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The way that refinement of individual “local” components of a specification relates to

development of a “global” system from a specification of requirements is explored.

Observational interpretation of specifications and refinements add expressive power and

flexibility while bringing in some subtle problems. Our study of these issues is carried

out in the context of Casl architectural specifications. We introduce a definition of

observational equivalence for Casl models, leading to an observational semantics for

architectural specifications for which we prove important properties. Overall, this fulfills

the long-standing goal of complementing the standard semantics of Casl specifications

with an observational view that supports observational refinement of specifications in

combination with Casl-style architectural design.

1. Introduction

There has been a great deal of work in the algebraic specification tradition on formalizing
the rather intuitive and appealing idea of program development by stepwise refinement,
including (Ehrig et al. 1982; Ganzinger 1983; Schoett 1987; Sannella and Tarlecki 1988b);
for a survey, see (Ehrig and Kreowski 1999). There are many issues that make this a
difficult problem, and some of them are rather subtle, one example being the relationship
between specification structure and program structure, and another being the tradeoff
between the expressive power of a specification formalism and the ease of reasoning about
specifications. Significant complications result when “observational” or “behavioural”
aspects of specifications are considered, whereby the definition of correctness takes into
account only the results of those computations that can be directly observed. An overview
that covers most of our own contributions is (Sannella and Tarlecki 1997), with some
more recent work addressing the problem of how to prove correctness of refinement steps
(Bidoit and Hennicker 1998; Bidoit and Hennicker 2006), the design of a convenient
formalism for writing specifications (Bidoit, Sannella and Tarlecki 2002a; Astesiano et
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al. 2002; CoFI 2004), and applications to data refinement in typed λ-calculus (Honsell
et al. 2000).

A new angle that we explore here is the “global” effect of refining individual “lo-
cal” components of a specification. This involves a well-known technique from algebraic
specification, namely the use of pushouts of signatures and amalgamation of models to
build large systems by composition of separate interrelated components. The situation
becomes considerably more subtle when observational interpretation of specifications and
refinements is brought into the picture.

Part of the answer has already been provided, the main references being Schoett’s
thesis (Schoett 1987; Schoett 1990) and our work on formal development in the Ex-

tended ML framework (Sannella and Tarlecki 1989); the general ideas go back at least
to (Hoare 1972). We have another look at these issues here, in the context of the Casl

specification formalism (Astesiano et al. 2002; CoFI 2004) and in particular, its archi-
tectural specifications (Bidoit, Sannella and Tarlecki 2002a). Architectural specifications,
for describing the modular structure of software systems, are probably the most novel
feature of Casl. We view them here as a means of making complex refinement steps, by
defining a construction to be used to build the overall system from implementations of
individually-specified units; these may include parametrized units that contribute to this
construction.

This paper combines and expands on previous work reported in (Bidoit, Sannella and
Tarlecki 2002a; Bidoit, Sannella and Tarlecki 2002b; Bidoit, Sannella and Tarlecki 2004;
Baumeister et al. 2004; Schröder et al. 2005). It interweaves three strands. The first strand
(Sects. 2 and 5) recalls the basic semantic concepts of Casl and introduces observational
equivalence for Casl models and the induced observational interpretation of Casl basic
and structured specifications. In contrast to (Bidoit, Sannella and Tarlecki 2002b), true
Casl models are considered rather than standard many-sorted total algebras.

A second strand (Sects. 3 and 6) explores the use of local constructions in an ar-
bitrary global context, and its interaction with an observational view of requirements
specifications. In particular, stability and observational correctness of constructions on
Casl models are treated, and practical local criteria to establish both properties are
formulated.

The final strand (Sects. 4 and 7) provides a careful analysis of the semantics of Casl

architectural specifications, taking account of the fact that amalgamability is not en-
sured for Casl models and linking with the other strands to provide such specifications
with an observational semantics. Key invariant properties of the semantics are precisely
formulated and proved.

Due to space considerations we do not deal with full-blown Casl as defined in (Mosses
2004), but the addition of unit definitions to the treatment in (Bidoit, Sannella and
Tarlecki 2002b) together with a proper account of dependencies between units means
that the extension to full Casl would be routine. The analysis of invariants linking the
static semantics and model semantics of architectural specifications in Sect. 4 provides
essential insight into the semantics of full Casl that was implicit in (Baumeister et
al. 2004); this reiterates Thm. 2 in (Schröder et al. 2005) and provides a basis for an
analogous treatment of the observational case in Sect. 7.
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An orthogonal view of the structure of this paper is that Sects. 2–4 present a standard
treatment of Casl basic and structured specifications, local constructions and their use
in a global context, and Casl architectural specifications; a comprehensive observational
treatment is then given in Sects. 5–7. An example in Sect. 8, based on one in (Bidoit,
Sannella and Tarlecki 2004), provides a concrete illustration of some of the points that
arise.

Overall, this fulfills the long-standing goal of complementing the standard semantics
of Casl specifications (Baumeister et al. 2004) with an observational view that supports
observational refinement of specifications in combination with Casl-style architectural
design.

2. Casl Institution and Specifications

A basic assumption underpinning algebraic specification and derived approaches to soft-
ware specification and development is that programs are modelled as algebras (of some
kind) with their “types” captured by algebraic signatures (again, adapted as appropri-
ate). Then specifications include axioms describing the required properties. This leads
to quite a flexible framework, which can be tuned as desired to cope with various pro-
gramming features of interest by selecting the appropriate variation of algebra, signature
and axiom. This flexibility has been formalized via the notion of institution (Goguen and
Burstall 1992) and related work on the theory of specifications and formal program devel-
opment (Sannella and Tarlecki 1988a; Sannella and Tarlecki 1997; Bidoit and Hennicker
1993).

Let us recall that an institution defines a notion of signature together with for any
signature Σ, a set of Σ-sentences, a class of Σ-models equipped with homomorphisms,
and a satisfaction relation between Σ-models and Σ-sentences. Moreover, signatures come
equipped with signature morphisms, forming a category. Any signature morphism induces
a translation of sentences and a translation of models (the latter going in the opposite
direction to the morphism). All this can be expressed very concisely using the language of
category theory: we require a category Sig, a functor Sen : Sig → Set, a (contravariant)
functor Mod : Sigop → Cat, and a family of binary relations 〈|=Σ ⊆ |Mod(Σ)| ×
Sen(Σ)〉

Σ∈|Sign|. The only semantic requirement is that when we change signatures
using a signature morphism, the induced translations of sentences and of models preserve
the satisfaction relation.

By now it is standard to base work on specification languages and formal program
development on the notion of an institution, so that a clear separation between logic-
dependent details and general logic-independent aspects of the work can be achieved. We
follow this below, recalling the logical system of Casl (Bidoit and Mosses 2004).

Casl is an algebraic specification language for describing Casl models: many-sorted
algebras with subsorts, partial and total operations, and predicates. Casl models are
classified by Casl signatures, which give sort names (with their subsorting relation),
partial and total operation names, and predicate names, together with profiles of oper-
ations and predicates. In Casl models, subsorts and supersorts are linked by implicit
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subsort embeddings that are required to compose with each other and to be compatible
with operations and predicates with the same names.

Recalling (and slightly simplifying) some technical detail from (Baumeister et al. 2004):
a Casl signature is a tuple Σ = (S,TF ,PF , P,≤), where S is a set of sort names, TF =
〈TFws〉ws∈S+ and PF = 〈PFws〉ws∈S+ are families of total and partial, respectively,
operation names, indexed by their profiles (which consist of their arity w ∈ S∗ and
result sort s ∈ S), P = 〈Pw〉w∈S∗ is a family of predicate names, indexed by their
arities, and ≤ is a subsorting preorder on S (a relation that is reflexive and transitive).
For simplicity, we bluntly assume that no overloading is allowed, that is, that all the
sets in TF , PF , and P are mutually disjoint1. We write f : s1 × · · · × sn → s when
s1, . . . , sn, s ∈ S and f ∈ TF s1...sns; similar notation is used for partial operation names
and for predicate symbols. If n = 0 then f is a constant and we write f : s. For Casl

signatures Σ = (S,TF ,PF , P,≤) and Σ′ = (S′,TF ′,PF ′, P ′,≤′), a morphism between
them, written σ : Σ → Σ′, maps sort names in S to sort names in S′ so that the
subsorting preorder is preserved, operation names in TF ∪ PF to operation names in
TF ′ ∪PF ′ so that their totality and profiles are preserved, and predicate names in P to
predicate names in P ′ so that their arities are preserved. This yields a category Sig of
Casl signatures and their morphisms with the obvious identities and component-wise
composition.

Given a Casl signature Σ = (S,TF ,PF , P,≤), we define its expansion to a many-
sorted signature Σ# that retains the set of sorts S and includes the operation and pred-
icate names from TF , PF and P , adding for all s ≤ s′ in Σ, a new total operation name
ems≤s′ : s → s′ for subsort embedding, a new partial operation name prs≤s′ : s′ → s for
subsort projection, and a new predicate name ins≤s′ : s′ for subsort membership. Note
that ( )# extends to signature morphisms in an obvious way.

Now, a Casl model over the Casl signature Σ = (S,TF ,PF , P,≤) is a structure M

over the signature Σ#, which consists of a carrier set |M |s for each sort s ∈ S, a (partial)
function fM : |M |s1 × · · · × |M |sn

→ |M |s for each operation name f : s1 × · · · × sn → s in
Σ# (with fM being total for total operation names f) and a relation pM ⊆ |M |s1 × · · · × |M |sn

for each predicate name p: s1 × · · · × sn, such that for all s ≤ s′ in Σ, the subsort embed-
ding ems≤s′

M : |M |s → |M |s′ is injective, the subsort projection prs≤s′

M : |M |s′ → |M |s is
defined exactly on the image of ems≤s′

M as its inverse, and the subsort membership pred-
icate ins≤s′

M ⊆ |M |s′ holds exactly on the image of ems≤s′

M . Moreover, we require that
ems≤s

M is the identity for s ∈ S, and that the embeddings compose, that is, if s ≤ s′ ≤ s′′

then ems≤s′′

M is the composition of ems≤s′

M and ems′≤s′′

M .
This yields the class of Casl Σ-models, which form a category Mod(Σ) with homo-

morphisms between Σ#-structures defined as usual, as maps that preserve predicates as
well as the definedness and values of operations. A homomorphism is strong if it also
reflects the predicates and the definedness of operations. Given a Casl Σ-model M , a

1 This assumption is unrealistic in practical examples, especially when subsorting is involved; Casl
deals with this properly, imposing only a considerably weaker version of this restriction. The issues
that arise are irrelevant for the topic of this paper.



Observational Interpretation of Casl Specifications 5

submodel is any Casl Σ-model N with carriers of N included in those of M such that
the inclusion function |N | ↪→ |M | is a strong homomorphism, cf. closed subalgebras in
(Burmeister 1986).

As expected, kernels of homomorphisms between Casl models are congruences: equiv-
alence relations on model carriers closed under operations when defined in the model
(this also applies to the subsort embeddings and projections). Kernels of strong ho-
momorphisms are strong congruences: these are congruences that in addition preserve
predicates and definedness of operations. Given any Casl Σ-model M and congruence '
on it, the quotient of M by ' is defined as the quotient of M as a Σ#-structure by '; it
is easy to check that the usual definition yields a Σ#-structure which is a Casl Σ-model,
and that the natural quotient homomorphism is strong whenever the congruence ' is
strong.

Any Casl signature morphism σ: Σ → Σ′ determines a reduct functor from Mod(Σ′)
to Mod(Σ), where for any Σ′-model M ′ ∈ |Mod(Σ′)|, its reduct M ′

σ ∈ |Mod(Σ)|
is defined as the σ#-reduct of the (Σ′)#-structure M ′: any sort, operation or predicate
name ν in Σ# gets the same interpretation in M ′

σ as σ#(ν) has in M ′. Similarly
for homomorphisms, and for arbitrary relations between carriers of Casl models. This
completes the definition of a functor Mod : Sigop → Cat.

It is easy to check that the category Sig of Casl signatures is (finitely) cocomplete,
with colimits of diagrams given in the expected, component-wise way. Note in particular
that the subsort preorder in the colimit signature is the transitive closure of the union
of the images of the subsort preorders of the signatures in the diagram under the colimit
injections. We will assume that some standard construction of pushouts in Sig is given.

Colimits in Sig offer a rudimentary way of putting together Casl signatures and
basic specifications over them (see below), very much as in the standard algebraic frame-
work (Ehrig and Mahr 1985). When it comes to model theory though, things are more
difficult, since Casl does not ensure that the amalgamation property holds.

Definition 2.1 (Amalgamation). A pushout in the category of Casl signatures:

Σ

Σ1

Σ′

Σ′
1

6
γ

-
ι

-ι′

6
γ′

ensures amalgamability if for all models M1 ∈ |Mod(Σ1)| and M ′ ∈ |Mod(Σ′)| such
that M1 γ = M ′

ι there exists a unique model M ′
1 ∈ |Mod(Σ′

1)| such that M ′
1 ι′ = M1

and M ′
1 γ′ = M ′. We sometimes write M1 ⊕ M ′ for such a unique M ′

1 and call it the
amalgamation of M1 and M ′, when the pushout is clear from the context.

When the signature morphism ι is given and the pushout as above ensures amalgama-
bility, we will refer to the morphism γ as admissible (cf. Def. 3.3 below).

It is worth stressing that pushouts of Casl signature morphisms between signatures
with no proper subsorts (i.e., the subsorting preorders are identities) always ensure amal-
gamability. The potential problems are caused by the built-in requirements of uniqueness
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and composability of subsort embeddings in Casl models. The simplest example of a
pushout that does not ensure amalgamability is when Σ contains just two sorts, and both
Σ1 and Σ′ expand Σ by adding a new subsort relationship between the two sorts. The
pushout signature then coincides with Σ1 = Σ′ (and so allows for one subsort embedding
between the two sorts), and two models over Σ1 and Σ′ with common Σ-reduct amal-
gamate only if they happen to share the same subsort embedding. Perhaps surprisingly,
the problem whether a pushout (or more generally, a colimit) ensures amalgamability is
in general undecidable, but a number of effective algorithms to determine this in vari-
ous practically relevant cases can be given. However, we do not know any easy syntactic
condition that would ensure amalgamability without excluding some cases that naturally
arise in practical specifications. For instance, requiring that ι and γ in the diagram above
do not introduce new subsorting relationships between sorts from Σ is not sufficient. To
see this, consider Σ with just two independent sorts, Σ1 which adds a new common sub-
sort for them, and Σ′ which add a new common supersort for them. Then the resulting
pushout does not ensure amalgamability. We refer to (Schröder et al. 2001; Klin et al.
2001; Schröder et al. 2005) for further examples and a more complete study of amalgam-
ability in Casl. Here, we just guard any use of amalgamation with a requirement that
the relevant pushout ensures amalgamability.

In the framework of Casl, if a pushout ensures amalgamability (of Casl models, as
above) then it also ensures amalgamability of homomorphisms:

Lemma 2.2. Suppose that the following pushout

Σ

Σ1

Σ′

Σ′
1

6
γ

-
ι

-ι′

6
γ′

ensures amalgamability. Then for all homomorphisms h1:M1 → N1 in Mod(Σ1) and
h′:M ′ → N ′ in Mod(Σ′) such that h1 γ = h′ ι there exists a unique homomorphism
h′1:M

′
1 → N ′

1 in Mod(Σ′
1) such that h′1 ι′ = h1 and h′1 γ′ = h′. Moreover, h′1 is strong if

both h1 and h′ are strong.

Proof. Let M ′
1 = M1⊕M ′ and N ′

1 = N1⊕N ′ (they are well-defined, since the pushout
ensures amalgamability). For each sort s1 in Σ1, put (h′1)ι′(s1) = (h1)s1 ; for each sort
s′ in Σ′, put (h′1)γ′(s′) = (h′)s′ . By the construction of pushouts in Sig, this yields a
well-defined family of functions (h′1)s: |M ′

1|s → |N ′
1|s, for sorts s in Σ′

1. The required
compatibility with the predicates and operations of the form (ι′)#(f1), for f1 in Σ#

1 ,
follows from the compatibility of h1 with the predicates and operations in Σ#

1 ; similarly
for the predicates and operations of the form (γ′)#(f ′) for f ′ in (Σ′)#. Consider then a
subsort embedding in (Σ′

1)
#. Since the subsort relation in Σ′

1 is the transitive closure of
the union of the images of the subsort relations in Σ1 and Σ′ under ι′ and γ′, respectively,
the embedding is a composition of embedding operations of the forms considered above
— and so compatibility follows by an easy induction. Similarly for subsort projections in
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Σ′
1, and then for the subsort membership predicates (which are defined as the domains

of the corresponding subsort projections).

Given a Casl signature Σ, we assume the usual definition of a first-order formula (with
quantification and the usual logical connectives) built over atomic formulae which include
strong and existential equalities, definedness formulae and predicate applications, over
the many-sorted signature Σ#, and its satisfaction in a Σ#-structure. Adding so-called
generation constraints as special, non-first-order sentences, yields the set of Casl Σ-
sentences, written Sen(Σ). Given a Casl signature morphism σ: Σ → Σ′, the translation
of any Σ-sentence ϕ ∈ Sen(Σ) is defined as usual, and we write it as σ(ϕ), see (Baumeister
et al. 2004). This defines a functor Sen : Sig → Set.

As usual for first-order logic, satisfaction is defined for the more general case of for-
mulae with free variables; we write M [v] |=Σ ϕ to state that the Σ-formula ϕ with free
variables in a set X holds in the Σ-model M under the valuation v:X → |M |. The sig-
nature subscript in |=Σ is usually left implicit. The notation (t)M [v] is used to denote the
value of a term t with variables in X in the model M under the valuation v:X → |M |;
this may be undefined, when the term involves partial operations. Satisfaction of for-
mulae and evaluation of terms only depend on the valuation of their free variables. We
drop the valuation v in this notation for closed terms (terms with no variables) and sen-
tences (formulae with no free variables). The satisfaction of sentences is preserved under
signature morphisms: for any σ: Σ → Σ′, M ′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ), we have

M ′
σ |= ϕ ⇐⇒ M ′ |= σ(ϕ)

We consider Casl formulae built over the usual algebraic terms only, so in particular
Casl conditional terms are excluded (they can be easily eliminated in formulae anyway,
see (CoFI 2004)).

We introduce a more general form of conditional terms, as follows, but without allowing
them in formulae. Given a Casl signature Σ, a conditional term of sort s with variables
in X is of the form c = 〈(φi, ti)〉i≥0, where for i ≥ 0, φi are formulae with variables in
X, and ti are terms of sort s with variables in X. Given a Σ-model M and a valuation
v:X → |M |, the value cM [v] of such a conditional term c is (tk)M [v] for the least k ≥ 0 such
that M [v] |= φk, or is undefined if no such k ≥ 0 exists. Note that the infinitary unfolding
of any recursive definition can be captured by such a conditional term. Therefore we
use these conditional terms to model arbitrary computations, even though they go well
beyond what programming languages offer: arbitrary formulae are used as conditions
without regard to decidability, the sequence of conditions and terms need not even be
recursively enumerable, etc. Some of this generality will be excluded by requirements
arising from discussion in Sections 5 and 6.1.

We use these conditional terms to generalize derived signature morphisms (Goguen,
Thatcher and Wagner 1978). A derived signature morphism δ: Σ → Σ′ maps partial
operation symbols f : s1 × . . .× sn → s in Σ to conditional Σ′-terms of sort δ(s) with
variables {x1: δ(s1), . . . , xn: δ(sn)}. Evidently, such a derived signature morphism δ: Σ →
Σ′ still determines a reduct function δ mapping Σ′-models to Σ-models. In general this
does not extend to a reduct functor between model categories, since values of conditional
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terms with arbitrary conditions need not be preserved by homomorphisms (but see the
comment following Lemma 5.5).

The basic level of Casl includes declarations to introduce components of signatures
and axioms to give properties that characterize models of a specification. Consequently,
a basic Casl specification SP amounts to a definition of a signature Σ and a set of
axioms Φ ⊆ Sen(Σ). It denotes the class [[SP ]] ⊆ |Mod(Σ)| of SP -models, which are
those Σ-models that satisfy all the axioms in Φ:

[[SP ]] = {M ∈ |Mod(Σ)| | M |= Φ}.

Apart from basic specifications as above, Casl provides ways of building complex spec-
ifications out of simpler ones by means of various structuring constructs. These include
translation, hiding, union, and both free and loose forms of extension. Generic specifica-
tions and their instantiations with pushout-style semantics (Burstall and Goguen 1980;
Ehrig and Mahr 1985) are also provided. Structured specifications built using these con-
structs are given a compositional semantics where each specification SP determines a sig-
nature Sig [SP ] and a class [[SP ]] ⊆ |Mod(Sig [SP ])| of models. Most of the details, given
in (Baumeister et al. 2004), are irrelevant for the purposes of this paper. It is enough
to know the following: for any specification SP and signature morphism σ:Sig(SP) →
Σ′, we write SP with σ for the translation of SP along σ, with semantics given by
Sig [SP with σ] = Σ′ and [[SP with σ]] = {M ′ ∈ |Mod(Σ′)| | M ′

σ ∈ [[SP ]]}, and for
any two specifications SP1 and SP2 with common signature, we write SP1 and SP2

for their union, with semantics given by Sig [SP1 and SP2] = Sig [SP1] = Sig [SP2] and
[[SP1 and SP2]] = [[SP1]] ∩ [[SP2]]. Note that union in Casl generalizes this by allowing
Sig [SP1] 6= Sig [SP2].

3. Software Components and Their Correctness

The intended use of Casl, as of any such specification formalism, is to specify programs.
Each Casl specification should determine a class of programs that correctly realize the
specified requirements. To fit this into the formal view of Casl specifications, programs
must be written in a programming language having a semantics which assigns to each
program its denotation as a Casl model.2 Then each program P determines a Casl

signature Sig [P ] and a model [[P ]] ∈ |Mod(Sig [P ])|. Any specification SP is then a
description of its admissible realizations: a program P is a (correct) realization of SP if
Sig [P ] = Sig [SP ] and [[P ]] ∈ [[SP ]].

Let us now consider component-based systems, that is, systems obtained by assembling
components, rather than “monolithic” programs. We take a rather restrictive view of
components, namely software components (understood as pieces of code) in contrast with

2 This may be rather indirect, and in general involves a non-trivial abstraction step. It has not yet
been attempted for any real programming language, but see (Schröder and Mossakowski 2002) for an
outline of how this could be done for Haskell. See also the pre-Casl work on Extended ML (Kahrs,
Sannella and Tarlecki 1997), and see Larch (Guttag and Horning 1993) for another attempt to link a
specification language with various programming languages.
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system components (understood as self-contained processors with their own hardware and
software interacting with each other and the environment by exchanging messages across
linking interfaces). However, our view is consistent with the best accepted definition in
the software industry, see (Szyperski 1998): a (software) component is an independently-
deployable unit of composition with contractually specified interfaces and fully explicit
context dependencies.

To capture this, we will consider that a software component ∆P determines a “param-
eter” signature, say Σ, corresponding to the symbols required by the component, and
a “result” signature, say Σ′, corresponding to the symbols provided by the component,
together with a signature morphism ι: Σ → Σ′ relating the “parameter” signature to the
“result” signature. Thereby ι: Σ → Σ′ corresponds to the (syntactic part of the) interface
of the software component.

Then the software component ∆P determines a function F = [[∆P ]] from Casl Σ-
models to Casl Σ′-models. This function may be partial, see below. When assembled
with (applied to) a sub-system P (determining a Casl signature Sig [P ] = Σ and a
model [[P ]] ∈ |Mod(Σ)|), the software component ∆P “extends” P to a larger system,
say ∆P (P ), with signature Sig [∆P (P )] = Σ′, determining a Casl model [[∆P (P )]] ∈
|Mod(Σ′)|. It is intuitively clear that the software component “preserves” the sub-system
it is applied to, so [[∆P (P )]] ι = [[P ]].

Thus a software component ∆P determines a semantic object F called a local con-
struction according to the definition below. Since software components preserve their
arguments, we assume that such constructions are persistent : the argument of a con-
struction is always fully included in its result, without modification3 — note that this
assumption holds for all constructions that can be declared and specified in Casl, see
Sect. 4. In fact, we generalize Casl somewhat by considering arbitrary signature mor-
phisms rather than just inclusions.

Definition 3.1 (Local construction). Given a signature morphism ι: Σ → Σ′, a local
construction along ι is a persistent partial function F : |Mod(Σ)| ⇀ |Mod(Σ′)| (for
each M ∈ dom(F ), F (M) ι = M). We write Mod(Σ ι−→Σ′) for the class of all local
constructions along ι.

We will not dwell here on how particular local constructions are defined. Free functor
semantics for parametrized specifications is one way to proceed, with the persistency
requirement giving rise to additional proof obligations (Ehrig and Mahr 1985). Perhaps
closer to ordinary programming, any “definitional” derived signature morphism δ: Σ′ → Σ
that defines Σ′-components in terms of Σ-components naturally gives rise to a local

3 Otherwise we would have to explicitly indicate “sharing” between the argument and result of each
construction, and explain how such sharing is preserved by the various ways of putting together
constructions, as was painfully spelled out in (Sannella and Tarlecki 1989). If necessary, superfluous
components of models constructed using persistent constructions can be discarded at the end using
the reduct along a signature inclusion.
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construction, since the induced reduct function δ: |Mod(Σ)| → |Mod(Σ′)| is a local
construction along a signature morphism ι: Σ → Σ′ whenever ι;δ = idΣ.4

Of course we are interested in specifications of software components, that is, in “se-
mantic” specifications of the parameter required by the component and of its result (and
not only in the “syntactic” specification of its interface given by ι: Σ → Σ′). Thus, in
our algebraic setting, we will specify a software component by a pair of specifications
SP and SP ′, written SP ι−→SP ′, where SP specifies the symbols and their properties
required by the component, SP ′ specifies the symbols and the properties provided by
the component, together with a signature morphism ι:Sig [SP ] → Sig [SP ′] relating the
parameter signature to the result signature. Indeed we require ι to be a specification
morphism ι:SP → SP ′, i.e., for all M ′ ∈ [[SP ′]], M ′

ι ∈ [[SP ]]. This amounts to demand-
ing that the result specification SP ′ includes the properties of the parameter required by
the parameter specification SP . The fact that the result actually has those properties is
guaranteed by the persistency of the local construction.

The following definition states when a local construction F , determined by a software
component ∆P , is a correct realization of a given component specification. (We refer
to this as literal correctness by contrast with the observational correctness of Def. 6.9
below.)

Definition 3.2 (Literal correctness). A local construction F along ι:Sig [SP ] →
Sig [SP ′] is literally correct w.r.t. SP and SP ′ if for all models M ∈ [[SP ]], M ∈ dom(F )
and F (M) ∈ [[SP ′]]. We write [[SP ι−→SP ′]] for the class of all local constructions along ι

that are literally correct w.r.t. SP and SP ′.

Hence to realize the component specification SP ι−→SP ′, we should provide a software
component ∆P that extends any realization P of SP to a realization P ′ = ∆P (P ) of SP ′.
The basic semantic property required is that for all programs P such that [[P ]] ∈ [[SP ]],
∆P (P ) is a program that extends P and realizes SP ′ (semantically: [[∆P (P )]] ι =
[[P ]] and [[∆P (P )]] ∈ [[SP ′]]). This amounts to requiring that the partial function F ∈
Mod(Σ ι−→Σ′) determined by ∆P preserves its argument whenever it is defined, is de-
fined on (at least) all models in [[SP ]],5 and yields a result in [[SP ′]] when applied to a
model in [[SP ]].

There is a crucial difference here between monolithic self-contained programs and soft-
ware components: while monolithic programs are modelled as Casl models, software
components are modelled as (possibly partial) functions mapping Casl models of the
parameter specification SP to Casl models of the result specification SP ′.

The next important idea is that when assembling components, in general a given
component will not be applied to a sub-system providing exactly what is required by the
component; it will be applied to a sub-system providing at least, and in general more
than what is required.

4 Composition of derived signature morphisms can be defined in the evident fashion, and equality of
two derived signature morphisms is understood here semantically.

5 Intuitively, ∆P (P ) is “statically” well-formed as soon as P has the right signature, but needs to be
defined only for arguments that realize SP .
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Technically, this means that we need to look at constructions that map Σ-models to
Σ′-models, but applied to parts cut out of “larger” ΣG-models, where this “cutting out”
is given as the reduct with respect to a signature morphism γ: Σ → ΣG that fits the local
argument signature into its global context.

Throughout the rest of the paper, we will repeatedly refer to the signatures and mor-
phisms in the following pushout diagram:

Σ

ΣG

Σ′

Σ′
G

6
γ

-
ι

-ι′

6
γ′

where the local construction is along the bottom of the diagram, “cutting out” its ar-
gument from a larger model uses the signature morphism on the left, and the resulting
global construction is along the top.

Definition 3.3 (Admissibility and global construction). Given a local construction
F along a signature morphism ι: Σ → Σ′, a morphism γ: Σ → ΣG fitting Σ into a “global”
signature ΣG is admissible if the pushout of ι and γ above ensures amalgamability. Then,
for any ΣG-model G ∈ |Mod(ΣG)|, we define the global result FG(G) of applying F

to G by reference to the pushout diagram above, using the amalgamation property: if
G γ ∈ dom(F ) then FG(G) = G ⊕ F (G γ); otherwise FG(G) is undefined.

This determines a global construction FG: |Mod(ΣG)| ⇀ |Mod(Σ′
G)|, which is persis-

tent along ι′: ΣG → Σ′
G.

This way of “lifting” a persistent function to a larger context via a “fitting morphism”
using signature pushout and amalgamation is well established in the algebraic specifi-
cation tradition, going back at least to “parametrized specifications” with free functor
semantics, see (Ehrig and Mahr 1985). The extra requirement here is that only admissible
fitting morphisms are permitted, turning amalgamability into a (static) requirement for
correct application of a local construction in a given context, to be discharged using the
machinery of (Schröder et al. 2001; Klin et al. 2001; Schröder et al. 2005).

Then an obvious issue is whether a software component that realizes a component spec-
ification SP ι−→SP ′, when combined with a sub-system that realizes a specification SPG,
actually provides a system that realizes a given specification SP ′

G. The corresponding
correctness condition is provided by the following theorem.

Theorem 3.4. Given a local construction F ∈ [[SP ι−→SP ′]], a specification SPG with ad-
missible fitting morphism γ:Sig [SP ] → Sig [SPG], and a specification SP ′

G with Sig [SP ′
G] =

Σ′
G, the induced global construction FG along ι′: ΣG → Σ′

G is literally correct w.r.t. SPG

and SP ′
G, i.e., FG ∈ [[SPG

ι′−→SP ′
G]], provided that:

— [[SPG]] ⊆ [[SP with γ]], and
— [[(SP ′ with γ′) and (SPG with ι′)]] ⊆ [[SP ′

G]].

Proof. Let G ∈ [[SPG]]. Then G γ ∈ [[SP ]], and so G γ ∈ dom(F ) and F (G γ) ∈ [[SP ′]].
Consequently FG(G) ∈ [[SP ′ with γ′]] ∩ [[SPG with ι′]].
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Informally, this captures directly a “bottom-up” process of building component-based
systems, whereby we start with SPG, a specification of a “global” assembly of compo-
nents built so far, find a local construction (a component) F ∈ [[SP ι−→SP ′]] with a fitting
morphism γ that satisfies the first condition, and define SP ′

G such that the second condi-
tion is satisfied (e.g. by simply taking SP ′

G = (SP ′ with γ′) and (SPG with ι′)), thus
obtaining a specification of the global assembly of components with the new component
built using F added. When proceeding “top-down”, we start with the global require-
ments specification SP ′

G. To use a local construction (a component) F ∈ [[SP ι−→SP ′]],
we have to decide which part of the requirements it is going to implement by providing a
signature morphism γ′:Sig [SP ′] → Sig [SP ′

G], then construct the “pushout complement”
γ:Sig [SP ] → ΣG, ι′: ΣG → Sig [SP ′

G] for ι and γ′, and finally devise a specification SPG

with Sig [SPG] = ΣG such that both conditions are satisfied. Then SPG is the require-
ments specification for the components that remain to be implemented.

4. Architectural Specifications

Using local constructions for global implementations of specifications, we have moved
only one step away from a monolithic global view of specifications and constructions
used to implement them. The notion of architectural specification (Bidoit, Sannella and
Tarlecki 2002a) as introduced for Casl takes us much further. An architectural specifica-
tion prescribes a decomposition of the task of implementing a requirements specification
into a number of subtasks to implement specifications of “modular components” (called
units) of the system under development. The units may be parametrized, and then we can
identify them with local constructions; non-parametrized units are just models. Another
essential part of an architectural specification is a prescription of how the units, once de-
veloped, are to be put together using a few simple operators. One of these is application
of a parametrized unit which corresponds exactly to the lifting of a local construction to a
larger context studied above. Thus, an architectural specification may be thought of as a
definition of a complex construction to be used in a top-down development process to im-
plement a requirements specification by a number of specifications (of non-parametrized
units), where the construction uses a number of specified local constructions that are to
be developed as well.

For the sake of readability, we will discuss here a simplified version of Casl archi-
tectural specifications, with a limited (but representative) number of constructs, shaped
after a version used in (Schröder et al. 2001; Schröder et al. 2005); a generalization to
full architectural specifications (including unit renaming, units with multiple parameters,
local unit definitions, etc.) would be tedious but rather straightforward, except perhaps
for the “unguarded import” mechanism, see (Hoffman 2001). Our version of architectural
specifications is defined as follows.

Architectural specifications: ASP ::= arch spec UDD+ result T ;
UDD ::= Dcl | Dfn
An architectural specification consists of a (non-empty) list of unit declarations or
definitions followed by a unit result term.

Unit declarations: Dcl ::= U :SP | U :SP1
ι−→SP2
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A unit declaration introduces a unit name with its type, which is either a specification
or a specification of a parametrized unit, determined by a specification of its parameter
and its result that extends the parameter via a signature morphism ι.

Unit definitions: Dfn ::= U = T
A unit definition introduces a (non-parametrized) unit and gives its value by a unit
term.

Unit terms: T ::= U | reduce T by σ | U [T fit γ] | T1 and T2

A unit term is either a (non-parametrized) unit name, or a unit restricted w.r.t. a
signature morphism, or a unit application with an argument that fits via a signature
morphism γ, or an amalgamation of units.

Following the semantics of full Casl (Baumeister et al. 2004), see also (Schröder et al.
2001; Schröder et al. 2005), we give the semantics of this Casl fragment in two stages:
first we give its extended static semantics6 and then its literal model semantics. (We refer
to this as the literal model semantics by contrast with the observational model semantics
of Sect. 7 below.)

For the extended static semantics we need a concept of static context, which carries
signatures for the units declared or defined within an architectural specification, together
with information on their mutual dependencies. Analogously, for the model semantics we
need a concept of environment, which carries the semantics of the units named in the
corresponding static context.

When discussing application of local constructions to global models in Sect. 3, we
viewed the global context as a single monolithic model over a single “global” signature.
Unfortunately, in the context of architectural specifications in Casl this view cannot be
maintained. The technical reason is that Casl does not ensure amalgamation over arbi-
trary colimits of signature diagrams, as pointed out in Sect. 2. Indeed, if amalgamability
were ensured for arbitrary colimits of signature diagrams, we could always represent
the global context of all the (non-parametrized) units declared or defined so far by a
monolithic global model over a single global signature, and many of the technicalities
below become rather simpler, see (Bidoit, Sannella and Tarlecki 2002b; Tarlecki 2003).
As things are, for architectural specifications in Casl, static information about (non-
parametrized) units declared or defined in an architectural specification will be stored in
signature diagrams, with nodes labeled by unit signatures and edges labeled by signature
morphisms that capture dependencies between units.

More formally, we view a signature diagram as a graph morphism from its shape I to
the category of Casl signatures, D : I → Sig. We write |D| for the set of nodes of I, and
m: i → j in D for an edge m with source i and target j in I. The extension of diagrams
is understood as usual. Two diagrams D1, D2 disjointly extend D if both D1 and D2

extend D and the intersection of their shapes is the shape of D. If this is the case then
the union D1 ∪D2 is well-defined. As usual, disjointness of diagram extensions may be
ensured by choosing the new nodes and edges appropriately.

6 In (Baumeister et al. 2004), a distinction is made between static semantics of architectural specifi-
cations, which ignores dependencies between terms and hence does not contribute to the analysis of
amalgamability, and extended static semantics.
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For any diagram D : I → Sig, a family M = 〈Mi〉i∈|D| of models is called D-coherent
if for each i ∈ |D|, Mi ∈ |Mod(D(i))|, and for each m: i → j in I, Mi = Mj D(m);
this is extended to |D|-indexed families of model morphisms in the obvious way. Given
a D-coherent family M = 〈Mi〉i∈|D|, we write Mi for Mi, i ∈ |D|. We let Mod(D) be
the category with D-coherent model families as objects and D-coherent families of model
morphisms as morphisms (with the obvious component-wise composition).

D ensures amalgamability for D′, where D′ extends D, if any D-coherent model family
can be uniquely extended to a D′-coherent model family. It is easy to see that Def. 2.1
is in fact a special case of this notion.7

An extended static context Cst = (Pst ,Bst , D), in which Casl phrases are elaborated,
consists of a static context for parametrized units Pst mapping parametrized unit names
to signature morphisms (from the parameter to the result signature), a global context dia-
gram D, and a static context for non-parametrized units Bst mapping non-parametrized
unit names to nodes in D. From any such extended static context we can extract a
static context ctx (Cst) = (Pst ,Bst) by preserving the static context Pst for parametrized
units and building a direct static context Bst for non-parametrized units that extracts
their signatures from Bst and D (i.e., Bst(U ) = DBst (U )). C∅st stands for the “empty”
extended static context that consists of the empty parametrized and non-parametrized
unit contexts, and of the empty context diagram. Extension (or inclusion) of extended
static contexts, written Cst ⊆ C′st , is defined component-wise, as expected. We refer to
unit names in dom(Pst) as parametrized unit names in Cst , and to those in dom(Bst) as
non-parameterized unit names in Cst .

Figure 1 gives rules to derive semantic judgments of the following forms:

— ` ASP �� ((Pst ,Bst),Σ): the architectural specification ASP yields a static context
describing the units declared or defined in ASP , and the signature of the result unit;

— ` UDD+ �� Cst : the sequence UDD+ of unit declarations and definitions yields an
extended static context Cst ;

— Cst ` UDD �� C′st : the unit declaration or definition UDD in the extended static
context Cst yields a new extended static context C′st which extends Cst ;

— (Pst ,Bst , D) ` T �� (i,D′): the unit term T in the extended static context (Pst ,Bst , D)
yields a new context diagram D′ which extends D and a node i in D′ that carries the
signature of the unit term T .

To follow the rules for unit application and amalgamation, it may be helpful to look at
Fig. 2, where the corresponding global context diagrams are sketched.

It is worth noting that in the rule for parametrized unit application, the requirement
that D′ ensures amalgamability for D′′ is weaker than requiring that the pushout used
in this rule ensures amalgamability: even if it does not, the global context in which the

7 In spite of Lemma 2.2 and its obvious generalization to colimits of arbitrary signature diagrams, we
do not know whether in the framework of Casl it is always the case that if D ensures amalgamability
for D′ then also the similar property holds for D-coherent families of model morphisms; we conjecture
that this is the case. However, in this paper we need only a few special cases of this, where D′ arises
from D essentially by adding a surjective cone, and so a proof similar to that for Lemma 2.2 goes
through; the same is true for a similar generalisation of Lemma 5.6 below.
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` UDD+ �� Cst Cst ` T �� (i, D)

` arch spec UDD+ result T �� (ctx (Cst), D(i))

C∅st ` UDD1 �� (Cst)1
· · ·

(Cst)n−1 ` UDDn �� (Cst)n

` UDD1 . . .UDDn �� (Cst)n

U 6∈ (dom(Pst) ∪ dom(Bst))

D′ extends D by a new node i with D′(i) = Sig(SP)

(Pst ,Bst , D) ` U :SP �� (Pst ,Bst + {U 7→ i}, D′)

ι : Sig(SP1) → Sig(SP2)

U 6∈ (dom(Pst) ∪ dom(Bst))

(Pst ,Bst , D) ` U :SP1
ι−→SP2 �� (Pst + {U 7→ ι},Bst , D)

(Pst ,Bst , D) ` T �� (i, D′) U 6∈ (dom(Pst) ∪ dom(Bst))

(Pst ,Bst , D) ` U = T �� (Pst ,Bst + {U 7→ i}, D′)

U ∈ dom(Bst)

(Pst ,Bst , D) ` U �� (Bst(U ), D)

Cst ` T �� (i, D) σ: Σ → D(i)

D′ extends D by a new node j and a new edge m: j → i with D′(m) = σ

Cst ` reduce T by σ �� (j, D′)

Pst(U ) = ι: Σ → Σ′ Cst ` T �� (i, D) γ: Σ → D(i)

(ι′, γ′) is a pushout of (γ, ι)

D′ extends D by new nodes j, k and edges m: j → i, n: j → k

with D′(m) = γ, D′(n) = ι

D′′ extends D′ by a new node l and edges r: i → l, s: k → l

with D′′(r) = ι′, D′′(s) = γ′

D′ ensures amalgamability for D′′

Cst ` U [T fit γ] �� (l, D′′)

(Pst ,Bst , D) ` T1 �� (i1, D1) (Pst ,Bst , D) ` T2 �� (i2, D2)

D1 and D2 are disjoint extensions of D

D′ extends D1 ∪D2 by a new node j and edges m1: i1 → j, m2: i2 → j with

D′(j) = D1(i1) ∪D2(i2), D
′(m1): D1(i1) ↪→ D′(j), D′(m2): D2(i2) ↪→ D′(j)

D1 ∪D2 ensures amalgamability for D′

(Pst ,Bst , D) ` T1 and T2 �� (j, D′)

Fig. 1. Extended static semantics



M. Bidoit, D. Sannella and A. Tarlecki 16

A
A
A
A
A
A
A

�
�

�
�

�
�

�

D

D(i)

D′(j) = Σ D′(k) = Σ′

D′′(l)

6

D′(m) = γ

-D′′(r) = ι′

-
D′(n) = ι

6

D′′(s) = γ′

A
A
A
A
A
A
A
A

�
�

�
�

�
�

�
�

D

B
B
B
B
B
B
B
B
B
B
BB

�
�

��

D1

D1(i1)

�
�

�
�

�
�

�
�

�
�

��

@
@

@@

D2

D2(i2)

@
@

@R

�
�

�	
D′(j)

D′(m1) D′(m2)

Fig. 2. Unit application and amalgamation diagrams

application is carried out may impose additional constraints on the models involved that
ensure amalgamability.

Note also that the rule for unit amalgamation does not require that the amalgamated
units have common signatures: the resulting unit will be built over the union of the
two signatures, provided that this union is defined8 and that the two units built can be
uniquely amalgamated to yield a unit over this union signature. This is ensured by the
final condition in the rule, which requires that the dependencies between units captured
in the diagram D1 ∪D2 ensure amalgamability of the two models involved. This requires
in particular that these models share the interpretation of the symbols in the intersection
of their signatures.

In the model semantics we work with contexts C that are classes of unit environments
E . Unit environments map unit names to either local constructions (for parametrized
units) or to individual models (for non-parametrized units). Unit evaluators UEv map
unit environments to models.

Given an extended static context Cst = (Pst ,Bst , D), a unit environment E fits Cst if

— for each U ∈ dom(Pst), E (U ) is a local construction along Pst(U ), and
— there is a D-coherent family of models M ∈ |Mod(D)| such that for each U ∈

dom(Bst), E (U ) = MBst (U ); we say then that M witnesses E in Cst .

We write ucx (Cst) for the class of all unit environments that fit Cst . Note that if Cst ⊆ C′st
then ucx (C′st) ⊆ ucx (Cst).

8 The union is defined in the obvious, component-wise manner, with the subsort preorder given as the
transitive closure of the two preorders in the component signatures — however, this may fail to yield
a Casl signature due to overloading of operation and predicate names that may arise, which we have
disallowed here. The union may also fail to be defined with Casl’s treatment of overloading, albeit
for more subtle reasons.
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Two unit environments E1,E2 ∈ ucx (Cst) coincide in Cst , written E1 =Cst
E2, if for all

(parametrized and non-parametrized) unit names U in Cst , E1(U ) = E2(U ).

Proposition 4.1. If E1 =Cst E2 then any family that witnesses E1 in Cst , witnesses E2

in Cst as well.

A context C ⊆ ucx (Cst) is closed in Cst if for all unit environments E1 ∈ C and E2 ∈
ucx (Cst), E1 =Cst

E2 implies E2 ∈ C.
C∅ = ucx (C∅st) is the context which constrains no unit name. Given a context C, a unit

name U and a class of units V, we write C×{U 7→ V} for {E+{U 7→ V } | E ∈ C,V ∈ V},
where E + {U 7→ V } maps U to V and otherwise behaves like E .

Figure 3 gives rules to derive semantic judgments of the following forms:

— ` ASP ⇒ (C,UEv): the architectural specification ASP yields a context C with
environments providing interpretations for the units declared and defined in ASP ,
and a unit evaluator that for each such environment determines the result unit;

— ` UDD+ ⇒ C: the sequence UDD+ of unit declarations and definitions yields a
context C;

— C ` UDD ⇒ C′: the unit declaration or definition UDD in the context C yields a new
context C′;

— C ` T ⇒ UEv : the unit term T in the context C yields a unit evaluator UEv that
when given an environment (in C) yields the unit resulting from the evaluation of T
in this environment.

The rules rely on a successful run of the extended static semantics; this allows us to use
the static concepts and notations introduced there. The crossed-out premises in the rules
are crucial properties that are guaranteed to hold for phrases for which the extended
static semantics yields a result, as a consequence of the following theorem.

Theorem 4.2. The following invariants link the extended static semantics and model
semantics:

1 If ` ASP �� ((Pst ,Bst),Σ) and ` ASP ⇒ (C,UEv) then there is an extended static
context Cst such that ctx (Cst) = (Pst ,Bst) and C ⊆ ucx (Cst), C is closed in Cst , and
for each E ∈ C, E ∈ dom(UEv) and UEv(E ) ∈ |Mod(Σ)|. Moreover, for E1,E2 ∈ C,
if E1 =Cst E2 then UEv(E1) = UEv(E2).

2 If ` UDD+ �� Cst and ` UDD+ ⇒ C then C ⊆ ucx (Cst) and C is closed in Cst .
3 If Cst ` UDD �� C′st and C ` UDD ⇒ C′, where C ⊆ ucx (Cst) and C is closed in Cst ,

then C′ ⊆ ucx (C′st), C′ ⊆ C, C′ is closed in C′st and for each unit environment E ∈ C
and model family M that witnesses E in Cst , there is E ′ ∈ C′ such that E =Cst E ′

and an extension of M witnesses E ′ in C′st .
4 If Cst ` T �� (i,D′) and C ` T ⇒ UEv with C ⊆ ucx (Cst), then for each unit

environment E ∈ C and model family M that witnesses E in Cst , there is an extension
of M to a D′-coherent model family M′ ∈ |Mod(D′)| such that M′

i = UEv(E ).
Moreover, for E1,E2 ∈ C, if E1 =Cst

E2 then UEv(E1) = UEv(E2).

Proof. Item 4 is proved by induction on the structure of the unit term. The fact that the
value of the unit evaluator on an environment does not change when it does not depend
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` UDD+ ⇒ C C ` T ⇒ UEv

` arch spec UDD+ result T ⇒ (C,UEv)

C∅ ` UDD1 ⇒ C1

· · ·
Cn−1 ` UDDn ⇒ Cn

` UDD1 . . .UDDn ⇒ Cn

C ` U :SP ⇒ C × {U 7→ [[SP ]]}

C ` U :SP1
ι−→SP2 ⇒ C × {U 7→ [[SP1

ι−→SP2]]}

C ` T ⇒ UEv

C ` U = T ⇒ {E + {U 7→ UEv(E)} | E ∈ C}

C ` U ⇒ λE ∈ C · E(U )

C ` T ⇒ UEv

C ` reduce T by σ ⇒ λE ∈ C ·UEv(E) σ

C ` T ⇒ UEv for each E ∈ C,UEv(E) γ ∈ dom(E(U ))

for each E ∈ C,UEv(E)⊕ E(U )(UEv(E) γ) is well-defined

C ` U [T fit γ] ⇒ λE ∈ C ·UEv(E)⊕ E(U )(UEv(E) γ)

C ` T1 ⇒ UEv1 C ` T2 ⇒ UEv2

for each E ∈ C, there is a unique M ∈ |Mod(Σ)| such that

M ι1 = UEv1(E), M ι2 = UEv2(E)

UEv = {E 7→ M | E ∈ C, M ι1 = UEv1(E), M ι2 = UEv2(E)}
C ` T1 and T2 ⇒ UEv

Fig. 3. Literal model semantics

on the values in the environment not mentioned in the static context (for E1,E2 ∈ C,
if E1 =Cst E2 then UEv(E1) = UEv(E2)) follows in each case easily, using the inductive
hypothesis.

The case of unit name is trivial, and the case of unit reduct is very easy.
Consider the case of unit application, when the unit term is of the form U [T fit γ].

Adjusting the notation slightly to fit the corresponding rules (for unit application) in
Figs. 1 and 3 (we will implicitly rely below on the notation used in these rules), assume
that C ⊆ ucx (Cst), Cst ` U [T fit γ] �� (l,D′′) and C ` U [T fit γ] ⇒ UEv ′, where
UEv ′(E ) = UEv(E ) ⊕ E (U )(UEv(E ) γ) for E ∈ C. Consequently, all the premises of
the corresponding rules (for unit application) in Figs. 1 and 3 must hold. Let E ∈ C and
M be a model family that witnesses E in Cst . By the inductive hypothesis, there is an
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extension MT ∈ |Mod(D)| of M such that MT
i = UEv(E ). Let M′ extend MT by

putting M′
j = UEv(E ) γ and M′

k = E (U )(UEv(E ) γ) (since UEv(E ) γ ∈ dom(E (U )),
the latter is well-defined). Then M′ ∈ |Mod(D′)|. Since D′ ensures amalgamability for
D′′, M′ uniquely extends to M′′ ∈ |Mod(D′′)|, yielding M′′

l ι′ = M′
i and M′′

l γ′ = M′
k,

that is, M′′
l = UEv(E )⊕ E (U )(UEv(E ) γ) — which completes the proof for this case.

For the case of unit amalgamation, when the unit term is of the form T1 and T2,
assume C ⊆ ucx (Cst), Cst ` T1 and T2 �� (j, D′) and C ` T1 and T2 ⇒ UEv , where
Cst = (Pst ,Bst , D). Consequently, all the premises of the corresponding rules (for unit
amalgamation) in Figs. 1 and 3 must hold; we refer below to the notations used in the
rules. Let E ∈ C and M be a model family that witnesses E in Cst . By the inductive
hypothesis, there are extensions M1 ∈ |Mod(D1)| and M2 ∈ |Mod(D2)| of M such
that M1

i1
= UEv1(E ) and M2

i2
= UEv2(E ). Since D1 and D2 are disjoint extensions of

D, M1∪M2 is a (D1∪D2)-coherent family of models. Now, since D1∪D2 ensures amal-
gamability for D′, M1∪M2 extends uniquely to a D′-coherent family M′ ∈ |Mod(D′)|,
necessarily with M′

j D′(m1) = M1
i1

and M′
j D′(m2) = M2

i2
, that is, M′

j = UEv(E ) —
which completes the proof of item 4.

Item 3 follows by inspection of the rules; the cases of unit declarations are easy. The case
of unit definitions relies on item 4 as follows. Assume that C ⊆ ucx (Cst) and C is closed in
Cst , Cst = (Pst ,Bst , D). To derive Cst ` UDD �� C′st and C ` UDD ⇒ C′, where UDD is of
the form U = T , we must have (Pst ,Bst , D) ` T �� (i,D′), U 6∈ (dom(Pst)∪dom(Bst)),
and C ` T ⇒ UEv , with C′st = (Pst ,Bst + {U 7→ i}, D′) and C′ = {E + {U 7→ UEv(E )} |
E ∈ C}. Now, for each E ∈ C and model family M∈ |Mod(D)| that witnesses E in Cst ,
by item 4 there exists an extension M′ ∈ |Mod(D′)| of M with M′

i = UEv(E ). M′

witnesses E + {U 7→ UEv(E )} in C′st . Consequently, we have C′ ⊆ ucx (C′st). Moreover,
since C is closed in Cst and U 6∈ (dom(Pst)∪dom(Bst)), (E +{U 7→ UEv(E )) ∈ C, which
shows C′ ⊆ C. Finally, C′ is closed in C′st since C is closed in Cst .

Item 2 follows from item 3 by an obvious induction on the length of the sequence of
unit declarations and definitions.

Finally, item 1 follows from items 2 and 4 by inspection of the rules. Namely, to
derive the assumptions for ASP of the form arch spec UDD+ result T , we must have
` UDD+ �� Cst and ` UDD+ ⇒ C, as well as Cst ` T �� (i,D) and C ` T ⇒ UEv , with
(Pst ,Bst) = ctx (Cst) and Σ = D(i). The thesis now follows directly from items 2 and 4.

The invariants in Thm. 4.2 ensure that the crossed out premises of the unit amalgamation
rule and of the parametrized unit application rule in the literal model semantics follow
from the other premises of the rule and the premises of the corresponding rules of the
extended static semantics.

5. Observational Equivalence for Casl Models

So far, we have followed the usual interpretation for basic specifications given as sets
of axioms over some signature, which is to require models of such a basic specification
to satisfy all its axioms. This is what is captured by the notion of literal correctness
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(Def. 3.2) and the literal model semantics of Fig. 3. However, in many practical examples
this turns out to be overly restrictive. The point is that only a subset of the sorts in
the signature of a specification are typically intended to be directly observable while
the others are treated as internal, with properties of their elements made visible only
via observations: terms producing a result of an observable sort, and predicates. Often
there are models that do not satisfy the axioms “literally” but in which all observations
nevertheless deliver the required results. This calls for a relaxation of the interpretation of
specifications, as advocated in numerous “observational” or “behavioural” approaches,
going back at least to (Giarratana, Gimona and Montanari 1976; Reichel 1981). Two
general approaches are possible:

— introduce an “internal” observational indistinguishability relation between elements
in the carrier of each model, and re-interpret equality in the axioms as indistinguisha-
bility; or

— introduce an “external” observational equivalence relation on models over each sig-
nature, and re-interpret specifications by closing their class of models under such
equivalence.

It turns out that under some acceptable technical conditions, these two approaches are
closely related and coincide for most basic specifications (Bidoit, Hennicker and Wirsing
1995; Bidoit and Tarlecki 1996). We follow the second approach here.

From now on we will assume that the set of observable sorts is empty and so predicates
are the only observations. In view of this decision, there is no need to parametrize the
definitions below by a chosen set of observable sorts. This departs from standard ap-
proaches to observational equivalence in the usual algebraic frameworks, where choosing
a non-empty set of observable sorts is crucial to have any observations at all. Moreover,
it is appropriate for this set to vary in the process of modular development, where some
sorts must be locally considered as observable (e.g. the parameter sorts in specifications
of local constructions). The former is taken care of by assuming that appropriate predi-
cates are introduced into the specifications considered. For instance, to make a generated
sort observable, it is enough to introduce the “equality predicate” on this sort into the
specification.9 The latter will be achieved in a technically different way here, see Def. 6.9
below and the subsequent comment.

We should also note here that for each Casl signature Σ and sort s in Σ we have
s ≤ s, and so we also have a predicate ins≤s: s, which holds for all its arguments in any
Casl model. This means that given a Σ-term t of sort s, ins≤s(t) holds if and only if t

has a defined value. Consequently, observing predicates in Casl models covers observing
definedness of terms.

Given a Casl signature Σ, an observation is an atomic predicate formula φ of the form
p(t1, . . . , tn), where p: s1 × · · · × sn is a predicate symbol in Σ# and for i = 1, . . . , n, ti is a

9 Some free datatype definitions in Casl ensure that the new sort is observable even though no equality
predicate is explicitly introduced. This is the case when there is a subsort for each alternative and
selectors for each non-constant constructor. Then enough observations are available to distinguish be-
tween any two data values, provided that the other argument sorts for the constructors are observable
(come with enough observations to distinguish between any data of these sorts).



Observational Interpretation of Casl Specifications 21

Σ#-term of sort si. The observation p(t1, . . . , tn) is closed if all the terms ti, i = 1, . . . , n,
are closed (contain no variables). Given a sort s in Σ, the observation p(t1, . . . , tn) is for
sort s if it contains a unique variable z: s of sort s (and no other variables at all). We
will often write then φ(z) to indicate the variable explicitly, and for a Σ#-term t of sort
s, we write φ(t) for the result of substituting t for z in φ.

Definition 5.1 (Observational equivalence). Given a Casl signature Σ, two Σ-
models M,N ∈ |Mod(Σ)| are observationally equivalent, written M ≡ N , if for all
closed observations φ,

M |= φ ⇐⇒ N |= φ

It is trivial to see that observational equivalence is indeed an equivalence on Casl models
over any signature Σ.

In the following we will work with a technically different but equivalent definition of ob-
servational equivalence, where the equivalence of two models is “witnessed” by a relation
between them; this has been worked out in detail (for partial algebras without predi-
cates) in (Schoett 1987), cf. “simulations” in (Milner 1971) and “weak homomorphisms”
in (Ginzburg 1968).

Definition 5.2 (Correspondence). Consider a signature Σ. A correspondence between
two Σ-models M,N ∈ |Mod(Σ)|, written ρ:M ./ N , is a relation ρ ⊆ |M | × |N | that

— is closed under the operations: for f : s1 × . . . × sn → s in Σ#, a1 ∈ |M |s1 , . . . ,
an ∈ |M |sn

and b1 ∈ |N |s1 , . . . , bn ∈ |N |sn
, if (a1, b1) ∈ ρs1 , . . . , (an, bn) ∈ ρsn

then
fM (a1, . . . , an) is defined iff fM (b1, . . . , bn) is defined, and if so then (fM (a1, . . . , an), fN (b1, . . . , bn)) ∈
ρs; and

— preserves and reflects the predicates: for p: s1 × . . . × sn in Σ#, a1 ∈ |M |s1 , . . . ,
an ∈ |M |sn

and b1 ∈ |N |s1 , . . . , bn ∈ |N |sn
, if (a1, b1) ∈ ρs1 , . . . , (an, bn) ∈ ρsn

then
pM (a1, . . . , an) ⇐⇒ pN (b1, . . . , bn).

In the rest of the paper we will rely on the following equivalence without further
mention:

Theorem 5.3. Given a Casl signature Σ, Σ-models M,N ∈ |Mod(Σ)| are observa-
tionally equivalent if and only if there is a correspondence between them.

Proof. Let M ≡ N . Define a relation ρ ⊆ |M | × |N | to contain, for each sort s in
Σ, all and only pairs of the form (tM , tN ), for all closed Σ#-terms t of sort s such
that the value of t is defined in both M and N . To check that ρ is a correspondence
between M and N , consider for i = 1, . . . , n, ai ∈ |M |si and bi ∈ |N |si such that
(ai, bi) ∈ ρsi , so that ai = (ti)M and bi = (ti)N for some Σ#-term ti of sort si. Con-
sider now f : s1 × . . . × sn → s in Σ#. Since M ≡ N , M |= ins≤s(f(t1, . . . , tn)) iff
N |= ins≤s(f(t1, . . . , tn)); so, fM (a1, . . . , an) is defined iff fM (b1, . . . , bn) is defined, and
if so then by definition (fM (a1, . . . , an), fN (b1, . . . , bn)) ∈ ρs (since (f(t1, . . . , tn))M =
fM (a1, . . . , an) and (f(t1, . . . , tn))N = fN (b1, . . . , bn)). Similarly, for p: s1×. . .×sn in Σ#,
M |= p(t1, . . . , tn) iff N |= p(t1, . . . , tn), which shows the equivalence of pM (a1, . . . , an)
and pN (b1, . . . , bn), and completes the proof of ρ:M ./ N .
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Consider now a correspondence ρ:M ./ N . Using the correspondence properties, by
simple induction on the term structure, for any closed Σ#-term t, one can prove that tM
is defined iff tN is defined, and if so then (tM , tN ) ∈ ρ. Now, given any closed observation
p(t1, . . . , tn), by symmetry it is enough to prove that if M |= p(t1, . . . , tn) then also
N |= p(t1, . . . , tn). Suppose M |= p(t1, . . . , tn). Then for i = 1, . . . , n, (ti)M is defined, and
so (ti)N is defined and ((ti)M , (ti)N ) ∈ ρ. Moreover, pM ((t1)M , . . . , (tn)M ) holds, so by
the correspondence property, pN ((t1)N , . . . , (tn)N ) holds as well. Thus N |= p(t1, . . . , tn).

It is easy to check that isomorphisms (and in particular, identities) are correspondences
and that the class of correspondences is closed under composition.

Correspondences between Casl models may be replaced by spans of strong homomor-
phisms. Namely, given a span of strong homomorphisms (hM :K → M,hN :K → N),
putting ρ = h−1

M ;hN , i.e. ρs = {(hM (c), hN (c)) | c ∈ |K|s} for each sort s in Σ, yields a
correspondence ρ:M ./ N . In the opposite direction:

Proposition 5.4. For any Casl signature Σ, Σ-models M,N and correspondence ρ:M ./ N ,
there is a Σ-model K and strong Σ-homomorphisms hM :K → M and hN :K → N such
that ρ = h−1

M ;hN .

Proof. To define K, first put |K|s = ρs ⊆ |M |s × |N |s for each sort s in Σ. The
operations in K are then defined component-wise, using the operations in M and N

respectively. The predicates in K are defined either using the first components and the
predicates in M , or (equivalently) using the second components and the predicates in N .
The correspondence properties of ρ ensure that no problems arise, and that the projection
functions hM :K → M and hN :K → N are strong Σ-homomorphisms.

This proposition directly implies that the reduct of a correspondence along a signature
morphism (defined in the obvious way) is a correspondence. More interestingly, this
extends to derived signature morphisms with observable conditions.

Consider a signature Σ. A conditional Σ-term 〈(φi, ti)〉i≥0 is observationally sensible if
for all i ≥ 0, φi are observers, that is, Boolean combinations of observations. A derived
signature morphism δ: Σ′ → Σ is observationally sensible if it maps Σ′-operations to
observationally sensible terms.

Lemma 5.5. Let δ: Σ′ → Σ be an observationally sensible derived signature morphism,
and let ρ:M ./ N be a correspondence between Σ-models M,N ∈ |Mod(Σ)|. Then
ρ δ:M δ ./ N δ is a correspondence as well.

It follows that reducts with respect to observationally sensible derived signature mor-
phisms extend to strong homomorphisms.

The view of correspondences as spans of homomorphisms also leads to an easy exten-
sion to correspondences of the amalgamation property given in Lemma 2.2 for homomor-
phisms:

Lemma 5.6. Suppose that the following pushout
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Σ

Σ1

Σ′

Σ′
1

6
γ

-
ι

-ι′

6
γ′

ensures amalgamability. Then for all correspondences ρ1:M1 ./ N1 in Mod(Σ1) and
ρ′:M ′ ./ N ′ in Mod(Σ′) such that ρ1 γ = ρ′ ι there exists a unique correspondence
ρ′1:M

′
1 ./ N ′

1 in Mod(Σ′
1) such that ρ′1 ι′ = ρ1 and ρ′1 γ′ = ρ′, where M ′

1 = M1⊕M ′ and
N ′

1 = N1 ⊕N ′.

Proof. A direct proof mimics the proof of Lemma 2.2.

Note though that this does not ensure that amalgamation preserves observational equiv-
alence:

Counterexample 5.7. Let Σ be a signature with a single sort s, and let Σ1 extend Σ by
a constant a: s. Since there are no predicates in Σ1, all Σ1-models where the constant a

is defined are observationally equivalent. Let Σ′ extend Σ by a unary predicate p: s; since
there are no closed observations over Σ′, all Σ′-models are observationally equivalent. The
pushout signature of the two extensions of Σ is the signature Σ′

1 with sort s, constant a: s
and predicate p: s. Clearly, not all Σ′

1-models with defined values of a are observationally
equivalent — there is a new closed observation here, namely p(a).

To make the counterexample explicit, let M1 be a Σ1-model with a single element,
|M1|s = {x}, and aM1 = x. Let M ′ and M ′′ be Σ′-models such that M ′

Σ = M ′′
Σ =

M1 Σ and pM ′(x) holds while pM ′′(x) does not hold. Still, we have M ′ ≡ M ′′ (and
trivially M1 ≡ M1). However, (M1 ⊕M ′) 6≡ (M1 ⊕M ′′).

Observational equivalence can also be characterized in terms of internal indistinguisha-
bility. Namely, consider a Casl signature Σ and Σ-model M ∈ |Mod(Σ)|. Let 〈M〉 be
the generated submodel of M having all and only the defined values in M of closed Σ#-
terms as elements of the carrier. For any sort s in Σ, given a, a′ ∈ |〈M〉|s, we say that a

and a′ are observationally indistinguishable in M , written a ≈M a′, if for all observations
φ for sort s,

M [z 7→ a] |= φ ⇐⇒ N [z 7→ a′] |= φ

Thus defined observational indistinguishability on M , ≈M ⊆ |〈M〉| × |〈M〉|, is the largest
strong congruence on 〈M〉. The observational quotient of M , written M/≈, is the quotient
of 〈M〉 by ≈M .

Theorem 5.8. Consider a Casl signature Σ. Two Σ-models are observationally equiv-
alent if and only if their observational quotients are isomorphic.

Proof. For all Casl models M , since there is a natural strong homomorphism from
〈M〉 to M/≈, which is a correspondence between M and M/≈, we have that M ≡ M/≈.
Therefore, given two Casl models M,N ∈ |Mod(Σ)| with isomorphic observational
quotients M/≈ and N/≈, we get M ≡ N .

Suppose now M ≡ N . Then for any closed Σ#-term t of a sort s, the value tM of t in
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M is defined iff the value tN of t in N is defined. Moreover, if this is the case, then for
any observation φ(z) for sort s:

M [z 7→ tM ] |= φ(z) ⇐⇒ M |= φ(t) ⇐⇒ N |= φ(t) ⇐⇒ N [z 7→ tN ] |= φ(z)

It follows that for any closed Σ#-terms t and t′ of a common sort s, if their values are
defined in M (and hence in N as well)

tM ≈M t′M ⇐⇒ tN ≈N t′N

Consequently, a function that for each closed Σ#-term t with defined value in M maps
the equivalence class of tM w.r.t. ≈M to the equivalence class of tN w.r.t. ≈N is a well-
defined, bijective, strong homomorphism, and hence an isomorphism, between M/≈ and
N/≈.

Corollary 5.9. Consider a Casl signature Σ. Σ-models M and N are observationally
equivalent if and only if they have submodels with common strong quotients, that is,
there exist submodels M ′ of M and N ′ of N and strong congruences ' on M ′ and '′

on N ′ such that the quotients of M ′ by ' and of N ′ by '′ are isomorphic.

6. Observational Correctness and Stability

The observational concepts introduced in Sect. 5 above motivate a new interpretation
of specifications: for any specification SP with Sig [SP ] = Σ, we define its observational
interpretation by abstracting from the standard interpretation as follows:

[[SP ]]≡ = {M ∈ |Mod(Σ)| | M ≡ N for some N ∈ [[SP ]]}.

Given this, the most obvious way to re-interpret correctness of local constructions
(Def. 3.2) to take advantage of the observational interpretation of specifications is to
modify the earlier definition by requiring [[SP ]]≡ ⊆ dom(F ) and F ([[SP ]]≡) ⊆ [[SP ′]]≡.
This works, but misses a crucial point: when using a realization of a specification, we
would like to pretend that it satisfies the specification literally, even if when actually
implementing it we are permitted to supply a model that is correct only up to observa-
tional equivalence. This leads to a different notion of observational correctness of a local
construction, for which we would just require [[SP ]] ⊆ dom(F ) and F ([[SP ]]) ⊆ [[SP ′]]≡.
This relaxation has a price: observationally correct local constructions do not automat-
ically compose! The crucial insight to resolve this problem comes from (Schoett 1987),
who noticed that well-behaved constructions satisfy the following stability property.

6.1. Stability

Definition 6.1 (Stability). A construction F : |Mod(Σ)| ⇀ |Mod(Σ′)| is stable if it
preserves observational equivalence, i.e., for any models M,N ∈ |Mod(Σ)| such that
M ≡ N , if M ∈ dom(F ) then N ∈ dom(F ) and F (M) ≡ F (N).

The rest of this subsection is devoted to an analysis of conditions that ensure stability
of constructions when they arise via the use of local constructions, as in Sect. 3. The
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problem is that we want to restrict attention to conditions that are essentially local to
the local constructions involved, rather than conditions that refer to all the possible
global contexts in which such a construction can be used.

Let us start with the local version of the stability property for local constructions,
aiming at the stability of any use of local constructions in an admissible global context.

Definition 6.2 (Local stability). A local construction F along ι: Σ → Σ′ is locally sta-
ble if for any Σ-models M,N ∈ |Mod(Σ)| and correspondence ρ:M ./ N , M ∈ dom(F )
if and only if N ∈ dom(F ) and moreover, if this is the case then there exists a correspon-
dence ρ′:F (M) ./ F (N) that extends ρ (i.e., ρ′ ι = ρ).

Clearly, local stability implies stability. Trivial identity constructions are locally stable,
and composition of locally stable constructions is locally stable as well. Local stability is
also preserved under observational equivalence of constructions:

Local constructions F1, F2 along ι: Σ → Σ′ are observationally equivalent, written F1 ≡
F2, if dom(F1) = dom(F2) and for each M ∈ dom(F1) there exists a correspondence
ρ:F1(M) ./ F2(M) with reduct ρ ι being the identity on M .

Proposition 6.3. Let F1 and F2 be observationally equivalent local constructions along
ι: Σ → Σ′. Then if F1 is locally stable then so is F2.

Proof. Consider models M,N ∈ |Mod(Σ)| with correspondence ρ:M ./ N . Suppose
M ∈ dom(F2). Then M ∈ dom(F1), and so N ∈ dom(F1) = dom(F2). Since F1 is locally
stable, there is a correspondence ρ′:F1(M) ./ F1(N) with ρ′ ι = ρ. From F1 ≡ F2, we get
correspondences ρM :F2(M) ./ F1(M) and ρN :F1(N) ./ F2(N) with the identity reducts
ρM ι and ρN ι. This yields a correspondence (ρM ;ρ′;ρN ):F2(M) ./ F2(N) with reduct
(ρM ;ρ′;ρN ) ι = ρ.

Most crucially though, local stability (unlike stability in general) is preserved under
lifting local constructions to a global application context, as usual given by the following
pushout diagram:

Σ

ΣG

Σ′

Σ′
G

6
γ

-
ι

-ι′

6
γ′

Lemma 6.4. If F is a locally stable construction along ι: Σ → Σ′ then for any signa-
ture ΣG and admissible fitting morphism γ: Σ → ΣG, the induced global construction
FG: |Mod(ΣG)| ⇀ |Mod(Σ′

G)| along ι′: ΣG → Σ′
G is locally stable as well.

Proof. Consider a correspondence ρG:G ./ H between models G,H ∈ |Mod(ΣG)|. Its
reduct is a correspondence ρG γ :G γ ./ H γ , so G γ ∈ dom(F ) iff H γ ∈ dom(F ), and
consequently G ∈ dom(FG) iff H ∈ dom(FG). Suppose G γ ∈ dom(F ). Then there exists
a correspondence ρ′:F (G γ) ./ F (H γ) with ρ′ ι = ρG γ . Amalgamation of ρG and ρ′

yields a correspondence ρ′G:FG(G) ./ FG(H) such that ρ′G ι′ = ρG, see Lemma 5.6.
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Corollary 6.5. If F is a locally stable construction along ι: Σ → Σ′ then for any sig-
nature ΣG and admissible fitting morphism γ: Σ → ΣG, the induced global construction
FG: |Mod(ΣG)| ⇀ |Mod(Σ′

G)| along ι′: ΣG → Σ′
G is stable.

This establishes a sufficient local condition (local stability) which ensures that a local
construction induces a stable global construction in every possible context of use. Impos-
ing an additional requirement on the correspondences involved yields an auxiliary notion
that we will use to prove that this is both sufficient and necessary.

Given a Casl signature Σ, a correspondence ρ:M ./ N is closed if whenever (a, b) ∈ ρ,
(a′, b) ∈ ρ and (a, b′) ∈ ρ, then also (a′, b′) ∈ ρ. The following is easy:

Proposition 6.6. For any correspondence ρ:M ./ N there is a least closed correspon-
dence ρ̂:M ./ N that contains ρ.

Consequently, two Σ-models are behaviourally equivalent iff there is a closed correspon-
dence between them.

Theorem 6.7. For any local construction F along ι: Σ → Σ′, the following conditions
are equivalent:

1 F is locally stable;
2 F induces a stable global construction in every possible (also infinitary) context of

use, that is, for every admissible fitting morphism γ: Σ → ΣG, the induced global
construction FG: |Mod(ΣG)| ⇀ |Mod(Σ′

G)| along ι′: ΣG → Σ′
G is stable; and

3 F extends closed correspondences, that is, for every closed correspondence ρ̂:M ./ N

in Mod(Σ), M ∈ dom(F ) iff N ∈ dom(F ), and if this is the case then there exists a
closed correspondence ρ̂′:F (M) ./ F (N) in Mod(Σ′) that extends ρ̂ (i.e., ρ̂′ ι = ρ̂).

Proof. “1 =⇒ 2”: Cor. 6.5.
“2 =⇒ 3”: Consider a closed correspondence ρ̂:M ./ N in Mod(Σ). Construct the

extension ΣG of Σ by adding:

— for each sort s in Σ and (a, b) ∈ ρ̂s, a (total) constant !a,b,s: s;
— for each sort s in Σ and b ∈ |N |s, a predicate ?b,s: s; and
— for each sort s in Σ, a predicate ?s: s

and let γ: Σ → ΣG be the signature inclusion. The admissibility of γ is easy to check.
Construct now the following expansions MG and NG of M and N , respectively:

— for each sort s in Σ and (a, b) ∈ ρ̂s, !a,b,s
MG

= a and !a,b,s
NG

= b;
— for each sort s in Σ and b ∈ |N |s, ?b,s

MG
(a) holds iff (a, b) ∈ ρ̂s; ?b,s

NG
(b′) holds iff there

exists a ∈ |M |s such that (a, b) ∈ ρ̂s and (a, b′) ∈ ρ̂s;
— for each sort s in Σ and a ∈ |M |s, ?s

MG
(a) holds, and for each b ∈ |N |s ?s

NG
(b) holds

iff there exists a ∈ |M |s such that (a, b) ∈ ρ̂s.

It is easy to check that ρ̂:MG ./ NG is a correspondence: closedness of ρ̂:M ./ N is
needed to establish that ρ̂ preserves and reflects the ?b,s predicates. Moreover, ρ̂ is the
only correspondence between MG and NG: any such correspondence includes ρ̂ because
it must preserve the !a,b,s constants, and it is included in ρ̂ because it must preserve and
reflect the ?b,s and ?s predicates.
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Hence, MG ∈ dom(FG) iff NG ∈ dom(FG), and so also M ∈ dom(F ) iff N ∈ dom(F ).
Moreover, if this is the case then there is a correspondence ρG:FG(MG) ./ FG(NG) in
Mod(Σ′

G), and the uniqueness of the correspondence ρ̂:MG ./ NG in Mod(ΣG) implies
that ρG ι′ = ρ̂. Consider the least closed correspondence ρ̂G:FG(MG) ./ FG(NG) that
includes ρG. Then we also have ρ̂G ι′ = ρ̂, and so we obtain ρ̂G γ′ :F (M) ./ F (N) with
(ρ̂G γ′) ι = ρ̂.

“3 =⇒ 1”: Consider a correspondence ρ:M ./ N in Mod(Σ). By Prop. 5.4, we have a
Σ-model K and strong Σ-homomorphisms hM :K → M and hN :K → N such that ρ =
h−1

M ;hN . Since h−1
M and hN are closed correspondences, by 3 M ∈ dom(F ) iff K ∈ dom(F )

iff N ∈ dom(F ), and if this is the case then we have correspondences ρM :F (M) ./ F (K)
and ρN :F (K) ./ F (N) that extend h−1

M and hN respectively. Then the correspondence
ρM ;ρN :F (M) ./ F (N) extends ρ.

The following is a corollary of Lemma 5.5.

Corollary 6.8. Let δ: Σ′ → Σ be an observationally sensible derived signature mor-
phism and ι: Σ → Σ′ be a signature morphism such that ι;δ = idΣ. Then the reduct

δ: |Mod(Σ)| → |Mod(Σ′)| is a local construction that is locally stable.

The above corollary supports the point put forward in (Schoett 1987) that stable
constructions are those that respect modularity in the software construction process. That
is, such constructions can use the components provided by their imported parameters,
but they cannot take advantage of their particular internal properties. This is the point
of the requirement that δ should be observationally sensible: any branching in the code
must be governed by directly observable properties. This turns (local) stability into a
directive for language design, rather than a condition to be checked on a case-by-case
basis: in a language with good modularization facilities, all constructions that one can
code should be locally stable.

6.2. Observational correctness

Let us turn now again to the issue of correctness of local constructions w.r.t. given
specifications.

Definition 6.9 (Observational correctness). A local construction F along ι:Sig [SP ] →
Sig [SP ′] is observationally correct w.r.t. SP and SP ′ if for every model M ∈ [[SP ]],
M ∈ dom(F ) and there exists a model M ′ ∈ [[SP ′]] and correspondence ρ′:M ′ ./ F (M)
such that ρ′ ι is the identity.

We write [[SP ι−→SP ′]]≡ for the class of all locally stable constructions along ι that are
observationally correct w.r.t. SP and SP ′.

By imposing in this definition the restriction that ρ′ is the identity on the carriers of the
parameter sorts, we have in fact “locally” introduced a set of sorts that act as directly
observable for the purposes of verification of the local construction considered.

It follows that if F ∈ [[SP ι−→SP ′]]≡ then there is some F ′ ∈ [[SP ι−→SP ′]] such that
dom(F ′) = dom(F ) and for each M ∈ [[SP ]], there is a correspondence ρ:F ′(M) ./ F (M)
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which is the identity on sorts of the form ι(s) for s in Σ. However, in general [[SP ι−→SP ′]] 6⊆
[[SP ι−→SP ′]]≡, as literally correct local constructions need not be stable. Moreover, it may
happen that there are no stable observationally correct constructions, even if there are
literally correct ones: that is, we may have [[SP ι−→SP ′]]≡ = ∅ even if [[SP ι−→SP ′]] 6= ∅.
This was perhaps first pointed out in (Bernot 1987), in a different framework.

Counterexample 6.10. Let SP1 have a sort s with two constants a, b: s, and let SP2

enrich SP1 by a new sort o with predicate p : o× o, two (total) constants c, d: o and
axiom p(c, d) ⇐⇒ a = b. Then [[SP1 → SP2]] is non-empty, with any construction in
it mapping models satisfying a = b to those that satisfy p(c, d), and models satisfying
a 6= b to those that do not satisfy p(c, d). But none of these constructions is stable!

To see this, consider any construction F ∈ [[SP1
ι−→SP2]], “singleton” model M ∈

[[SP1]] (where aM = bM ) and two-element model N ∈ [[SP2]] with aN 6= bN . Clearly,
M ≡ N . However, there is no correspondence between F (M) and F (N): it would have
to link cF (M) with cF (N) and dF (M) with dF (N), which is impossible since F (M) |= p(c, d)
while F (N) 6|= p(c, d).

The crucial issue here is how specifications of local constructions can be used when the
local constructions are lifted to an admissible global context, captured by the following
pushout diagram:

Sig [SP ]

ΣG

Sig [SP ′]

Σ′
G

6
γ

-
ι

-ι′

6
γ′

Lemma 6.11. Consider a local construction F along ι:Sig [SP ] → Sig [SP ′] that is obser-
vationally correct w.r.t. SP and SP ′, F ∈ [[SP ι−→SP ′]]≡. Then, for every global signature
ΣG and admissible fitting morphism γ:Sig [SP ] → ΣG, and every G ∈ [[SP with γ]] we
have G ∈ dom(FG) and there is some G′ ∈ [[SP ′ with γ′]] such that G′ ι′ = G and
G′ ≡ FG(G).

Proof. We have G γ ∈ [[SP ]], and so G γ ∈ dom(F ) and there is M ′ ∈ [[SP ′]] and
a correspondence ρ′:M ′ ./ F (G γ) with identity reduct ρ′ ι. Consider the Σ′

G-model
G′ = G ⊕M ′. Then the identity idG :G ./ G and ρ′:M ′ ./ F (G γ) amalgamate to a corre-
spondence ρ′G:G′ ./ FG(G), which proves FG(G) ≡ G′ ∈ [[SP ′ with γ′]].

If F ∈ [[SP ι−→SP ′]]≡ and γ:Sig [SP ] → ΣG is admissible, then by Lemma 6.11 we obtain
[[SP with γ]] ⊆ dom(FG) and FG([[SP with γ]]) ⊆ [[SP ′ with γ′]]≡, and by Cor. 6.5,
FG is stable. Given two “global” specifications SPG with Sig [SPG] = ΣG and SP ′

G

with Sig [SP ′
G] = Σ′

G, we have FG ∈ [[SPG
ι′−→SP ′

G]]≡ whenever [[SPG]] ⊆ [[SP with γ]]≡
and [[SP ′ with γ′]] ⊆ [[SP ′

G]]≡. But while the former requirement is quite acceptable,
the latter is in fact impossible to achieve in practice since it implicitly requires that all
the global requirements must follow (up to observational equivalence) from the result
specification for the local construction, independent of the argument. More practical
requirements are obtained by generalizing Thm. 3.4 to the observational setting:
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Theorem 6.12. Given a local construction F ∈ [[SP ι−→SP ′]]≡, a specification SPG

with admissible fitting morphism γ:Sig [SP ] → Sig [SPG], and a specification SP ′
G with

Sig [SP ′
G] = Σ′

G, if

(i) [[SPG]] ⊆ [[SPG and (SP with γ)]]≡, and
(ii) [[(SP ′ with γ′) and (SPG with ι′)]] ⊆ [[SP ′

G]]≡
then for every G ∈ [[SPG]], we have G ∈ dom(FG) and FG(G) ∈ [[SP ′

G]]≡, hence FG ∈
[[SPG

ι′−→SP ′
G]]≡.

Proof. Let G ∈ [[SPG]]. Then G ≡ H for some H ∈ [[SPG]] ∩ [[SP with γ]] by (i). By
Lemma 6.11, FG(H) ≡ H′ for some H′ ∈ [[SP ′ with γ′]] with H′

ι′ = H ∈ [[SPG]]. Hence
H′ ∈ [[SP ′

G]]≡ by (ii). By stability of FG (Cor. 6.5), G ∈ dom(FG) and FG(G) ≡ FG(H) ≡
H′, and so FG(G) ∈ [[SP ′

G]]≡. This completes the proof, since FG is locally stable by
Lemma 6.4.

Requirement (i) is perhaps the only surprising assumption in this theorem. Note though
that it straightforwardly follows from the inclusion of literal model classes [[SPG]] ⊆
[[SP with γ]] (or equivalently, [[SPG]] γ ⊆ [[SP ]]), which is often easiest to verify. However,
(i) is strictly stronger in general than the perhaps more expected [[SPG]] ⊆ [[SP with γ]]≡.
This weaker condition turns out to be sufficient (and is in fact equivalent to (i)) if
we additionally assume that the two specifications involved are behaviourally consistent
(Bidoit, Hennicker and Wirsing 1995), that is, closed under observational quotients. When
this is not the case, then the use of this weaker condition would have to be paid for by
a stronger version of (ii):

[[SP ′ with γ′]]≡ ∩ [[SPG with ι′]] ⊆ [[SP ′
G]]≡,

which seems even less convenient to use than (i). Overall, we need a way to pass infor-
mation on the global context from SPG to SP ′

G independently from the observational
interpretation of the local construction and its correctness, and this must result in some
inconvenience of verification on either the parameter or the result side.

7. Observational Interpretation of Architectural Specifications

In this section we discuss an observational interpretation of the architectural specifica-
tions introduced in Sect. 4. The extended static semantics remains unchanged — observa-
tional interpretation of specifications does not affect their static properties. We provide,
however, a new observational model semantics, with judgments written as ` ≡=⇒ .

To begin with, the effect of unit declarations has to be modified, taking into account
observational interpretation of the specifications involved, as discussed in Sects. 5 and 6.
The new rules follow in Fig. 4. No other modifications are necessary: all the remaining
rules are the same for observational and literal model semantics. This should not be
surprising: the interpretation of the constructs on unit terms remains the same, all we
change is the interpretation of unit specifications. Moreover, the observational model
semantics can be linked to the extended static semantics in exactly the same way as
in the case of the literal model semantics: the invariants stated in Thm. 4.2 carry over
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C ` U :SP
≡
=⇒ C × {U 7→ [[SP ]]≡}

C ` U :SP1
ι−→SP2

≡
=⇒ C × {U 7→ [[SP1

ι−→SP2]]≡}

Fig. 4. Observational model semantics — the modified rules

without change. We refrain from repeating either the unmodified rules, or Thm. 4.2 for
the observational model semantics.

The fact that nearly all the rules remain the same does not mean that the two seman-
tics quite coincide: at the point in the model semantics where verification is performed,
the resulting verification conditions for literal and observational model semantics differ.
Namely, in the rule for parametrized unit application, the premise

for each E ∈ C,UEv(E ) γ ∈ dom(E (U ))

checks whether what we can conclude about the argument ensures that it is indeed in
the domain of the parametrized unit. Suppose the corresponding unit declaration was
U :SP1

ι−→SP2. Then in the literal model semantics this requirement reduces to

for each E ∈ C,UEv(E ) γ ∈ [[SP1]].

Now, in the observational model semantics, this is in fact replaced by a more permissive
condition (since the parametrized units considered are locally stable, their domains are
closed under observational equivalence):

for each E ∈ C,UEv(E ) γ ∈ [[SP1]]≡.

Of course, the situation is complicated by the fact that the contexts C from which en-
vironments are taken are different in the two semantics. In the simplest case, where the
argument T is given as a unit name previously declared with a specification SP , for the
literal model semantics the above verification condition amounts to [[SP ]] ⊆ [[SP1]] while
for the observational model semantics we get, as expected, [[SP ]] ⊆ [[SP1]]≡ (which is
equivalent to [[SP ]]≡ ⊆ [[SP1]]≡).

This relaxation of verification conditions is not of merely theoretical interest: it is not
difficult to find statically correct architectural specifications ASP (i.e., ` ASP �� (Cst ,Σ)
for some extended static context Cst and signature Σ) that are observationally correct
(i.e., ` ASP ≡=⇒ (C[,UEv [) for some unit context C[ and evaluator UEv [) but are not
literally correct (i.e., for no unit context C and evaluator UEv can we derive ` ASP ⇒
(C,UEv)). For instance, along the lines of the discussion above, one may take

arch spec ASP =

units U :SP1
ι−→SP2;

T : SP

result U [T ]

where Sig [SP ] = Sig [SP1], [[SP ]] ⊆ [[SP1]]≡ but [[SP ]] 6⊆ [[SP1]].
A complete study of verification conditions for architectural specifications is beyond
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the scope of this paper; we refer to (Hoffman 2001; Mossakowski et al. 2004) for work
in this direction, which still has to be combined with the observational interpretation as
given by the semantics here and presented in the simpler setting of Sect. 6. In the rest
of this paper we will concentrate on some aspects of the relationship between the literal
and observational model semantics and on stability of the unit constructions introduced
in Sect. 4.

Our first aim is to show that constructions that can be defined by architectural spec-
ifications are (locally) stable. To state this precisely, we need some more notation and
terminology, as constructions are captured here by unit evaluators operating on environ-
ments rather than on individual units.

For any extended static context Cst = (Pst ,Bst , D), environments E1,E2 ∈ ucx (Cst)
are observationally equivalent in Cst , written E1 ≡Cst

E2, if for each unit name U in Cst ,
E1(U ) ≡ E2(U ). A unit environment E ∈ ucx (Cst) is stable in Cst if for each parametrized
unit name U in Cst , E (U ) is locally stable. By Prop. 6.3, the class of environments that
are stable in Cst is closed under observational equivalence in Cst . We write ucx[(Cst) for
the class of all unit environments that fit Cst and are stable in Cst .

A D-coherent correspondence between D-coherent model familiesM1,M2 ∈ |Mod(D)|,
written ρ:M1 ./ M2, is a family of correspondences ρi:M1

i ./ M2
i for i ∈ |D| such that

ρi = ρj D(m) for each m: i → j in D.
Two unit environments E1,E2 ∈ ucx[(Cst) are coherently equivalent in Cst , written

E1 ./Cst
E2, if for all parametrized unit names U in Cst , E1(U ) ≡ E2(U ), and there are D-

coherent families of models M1 and M2 with a D-coherent correspondence ρ:M1 ./ M2

such that M1 and M2 witness E1 and E2 respectively in Cst .
Then, given a unit context C ⊆ ucx (Cst), we write ClCst

≡ (C) for the class of all unit
environments that in Cst are stable and coherently equivalent to a unit environment in
C. Clearly then ClCst

≡ (C) ⊆ ucx[(Cst).
Back to the stability of the constructions defined by architectural specifications: we

want to show that if ` ASP �� (Cst ,Σ) and ` ASP ≡=⇒ (C[,UEv [) then the unit evalua-
tor UEv [ is stable, i.e., maps observationally equivalent environments to observationally
equivalent models. Unfortunately, this cannot be proved by a simple induction on the
structure of the unit terms involved, relying on the fact that (locally) stable constructions
are closed under composition. The trouble is with amalgamation, since in general amal-
gamation is not stable — informally, joining the signatures of two models may introduce
new observations for either or both of them, see Counterexample 5.7.

However, the key point here is that amalgamation in unit terms in architectural spec-
ifications is not used as a construction on its own, but it just identifies a new part of
the global context that has been constructed earlier. Since the constructions used to
build genuinely new components of the global context are locally stable, such use of
amalgamation can cause no harm.

The following lemma captures the essential stability property of the unit evaluators
built for unit terms by the observational model semantics.

Lemma 7.1. Assume Cst ` T �� (i,D′) and C[ ` T ≡=⇒ UEv [ with C[ ⊆ ucx[(Cst),
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where Cst = (Pst ,Bst , D). The unit evaluator UEv [ is locally stable in the following
sense:

Consider any E1,E2 ∈ C[ such that E1 ./Cst E2, and M1,M2 ∈ |Mod(D)| that witness
E1 and E2 respectively in Cst . Any D-coherent correspondence ρ:M1 ./ M2 can be ex-
tended to a D′-coherent correspondence ρ′:M′

1 ./ M′
2 between model familiesM′

1,M′
2 ∈

|Mod(D′)| that extend M1 and M2 respectively and satisfy (M′
1)i = UEv [(E1) and

(M′
2)i = UEv [(E2).

Proof. By induction on the structure of the unit term. The cases when the term is a
unit name or a unit reduction are trivial.

Consider the case of parametrized unit application. Using the notation as in the cor-
responding rules of the extended static semantics and of the (observational) model se-
mantics in Figs. 1 and 3 respectively, consider E1,E2 ∈ C[ such that E1 ./Cst E2 and
a coherent correspondence ρ:M1 ./ M2 between model families M1, M2 that witness
E1 and E2 respectively in Cst . By the inductive hypothesis, ρ can be extended to a D-
coherent correspondence ρT :MT

1 ./ MT
2 , where MT

1 extends M1, MT
2 extends M2,

(MT
1 )i = UEv(E1) and (MT

2 )i = UEv(E2). Then, ρT extends to a D′-coherent cor-
respondence ρ′:M′

1 ./ M′
2, where (M′

1)j = UEv(E1) γ , (M′
1)k = E1(U )(UEv(E1) γ),

and similarly for M′
2 (by local stability of either E1(U ) or E2(U ), and the fact that

E1(U ) ≡ E2(U )). Now, we can extend M′
1 and M′

2 to D′′-coherent model families M′′
1

and M′′
2 , respectively, by putting (M′′

1)l = UEv(E1) γ ⊕ E1(U )(UEv(E1) γ), and simi-
larly for M′′

2 . Moreover, similarly as in Lemma 5.6, following the proof of Lemma 2.2,
we can extend ρ′ to a coherent correspondence ρ′′:M′′

1 ./ M′′
2 .

Finally, consider the case of unit amalgamation. Using the notation as in the corre-
sponding rules of the extended static semantics and of the (observational) model se-
mantics in Figs. 1 and 3 respectively, consider E1,E2 ∈ C[ such that E1 ./Cst E2 and
a coherent correspondence ρ:M1 ./ M2 between model families M1, M2 that witness
E1 and E2 respectively in Cst . By the inductive hypothesis, ρ can be extended to a D1-
coherent correspondence ρT1 :MT1

1 ./ MT1
2 , where (MT1

1 ) extends M1, (MT1
2 ) extends

M2, (MT1
1 )i = UEv1(E1) and (MT1

2 )i = UEv1(E2). Similarly, ρ can be extended to a
D2-coherent correspondence ρT2 :MT2

1 ./ MT2
2 , where (MT2

1 ) extends M1, (MT2
2 ) ex-

tends M2, (MT2
1 )i = UEv2(E1) and (MT2

2 )i = UEv2(E2). Now, since D1 and D2 are
disjoint extensions of D, ρT1 and ρT2 can be put together to form a (D1 ∪D2)-coherent
correspondence between MT1

1 ∪ MT2
1 and MT1

2 ∪ MT2
2 respectively. To complete the

proof we proceed as in the previous case, following Lemma 5.6 generalized as indicated
in footnote 7; this is possible since the union of Casl signatures is built by taking the
union of their respective sets of sort, operation and predicate names and forming the
transitive closure of the union of the subsort preorders. Consequently, no new sorts, op-
erations or predicates are added in the resulting model; everything there was constructed
“earlier” while evaluating T1 and T2.

We can strengthen the invariant concerning the semantics of unit declarations and
definitions by adding the following property:

Corollary 7.2. Let Cst ` UDD �� C′st and C[ ` UDD ≡=⇒ C′[ with C[ ⊆ ucx[(Cst). Then
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C′[ ⊆ ucx[(C′st), C′[ ⊆ C[, and for any unit environments E ′
1,E

′
2 ∈ C′[ such that E ′

1 ≡C′st E ′
2,

whenever E ′
1 ./Cst E ′

2 then also E ′
1 ./C′st E ′

2.

Proof. This follows by easy inspection of the rules, using Lemma 7.1 for the case of
unit definitions.

Corollary 7.3. Let ` UDD+ �� Cst and ` UDD+ ≡=⇒ C[. Then C[ ⊆ ucx[(Cst) and for
any unit environments E1,E2 ∈ C[ if E1 ≡Cst E2 then also E1 ./Cst E2.

Proof. For the empty extended static context C∅st , any environment in C∅ is witnessed
by the empty family of models, and so any such two environments are coherently equiv-
alent in C∅st . Therefore, by Cor. 7.2 and an easy induction on the length of the sequence
of unit declaration and definitions, for any E1,E2 ∈ C[ such that E1 ≡Cst E2 as in the
premise of the corollary, we have E1 ./Cst

E2.

Corollary 7.4. If ` ASP �� (Cst ,Σ) and ` ASP ≡=⇒ (C[,UEv [) then C[ ⊆ ucx[(Cst)
and for any unit environments E1,E2 ∈ C[ such that E1 ≡Cst E2, we have UEv [(E1) ≡
UEv [(E2).

Proof. By Cor. 7.3 we have that for any E1,E2 ∈ C[ such that E1 ≡Cst E2 as in the
premise here, E1 ./Cst

E2. The conclusion follows by the stability property in Lemma 7.1.

As already mentioned, the observational semantics is more permissive than the literal
model semantics: the existence of a successful derivation of an observational meaning for
an architectural specification does not in general imply that its literal model semantics
is defined. Moreover, the observational semantics may “lose” some results permitted
by the literal model semantics, see Counterexample 6.10. However, if an architectural
specification has a literal model semantics then its observational semantics is defined as
well and up to observational equivalence, nothing new is added. The following theorem
captures the essential links between literal model semantics and observational model
semantics.

Theorem 7.5. The following relationships between literal and observational model se-
mantics hold:

1 If ` ASP �� ((Pst ,Bst),Σ) and ` ASP ⇒ (C,UEv) then ` ASP ≡=⇒ (C[,UEv [)
with C[ ⊆ ClCst

≡ (C) and for each unit environment E ∈ C that is stable in Cst , E ∈ C[

and UEv [(E ) = UEv(E ).
2 If ` UDD+ �� Cst and ` UDD+ ⇒ C then ` UDD+ ≡=⇒ C[, where C[ ⊆ ClCst

≡ (C)
and C[ contains all unit environments E ∈ C that are stable in Cst .

3 If Cst ` UDD �� C′st and C ` UDD ⇒ C′, where C ⊆ ucx (Cst), then for any
C[ ⊆ ClCst

≡ (C) that contains all unit environments E ∈ C that are stable in Cst ,
C[ ` UDD ≡=⇒ C′[, where C′[ ⊆ ClC

′
st
≡ (C′) and C′[ contains all unit environments E ′ ∈ C′

that are stable in C′st .
4 If Cst ` T �� (i,D′) and C ` T ⇒ UEv with C ⊆ ucx (Cst) then for any C[ ⊆ ClCst

≡ (C)
that contains all unit environments E ∈ C that are stable in Cst , C[ ` T ≡=⇒ UEv [

and for E ∈ C ∩ C[, UEv [(E ) = UEv(E ).
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Proof. Item 4 follows by induction on the structure of the unit term. As usual, the
cases when the term is a unit name or a unit reduction are easy.

Consider the case of unit application, when the unit term is of the form U [T fit γ].
Assume then C ⊆ ucx (Cst), Cst ` U [T fit γ] �� (l,D′′) and C ` U [T fit γ] ⇒ UEv ′,
with UEv ′(E ) = UEv(E )⊕ E (U )(UEv(E ) γ) for E ∈ C. Consequently, all the premises
of the corresponding rules (for unit application) in Figs. 1 and 3 must hold; we re-
fer below to the notations used in the rules. Take now any C[ ⊆ ClCst

≡ (C) that con-
tains all unit environments E ∈ C that are stable in Cst . By the inductive hypothe-
sis, C[ ` T ≡=⇒ UEv [ and for E ∈ C ∩ C[, UEv [(E ) = UEv(E ). Consider now any
E[ ∈ C[ ⊆ ClCst

≡ (C), with some E ∈ C such that E[ ./Cst E . Then E ∈ C ∩ C[. We have
E[(U ) ≡ E (U ), UEv [(E ) = UEv(E ), and since by Lemma 7.1 UEv(E ) ≡ UEv(E[) and
observational equivalence is preserved by reducts, from UEv(E ) γ ∈ dom(E (U )) we ob-

tain UEv [(E[) γ ∈ dom(E[(U )). Thus, we can derive C[ ` U [T fit γ] ≡=⇒ UEv ′[, where
for E[ ∈ C[, UEv ′[(E[) = UEv [(E[) ⊕ E[(U )(UEv [(E[) γ). Now, for E ∈ C ∩ C[, since
UEv [(E ) = UEv(E ), it follows that UEv ′[(E ) = UEv ′(E ) — which completes the proof
for this case.

The proof for the case of unit amalgamation, when the unit term is of the form
T1 and T2, proceeds quite similarly: assume C ⊆ ucx (Cst), Cst ` T1 and T2 �� (j, D′)
and C ` T1 and T2 ⇒ UEv . Consequently, all the premises of the corresponding rules
(for unit amalgamation) in Figs. 1 and 3 must hold; we refer below to the notations
used in the rules. Take now any C[ ⊆ ClCst

≡ (C) that contains all unit environments E ∈ C
that are stable in Cst . By the inductive hypothesis, C[ ` T1

≡=⇒ UEv1
[ , C[ ` T2

≡=⇒
UEv2

[ , and for E ∈ C ∩ C[, UEv1
[ (E ) = UEv1(E ) and UEv2

[ (E ) = UEv2(E ). Then
C[ ` T1 and T2

≡=⇒ UEv [, where for E[ ∈ C[, UEv [(E[) amalgamates UEv1
[ (E[) and

UEv2
[ (E[). Clearly now, by the definition of UEv in the model semantics, for E ∈ C ∩ C[,

since UEv1
[ (E ) = UEv1(E ) and UEv2

[ (E ) = UEv2(E ), we conclude that UEv [(E ) =
UEv(E ) — which completes the proof of item 4.

Item 3 follows by inspection of the rules; the cases of unit declarations are easy. The
case of unit definition relies on item 4 as follows. Assume that C ⊆ ucx (Cst) and C is closed
in Cst = (Pst ,Bst , D). To derive Cst ` UDD �� C′st and C ` UDD ⇒ C′, where UDD is of
the form U = T , we must have (Pst ,Bst , D) ` T �� (i,D′), U 6∈ (dom(Pst)∪dom(Bst)),
and C ` T ⇒ UEv , with C′st = (Pst ,Bst + {U 7→ i}, D′) and C′ = {E + {U 7→ UEv(E )} |
E ∈ C}. Take now any C[ ⊆ ClCst

≡ (C) that contains all unit environments E ∈ C that are
stable in Cst . By item 4, C[ ` T ≡=⇒ UEv [ and for E ∈ C ∩ C[, UEv [(E ) = UEv(E ).
Hence, C[ ` U = T ⇒ C′[ with C′[ = {E[ + {U 7→ UEv [(E[)} | E[ ∈ C[}. To see that

C′[ ⊆ ClC
′
st
≡ (C′), consider any E[ ∈ C[ ⊆ ClCst

≡ (C), with some E ∈ C such that E[ ./Cst E . By
Lemma 7.1, E[+{U 7→ UEv [(E[)} is coherently equivalent in C′st to E+{U 7→ UEv [(E )},
which is the same as E + {U 7→ UEv(E )}. This shows that E[ + {U 7→ UEv [(E[)} is
indeed in ClC

′
st
≡ (C′). Finally, if for some E ∈ C, E + {U 7→ UEv(E )} is stable in C′st , then

E is stable in Cst and so is in C[. Since then UEv [(E ) = UEv(E ) by item 4, we also have
that E + {U 7→ UEv(E )} is in C′[.

Item 2 follows from item 3 by an easy induction on the length of the sequence of unit
declarations and definitions. To start, notice that every environment in C∅ is stable in the
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empty static context C∅st and is witnessed in C∅st by the empty family of models; hence,

C∅ = ClC
∅
st
≡ (C∅).

Item 1 now follows easily: to derive the assumptions for ASP of the form arch spec UDD+ result T ,
we must have ` UDD+ �� Cst and ` UDD+ ⇒ C, as well as Cst ` T �� and C ` T ⇒
UEv , with (Pst ,Bst) = ctx (Cst) and Σ = D(i). By item 2 we thus have ` UDD+ ≡=⇒ C[,
where C[ ⊆ ClCst

≡ (C) and C[ contains all unit environments E ∈ C that are stable in Cst .
By item 4 in turn, C[ ` T ≡=⇒ UEv [ and for each unit environment E ∈ C stable in Cst ,
UEv [(E ) = UEv(E ) (since E ∈ C ∩ C[ then).

Corollary 7.6. If ` ASP �� (Cst ,Σ) and ` ASP ⇒ (C,UEv) then ` ASP ≡=⇒ (C[,UEv [),
where for every E[ ∈ C[ there exists E ∈ C such that E[ ≡Cst E and UEv [(E[) ≡ UEv(E ).

Proof. Given the assumptions, by Thm. 7.5, ` ASP ≡=⇒ (C[,UEv [) with C[ ⊆ ClCst
≡ (C)

and for each E ∈ C that is stable in Cst , E ∈ C[ and UEv [(E ) = UEv(E ). Hence, for
each E[ ∈ C[ there is a stable environment E ∈ C such that E[ ./Cst

E and UEv(E ) =
UEv [(E ). It follows that E[ ≡Cst E and, by Cor. 7.4, UEv [(E ) ≡ UEv [(E[), which yields
UEv(E ) ≡ UEv [(E[).

8. Example

The following example illustrates some of the points in the paper. The notation of Casl

is hopefully understandable without further explanation; otherwise see (CoFI 2004).
We start with a simple specification of sets of strings; we will not go into any details of

a specification of strings, just remarking that any standard specification would typically
be monomorphic (with a unique model, up to isomorphism) and would certainly provide
the equality predicate for strings.

spec String = sort String

· · ·
pred eqS : String × String ;

axiom ∀s, s′ : String • eqS(s, s′) ⇐⇒ s = s′

· · ·
spec StringSet = String

then sort Set

ops empty : Set ;

add : String × Set → Set

pred present : String × Set

∀ s, s′ : String , t : Set

• add(s, add(s, t)) = add(s, t)

• add(s, add(s′, t)) = add(s′, add(s, t))

• ¬present(s, empty)

• present(s, add(s, t))

• s 6= s′ =⇒ (present(s, add(s′, t)) ⇐⇒ present(s, t))

We now provide a more elaborate version of the requirements this specification cap-
tures, introducing the idea of using a hash table implementation of sets.
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spec Int = sort Int

· · ·
pred eqN : Int × Int ;

axiom ∀n, n′ : Int • eqN (n, n′) ⇐⇒ n = n′

· · ·

spec Elem = sort Elem

spec Array[Elem] = Elem and Int

then sort Array [Elem]

ops empty : Array [Elem];

put : Int × Elem ×Array [Elem] → Array [Elem];

take : Int ×Array [Elem] →? Elem

pred used : Int ×Array [Elem]

∀ i, j : Int ; e, e′ : Elem; a : Array [Elem]

• i 6= j =⇒ put(i, e′, put(j, e, a)) = put(j, e, put(i, e′, a))

• put(i, e′, put(i, e, a)) = put(i, e′, a)

• ¬used(i, empty)

• used(i, put(i, e, a))

• i 6= j =⇒ ( used(i, put(j, e, a)) ⇐⇒ used(i, a) )

• take(i, put(i, e, a)) = e

spec ElemKey = Elem and Int

then op hash : Elem → Int

spec HashTable[ElemKey] = ElemKey and Array[Elem]

then ops add : Elem ×Array [Elem] → Array [Elem];

putnear : Int × Elem ×Array [Elem] → Array [Elem]

preds present : Elem ×Array [Elem]

isnear : Int × Elem ×Array [Elem]

∀ i : Int ; e : Elem; a : Array [Elem]

• add(e, a) = putnear(hash(e), e, a)

• ¬used(i, a) =⇒ putnear(i, e, a) = put(i, e, a)

• used(i, a) ∧ take(i, a) = e =⇒ putnear(i, e, a) = a

• used(i, a) ∧ take(i, a) 6= e =⇒
putnear(i, e, a) = putnear(succ(i), e, a)

• present(e, a) ⇐⇒ isnear(hash(e), e, a)

• ¬used(i, a) =⇒ ¬isnear(i, e, a)

• used(i, a) ∧ take(i, a) = e =⇒ isnear(i, e, a)

• used(i, a) ∧ take(i, a) 6= e =⇒
(isnear(i, e, a) ⇐⇒ isnear(succ(i), e, a))

spec StringKey = String and Int

then op hash : String → Int

spec StringHashTable =

HashTable[StringKey] with Array [String ] 7→ Set

reveal String ,Set , empty , add , present

StringHashTable does not literally ensure all the requirements imposed by the orig-
inal specification StringSet: the second axiom (commutativity of adding elements
to a set) fails in some models of StringHashTable. Still, it is easy to check that
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[[StringHashTable]] ⊆ [[StringSet]]≡ and so every future (observationally-correct) re-
alisation of StringHashTable is an observationally-correct realisation of StringSet.10

StringHashTable is structured in a fairly natural way, building on a generic specifi-
cation of arrays that is presumably already available, and including a generic specification
of hash tables that may be reused in the future.

However, the structure of StringHashTable must not be viewed as an obligatory
prescription of the structure of the final implementation. For example, we may decide to
adopt the different structure given below by the architectural specification StringHashTableDesign.

The architectural specification uses the Casl construct given to mark units that are
imported by other units. Formally, a sequence of declarations like

N : Int; S : String;

SK : StringKey given S, N ;

abbreviates
N : Int; S : String;

SK ′ : Int× String → StringKey;

SK = SK ′[N ][S];

where a new generic construction SK ′ is introduced and immediately applied to the
imported units.

arch spec StringHashTableDesign =

units N : Int;

S : String;

SK : StringKey given S, N ;

A : Elem → Array[Elem] given N ;

ASK = A[SK fit Elem 7→ String ];

HT : StringHashTable

given {ASK with Array [String ] 7→ Set}
result HT reveal String ,Set , empty , add , present

The above architectural specification captures a modular design of the system to be
built as follows. Components N and S are to be defined, implementing specifications
Int and String, respectively. Presumably, these would be predefined in any practical
programming language. Then, N and S are put together and extended by a definition
of a hash function hash, yielding a new component SK . However, as explained above,
the given notation used here really means that we are to provide a construction (a
generic unit SK ′) that yields such a component for any realisations of Int and String.
Another component to be provided is a generic unit A to implement arrays indexed by
integers and storing data of any sort (Elem, to be instantiated when A is applied to an
argument component). Again, this is to be given by a construction A′ that works for
any implementation of Int, but then is instantiated with the specific implementation
given by N . This is then used to build a component ASK , that implements arrays of
strings (with a hash function) by instantiating A with SK . In turn, ASK (with the

10 Note that dropping the first two axioms in StringSet yields a specification with a class of models that
coincides with [[StringSet]]≡ — in fact, we could have started with such an observationally-closed
version of the specification, making no use of observational correctness at this stage yet.
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main sort renamed to Set to fit the top level names given in the original requirement
specification) will be extended to a component implementing StringHashTable —
again, this is to be built via a construction HT ′, independently of the details of ASK , for
an arbitrary implementation of Array[StringKey]. Finally, the overall result will be
given by exporting from this component only the required sorts, operations and predicate.

Notice that the structure here differs in an essential way from the structure of StringHashTable,
since we have chosen to forego genericity of hash tables (for arbitrary elements), imple-
menting them for the special case of strings.

Further development might lead to a final implementation in Standard ML, including
the following modules. The task of extracting Standard ML signatures (ARRAY_SIG etc.,
using boolean functions for predicates) from the corresponding Casl signatures of the
specifications given above is left for the reader. We assume though that the implemen-
tations N of Int and S of String, which we do not spell out here, use the Standard ML
built-in types int and string, respectively. These are so-called equality types in Stan-
dard ML, and come with the built-in (infix) equality function = which should replace
eqN and eqS in the corresponding Standard ML signatures. We also omit a component
SK that implements a hash function hash; any total function from strings to integers will
do, although of course a good hash function will produce an even distribution of hash
values. We compress consecutive instantiations of A’ (first to N and then to SK) into a
single functor application. Finally, we will incorporate the final adjustment to the overall
result signature (the reveal construct in the result unit in StringHashTableDesign)
and the renaming of arrays to sets (in the given part of HT) directly into the definition
of the functor HT’ used to build the resulting hash table of strings.

functor A’(structure N: INT_SIG and E : ELEM_SIG) : ARRAY_SIG =

struct

open N E

type array = int -> elem

exception unused

fun empty(i) = raise unused

fun put(i,e,a)(j) = if i=j then e else a(j)

fun take(i,a) = a(i)

fun used(i,a) = (a(i); true) handle unused => false

end

structure ASK =

struct

structure Astring =

A’(structure N=N and E=struct type elem=SK.string end)

open Astring

open SK

end

functor HT’(structure ASK: ASK_SIG) : STRING_HASH_TABLE_SIG =
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struct

open ASK

type set = array

fun putnear(i,s,t) =

if used(i,t)

then if take(i,t)=s then t else putnear(i+1,s,t)

else put(i,s,t)

fun add(s,t) = putnear(hash(s),s,t)

fun isnear(i,s,t) =

used(i,t) andalso (take(i,t)=s orelse isnear(i+1,s,t))

fun present(s,t) = isnear(hash(s),s,t)

end

structure HT = HT’(structure ASK=ASK)

The functor A’ is literally correct with respect to Int and Elem and Array[Elem]. To
be more precise, the semantic function on the models determined by A’ extends any model
in [[Int and Elem]] to a model in [[Array[Elem]]] such that [[A’]] ∈ [[Int and Elem

ι−→Array[Elem]]],
where ι is the obvious signature inclusion. Similarly, the structure HT satisfies the axioms
of StringHashTable literally (at least on the reachable part, and assuming the use of
extensional equality on functions).

The reader might want to check that StringHashTableDesign is a statically correct
architectural specification:11 we can derive

` StringHashTableDesign �� ((Pst ,Bst),Σ)

where Pst binds the generic units declared in StringHashTable (including those implic-
itly introduced by expanding the given construct for imports), Bst maps the non-generic
unit names in StringHashTable to their signatures, and Σ is the signature of the re-
sult unit (the signature of StringHashTable). Moreover, the (literal) model semantics
works as well, so that we have

` StringHashTableDesign ⇒ (C,UEv).

Here, the context C contains all environments that map unit names declared and defined
in StringHashTableDesign to their realisations so that declared units satisfy their
specifications and the defined units are built from the units given in the environment as
prescribed by their respective definitions. Then, the unit evaluator UEv maps any such
environment in C to a model as determined by the result unit definition. In particular,
the environment determined by the Standard ML functor and structure definitions given
above is in C, and UEv maps it to the expected system realisation.

However, even though the above functor A’ implementing arrays is correct, we might
want to use quite a different array implementation, for instance because it is given as
a highly optimised module in a library. Various useful “tricks” in the code then might

11 Using, for instance, the Hets tool, see www.informatik.uni-bremen.de/cofi/hets/.
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be expected. Here is an example where each entry in the array includes its history of
updates:

functor Atrick(structure N: INT_SIG and E : ELEM_SIG) : ARRAY_SIG =

struct

open E

type array = int -> elem list

fun empty(i) = nil

fun put(i,e,a)(j) = if i=j then e::a(j) else a(j)

fun take(i,a) = let val e::_=a(i) in e end

fun used(i,a) = not(null a(i))

end

Then, Atrick given here is not literally correct with respect to Int and Elem and
Array[Elem], since it violates the axiom put(i, e′, put(i, e, a)) = put(i, e′, a), but it is
observationally correct: [[Atrick]] ∈ [[Int and Elem

ι−→Array[Elem]]]≡. Similarly, the
extra flexibility that observational correctness offers would allow us for instance to change
the code for HT’ to count the number of insertions of each string, yielding a new functor
HTtrick’. The structure

structure HTtrick = HTtrick’(structure ASK=ASK)

violates the axiom used(i, a) ∧ take(i, a) = s =⇒ putnear(i, s, a) = a, but again it is
observationally correct: [[HTtrick]] ∈ [[StringHashTable]]≡.

The unit environment determined by Atrick’ and HTtrick’ is not in the context C
given by the literal model semantics of StringHashTable. However, under the obser-
vational semantics, we have:

` StringHashTableDesign
≡=⇒ (C[,UEv [),

where C[ contains the environment that is determined by Atrick’ and HTtrick’. More-
over, UEv [ (which essentially coincides with UEv given by the literal model semantics
above, but works on a different domain) maps such an environment to a model of the
whole system that is an observationally correct realisation of the original specification
StringHashTable, as expected.

The Standard ML functors above define locally stable constructions: they respect en-
capsulation since they do not use any properties of their arguments other than what is
spelled out in their parameter signatures. Indeed, all closed functors (which do not refer
to external structure definitions) in Standard ML define locally stable constructions.

Let us now go back to the idea inherent in the structure of the specification StringHashTable,
and try to build our implementation using a generic construction for hash tables. That
structure may be captured by the following architectural specification:
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arch spec StringHashTableDesign′ =

units N : Int;

A : Elem → Array[Elem] given N ;

HTgen : ElemKey×Array[Elem] → HashTable[ElemKey];

S : String;

SK : StringKey given S, N ;

result HTgen [SK fit Elem 7→ String ][A[S]] with Array [String ] 7→ Set

reveal String ,Set , empty , add , present

This is a correct architectural specification again, and indeed we get:

` StringHashTableDesign′ �� ((P ′
st ,B

′
st),Σ)

` StringHashTableDesign′ ⇒ (C′,UEv ′)
` StringHashTableDesign′

≡=⇒ (C′[,UEv ′[)

The extended static semantics and the literal model semantics work as expected (we
encourage the reader to try to describe the resulting contexts). However, perhaps un-
expectedly, we get C′[ = ∅ — the above architectural specification is observationally
inconsistent! The trouble is, of course, with the specification of generic hash tables. One
might try to implement it as follows:

functor HTgen

(structure EK : ELEM_KEY_SIG and A : ARRAY_ELEM_KEY_SIG

sharing type EK.elem=A.elem) : HASH_TABLE_ELEM_KEY_SIG =

struct

open EK A

fun putnear(i,e,a) =

if used(i,a)

then if take(i,a)=e then a else putnear(i+1,e,a)

else put(i,e,a)

fun add(e,a) = putnear(hash(e),e,a)

fun isnear(i,e,a) =

used(i,a) andalso (take(i,a)=e orelse isnear(i+1,e,a))

fun present(e,a) = isnear(hash(e),e,a)

end

Unfortunately, the construction defined by HTgen is not locally stable, and in fact HTgen
is not correct code in Standard ML, since it requires equality on elem (in take(i,a)=e)
which is not provided by ELEM_KEY_SIG. This problem is not accidental: there is no locally
stable construction, and hence no Standard ML functor, satisfying the required specifi-
cation. Consequently, there are no stable environments in context C′ resulting from the lit-
eral model semantics — hence the observational inconsistency of StringHashTableDesign′

(C′[ = ∅). Even though what is a reasonable structure for the requirements specifi-
cation, as expressed in StringHashTable, led to an inappropriate modular design
StringHashTableDesign′, this is in fact good news. While allowing for a more re-
laxed interpretation of the axioms in (result) specifications as long as their observable
consequences are ensured, the observational semantics marked as inconsistent a specifi-
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cation that cannot be implemented in a reasonable programming language in which no
tricky means are available to violate the modular structure.

Of course, this does not mean that there is no good design that would require a generic
implementation of hash tables. A simple way to achieve this would be to modify the above
architectural specification to add “equality” on Elem by introducing an equality predicate
(for instance, in ElemKey). Notice that this is different from requiring Elem to be an
equality type as in Standard ML, since this predicate is not necessarily constrained to be
interpreted as the identity. Consequently, we should then use this predicate, rather than
identity, to compare elements stored in HashTable. One point of architectural specifi-
cations is that such change of structure is an important design decision that deserves to
be recorded explicitly. The new specifications would be as follows:

spec ElemKeyEq = Elem and Int

then op hash : Elem → Int ;

pred eqE : Elem × Elem

spec HashTableEq[ElemKeyEq] = ElemKeyEq and Array[Elem]

then ops add : Elem ×Array [Elem] → Array [Elem];

putnear : Int × Elem ×Array [Elem] → Array [Elem]

preds present : Elem ×Array [Elem]

isnear : Int × Elem ×Array [Elem]

∀ i : Int ; e : Elem; a : Array [Elem]

• add(e, a) = putnear(hash(e), e, a)

• ¬used(i, a) =⇒ putnear(i, e, a) = put(i, e, a)

• used(i, a) ∧ eqE(take(i, a), e) =⇒ putnear(i, e, a) = a

• used(i, a) ∧ ¬eqE(take(i, a), e) =⇒
putnear(i, e, a) = putnear(succ(i), e, a)

• present(e, a) ⇐⇒ isnear(hash(e), e, a)

• ¬used(i, a) =⇒ ¬isnear(i, e, a)

• used(i, a) ∧ eqE(take(i, a), e) =⇒ isnear(i, e, a)

• used(i, a) ∧ ¬eqE(take(i, a), e) =⇒
(isnear(i, e, a) ⇐⇒ isnear(succ(i), e, a))

The architectural design then might look as follows:
arch spec StringHashTableDesignEq =

units N : Int;

A : Elem → Array[Elem] given N ;

HTgen : ElemKeyEq×Array[Elem] → HashTableEq[ElemKeyEq];

S : String;

SK : StringKey given S, N ;

result HTgen [SK fit Elem 7→ String ][A[S]] with Array [String ] 7→ Set

reveal String ,Set , empty , add , present

The following Standard ML functor would then provide a generic implementation of hash
tables for any type of elements with an equality function, yielding a locally stable con-
struction that is (observationally) correct with respect to ElemKeyEq and Array[Elem]
and HashTableEq[ElemKeyEq]:

functor HTEQgen

(structure EK : ELEM_KEY_EQ_SIG and A : ARRAY_ELEM_KEY_SIG



Observational Interpretation of Casl Specifications 43

sharing type EK.elem=A.elem) : HASH_TABLE_ELEM_KEY_EQ_SIG =

struct

open EK A

fun putnear(i,e,a) =

if used(i,a)

then if eq_E(take(i,a),e) then a else putnear(i+1,e,a)

else put(i,e,a)

fun add(e,a) = putnear(hash(e),e,a)

fun isnear(i,e,a) =

used(i,a) andalso (eq_E(take(i,a),e) orelse isnear(i+1,e,a))

fun present(e,a) = isnear(hash(e),e,a)

end

9. Conclusions and Further Work

The overall goal of this paper is to provide an observational view of Casl specifications
that supports observational refinement of specifications in combination with Casl-style
architectural design. This is achieved, and spelled out in detail for a simplified version of
Casl architectural specifications. Extending this to full Casl architectural specifications
(by allowing multiple parameters for parametrized units, adding unit translations, etc.)
is straightforward. Imports of units defined by arbitrary unit expressions are the only
potential source of difficulty. But the methodologically well-justified case of this, where
the import can be given an explicit specification, is easily dealt with as in Sect. 8.

Although we have worked in the specific setting of Casl signatures and models, for-
mulated as an institution in Sect. 2, it should be clear that much of the above applies to
a wide range of institutions. Rather than attempting to spell out the appropriate notion
of “institution with extra structure”, let us just remark that surprisingly little appears
to be required. A notion of observational model morphisms that is closed under compo-
sition and reduct, plus some extra categorical structure to identify “correspondences” as
certain spans of such morphisms, seems necessary and sufficient to formulate most of the
material presented. The need for additional structure is obviated by the fact that the
technical development makes no reference to a set of observable sorts, in contrast to stan-
dard approaches to observational interpretation of specifications. In the context of Casl

(where one can treat a sort as observable by introducing an “equality predicate” on it)
this is adequate. It may well not be adequate in institutions of much more limited expres-
sive power, but it is not clear that such institutions are of genuine practical importance.
Links with indistinguishability relations via factorization properties, like Thm. 5.8, may
require the richer context of concrete institutions, where model categories are equipped
with concretization structure subject to a number of technical requirements as in (Bidoit
and Tarlecki 1996), or alternatively may follow the ideas of (Popescu and Roşu 2005).

A challenging issue is now to understand how far the concepts developed for our
somewhat simplified view of software components as local constructions on Casl models
can be inspiring for a more general view of components involving some form of external
communication. While this is clearly beyond the scope of this paper, we nevertheless
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imagine that a promising direction of future research would be to look for an adequate
counterpart of (local) stability in this more general setting.
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