 has the same value in both algebras (the interesting terms are of the 
form m E add(a,, . . . . add(a,, empty)...)). Note that A and B are not 
isomorphic. Different notions of behavioural equivalence have been studied 
in [GGM 76, BM 81, Rei 81, GM 82, Sch 82, Kam 83, GM 83, SW 831 
and elsewhere; the idea goes back (at least) to work on automata theory in 
the 1950s [Moore 563. 

Behavioural equivalence seems to be a concept which is fundamental to 
programming methodology. For example: 

Data abstraction. A practical advantage of using abstract data types in 
the construction of programs is that the implementation of abstractions by 
program modules need not be fixed. A different module using different 
algorithms and/or different data structures may be substituted without 
changing the rest of the program provided that the new module is 
behaviourally equivalent to the module it replaces (with respect to the non- 
encapsulated types). ADJ [GTW 761 have suggested that “abstract” in 
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“abstract data type” means “up to isomorphism”; we suggest that it really 
means “up to behavioural equivalence.“3 

Program specification. One way of specifying a program is to describe 
the desired input/output behaviour in some concrete way, e.g., by con- 
structing a very simple program which exhibits the desired behaviour. Any 
program which is behaviourally equivalent to the sample program with 
respect to the primitive types of the programming language satisfies the 
specification. This is called an abstract model specl$cation [LB 771 or 
specification by example [Sad 841. In general, specifications under the 
usual algebraic approaches are not abstract enough; it is either difficult, as 
in Clear [BG SO], or impossible, as in the initial algebra approach of 
[GTW 761 and the final algebra approach of [Wand 793 to specify sets of 
natural numbers in such a way that both A and B above are models of the 
specification. One way to do specification by example in our framework is 
to use a behavioural abstraction operation which when applied to a 
specification SP relaxes interpretation to all those algebras which are 
behaviourally equivalent to a model of SP. We want to stress that although 
the phrase “specification by example” suggests sloppiness, this is not the 
case; in this approach it is a precisely defined, convenient, and intuitive 
way to write specifications, and it is also an established technique in 
software engineering. 

In the above we assume that the only observations (or experiments) we 
are allowed to perform are to test whether the results of computations are 
equal. In the context of an arbitrary institution we can generalise this and 
abstract away from the equational bias by allowing observations which are 
arbitrary sentences (logical formulae). This yields an institution-based 
notion of observational equivalence. Two models are observationally 
equivalent if they both give the same answers to any observation from a 
prespecitied set. Based on this general notion of observational equivalence 
we can define an institution-based specification-building operation for 
observational abstraction (the behaviouial abstraction operation men- 
tioned above is actually only a special case of observational abstraction in 
the standard algebraic framework). One complication is that in order to 

’ It is not our intention to quibble over terminology here. We only wish to suggest that the 
use of the word “abstract” in “abstract data type,” meaning “independent of representation” 
according to [GTW 761, is more accurately reflected by the notion of behavioural equivalence 
than by isomorphism as was suggested there. This seems to be consistent with the use of the 
term in languages like CLU [Lis St] (where abstract data types are called clusters). In 
[GM 82, 831 it has been suggested that “abstract data type” is an appropriate term for an 
isomorphism class of algebras while “abstract machine” refers to a behavioural equivalence 
class of algebras. Then a CLU cluster would correspond to an abstract machine. Since the 
motivation is really to capture algebraically the idea embodied in CLU clusters, we are in 
agreement with Goguen and Meseguer although we choose to use a different terminology. 
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deal with non-reachable models we must be able to express the obser- 
vations we want to make as open formulae; the free variables provide a 
way of naming unreachable elements. 

Formally, for any signature C, signature morphism 8: C + .L”, set 
@’ c Sen(L”) of open C-formulae with variables “C’ - 0(Z)” and Z-models 
Ml, M2 E [Mod(C)/, we say that Ml is observationally reducible to M2 
M’.Y. t. @’ via 6, written Ml 6 “,, M2, if for every (valuation) 
Ml’e IMod(C’)I with Ml’l, = Ml there exists (a valuation) 
A42’~ IMod(C’)I with M2’l,=M2, such that for all cp E@‘, Ml’j=cp iff 
M2’t==(p. A41 is observationally equivalent to M2 w.r.t. CD’ via 6, written 
Ml = “,, M2, if Ml d $,, M2 and M2 6 “,, Ml. 

Now, for any C-specification SP, signature morphism 8: C -+ L”, and set 
@‘E Sen(Z’) of open C-formulae with variables “C’- e(C),” the 
specification abstract SP wrt @’ via 8 (intuitively) ignores the properties 
specified in SP as much as possible without affecting @‘; i.e., it admits any 
model @‘-equivalent via 6’ to a model of SP: 

Sig[abstract SP wrt @’ via O] = Z 

Mod[abstract SP wrt @’ via 0]= (Ml E [Mod( I Ml E $, M2 
for some M2 E Mod[SP]}. 

In Section 5 we describe how observational abstraction may be applied 
to give the effect of the behavioural abstraction operation mentioned 
above. 

It is worth noting that specifications in a given institution INS them- 
selves form an institution. This institution has the same signatures and 
models as INS. Sentences over a signature C are C-specifications as defined 
in Sections 4.1 and 4.2, and the translation of a Z-“sentence” along a 
signature morphism 0: C + C’ is defined in the obvious way using the 
translate operation. Note, however, that in order for this to form a functor 
we must “normalize” specifications so that they have at most one translate 
operation outside, i.e., we must identify translate (translate SP by a) by CJ’ 
with translate SP by o; 0’. The satisfaction relation is determined by the 
semantics of specifications: a Z-model M satisfies a Z-“sentence” SP iff 
ME Mod[SP]. The satisfaction condition follows from the semantics of 
translate and the satisfaction condition for INS. 

4.3. (No) Data Constraints 

Our specification-building operations do not provide the possibility to 
explicitly require initially or freeness. This is in contrast to languages like 
Clear and Look but in accord with ASL and CIP-L. We could easily add 
such an operation (see below). That we do not do this is really just a mat- 
ter of taste, strongly supported by some results on the power of 
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specification methods which indicate that no expressive power is lost by 
excluding such an operation, as long as some operation like our minimal is 
available and specifications may be built in a hierarchical fashion (in the 
standard algebraic framework, for monomorphic specifications-see 
[BBTW 811 for details). We could also set forth the (somewhat 
demagogic) argument that after all one can get exactly the same effect by 
including axioms like data constraints [GB 84a] in the underlying 
institution. 

An operation which imposes freeness requirements (like data as defined 
below) has the technical disadvantage that it is not monotonic with 
respect to inclusion of model classes, unlike all the specification-building 
operations introduced above. This does not apply to the use of data con- 
straints as sentences in basic specifications. Monotonicity turns out to be 
crucial both in defining recursive parameterised specifications (Section 7) 
and in composing implementation steps (Section 8). 

It is worth noting that data constraints were originally introduced under 
the rather serious restriction that the underlying institution be liberal, 
which essentially excludes axioms more powerful than inlinitary Horn for- 
mulae (see [MM 84, Mak 85, Tar 84) for an analysis of this problem in 
the standard case, and [Tar 85, 863 for its generalisation to an arbitrary 
institution). The device of duplex irzstitzrtions allows one to relax this 
restriction in such a way that it applies only to that part of the institution 
which is actually used in data constraints (see [GB 84a] for all the ‘details). 
The construction below shows that formally even this is not necessary: 

For any specification SP and signature morphism O: C -+ Sig[SP] we 
could define data SP over o as a specification having the semantics 

Sig[data SP over a] = Sig[SP] 

Mod[data SP over a] = {ME IMod(Sig[SP])l /for any M’E Mod[SP] 
and C-morphism f: MI rT + M’I (i there exists 
a unique Sig[SP]-morphism f’*: M + M’ 
such that f*10 =f). 

Technical digression. We show that this would essentially give the effect 
of the data constraints of [GB 84aJ Let us recall the relevant definitions 
from [GB 84a] first. 

By a tlzeory we mean any basic specification (C, @) such that CD is a set 
of Z-sentences closed under logical consequence; i.e., @ satisfies the 
equality 

CD= {~ESen(Z)IM~~forallMEMod[(C, @)I). 

By a theory morphism from Tl = (Cl, @l ) to T2 = (C2, @2 ) (where Tl 
and T2 are theories) we mean any signature morphism Q: Cl +.X2 such 
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that o(@l) s @2. According to the satisfaction condition, this means 
exactly that the a-reduct functor -I0 maps models of T2 to models of Tl, 
and so for every theory morphism rr: Tl -+ T2 there is an associated 
a-reduct functor -1 n : Mod[ T2] + Mod[ Tl ] (we identify classes of models 
with full subcategories of the category of models over the given signature). 

An institution is called liberal tf for every theory morphism rr: Tl -+ T2, 
the o-reduct functor -I6 : Mod[ T2] --) Mod[ Tl] has a left adjoint, which 
we denote by F,: Mod[ Tl] + Mod[ T2] (with unit vu and counit P). 
Then, M2 E Mod[ T2] is a-free if it is naturally isomorphic to the free 
model over M21,, i.e., if the counit morphism E%~,,: F,(M21,) + il.42 is an 
isomorphism. 

Finally, a Z-data constraint is a pair (a: Tl + T2, 8: Z2 + C> where 
C-J: Tl -+ T2 is a theory morphism, C2 is the signature of T2, and 8: C2 + Z 
is a signature morphism. A C-model M satisfies the data constraint 
(a: Tl + T2, 0: C2 + L’) if MI, is a model of T2 and is a-free. 

With these preliminary definitions, we can state the following key 
lemma: 

LEMMA. For any theory morphism cx Tl + T2, a Sig[ T2]-model M2 is 
a-free iff A42 E Mod[data T2 over a]. 

Proof Sketch. The “if’ part easily follows from the fact that any two 
free objects are naturally isomorphic (see, e.g., [AM 753). 

For the “only if’ part note that if E&: F,(M21,) + M2 is an 
isomorphism then (E&~,,) ~ ’ : 442 + F,( M2 I ,) is the unique (iso)morphism 
such that (E”,~,,))‘/, = r&,,O-the rest follows easily. 1 

COROLLARY. A data constraint (o: Tl -+ T2, 8: C2 -+ C> is equivalent to 
(has the same class of models as) the specification translate (data T2 over a) 
by 8. 

The above construction indicates that data constraints may be defined 
without the assumption that the underlying institution is liberal. However, 
what happens then is that a data constraint may be inconsistent (have no 
model) even though the theories involved are consistent (have models). On 
the other hand, it must be realised that this may happen even if the 
underlying institution is liberal. Moreover, a specification which includes a 
number of data constraints may be inconsistent anyway. (End of technical 
digression ) 

5. Two STANDARD CASES 

The definitions of the specification-building operations we gave in the 
last section were so general that they may be difficult to understand. We 
now consider what the operations do in two familiar contexts-the 
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institution FOEQ of first-order logic with equality as the only predicate 
symbol, and an institution PFOEQ of partial first-order logic-and com- 
pare them with operations in existing specification languages. 

We define the institution FOEQ as follows: 

-- Sign,,,, is AlgSig (i.e., SignGEQ, the category of algebraic 
signatures and their morphisms). 

~ Mod FoEQ is ModGEQ (i.e., for any algebraic signature Z, 
Mod FoEQ(C) is the category of C-algebras and for any algebraic signature 
morphism 0’: c + Z’, Mod FoEa is the cr-reduct functor from 
Mo4x,,o(~‘) to Modm&~)). 

- For any algebraic signature Z, Sen,o,o(Z) is the set of closed 
first-order formulae with operation symbols from C and the equality as the 
only predicate symbol; for any algebraic signature morphism G: C + C’, 
Sen,,&a) is the translation of Z-formulae to Z’-formulae defined in the 
natural way. 

- The satisfaction relation is determined by the standard notion of 
satisfaction of first-order sentences. 

This clearly forms an institution (details in [GB 84a]). Moreover, our 
assumptions that the category of signatures is finitely cocomplete and that 
Mod FoEQ translates finite colimits in SignFOEQ to limits in Cat obviously 
hold here too; in fact, these parts of the institution are exactly the same as 
those in GEQ. 

In the following we analyse the specification-building operations defined 
in Section 4 in the framework of the above institution of first-order logic. 

There is hardly anything to be said about basic specifications. All 
specification languages provide a syntactic tool for listing a set of axioms 
over a given signature, although usually they differ in which formulae are 
acceptable. First-order equational axioms are relatively powerful compared 
with, e.g., equations in [GTW 761 or universal Horn axioms in 
[EKTWW SO]. 

In our examples we use a syntax corresponding to that of Clear: 

Boo1 = sorts boo1 
opns true, false: + boo1 

not: boo1 --) boo1 
or: bool, boo1 -+ boo1 

axioms Vx: bool. true or x = true 
not(true) = false 
not(false) = true 
Vx: bool. false or x = x 
Vx: bool. x = true v x = false. 

(Of course, or and v are formally not the same here.) 

643.76’1-3-7 
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The union operation differs from the corresponding operation in other 
specification languages (e.g., + in Clear or ASL) in that it works only for 
specifications over the same signature, and so it provides no direct way for 
putting together specifications over different signatures. To do this, we 
must use union together with the translate operation, which introduces new 
sorts and operation symbols to a specification (and renames old ones). 

The sum of two specifications (as defined in ASL) may now be expressed 
as 

SP + SP’ = def (translate SP by 1) u (translate SP’ by I’), 

where 1: Sig[SP] -+ Sig[SP] u Sig[SP’] and I’: Sig[SP’] + Sig[SP] u 
Sig[SP’] are the inclusions of Sig[SP] and Sig[SP’], respectively, into 
their set-theoretic union Sig[SP] u Sig[SP’]. To avoid unintended con- 
fusion of symbols with the same names in Sig[SP] and Sig[SP’], instead 
of using the inclusions I and I’ we could use injections which rename the 
common symbols as required (as in Clear). This obviously generalises to 
arbitrary (not necessary finite) sums. 

An operation similar to enrich in Clear (identical when there are no sym- 
bol clashes) may be defined in terms of the sum and basic specification 
operations: 

enrich SP by sorts S opns Q axioms @ 

= def SP + ((sorts(SP) u S, opns(SP) u a), @), 

where Sig[SP] = (sorts(SP), opns(SP)). 
Note that the translate operation corresponds directly to the TRA 

operator of [EWT 831. 
The derive operation is, in a sense, dual to translate. It may be used to 

rename and to hide some of the sorts and operation symbols of a 
specification. It is exactly the same as derive in ASL [SW 83, short version 
only] and corresponds directly to the reflection (REF) operator in 
[EWT 83-J. The intention is the same as that of derive in Clear, but the 
meaning is slightly different as mentioned in Section 4. The difference is 
highlighted by the following example, using the equational variant of Clear: 

SP = derive from Nat by 6: C -+ Sig[Nat], 

where Nat specifies (using, e.g., the minimal operation-see below) the 
standard model of the natural numbers with a single sort nat and 
operations 0: + nat and succ: nat --t nat, C is Sig[Nat] - (0: -+ nut}, and r~ 
is the inclusion. According to our semantics of derive, Mod[SP] will be the 
class of C-algebras which look just like the standard model of the natural 
numbers but with the operation 0: -+ nat missing. According to Clear’s 
semantics of derive (making the appropriate slight changes to the syntax of 
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the example), any C-algebra at all will be a model of SP. This result seems 
inappropriate. The problem is that the semantics of Clear maps 
specifications to theories. It is impossible to give a theory-level semantics of 
our derive which works for examples like this one because not all the 
properties of models of the derived specification are expressible using just 
C-sentences. 

Note that the collection of models of derive from SP by G need not be 
closed under isomorphism even if Mod[SP] is. This phenomenon occurs 
when 0 is not injective on sorts. When for two sorts s and s’, a(s) = I, 
derive from SP by u requires the carriers of sorts s and s’ to be identical 
rather than only isomorphic. (See below for some further discussion on this 
point.) 

The minimal operation restricts the models of a specilication SP to only 
those algebras which contain (to within isomorphism) no proper sub- 
algebra which is a model of SP with the same a-reduct. In particular, in the 
institution of first-order logic the definition of minimal as given in Section 4 
states that if an algebra A is a model of the specification minimal SP wrt CJ 
then A is a model of SP and whenever B is a model of SP which is a sub- 
algebra of A such that BI,= Al,,, then A= B. Moreover, if Mod[SP] is 
closed under isomorphism then the converse of this implication is true as 
well. In general, however, this need not be the case. Consider the coun- 
terexample 

SP = enrich (derive from ( (sorts t ), a) by a) by opns a: -+ s, b: + s’, 

where cr: (sorts s, s’) + (sorts t ). Now, a Sig[SP]-algebra A is a model of 
SP if and only if IA/,= IA],,. Hence, for example, AEMo~[SP] where 
IAI,y= (0, 1 > = /AI,, with aA =OE IAI,s and h, = 1 E IAl,.. Now, A contains 
no proper subalgebra which is a model of SP. Note, however, that there is 
a model B of SP which is isomorphic to a proper subalgebra of A 
(IBI, = {*} = IBIS,) so A is not minimal in Mod[SP] w.r.t. the inclusion of 
the empty signature into Sig[SP]. 

The minimal operation is similar to the GEN operator of [EWT 831 
rather than to the reachable operation of ASL [SW 831 or the use of 
finitely generated algebras in CIP-L [Bau 811. In fact, minimality does not 
guarantee reachability (and hence, for example, the induction principle 
need not hold in minimal algebras) although reachability does imply 
minimality 

NN = sorts nat 
opns zero: + nat 

succ: nat -+ nat 
axioms 3x: nat. succ(x) = x 

Nat,, = minimal NN wrt lsigCNN, 



190 SANNELLA AND TARLECKI 

(we accept the convention that for any signature C, rz denotes the unique 
signature morphism from the initial signature to 2’; in particular, here 
zSlgCNN, is the inclusion of the empty signature into Sig[NN]). Models of 
NN contain (up to isomorphism) either a finite segment (0, . . . . U} of 
natural numbers N with succ(n) = n and an arbitrary unreachable part or 
else N together with an arbitrary unreachable part containing at least one 
element x such that succ(x)= x. The only models of Nat, are (up to 
isomorphism) finite segments {O, .._, n) of N with succ(n)=n and all 
elements reachable, or else fV together with exactly one unreachable 
element w  such that succ(o) = o. 

An operation which is like reachable in ASL [SW 831 may be defined in 
terms of minimal as 

reachable SP wrt o = deT SP + minimal (Sig[SP], @ ) wrt 0. 

The reachable operation of ASL is in fact a special case of the above, 

reachable SP on S = del reachable SP wrt z, 

where I is the inclusion of the signature (sorts(SP) - S, 0) into Sig[SP]. 
For example, 

Nat-seg = reachable NN wrt lSlgCNN, = reachable NN on { nat ). 

Now, the only models of Nat-seg are (up to isomorphism) finite segments 
{ 0, . . . . H} of N with succ(n) = II and all elements reachable. 

The iso close operation closes the collection of models of a specification 
under isomorphism. The only situation in which the collection of models of 
a specification may not be closed under isomorphism already is when the 
specification contains a use of derive from . . . by cr where CT is not injective on 
sorts. It would be easy to “fix” derive by changing the definition so that the 
result is automatically closed under isomorphism (this was the alternative 
adopted in ASL [SW 83, long version]). Another possible “solution,” 
which turns out to yield exactly the same expressive power, is to restrict 
derive by allowing only signature morphisms which are injective on sorts. 
We prefer, however, to adopt neither solution, retaining both derive (as it is 
defined now) and iso close. This is consistent with our policy of providing 
operations which are as elementary as possible. It also leaves open the 
possibility of specifying collections of models which are not closed under 
isomorphism; despite the well-known arguments that closure under 
isomorphism is natural, we feel that there is no harm in providing such 
flexibility. 

The derive operation allows one to hide some of the sorts and operation 
symbols of a specification. This also causes some of the properties of its 
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models to be hidden, since they cannot be expressed using the remaining 
operations. However, this is not real abstraction yet since the structure 
induced by the hidden operations remains. To do real abstraction we can 
pick out a set of properties we would like to preserve and then use the 
abstract operation. 

The properties we would like to preserve must be expressed as sentences 
of the underlying institution. However, to deal properly with unreachable 
elements of models (dubbed “junk” in [BG 811) we must use open for- 
mulae rather than (closed) sentences. Why not just forbid junk? Although 
unreachable elements seem to be of no consequence, there is an example 
(Infinite-Set) in [SW 831 which shows how an unreachable element in a 
model of SP can become reachable and useful in enrich SP by opns . . . . 
Furthermore, junk naturally arises when we “forget” operations using 
derive, which corresponds to the situation where an algebra which is 
reachable when viewed from a low level becomes non-reachable when 
viewed from a higher level of abstraction. 

The most natural way one may view abstract in the institution of tirst- 
order logic is, we think, the following. 

Given a Z-specification SP, identify the set CD of properties which are to 
be preserved under abstraction. These properties must be expressed as 
C( X)-sentences, where X is a set of variables necessary to name 
unreachable elements. The abstraction of SP with respect to @ is given by 
the specification abstract SP wrt @ via I where z: Z--t C(X) is the algebraic 
signature inclusion. This specifies (roughly speaking) the collection of 
C-algebras which satisfy the same formulae of @ as models of SP. More 
formally, a Z-algebra A satisfies abstract SP wrt @ via z if and only if there 
is a C-algebra B which satisfies SP and which has the property that for any 
valuation uA : X-+ 1.4 1 there exists a valuation ug: X-+ 1 BI such that for any 
formula cp E @, cp holds in A under the valuation uA if and only if cp holds in 
B under the valuation us (and vice versa: for any us: X-+ / B( there exists 
uA : X-r IAl such that...). 

To make this clearer, let us consider a simple example which does not 
make use of open formulae, 

Nat = minimal (C, { Vx: nat. 0 # SUCC(X), 

Vx, y: nat. (succ(x) = succ(y) *x = y)} ) wrt 12, 

where 

C = sorts 
opns 

nat 
0: + nat 
succ: nat + nat 
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Nat-even = enrich Boo1 + Nat by opns even: nat -+ boo1 
axioms even(O) = true 

even(succ(0)) = false 
Vx:nat. even(succ(succ(x))) 

= even(x). 

All models of Nat are isomorphic to the standard model of the natural 
numbers. (Note that for this specification minimality guarantees 
reachability.) Each model of Nat-even is the combination of a model of 
Nat with a model of Boo1 (see above) with an extra operation even. We can 
abstract from Nat-even preserving only the properties of booleans and the 
behaviour of even as follows, 

Nat-mod = abstract Nat-even wrt @boo, via id,, 

where id =: Z -+ C is the identity signature morphism, and 

@ boo, = {t = t’ ) t, t’ are C-terms of sort bool) 

u { Vx: bool. x = true v x = false}. 

All models of Nat-mod are isomorphic either to the natural numbers 
modulo n, for some n E (2, 4, 6, . ..}. or to N itself with arbitrary junk of 
sort nat in both cases. The sentence Vx: bool. x = true v x = false in Qboo, 
forces all models of Nat-mod to have only reachable elements of sort bool; 
if it were removed from Gboo, then models of Nat-mod would contain 
arbitrary junk of sort bool. 

We could achieve the same result using observations which are open 
formulae as follows, 

Nat-mod’ = abstract Nat-even wrt @boo, via z, 

where X is a set of variables with X,,, = 0 and XboO, # 0, I: C + C(X) is 
the algebraic signature inclusion, and 

@boo, = {t = t’/ t, t’ are C-terms of sort boo1 with variables X}. 

The models of Nat-mod’ are exactly those of Nat-mod. Note that all 
models of Nat-mod’ have only reachable elements of sort bool since @&, 
contains the formulae x = true and x = false for some x E Xbool. Note that 
we were able to achieve the same effect above using only ground obser- 
vations (sentences with no free variables) only because the (reachable) 
carriers of sort boo1 in all models of Nat-even are finite. In other examples 
this is not the case. We give a much more detailed analysis of the properties 
of observational abstraction in [ST 873. 

The idea of comparing algebras w.r.t. a set of formulae also appeared in 
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[Pep 831. The difference is that there only closed formulae were con- 
sidered. In ASL [SW 831 there is also a specification-building operation 
called abstract which corresponds to the special case of observational 
abstraction where observations are required to be equations. We 
generalised this operation to the framework of an arbitrary institution in 
[ST 841. The approach of the present paper although originally derived 
from [ST 841 is technically different (and, we believe, simpler and more 
elegant). 

The abstract operation may be used to relax the interpretation of a 
specification to all models which are behaviourally equivalent to a model of 
the specification (this is called behavioural abstraction in ASL 
[SW 83]-see that paper for examples). 

Suppose that Z is an algebraic signature and IN and OUT are subsets of 
the sorts of 2‘. Consider all computations which take input from sorts IN 
and give output in sorts OUT; this set of computations corresponds to the 
set I TAXIN )I oLlT of C-terms of sorts OUT with variables of sorts IN. Two 
algebras are equivalent in our sense with respect to the set 
EQ( I TAX,,)1 OUT ) of equations between terms of the same sort in 
I TAXIN )I OUT if they are behaviourally equivalent; that is they have 
matching input/output relations. This covers the notions of behavioural 
equivalence with respect to a single set OBS of observable sorts which 
appear in the literature. For example, in [Rei 811 and [GM 821 we have 
IN = sorts(C), OUT= OBS; in [Sch 82, SW 83, GM 831 IN = GUT= 
OBS; and in [GGM 76, BM 81, Kam 831 IN = /z, and OUT = OBS. In the 
case where IN = 0 we have no control over the unreachable elements of 
observable sorts whatsoever. To express the obserations which are needed 
to guarantee the preservation of carriers of observable sorts we need free 
variables as in the case where IN = OBS. 

The abstract operation usually does not appear explicitly in specification 
languages (the only exception we know about is ASL); instead, it is 
somehow included in the notion of the implementation of one specification 
by another. The inclusion of abstract as an explicit specification-building 
operation allows us to use a very simple and elegant definition of 
implementation (see Section 8 for a few details). On the other hand, 
abstract makes inference more complex because it is not monotone (at the 
level of theories) in the sense that things true in SP need not be true in 
abstract SP wrt . . . (see Section 6). 

A good test for the general definitions in Section 4 is to consider their 
instantiation in several different institutions. In the rest of this section we 
discuss the result of instantiating in an institution of partial first-order 
logic. 

Let 2 = (S, Q ) be an algebraic signature. A partial Z-algebra is just like 
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a (total) C-algebra except that its operations may be partial. A (weak) 
C-homomorphism from a partial C-algebra A to a partial C-algebra B, 
h: A + B, is a family of (total) functions {h,},sES where h,: [A(, + IBI,y such 
that for anyf:sl, . . . . SIZ+S and ~,EJAJ,,, . . . . u,~E(A~,,, 

fA(al, . . . . a,) defined =>fB(h.,l(a,), . . . . h,,(a,)) defined and 

h.,(f,(a,, . . . . d)=fs(h,I(a,), . . . . h,,(a,)) 

([BrW 821 would call this a total C-homomorphism). If moreover h 
satisfies the condition 

fs(h,y,(a,), . . . . h,,(a,)) defined afA(a, ,.,., a,) defined 

then h is called a strong Z-homomorphism. 
The category of partial C-algebras PAlg(C) has partial Z-algebras as 

objects and (weak) C-homomorphisms as morphisms; the composition of 
homomorphisms is the composition of their corresponding components as 
functions. (This obviously forms a category.) 

The definition of the a-reduct functor -Ig: PAlg(C’) + PAlg(C), where u: 
C -+ C’ is an algebraic signature morphism, is exactly the same as that in 
the total case; see Section 2. 

A partial first-order C-sentence is a closed first-order formula built from 
C-terms using the logical connectives 1, A , v , and 3, the quantifiers V 
and 3, and the atomic formulae D,(t) and t = t’ (strong equality [BrW 821) 
for each sort s in L’ and terms t, t’ E I T,(X)\. (i.e., t, t’ are Z-terms of sort s 
with variables X). 

A partial C-algebra A satisfies an atomic formula D,(t) under a 
valuation u: X+ IAJ, written A /= L, D,(t), iff the value of t in A under u is 
defined (we omit. the definition of the value of a term in a partial algebra 
under a valuation; see [Bur 82, Rei 871 for details). A satisfies an atomic 
formula t= t’ (where t, t’ E ITz(X)I, for some sort s in Z) under a (total) 
valuation u: X + I Al, written A k I, t = t’, iff 

A kt,D,(t) and A kL,D,(t’), or 

A k Li D,(t) and A FL, D,(t’) and the values of t and t’ in A under u 
are the same. 

Satisfaction of (closed) partial first-order Z-sentences is defined as usual, 
but note that V and 3 quantify only over defined values. 

The institution PFOEQ of partial first-order logic is then defined as 
follows: 

- SignpFOEQ is AlgSig. 

~ For an algebraic signature C, ModpFOEQ(C) is PAlg(Z); for an 
algebraic signature morphism (T: C -+ C’, Mod,,,&O) is the a-reduct 
functor -1 d : PAlg(C’) + PAlg(C). 
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- For an algebraic signature C, Sen,,,,q(C) is the set of partial 
first-order C-sentences as defined above; for an algebraic signature 
morphism 0: Z + Z’, Sen,,,,Q(o) is the translation of C-sentences to 
Z’-sentences, defined in the obvious way. 

- For an algebraic signature Z, k Z,PFoEQ is the satisfaction relation 
as defined above. 

This forms an institution; the satisfaction condition follows from the fact 
that FOEQ is an institution and that definedness of terms is preserved 
under change of signature. Moreover, SignpFOEQ is finitely cocomplete (as 
mentioned in Section 2) and ModpFOEQ translates finite colimits in 
SignpFOEQ to limits in Cat. 

The result of instantiating the general definitions of Section 4 in PFOEQ 
gives a set of operations which in some respects resemble those in the early 
version of ASL described in [Wir 821 defined in the context of partial 
algebras (call this language “partial ASL,” but note that it is significantly 
different from the ASL described in [SW 831). One difference, however, is 
that in partial ASL the collection of models of any specification was closed 
under renaming of sorts and operations; i.e., if Sig[SP] = C and C g Z’, 
then Mod[SP] contains partial C’-algebras as well as partial C-algebras. 
This feature could be obtained by changing the definition of ModpFOEQ 
and +zZ.PFoEQ but we prefer to omit it. 

The earlier comments regarding basic specifications and the union, trans- 
late, derive, and iso close operations (and how to define + in terms of u 
and translate) in the context of the institution FOEQ apply without change 
here. 

As expected, minimal SP wrt CJ gives the least-defined and smallest 
(w.r.t. a) models of SP. This operation may be used to express the 
operation mdef of partial ASL, albeit in a rather unsatisfactory way: 

mdef SP d~f (SP u minimal (Sig[SP], 0) wrt lsigcsp,) + Bool, 

where D = def {Ds(t)lt~ ITsigcsPjIs, s~sorts(Sig[SP]), and M+D,(t) for 
all ME Mod[SP]} and Boo1 is a specification of the booleans including 
the axiom true #false. 

Abstract works similarly as in FOEQ. The use of abstract for 
behavioural abstraction is slightly different though, since the properties to 
be preserved must include delinedness of the results of “observable” com- 
putations. If Z is an algebraic signature and IN, OUT are subsets of the 
sorts of C as before, behavioural equivalence in the context of partial 
algebras may be defined as observational equivalence with respect to the 
set of formulae EQ( 1 T,(X,,)I,,,) u {of(t) 1 t E 1 Tz(XIN)ls for s E OUT}. 
Partial ASL includes no operation similar to abstract. 
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It is instructive to note how a small change to the institution PFOEQ 
may affect the operations. For example, we can consider an institution 
which is exactly the same as PFOEQ except that for any algebraic 
signature C, we consider only strong C-homomorphisms between partial 
C-algebras. The minimal operation has a completely different meaning in 
this institution: minimal SP wrt (T gives the smallest (w.r.t. CJ) models of SP 
in each class of equally defined models. The meanings of the other 
operations remain unchanged. 

6. FR~~FS IN STRUCTURED SPECIFICATIONS 

In the framework of an arbitrary institution INS, for any signature C 
each class of C-models K determines a theory Th(K) = (‘p E Sen(C) 1 Mk cp 
for all ME K}, i.e., the set of all C-sentences which are true in every model 
belonging to K (note however that the class of models satisfying Th(K) 
may properly include K). So every Z-specification SP determines the set of 
its logical consequences, the set Th(SP) = Th(Mod[SP]) of all C-sentences 
which hold in all its models. These are exactly the properties of the 
specified object expressible in the given institution on which a user is 
allowed to rely. 

In the above, we said nothing about how to effectively determine if a 
property (sentence) follows from a specification. Our basic notion is the 
satisfaction relation and model-theoretic (rather than proof-theoretic) con- 
sequence. All the same, for practical purposes it is necessary to have some 
effective ( =computational) way of proving that a sentence is a con- 
sequence of a specification, i.e., a proof system. 

Notation. SPl==(p means that the sentence cp holds in all models of SP 
(cp E Th(SP)). SP 1 cp means that cp is provable from SP in a given proof 
system. 

Any useful proof system must be sound; that is SP t cp must imply 
SPk(p (we must only be able to prove things which are true). Another 
important property which a proof system may have is completeness, i.e., 
SPk=(p implies SP t-- cp (we can prove all the true things). Unfortunately, 
for every practical specification approach no sound and complete effective 
proof system can exist; more precisely, this holds for every specification 
approach which is powerful enough to specify the natural numbers-see 
[MS 851 for a review of this problem in the context of equational 
specifications. So we must be content with ,a proof system which is sound 
but not complete. The same situation occurs in program verification; there 
is no (Cook-) complete Hoare-like proof system for any programming 
language with a sufliciently rich control structure [Cla 791. 
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Of course, we cannot expect to be able to construct a satisfactory (i.e., 
“complete enough”) proof system which is entirely independent of the 
institution in use. We must assume that we are given some (sound) proof 
system for the underlying institution, that is a proof system which allows us 
to deduce sentences from sets of sentences (basic specifications). This 
amounts to a proof system for any specification language where 
specification-building operations are defined at the level of presentations. 
However, this does not imply that such a semantics is required for doing 
theorem proving. It is possible to extend the proof system for the underly- 
ing institution to a proof system for the specification language. What we 
must do is to devise an inference rule for every specification-building 
operation which allows facts about a compound specification to be 
deduced from facts about its components [SB 831 in a way which does not 
depend on the particular properties of the underlying institution. This 
approach allows us to use the structure of the specification to direct the 
search for a proof, which is necessary to control the amount of information 
present in large specifications. An additional benefit is that the resulting 
proof will reflect the structure of the specification. 

Let us consider our specification-building operations one by one. 

INFERENCE RULE (union): For any signature Z and fan+ { SP;},,, of 
Z-specifications, for any i E I and any C-sentence cp, 

FACT. The family of inference rules above is sound; i.e., Th(Ui,, SP,) 2 
Uj, I Th(SP,), where the second U denotes the set-theoretic union of sets of 
Z-sentences. 

ProoJ: It is enough to show that Mod[Ui,, SP,] c Mod[U,,, Th(SP,)], 
which follows directly from the definition. m 

Moreover, in the case where the specifications {SPi}iE, are basic 
specifications (in fact, it is sufficient to require that Mod[Th(SP;)] = 
Mod[SP,] for i E I) the inclusion of model classes opposite to the one given 
in the proof holds as well, and so Th(U,E,SPi)~Th(Ui,,Th(SP,)). This 
shows that the above family of inference rules is, in a sense, complete. This 
is the best completeness result we can hope for, since after all an inference 
rule cannot “see” those properties of the component specifications which 
are not expressible in the underlying institution (and, as mentioned before, 
we cannot do the job hidden in the use of Th above which is the respon- 
sibility of the proof system for the underlying institution). 
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INFERENCE RULE (translate): For any signature morphism cr: C + C’, 
C-specifi:cation SP, and Z-sentence cp, 

SP 1 cp = translate SP by g t-- a(q). 

FACT. The above inference rule is sound; i.e., Th(translate SP by cr) z 
o(Th(SP)). 

Proof. It is enough to show that Mod[translate SP by a] E 
Mod[o(Th(SP))], which follows directly from the definition of translate 
and the satisfaction condition for the underlying institution. 1 

Again, in the case where Mod[Th(SP)] = Mod[SP] the inclusion of 
model classes opposite to the one given in the proof holds as well, and so 
Th(translate SP by G) E Th(a(Th(SP))). 

INFERENCE RULE (derive). For any signature morphism C: E+ C’, 
Z-specification SP’, and C-sentence cp, 

SP’ t-a(q) 3 derive from SP’ by (T k cp. 

FACT. The above inference rule is sound; i.e., Th(derive from SP’ 
by a) 2 a-‘(Th(SP’)). 

Proof: It is enough to note that Mod[derive from SP’ by a] E 
Mod[o- ‘(Th(SP’))], which follows directly from the definition of derive 
and the satisfaction condition. 1 

It follows directly from the satisfaction condition and the definition of 
derive that for -any C-sentence cp we have a(q) l Th(SP’) iff cp E Th(derive 
from SP’ by a); i.e., o-‘(Th(SP’)) = Th(derive from SP’ by a). Incidentally, 
this implies that a-‘(Th(SP’)) is closed under consequence. However, even 
in the case where Mod[Th(SP)] = Mod[SP], the inclusion of model 
classes opposite to the one given in the proof above need not hold. 

INFERENCE RULE (minimal). For any signature morphism 0: 2” + Z, 
C-specification SP, and C-sentence cp, 

SP k cp 3 minimal SP wrt 0 t cp. 

The above inference rule is obviously sound. However, it does not reflect 
the restriction which the minimal operation imposes. The most typical use 
of the minimal operation is to restrict interpretation of a specification SP to 
its reachable models (this is exactly the case when Mod[SP] is closed 
under submodels). In the standard algebraic framework, this allows us to 
use an appropriate form of structural induction as the inference rule 
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associated with this specification-building operation. Note however that 
structural induction is itself typically not complete (see [MS 851 for 
discussion of this problem in the framework of equational logic). 

For the iso close operation, note that in general there need not be any 
connection between the truth of sentences and the morphism structure of 
the categories of models. However, in practically all the institutions we are 
dealing with, the truth of sentences is preserved under isomorphism (that 
is, isomorphic models are elementarily equivalent). If this is the case, then 
for any C-specification SP, Th(SP) =Th(iso close SP), which gives an 
obvious (and trivial) inference rule for iso close. 

The inference rule for abstract is going to be a bit more complicated, 
partly because in contrast to the other operations, abstract (intentionally) 
does not preserve the truth of sentences; i.e., 

SPF rp =+ abstract SP wrt . . . via . . . k cp. 

In order to give the inference rule, we need the following notation. For any 
signature morphism 8: C -+ L’ and set @’ E Sen(2) of open C-formulae, we 
define Cl(W) to be the least set of z-sentences closed (insofar as the 
institution allows) under conjunction, negation, and equivalence, and 
including the sentences V(+, 0) and 3($, f3) for every $ in the least set of 
C’-sentences containing @’ and closed under conjunction, negation, and 
equivalence (we use universal and existential quantification of open for- 
mulae in an arbitrary institution as introduced in Section 3). 

INFERENCE RULE (abstract). For any .E-specification SP, signature 
morphism 8: C + C’, set @’ c Sen(Z’) of open Z-formulae, and L-sentence cp, 

SP/-qandcp~Cl(@‘) * abstract SP wrt @’ via 13 t-- cp. 

FACT. The above inference rule is sound; i.e., Th(abstract SP wrt @’ 
via 0) 2 Th(SP) n Cl(@). 

The proof uses the definition of abstract and of the satisfaction of 
quantified formulae in an arbitrary institution. For the proof, for a more 
detailed discussion of the Cl operation and of the completeness of this 
inference rule, and for an example of its use, see [ST 871. 

Note that for any sound proof system k-, if SP is a .E-specification and cp 
is a z-sentence such that SP k cp then 

Mod[SP] = Mod[SPu (2, cp)]. 

This suggests the possibility of incrementally combining a specification with 
its logical consequences as they are discovered. This would be useful from a 
practical point of view in order to avoid repeating the same proof twice, 
and is reminiscent of the Z specification language [ASM 791 in which 
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specifications can contain theorems in addition to axioms. This also 
suggests that it may be interesting to introduce and investigate some notion 
of a theory which reflects the structure of the specification from which the 
theory is derived (our thanks to Rod Burstall for this observation). In such 
a structured theory each sentence (theorem) would be attached to the 
smallest subspecitication of which it is a consequence. 

7. PARAMETERISED SPECIFICATIONS 

Besides providing a certain collection of predefined specification-building 
operations, it is desirable to allow a user to define his own specification- 
building operations, i.e., to provide a mechanism for constructing 
parameterised specgications. There are different approaches to 
parameterised specifications; the ones which seem most natural in our 
framework are those which treat a parameterised specification as a function 
from specifications to specifications as in, e.g., Clear [BG 801, Look 
[ETLZ 823, or ASL. A typical parameterised specification is Stack, which 
when applied to a specification of the elements which are to be “stacked” 
yields a specification of stacks of those elements. As with procedures in 
programming languages, a parameterised specification consists of two 
parts: a formal parameter providing a “skeleton” which any actual 
parameter must match, and a description of how an actual parameter is 
manipulated to form the result. 

The way to deal with parameterised specifications which is most widely 
accepted in the literature on algebraic specifications (e.g., [BG 80, Ehr 791) 
is based on the pushout construction in the category of specifications. (We 
switch here for a moment to the usual algebraic framework where 
specifications are just theories; specification morphisms are signature 
morphisms which presere axioms.) In this approach, a parameterised 
specification P is a specification morphism P: SP,,, -+ SP,,, from the for- 
mal parameter specification to the result specification (usually P is assumed 
to be an inclusion). To apply such a parameterised specification to an 
actual parameter specification SP,,, we must provide another specification 
morphism which “fits” SP,,,-models into SP,,,-models, (T: SP,,, + SP,,, 
(recall that then the reduct functor -1 B takes SP,,,-models to SP,,,-models). 
The result of applying P to SP,,, using cr is the specification P(SP,,,[a]) 
which is defined (up to isomorphism) as the pushout object of P and 0, 
that is 

spa,, p’ fYSP,,,C~l) 
t t 

sp,ary sp,,, 
is a pushout in the category of specifications. 
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This may be generalised to the framework of an arbitrary institution 
INS. For readers interested in the technical details, here is a sketch of how 
this may be done. 

Technical digression. First, we must define the category of 
specifications. For any Z-specification SP and .C’-specification SP’, a 
specification morphism (T: SP + SP’ is a signature morphism c: C-+ C’ 
such that for any-M’ E Mod[SP’], M’I d E Mod[SP]. This obviously yields 
a category of specifications Spec,,, (with identities and composition 
defined as in the category of signatures). The category of theories Th,,, as 
defined in [GB 84a] is a full subcategory of Spec,,,. Note that the 
function Sig: ISpec,,,l -+ ISign,,, 1 extends in a natural way to a functor 
Sig. 

THEOREM. The finctor Sig: Spec,,, -+ Sign,,, reflects colimits. 

Proqf Sketch. Let D be a diagram in Spec,,, with nodes SP, for irz I. 
Let C with injections oi: Sig[SP,] + Z be a colimit of D; Sig (in Sign,,,). 
Let SP be the Z-specification lJit, translate SP, by CJ;. It is easy to check 
that SP with injections gi: SP, + SP for i E I is a colimit of D. 1 

Note that the theorem in [GB 84a] that the functor Sig: Th,,s + Sign,,, 
reflects colimits follows from the above construction since translate can 
be defined at the level of presentations and theories, as mentioned in 
Section 4.1. 

Now, since we assume that Sign,,, is finitely cocomplete, it follows that 
Spec,,, is finitely cocomplete, and hence the pushout used in the above 
construction always exists. 

Incidentally, it is worth noting that the function Mod: ISpec,,,l -+ ICat 
(mapping any C-specification SP to the full subcategory of the category of 
C-modeis with objects Mod[SP]) may also be extended in a natural way 
to a (contravariant) functor Mod: Spec,,, +CatoP. It follows from the 
above construction of colimits in Spec,,, that Mod is finitely cocontinuous, 
i.e., maps initial objects and pushouts in Spec,,, to terminal objects and 
pullbacks, respectively, in Cat (the proof uses the satisfaction condition 
and the assumption that the model functor Mod,,,: Sign,,, + CaP of the 
underlying institution is finitely cocontinuous). This generalises the 
condition (mentioned in Section 2) imposed on the logical framework in 
[EWT 831. (End of technical digression) 

The proof in the above technical digression shows that the result of 
applying P to SP,,, using the fitting morphism o (in the pushout approach) 
is easily expressible using our specification-building operations as 

(translate SP,,, by P’) u (translate SP,,, by u’), 

where P’ and IJ’ are as above. 
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We would like to adopt a more elementary view of parameterised 
specifications, closer to parameterisation mechanisms in programming 
languages. Our treatment is based on the mechanism of macro-expansion 
(B-conversion in the /l-calculus). A similar but again more complicated 
approach was pursued in ASL [SW 831 (for other versions of this 
approach see [ Wir 82, 831). Semantically, any parameterised specification 
can be viewed as a function taking any specification over the given 
parameter signature Zpar to a specification over the result signature Z,,,. 

Formally, a parameterised specification is just a I-expression 
1X: Spar. SP,,, where X is an identifier, Cpar is the parameter signature, and 
SP,,, is a Z,,,-specification built using specification-building operations 
which may involve X as a variable denoting a Z,,,-specification. For any 
Z:,,,-specification SP, (XC: C,,,.SP,,,)(SP) is a specification where 

SigC(AX: ~,,,.SP,,,)W)I =C,,, 
Mod[(IX: Z,,,.SP,,,)(SP)] = Mod[SP,,,[SP/X]] 

(we adopt the usual l-calculus convention that E[u/x] denotes the result of 
substituting v for x in E). Another way of handling the semantics of 
parameterised specifications is to explicitly regard a parameterised 
specification 1X: Zpar. SP,,, as denoting a function [lx: C,,,.SP,,J from 
classes of Zpar- models to classes of C,,,-models defined in the obvious way. 
Then Mod[(Z C,,,.Z,,,)(SP)] = [AX: C,,,.C,J(Mod[SP]). It is easy to 
check that the function 11.X: C,,,.SP,,J is monotone w.r.t. inclusion of 
classes of models (since all the specification-building operations we provide 
are ). 

Note that we.require an exact match between the parameter signature 
Spar and the signature of the actual parameter specification SP. This means 
that any fitting which is necessary must be done explicitly before 
application. However, we require only that the signature of SP fits Spar 
as in [Sch 821; in contrast to the pushout-based approach there is no 
restriction on the class of models of SP, since the result of application is 
well-defined for any C,,,-specification. 

ASL permits specifications to be defined recursively. We can do the same 
here. Whenever we have a parameterised specification AX: C.SP,,, with the 
same parameter and result signature 2, its denotation [AX: .Z.SPJ is a 
monotone function from classes of C-models to classes of C-models. This 
function always has a greatest (w.r.t. inclusion of classes of models) fixed 
point. We can thus introduce a specification-building operation fix as 
follows: fix AX: Z.SP,,, is a Zspecification with the greatest fixed point of 
[DC: Z.SP,,J as its class of models. Some examples of the use of this 
mechanism are given in [SW 83, Wir 831. 

In the above we described how to handle parameterised specifications 



SPECIFICATIONS IN AN ARBITRARY INSTITUTION 203 

having a single parameter. In order to handle multiple parameters we 
can either combine them into a single big parameter (this is the way the 
semantics of Clear works) or slightly extend our treatment of param- 
eterised specifications to permit parameterised specifications which 
yield parameterised specifications as a result (that is, to allow SP,,, to 
itself be a parameterised specification). Then the multiple parameters 
can be handled by “currying”: instead of I1X: Cl, Y: C2.SP,,, we write 
AX: Cl. (AY: C2.SP,,,). We can pursue the latter solution even further and 
permit an arbitrary hierarchy of higher-order parameterised specifications 
by allowing both the arguments and the results of parameterised 
specifications to be parameterised specifications of an arbitrary complexity. 

Note that in the above we have viewed a parameterised specification as a 
specification-building operation and so we have applied the function 
[[1X: C,,,.SP,,,J to (the class of models of) the actual parameter 
specification “as a whole.” An alternative is to apply it “pointwise” to each 
of the models of the actual parameter and then form the union of the 
resulting model classes. In general this gives a different result, 

[r~X:C,,,.SP,,,D(ModCSPI)~ u II~X:~:,,,.SP,,,II((M)), 
MEMod[SP] 

where the inclusion may be proper, for example, if SP,,, contains two 
occurrences of X. The right-hand side of this inclusion suggests another 
possible way to define the semantics of parameterised specifications which 
may even be more appropriate in a context where we are interested in 
building models rather than specifications. 

8. CONCLUDING REMARKS 

The work. presented in this paper is aimed toward application in the 
systematic development of programs from specifications. We have not yet 
discussed the development process itself. The programming discipline of 
stepwise refinement suggests that a program be evolved by working 
gradually via a series of successively lower-level refinements. of the 
specification toward a specification which is so low level that it can be 
regarded as a program. For example, the specification 

reverse(ni1) = nil 
reverse(cons(a, I)) = append(reverse(l),cons(a,nil)) 

is an executable program in Standard ML [Mil84]. The stepwise 
refinement approach guarantees the correctness of the resulting program, 
provided that each refinement step can be proved correct. A formalisation 

643’76 Z~LX 
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of this approach requires a precise definition of the concept of refinement, 
i.e., of the implementation of one specification by another. 

In programming practice, proceeding from a specification to a program 
means making a series of design decisions. These will include decisions con- 
cerning the concrete representation of abstractly defined data types, 
decisions about how to compute abstractly specified functions (choice of 
algorithm), and decisions which select between the various possibilities 
which the high-level specification leaves open. The following very simple 
formal notion of implementation (independent from the particular 
institution in use) captures this idea: a specification SP is implemented by 
another specification SP’, written SP-+ SP’, if SP’ incorporates more 
design decisions than SP; i.e., any model of SP’ is a model of SP (SP and 
SP’ are required to have the same signature). We can adopt this simple 
notion if we have an operation like observational abstraction available (see 
[SW 83, ST 871 for more discussion on this point). 

This notion of implementation can be extended to give a notion of the 
implementation of parameterised specifications: P is implemented by P’, 
written P -+ P’, if P and P’ have the same parameter signature C and for 
all Z-specifications SP, P(SP) --~+ P’(SP). 

An important issue for any notion of implementation is whether 
implementations can be composed vertically and horizontally [GB SO]. 
Implementations can be vertically composed if the implementation relation 
is transitive (SP-+ SP’ and SP’ --+ SP” implies SP -+ SP”) and they can be 
horizontally composed if the specification-building operations preserve 
implementations (P -N, P’ and SP --+ SP’ implies P( SP) -+ P’(SP’)). The 
above notion of implementation has both these properties, since all our 
specification-building operations are monotonic (with respect to inclusion 
of model classes). These two properties allow large structured specifications 
to be refined in a gradual and modular fashion. All of the individual small 
specifications which make up a large specification can be separately refined 
in several stages to give a collection of lower-level specifications (this 
should be relatively easy because of their small size). When the low-level 
specifications are put back together, the result is guaranteed to be an 
implementation of the original specification. Note that other more 
complicated notions of impl,ementation ([EKMP 821, just to take one 
example) do not compose vertically or horizontally in general. 

We have not studied in detail the interactions between the specification- 
building operations we have defined. It is obvious, however, that they 
satisfy some non-trivial laws. For example, it is possible to prove identities 
such as 

translate (abstract SP wrt @’ via 0) by CJ 

= abstract (translate SP by 0) wrt a’(@‘) via O’, 
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where 0’: Z + ,X1 ’ and 6’: Zl + Cl’ are the pushout in Sign of C: C -+ Cl 
and 9: C + C’ (as in Section 3). A “library” of laws of this kind could be 
used as a basis for program development. For a more detailed analysis and 
examples of other laws which hold between our specification-building 
operations in the standard algebraic framework, see [SW 831. 

In this paper we defined and analysed a set of primitive and general 
specification-building operations which when instantiated in any institution 
provide a powerful but low-level tool for specification. We tested the 
institution-based general definitions of these operations by examining the 
result of instantiating them in two different ways: in an institution of total 
first-order equational logic and in an institution of partial first-order logic 
(Section 5). When we originally formulated the definitions we also con- 
sidered the result of instantiating them in two other institutions, an error 
institution based on [GDLE 821 and an institution of continuous algebras 
based on [ANR 851, cf. [TW 863. 

The question of whether the definitions we have given are really general 
naturally arises; maybe there is some institution which we have not con- 

sidered in which the operations we have defined work in an unexpected 
way. Indeed, whenever one generalises on the basis of a small collection of 
examples one must choose between all the generalisations which are dif- 
ferent in general but which coincide in the particular examples one has at 
hand. For, example, in the definition of the minimal operation, to represent 
the concrete notion of injective homomorphisms we used just 
monomorphisms rather than, say, equalisers or extremal monomorphisms 
(or more generally we could parameterise our definition by an image fac- 
torisation system as in [Tar 851). All of these possibilities work equally 
well in each of our example institutions. We can try to test our 
generalisations by comparing them with other available general definitions. 
So for example we can show (see [Tar 851) that-under certain not very 
restrictive conditionsPminimal corresponds to “generated” as defined in 
[GB 84a] (note however that the definition of [GB 84a] works only in 
liberal institutions, and this is a strong restriction). 

Another natural question concerns our decision to allow the specification 
of collections of models which are not closed under isomorphism and our 
careful treatment of models containing unreachable elements. We chose this 
course because we cannot see any really compelling reason, either 
pragmatic or technical, for assuming that all useful collections of models 
are closed under isomorphism or that only reachable models are worth 
considering. On the other hand, we also know of no compelling reason 
why these assumptions (especially the former) are unreasonable. By leaving 
the choice to the specifier (or to the designer of a high-level specification 
language which builds upon our kernel operations) we provide the freedom 
to explore all possibilities without unnecessary restrictions. 
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Although the reader might have the impression that we have been 
carried away in our pursuit of generality, we tried to resist the urge to, 
throw in unnecessary generalisations. So, for example, it is clear that iso 
close can be generalised to give an operation which can close under dif- 
ferent classes of morphisms, and not just under isomorphism. This 
generalisation might even be useful; note that closure under (sources of) 
monomorphisms gives closure under subalgebras, and closure under 
(targets of) epimorphisms gives closure under quotients. We do not claim 
to offer every possible operation on collections of models, only a few 
interesting ones which we know are useful. This is also part of our 
justification for omitting an operation which restricts to the initial or final 
elements in a collection of models. 

The theme which underlies all of the work presented in this paper is one 
of generality. Striving always to work at the most general level possible 
results in reusable theories and tools. We argued that it is best to avoid 
choosing any particular logical system on which to base a specification 
approach. Instead we parameterised our work by an arbitrary institution. 
We hope that we have convinced the reader that this is an appropriate 
level of generality on which to introduce and analyse concepts like 
specification and implementation, and tools like specification-building and 
theorem-proving formalisms. 
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