
Casl
The Common Algebraic Specification Language

Semantics

CoFI Document: CASL/Semantics
Version: 1.1 October 16, 2002

by The CoFI Task Group on Semantics
E-mail address for comments: cofi-semantics@brics.dk

: The Common Framework Initiative
http://www.brics.dk/Projects/CoFI

This document is available in various formats from the CoFI archives.1

Copyright c©2002 CoFI, The Common Framework Initiative for Algebraic
Specification and Development.

Permission is granted to anyone to make or distribute verbatim copies of this
document, in any medium, provided that the copyright notice and permission
notice are preserved, and that the distributor grants the recipient permission
for further redistribution as permitted by this notice. Modified versions may
not be made.

Abstract

This is the formal semantics of version 1.0.2 of Casl. Although it
is self-contained, it is intended for readers who are already familiar
with the main concepts of algebraic specification and with the Casl
Language Summary. The structure of this document is deliberately
identical to that of the Casl Language Summary to aid cross-reference.

1ftp://ftp.brics.dk/Projects/CoFI/Documents/CASL/Semantics/

i

Contents

0 Introduction 1

0.1 Structure of this document 1

0.2 Notation . 2

0.3 Static semantics and model semantics 4

0.4 Semantic rules . 5

0.5 Institution independence . 6

0.6 Contributors . 7

I Basic Specifications 8

1 Basic Concepts 9

1.1 Signatures . 10

1.2 Models . 15

1.3 Sentences . 18

1.4 Satisfaction . 22

2 Basic Constructs 26

2.1 Signature Declarations . 28

2.1.1 Sorts . 29

2.1.1.1 Sort Declarations 29

2.1.2 Operations . 30

2.1.2.1 Operation Declarations 30

ii

CONTENTS Version 1.1: October 16, 2002 iii

2.1.2.2 Operation Definitions 32

2.1.3 Predicates . 33

2.1.3.1 Predicate Declarations 34

2.1.3.2 Predicate Definitions 35

2.1.4 Datatypes . 35

2.1.4.1 Datatype Declarations 37

2.1.4.2 Free Datatype Declarations 40

2.1.5 Sort Generation . 45

2.2 Variables . 46

2.2.1 Global Variable Declarations 46

2.2.2 Local Variable Declarations 47

2.3 Axioms . 47

2.3.1 Quantifications . 48

2.3.2 Logical Connectives 49

2.3.2.1 Conjunction 49

2.3.2.2 Disjunction 50

2.3.2.3 Implication 50

2.3.2.4 Equivalence 50

2.3.2.5 Negation 51

2.3.3 Atomic Formulae . 51

2.3.3.1 Truth . 52

2.3.3.2 Predicate Application 52

2.3.3.3 Definedness 53

2.3.3.4 Equations 54

2.3.4 Terms . 54

2.3.4.1 Identifiers 55

2.3.4.2 Qualified Variables 55

2.3.4.3 Operation Application 55

2.3.4.4 Sorted Terms 57

CONTENTS Version 1.1: October 16, 2002 iv

2.3.4.5 Conditional Terms 57

2.4 Identifiers . 58

3 Subsorting Concepts 59

4 Subsorting Constructs 60

II Structured Specifications 61

5 Structuring Concepts 62

6 Structuring Constructs 63

III Architectural Specifications 64

7 Architectural Concepts 65

8 Architectural Constructs 66

IV Specification Libraries 67

9 Library Concepts 68

10 Library Constructs 69

Bibliography 70

A Abstract Syntax A–1

A.1 Basic Specifications . A–1

A.2 Basic Specifications with Subsorts A–3

A.3 Structured Specifications . A–4

A.4 Architectural Specifications A–5

A.5 Specification Libraries . A–5

Chapter 0

Introduction

This document is the final outcome of the CoFI Semantics Task Group’s
work on the formal semantics of Casl, as informally presented in version
1.0.2 of the Casl Language Summary [CoF01]. This is the second “free-
standing” version of this document. Previous versions were in the form of
annotations on the Language Summary, to ease checking that the formal
semantics accurately reflects what is expressed less formally there.

0.1 Structure of this document

With the exception of this Introduction, the structure of this document is de-
liberately identical to the structure of the Casl Language Summary [CoF01]
to aid cross-reference. As in the Language Summary, Part I (Chapters 1–4)
deals with basic specifications—first many-sorted, then subsorted. Part II
(Chapters 5, 6) provides structured specifications, together with specification
definitions, instantiations, and views. Part III (Chapters 7, 8) summarizes
architectural and unit specifications, which, in contrast to structured spec-
ifications, prescribe the separate development of composable, reusable im-
plementation units. Finally, Part IV (Chapters 9, 10) considers specification
libraries. For ease of reference, Appendix A provides a complete grammar
for the abstract syntax of the language, collecting together the fragments
that are scattered throughout the rest of the document. This is a repetition
of the bulk of Appendix A of the Casl Language Summary [CoF01].

In each part, a chapter defining the semantic concepts underlying the kind
of specification concerned is followed by a chapter presenting the abstract
syntax of the associated Casl language constructs and defining their seman-
tics. The concrete syntax is fully defined in the Casl Language Summary
and this is not repeated here.

1

0.2. NOTATION Version 1.1: October 16, 2002 2

Brief informal summaries of the main concepts and constructs precede
each block of formal definitions. This material, which is in boxes (like this
paragraph) is provided as a supplement to the formal material; since it
deliberately glosses over the details, it should not be regarded as definitive.
There is other informal explanatory text in between the definitions, but
nothing that is likely to be mistaken for a definition.

0.2 Notation

This section summarizes some of the basic notation used in the definitions
below.

Sets. Set(A) is the set of all subsets of A, and FinSet (A) is the set of finite
subsets of A. If S is a set then |S| is the cardinality of S. unit denotes the
singleton set {∗}.

Tuples. A1 × · · ·×An is the set of n-tuples with jth component from Aj .
Tuples are written like this: (a1, . . . , an). Sometimes the parentheses are
omitted, especially when tuples are used as subscripts or superscripts.

Sequences. FinSeq(A) is the set of finite sequences of elements from A.
Sequences are written like this: 〈a1, . . . , an〉. (This notation is different from
that used in the Language Summary, where FinSeq(A) is written A∗ and
〈a1, . . . , an〉 is written a1 . . . an.) If w = 〈a1, . . . , an〉 then |w|= n.

Functions. A ⇀ B is the set of partial functions from A to B. Dom(f) ⊆
A is the domain of f : A ⇀ B. A → B is the set of total functions
from A to B. Any total function f : A → B can also be regarded as a
partial function f : A′ ⇀ B for any A′ ⊇ A, and any partial function
f : A ⇀ B is a total function f : Dom (f) → B. Functions are written
like this: {a1 7→ b1, . . . , an 7→ bn} or {x 7→ x + 3 | x ∈ Nat}. We use the
notation f(x) for application of a function f to an argument x. Sometimes
the parentheses are omitted, for instance when x is a tuple or a sequence.
When f is an indexed family (a function from an index set to a domain of
elements) we write fx instead of f(x). A fin→ B is the set of finite maps (i.e.
partial functions with finite domain) from A to B.

Union and ∅. We use union (∪) to combine semantic objects of various
kinds, with the evident interpretation (e.g. component-wise union for tuples

0.2. NOTATION Version 1.1: October 16, 2002 3

and point-wise union for functions, that is (f ∪ g)(x) = f(x) ∪ g(x) if f and
g are set-valued functions such that Dom (f) = Dom(g)). More generally,
for any set-valued functions f and g we take

(f ∪ g)(x) =

f(x) ∪ g(x) if x ∈ Dom(f) ∩Dom(g)
f(x) if x ∈ Dom(f) \ Dom(g)
g(x) if x ∈ Dom(g) \ Dom(f)
undefined otherwise

which gives Dom(f ∪ g) = Dom(f) ∪ Dom(g). Similarly, ∅ is used for the
empty object of various kinds (e.g. empty signature, empty function).

Disjoint union. A] B is the disjoint union of A and B. Injection from
A and B to A]B is implicit, but sometimes we distinguish between a ∈ A
and a ∈ A] B (similarly for b ∈ B) by writing the latter as “a quaA]B”.
We also use the “qua” notation for syntactic categories such as

OP-TYPE ::= TOTAL-OP-TYPE | PARTIAL-OP-TYPE

Function completion. We sometimes need to “complete” a function f
with Dom(f) ⊆ S to give a function with domain S by mapping values in
S\Dom(f) to an appropriate neutral value. In particular, if f is a set-valued
function, we define complete(f, S) = f ∪ {x 7→ ∅ | x ∈ S \ Dom(f)}.

Categories. Some elementary category theory is used in places. A suit-
able introduction is [Pie91]. The category of sets is denoted Set and the
(quasi)category of categories is denoted Cat.1 We use the notation f ◦ g
for (applicative order) composition of morphisms in a category. In Set this
gives (f ◦ g)(x) = f(g(x)).

Semantic domains. We define various semantic domains below. By con-
vention, semantic domains containing “syntactic” objects (e.g. Signature)
are in italics and semantic domains containing “semantic” objects (e.g.
Model) are in boldface. Here is an example of a domain of “syntactic”
objects:

(w, s) or ws ∈ FunProfile = FinSeq (Sort)× Sort

1There are foundational problems connected with the use of Cat—see [HS73] for how
to solve them.

0.3. STATIC SEMANTICS AND MODEL SEMANTICSVersion 1.1: October 16, 2002 4

This defines the set FunProfile as the set of pairs having finite sequences of
elements from Sort as first component and elements of Sort as second com-
ponent. The metavariable ws ranges over elements of FunProfile . When we
need to refer to the components of the pair we use the notation (w, s) in-
stead, so w ranges over elements of FinSeq(Sort) and s ranges over elements
of Sort.

Validity. Typically, semantic domains are constructed from “more basic”
domains together with some well-formedness requirements. Then a valid
object is a value in the given set that satisfies the given requirements. Here
is an example:

X ∈ Variables = Sort fin→ FinSet (Var)

Requirements on an S-sorted set of variables X :

• Dom(X) = S

• for all s, s′ ∈ S such that s 6= s′, Xs ∩Xs′ = ∅.
This says that a “set of variables” is a finite map taking elements of Sort
to finite subsets of Var , while a “valid S-sorted set of variables” is a finite
map of this kind that satisfies the two requirements given. Often, as in this
case, validity of an object is relative to some other (valid) object, here a set
S of sorts.

Abstract syntax. For an introduction to the form of grammar used to
define the abstract syntax of language constructs, see Appendix A, which
also contains the abstract syntax of the entire Casl specification language.

0.3 Static semantics and model semantics

The semantics of language constructs is given in two parts. The static
semantics checks well-formedness of phrases of the abstract syntax and pro-
duces a “syntactic” object as result, failing to produce any result for ill-
formed phrases. For example, for a many-sorted basic specification (see
Chapter 2) the static semantics yields an enrichment containing the sorts,
function symbols, predicate symbols and axioms that belong to the spec-
ification. A judgement of the static semantics has the following form:
context ` phrase � result. The model semantics provides the corresponding
model-theoretic part of the semantics, and is intended to be applied only to
phrases that are well-formed according to the static semantics. For a basic

0.4. SEMANTIC RULES Version 1.1: October 16, 2002 5

specification, the model semantics yields a class of models. A judgement of
the model semantics has the following form: context ` phrase ⇒ result.

A statically well-formed phrase may still be ill-formed according to the model
semantics, and then no result is produced. This can never happen in the se-
mantics of basic constructs but it can happen in the semantics of structured
specifications and architectural specifications.

0.4 Semantic rules

The judgements of the static semantics and model semantics are defined
inductively by means of rules in the style of Natural Semantics [Kah88].
For each phrase class we give a group of rules defining the semantics of
the constructs in that class. The group is preceded by a specification of the
“type” of the judgement(s) being defined. This is followed by pre-conditions
on the “inputs” to the judgement(s) which, if satisfied, guarantee that the
“outputs” satisfy the given post-conditions. Each of the rules should ensure
that this is the case. For example, here is the section of the semantics for
the phrase class AXIOM-ITEMS from Section 2.3 below, for which there is just
one rule.

Σ, X ` AXIOM-ITEMS � Ψ

X is required to be a valid set of variables over the sorts of Σ.
Ψ is a set of Σ-sentences.

Σ, X ` AXIOM1 � ψ1 · · · Σ, X ` AXIOMn �ψn

Σ, X ` axiom-items AXIOM1 . . . AXIOMn � {ψ1, . . . , ψn}

The “type” of the judgement is Σ, X ` AXIOM-ITEMS � Ψ. Intuitively, this
says that in the local environment Σ with declared variables X , a phrase
AXIOM-ITEMS yields a set Ψ of sentences. The pre-condition on the “inputs”
is the requirement that X be a valid set of variables over the sorts of Σ. (The
requirement that Σ itself be valid is implicit—use of a metavariable always
refers to a valid object of the relevant kind.) The post-condition on the
“output” is the assertion that Ψ will then be a set of Σ-sentences. It is easy
to see that the given rule satisfies the pre/post-condition: if Σ, X satisfy
the pre-condition then the post-condition associated with AXIOM guarantees
that all of ψ1, . . . , ψn will be Σ-sentences, and Ψ here is just {ψ1, . . . , ψn}.

Rules in the static semantics and model semantics have the form

α1 · · · αn
β

0.5. INSTITUTION INDEPENDENCE Version 1.1: October 16, 2002 6

where the conclusion β is a judgement and each premise αj is either a judge-
ment or a side-condition. When all the judgements occurring in all rules are
positive (i.e. not negated) then the rules unambiguously define a family of
relations via the usual notion of derivation tree, or equivalently as the small-
est family of relations that is closed under the rules. Conclusions are always
positive but there are situations in which negative premises are convenient.
These are potentially problematic for at least two reasons: first, there may
be no family of relations that is closed under the rules; second, there may be
no smallest family of relations that is closed under the rules. It follows that
care is required in situations where the natural choice of rules would involve
negative premises. One way out is to simultaneously define a relation and
its negation using rules with positive premises only, as in Section 1.4 below.
Another is via the use of stratification to ensure the absence of dangerous
circularities, cf. “negation by failure” in logic programming [Prz88], as in
Section 2.3.3. See [vG96] for further discussion.

When a syntactic category C is defined as the disjoint union of other syn-
tactic categories C1, . . . , Cn, rules that merely translate a judgement for C1
etc. to a judgement for C are elided. Here is a schematic example of the
kind of rules that are elided, for the static semantics:

context ` phrase � result
context ` phrase quaC � result

Whenever such a rule is elided there will be a statement to this effect in the
rule’s place.

0.5 Institution independence

Casl is the heart of a family of languages. Sub-languages of Casl are
obtained by imposing syntactic or semantic restrictions, while extensions of
Casl will be defined to support various paradigms and applications.

The features of Casl for defining structured specifications, architectural
specifications and specification libraries do not depend on the details of the
features for basic specifications, so this part of the design is orthogonal to the
rest. As a consequence, sub-languages and extensions of Casl can be defined
by restricting or extending the language of basic specifications without the
need to reconsider or change the rest of the language. On a semantic level,
this is reflected by giving the semantics in an “institution independent”
style. The semantics of basic specifications defines an institution [GB92] for
Casl—actually, a variant of the notion of institution called an institution
with symbols [Mos00]— and the rest of the semantics is based on an arbitrary
institution (with symbols).

0.6. CONTRIBUTORS Version 1.1: October 16, 2002 7

0.6 Contributors

The formal semantics of each part of the Language Summary was written
by one or more authors under the watchful gaze of a kibitzer.2 The authors
were responsible for actually doing the work, while the kibitzer was to serve
as first reader, act as devil’s advocate, push the authors to do the work, and
perhaps jump in and help if needed. Authors and kibitzers were as follows:

Basic specifications: Don Sannella (kibitzer Hubert Baumeister)

Subsorting: Maura Cerioli and Anne Haxthausen (kibitzer Till Mossakowski)

Structured specifications: Hubert Baumeister and Till Mossakowski
(kibitzer Andrzej Tarlecki)

Architectural specifications: Andrzej Tarlecki (kibitzer Don Sannella)

Libraries: Peter Mosses (kibitzer Till Mossakowski)

This document was assembled by Don Sannella. The CoFI Semantics Task
Group is coordinated by Andrzej Tarlecki.

Alexandre Zamulin read drafts of all parts of this document and sent many
useful comments and suggestions, for which the authors are extremely grate-
ful. Special thanks to Piotr Hoffman for pointing out inadequacies in an
earlier version of the semantics of architectural specifications.

2kibitzer, n. Meddlesome person, one who gives advice gratuitously; one who watches
a game of cards from behind the players.

Part I

Basic Specifications

8

Chapter 1

Basic Concepts

The concepts underlying basic specifications in Casl are those involved
in defining an institution [GB92] for Casl. The following elements are
required:

• a category Sig of signatures Σ, with signature morphisms σ : Σ→ Σ′;

• a (contravariant) functor Mod : Sigop → Cat giving for each signa-
ture Σ a category Mod(Σ) of models over Σ, with homomorphisms
between them, and for each signature morphism σ : Σ → Σ′ a reduct
functor Mod(σ) : Mod(Σ′) → Mod(Σ) (usually written .|σ) trans-
lating models and homomorphisms over Σ′ to models and homomor-
phisms over Σ;

• a functor Sen : Sig → Set giving for each signature Σ a set Sen(Σ)
of sentences (or axioms) over Σ, and for each signature morphism
σ : Σ→ Σ′ a translation function Sen(σ), usually written σ(.), taking
Σ-sentences to Σ′-sentences;

• a relation |= of satisfaction between models and sentences over the
same signature.

Satisfaction is required to be compatible with reducts of models and trans-
lation of sentences: for all ψ ∈ Sen(Σ) and M ′ ∈Mod(Σ′),

M ′|σ |= ψ ⇐⇒ M ′ |= σ(ψ).

(Additional structure is required for Parts II and III, including a functor
|.| : Sig→ Set with certain properties which determines the set of symbols
of any signature.)

A basic specification consists of a signature Σ together with a set of sen-
tences from Sen(Σ). The signature provided for a particular declaration
or sentence in a specification is called its local environment. It may be a

9

1.1. SIGNATURES Version 1.1: October 16, 2002 10

restriction of the entire signature of the specification, e.g., determined by
an order of presentation for the signature declarations and the sentences
with linear visibility, where symbols may not be used before they have been
declared; or it may be the entire signature, reflecting non-linear visibility.

The (loose) semantics of a basic specification is the class of those models in
Mod(Σ) which satisfy all the specified sentences. A specification is said to
be consistent when there are some models that satisfy all the sentences, and
inconsistent when there are no such models. A sentence is a consequence of
a basic specification if it is satisfied in all the models of the specification.

The rest of this chapter considers many-sorted basic specifications of the
Casl specification framework, and indicates the underlying signatures, mod-
els, sentences, and satisfaction relation. Consideration of the extra features
concerned with subsorts is deferred to Chapter 3.

The syntax of the language constructs used for expressing many-sorted basic
specifications is described in Chapter 2; subsorting constructs are deferred
to Chapter 4. The abstract syntax of any well-formed basic specification
determines a signature and a set of sentences, the models of which provide
the semantics of the basic specification.

1.1 Signatures

A many-sorted signature Σ consists of: a set of sorts ; separate families
of sets of total and partial function symbols, indexed by function profile
(a sequence of argument sorts and a result sort—constants are treated as
functions with no arguments); and a family of sets of predicate symbols,
indexed by predicate profile (a sequence of argument sorts). Constants and
functions are also referred to as operations.

The internal structure of identifiers used to identify sorts, functions and
predicates is insignificant for the semantics of basic specifications, see Sec-
tion 2.4. Following the Language Summary, we therefore leave this unspeci-
fied for now, promising that there will be no circularity when the definitions
of the sets Sort , FunName and PredName are eventually provided:

s ∈ Sort
f ∈ FunName
p ∈ PredName

(In Section 2.1 the internal structure of sorts will be defined as TOKEN-ID
and the internal structure of function and predicate symbols will be defined
as ID.)

1.1. SIGNATURES Version 1.1: October 16, 2002 11

S ∈ SortSet = FinSet (Sort)
(w, s) or ws ∈ FunProfile = FinSeq(Sort)× Sort

TF ,PF ∈ FunSet = FunProfile ⇀ FinSet (FunName)
w ∈ PredProfile = FinSeq (Sort)
P ∈ PredSet = PredProfile ⇀ FinSet (PredName)

For a set of total function symbols TF over S it is required that Dom(TF) =
FinSeq(S) × S and that TF ws 6= ∅ for only finitely many function profiles
ws ∈ FinSeq(S) × S, and similarly for a set of partial function symbols
PF . For a set of predicate symbols P over S it is required that Dom(P) =
FinSeq(S) and that Pw 6= ∅ for only finitely many predicate profiles w ∈
FinSeq(S).

(S,TF ,PF, P)
or Σ ∈ Signature =

SortSet × FunSet × FunSet × PredSet

Requirements on a signature (S,TF ,PF, P):

• TF and PF are sets of total resp. partial function symbols over S

• P is a set of predicate symbols over S

• for all ws ∈ FinSeq(S) ×S, TF ws ∩PF ws = ∅
(An alternative to the use of the separate signature components TF and
PF would be a single component F with a totality marker, so e.g. F :
FunProfile ×{total, partial}⇀ FinSet(FunName) cf. [Wag99].)

Later we will need signature extensions as well. These are signature frag-
ments that are interpreted relative to some other signature. First we define
signature fragments.

(S,TF ,PF, P) ∈ SigFragment =
SortSet × FunSet × FunSet × PredSet

These are simply signatures minus the validity requirements.

Union of signature fragments is defined as follows:

(S,TF ,PF , P) ∪ (S′ ,TF ′,PF ′, P ′) =
reconcile(S ∪ S′, complete(TF ∪ TF ′,FinSeq(S′′)× S′′),

complete(PF ∪PF ′,FinSeq(S′′)× S′′),
complete(P ∪ P ′,FinSeq(S′′)))

where S′′ = S ∪ S′ ∪ sorts(Dom (TF)) ∪ sorts(Dom(PF)) ∪ sorts(Dom (P))
∪ sorts(Dom (TF ′)) ∪ sorts(Dom (PF ′)) ∪ sorts(Dom (P ′))

and reconcile(S,TF ,PF, P) = (S,TF , {ws 7→ PF ws \ TF ws | ws ∈ Dom (PF)}, P)

1.1. SIGNATURES Version 1.1: October 16, 2002 12

Here, sorts(T) is the set of sorts appearing in function/predicate profiles
in T . The idea of this definition is to give the same result as if signature
fragments were defined as sets of individual sort/function/predicate declara-
tions. Note that any signature is also a signature fragment so this definition
also defines union of two signatures as well as union of a signature and a
signature fragment. According to this definition, the union of two signa-
tures will always be a signature with S′′ = S ∪ S′. When a function name
is declared as both partial and total, the reconcile function causes it to be
regarded as total in the union, as required in Sects. 2.1.2.1 and 6.1.3.

(S,TF ,PF , P) or ∆ ∈ Extension = SigFragment

A signature extension relative to a signature Σ is a signature fragment ∆
such that Σ∪∆ (the target of the signature extension) is a signature. This
guarantees that all the sorts used for function and predicate profiles in ∆
are declared in either ∆ or Σ.

Proposition 1 If ∆ = (S,TF ,PF, P) and ∆′ = (S′,TF ′,PF ′, P ′) are sig-
nature extensions relative to Σ then ∆∪∆′ is a signature extension relative
to Σ.

Proof: Straightforward. 2

A signature Σ is a subsignature of a signature Σ′ if there is some extension
∆ relative to Σ such that Σ′ = Σ∪∆. Note that this allows a function name
to be a partial function symbol in Σ but a total function symbol in Σ′.

Symbols used to identify sorts, operations, and predicates may be over-
loaded. For example, it is possible that f ∈ TF ws and f ∈ TFws ′ for
ws 6= ws ′, as well as f ∈ S. To ensure that there is no ambiguity in sen-
tences at this level, function symbols f and predicate symbols p are always
qualified by profiles when used, written fw,s and pw respectively. (The lan-
guage considered in Chapter 2 allows the omission of such qualifications
when they are unambiguously determined by the context.)

fws ∈ QualFunName = FunName ×FunProfile
pw ∈ QualPredName = PredName × PredProfile

Requirements on a qualified function name fws over Σ = (S,TF ,PF, P):

• ws ∈ FinSeq(S) × S
• f ∈ TF ws ∪ PFws

Requirements on a qualified predicate name pw over Σ = (S,TF ,PF , P):

• w ∈ FinSeq(S)

1.1. SIGNATURES Version 1.1: October 16, 2002 13

• p ∈ Pw
Following [Mos00], Parts II and III below require that we define a set Sym
of symbols and a function |.| taking any signature to the set of symbols it
contains (in fact we need a functor |.| : Sig→ Set having certain properties,
see Prop. 4 below). Symbols are essentially just qualified function/predicate
names together with sort names.

Sym =
s ∈ Sort]

fws ∈ QualFunName]
pw ∈ QualPredName

If Σ = (S,TF ,PF, P), we define |Σ| ⊆ Sym as follows:

|Σ|= S ∪ {fws | ws ∈ FinSeq(S) × S, f ∈ TF ws ∪ PF ws}
∪ {pw | w ∈ FinSeq(S), p ∈ Pw}

A many-sorted signature morphism σ : Σ→ Σ′ maps symbols in Σ to sym-
bols in Σ′. A partial function symbol may be mapped to a total function
symbol, but not vice versa.

σS ∈ SMap = Sort fin→ Sort
σTF ∈ TFMap = FunProfile ⇀ (FunName fin→ FunName)
σPF ∈ PFMap = FunProfile ⇀ (FunName fin→ FunName)

σP ∈ PMap = PredProfile ⇀ (PredName fin→ PredName)
(σS , σTF, σPF, σP) : Σ→ Σ′

or σ : Σ→ Σ′ ∈ SignatureMorphism =
Signature
×SMap ×TFMap × PFMap × PMap
×Signature

Requirements on a signature morphism (σS, σTF, σPF, σP) : (S,TF ,PF, P)→
(S′,TF ′,PF ′, P ′):

• σS : S → S′

• Dom(σTF) = Dom(σPF) = FinSeq(S) ×S

• for all ws ∈ FinSeq(S) ×S:

– σTF
ws : TF ws → TF ′σS(ws)

– σPF
ws : PF ws → TF ′σS(ws) ∪ PF ′σS(ws)

1.1. SIGNATURES Version 1.1: October 16, 2002 14

• Dom(σP) = FinSeq (S)

• for all w ∈ FinSeq(S), σP
w : Pw → P ′σS(w)

where, for w = 〈s1, . . . , sn〉, σS(w) = 〈σS(s1), . . . , σS(sn)〉 and σS(w, s) =
(σS(w), σS(s)). If Σ is a subsignature of Σ′, we write Σ ↪→ Σ′ for the
evident signature morphism. Such a signature morphism is called a signature
inclusion. Note that a signature extension ∆ relative to Σ can be viewed
more abstractly as the signature inclusion Σ ↪→ Σ∪∆. However, information
about any re-declaration in ∆ of symbols in Σ is lost by this abstraction.
Therefore ∆ is kept explicitly together with the signature inclusion in Part II.

If σ : Σ → Σ′ and ρ : Σ′ → Σ′′ are signature morphisms, where σ =
(σS, σTF, σPF, σP), ρ = (ρS, ρTF, ρPF, ρP) and Σ = (S,TF ,PF , P), then the
composition ρ ◦ σ : Σ → Σ′′ is the signature morphism (δS, δTF, δPF, δP)
where

δS = ρS ◦ σS,

δTF = {ws 7→ ρTF
σS(ws) ◦ σTF

ws | ws ∈ FinSeq(S) ×S},

δPF = {ws 7→ (ρTF
σS(ws) ∪ ρPF

σS(ws)) ◦ σPF
ws | ws ∈ FinSeq(S) ×S},

δP = {w 7→ ρP
σS(w) ◦ σP

w | w ∈ FinSeq (S)}

Identity morphisms idΣ are obvious.

Proposition 2 The composition of signature morphisms does indeed yield
a signature morphism.

Proof: In the definition of δPF, ρTF
σS(ws) ∪ ρPF

σS(ws) is a function because
TF ′σS(ws) ∩ PF ′σS(ws) = ∅. The rest of the proof is straightforward. 2

Proposition 3 Signatures and signature morphisms form a finitely cocom-
plete category, Sig.

Proof: It is easy to see that Sig is a category. Regarding finite cocomplete-
ness, see [Mos98b] for a more general result. 2

If σ : Σ → Σ′ is a signature morphism, where σ = (σS, σTF, σPF, σP), Σ =
(S,TF ,PF , P) and Σ′ = (S′ ,TF ′,PF ′, P ′), then the function |σ| : |Σ| → |Σ′|
is defined as follows:

|σ|(s) = σS(s) for all s ∈ S

|σ|(fws) =

{
σTF

ws (f)σS(ws) for f ∈ TFws

σPF
ws (f)σS(ws) for f ∈ PF ws

for all ws ∈ FinSeq (S) × S
|σ|(pw) = σP

w(p)σS(w)
for all w ∈ FinSeq (S) and p ∈ Pw

1.2. MODELS Version 1.1: October 16, 2002 15

Proposition 4 |.| : Sig→ Set is a faithful functor.

Proof: It is easy to see that |.| is a functor. Faithfulness is also obvious:
|σ| (together with the partiality data in Σ and Σ′) carries no less information
than σ : Σ→ Σ′. 2

Proposition 5 A signature morphism σ : Σ → Σ′ is a signature inclusion
iff |σ| is an inclusion of |Σ| into |Σ′|.

Proof: Straightforward. It is essential that in a signature inclusion σ :
Σ→ Σ′, a function name may be a partial function symbol in Σ but a total
function symbol in Σ′. 2

1.2 Models

For a many-sorted signature Σ, a many-sorted model M ∈Mod(Σ) assigns
a non-empty carrier set to each sort in Σ, a partial resp. total function to
each partial resp. total function symbol, and a predicate to each predicate
symbol. Requiring carriers to be non-empty simplifies deduction [GM82]
and will allow axioms in specifications to be implicitly universally quanti-
fied, see Sect. 2.2.

SM (s) or sM ∈ Carrier = the class of all sets
SM ∈ Carriers = Sort fin→ Carrier

FMws (f) or fM ∈ PartialFun = the class of all partial functions
FM ∈ PartialFuns = FunProfile ⇀ (FunName fin→ PartialFun)

PMw (p) or pM ∈ Pred = the class of all predicates
PM ∈ Preds = PredProfile ⇀ (PredName fin→ Pred)

(SM , FM, PM)
or M ∈ Model = Carriers ×PartialFuns×Preds
M ∈ ModelClass = Set(Model)

Requirements on a Σ-model M = (SM , FM , PM) for Σ = (S,TF ,PF , P):

• Dom(SM) = S

• for all s ∈ S, SM (s) 6= ∅
• Dom(FM) = FinSeq (S) × S

• for all w ∈ FinSeq(S) and s ∈ S:

– Dom(FMw,s) = PFw,s ∪ TFw,s

1.2. MODELS Version 1.1: October 16, 2002 16

– for all f ∈ TFw,s, FMw,s(f) : wM → sM (a total function)

– for all f ∈ PFw,s, FMw,s(f) : wM ⇀ sM

• Dom(PM) = FinSeq (S)

• for all w ∈ FinSeq(S):

– Dom(PMw) = Pw

– for all p ∈ Pw, PMw (p) ⊆ wM

where 〈s1, . . . , sn〉M = sM1 × · · · × sMn .

Every model in a Σ-model classM is required to be a valid Σ-model.

Given two Σ-models M,M ′ ∈ Mod(Σ), a many-sorted homomorphism
h : M → M ′ maps the values in the carriers of M to values in the cor-
responding carriers of M ′ in such a way that the values of functions and
their definedness is preserved, as well as the truth of predicates.

h : M →M ′ ∈ Homomorphism =
Model× (Sort fin→ PartialFun) ×Model

Requirements on a Σ-homomorphism h : M →M ′ for Σ = (S,TF ,PF , P):

• M and M ′ are valid Σ-models

• Dom(h) = S

• for all s ∈ S, hs : sM → sM
′

• for all w = 〈s1, . . . , sn〉 ∈ FinSeq(S), s ∈ S, f ∈ TFw,s ∪ PFw,s and
a1 ∈ sM1 , . . . , an ∈ sMn , if fM (a1, . . . , an) is defined then fM

′
(hs1(a1), . . . , hsn(an))

is defined and hs(fM (a1, . . . , an)) = fM
′
(hs1(a1), . . . , hsn(an))

• for all w = 〈s1, . . . , sn〉 ∈ FinSeq (S), p ∈ Pw and a1 ∈ sM1 , . . . , an ∈
sMn , if (a1, . . . , an) ∈ pM then (hs1(a1), . . . , hsn(an)) ∈ pM ′.

Composition of homomorphisms is as usual: if h : M → M ′ and h′ :
M ′ → M ′′ are Σ-homomorphisms for Σ = (S,TF ,PF , P), then the Σ-
homomorphism h′ ◦ h : M →M ′′ is given by (h′ ◦ h)s = h′s ◦ hs for all s ∈ S.
Identity homomorphisms are S-sorted identity functions.

Proposition 6 The composition h′◦h : M →M ′′ is indeed a Σ-homomorphism.

Proof: Routine. 2

Proposition 7 Σ-models and Σ-homomorphisms form a category, Mod(Σ).

Proof: Easy. 2

1.2. MODELS Version 1.1: October 16, 2002 17

A signature morphism σ : Σ → Σ′ determines the many-sorted
reduct of each Σ′-model resp. Σ′-homomorphism to a Σ-model resp. Σ-
homomorphism, defined by interpreting symbols of Σ in the reduct in the
same way that their images under σ are interpreted.

Let M ′ = (SM
′
, FM

′
, PM

′
) be a Σ′-model and let σ : Σ→ Σ′ be a signature

morphism where σ = (σS, σTF, σPF, σP) and Σ = (S,TF ,PF, P). The reduct
of M ′ with respect to σ is the Σ-model M ′|σ = (SM , FM, PM) defined as
follows:

SM = SM
′ ◦ σS

FMws (f) =

{
FM

′
σS(ws)(σ

TF
ws (f)) if f ∈ TF ws

FM
′

σS(ws)(σ
PF
ws (f)) if f ∈ PF ws

PMw (p) = PM
′

σS(w)(σ
P
w(p))

Proposition 8 If σ : Σ→ Σ′ is a signature morphism and M ′ is a Σ′-model
then M ′|σ is indeed a Σ-model.

Proof: Routine. 2

Suppose that Σ is a subsignature of Σ′, so there is a signature inclusion
Σ ↪→ Σ′. Then we sometimes write M ′|Σ as an abbreviation for M ′|Σ↪→Σ′ ,
and we say that a Σ′-model M ′ extends a Σ-model M if M ′|Σ = M.

Let h′ : M1′ → M2′ be a Σ′-homomorphism and let σ : Σ → Σ′ be a
signature morphism where Σ = (S,TF ,PF , P) and σ = (σS, σTF, σPF, σP).
The reduct of h′ with respect to σ is the Σ-homomorphism h′|σ : M1′|σ →
M2′|σ defined by (h′|σ)s = h′σS(s) for all s ∈ S. If Σ is a subsignature of Σ′

then we sometimes write h′|Σ as an abbreviation for h′|Σ↪→Σ′ .

Proposition 9 If σ : Σ → Σ′ is a signature morphism and h′ : M1′ →
M2′ is a Σ′-homomorphism then h′|σ : M1′|σ → M2′|σ is indeed a Σ-
homomorphism.

Proof: Easy. 2

Proposition 10 Reduct of models and homomorphisms extends Mod to
a finitely continuous functor Mod : Sigop → Cat (i.e. Mod takes finite
colimits in Sig to limits in Cat).

Proof: It is easy to see that Mod is a functor. For continuity, see [Mos98a]
for a sketch of the proof of a more general result; cf. [CGRW95]. 2

Let h : M → M ′ be a Σ-homomorphism. If there is a Σ-homomorphism
h−1 : M ′ → M such that h ◦ h−1 is the identity on M ′ and h−1 ◦ h is the

1.3. SENTENCES Version 1.1: October 16, 2002 18

identity on M then h is a Σ-isomorphism and we write M ∼= M ′.

1.3 Sentences

The many-sorted terms on a signature Σ and a set X of variables con-
sist of variables from X together with applications of qualified function
symbols to argument terms of appropriate sorts. We refer to such terms
as fully-qualified terms, to avoid confusion with the terms of the language
considered in Chapter 2, which allow explicit qualifications to be omitted
when they are determined by the context.

Following the Language Summary, we leave the syntax of variables (Var)
unspecified for now. It will be defined in Section 2.2 below.

x ∈ Var
X ∈ Variables = Sort fin→ FinSet(Var)
xs ∈ QualVarName = Var × Sort

Requirements on an S-sorted set of variables X :

• Dom(X) = S

• for all s, s′ ∈ S such that s 6= s′, Xs ∩Xs′ = ∅.

In a qualified variable name xs, it is required that s ∈ S.

We write X + {xs} for the (S ∪ {s})-sorted set of variables such that

(X + {xs})s =

{
Xs ∪ {x} if s ∈ Dom(X)
{x} otherwise

and (X + {xs})s′ = Xs′ \ {x} for s′ ∈ S such that s′ 6= s. We write X +X ′

for the extension of this to arbitrary S′-sorted sets of variables X ′.

Proposition 11 If X is valid for S and X ′ is valid for S′ then X +X ′ is
valid for S ∪ S′.

Proof: Easy. 2

If xi 6= xj for all 1 ≤ i 6= j ≤ n then we use {x1
s1, . . . , x

n
sn} to abbreviate

{x1
s1}+ · · ·+{xnsn}. (The pre-condition means that the order is immaterial,

as the set notation suggests.)

The definitions of fully-qualified terms and formulae are mutually recursive.

t ∈ FQTerm =
xs ∈ QualVarName]

fws〈t1, . . . , tn〉 ∈ QualFunName × FinSeq(FQTerm)]
ϕ → t | t′ ∈ Formula × FQTerm × FQTerm

1.3. SENTENCES Version 1.1: October 16, 2002 19

For any t ∈ FQTerm , define sort (t) ∈ Sort as follows:

sort (xs) = s
sort(fw,s〈t1, . . . , tn〉) = s

sort (ϕ → t′ | t′′) =

{
sort(t′) if sort(t′) = sort (t′′)
undefined otherwise

Requirements on a fully-qualified Σ-term t over an S-sorted set of variables
X , for Σ = (S,TF ,PF , P):

• if t is xs , then xs is valid for S and x ∈ Xs

• if t is fw,s〈t1, . . . , tn〉, then:

– fw,s is a valid qualified function name over Σ

– t1, . . . , tn are valid fully-qualified Σ-terms over X

– |w| = n

– w = 〈sort (t1), . . . , sort(tn)〉

• if t is ϕ → t′ | t′′, then:

– ϕ is a valid Σ-formula over X

– t′ and t′′ are valid fully-qualified Σ-terms over X

– sort (t′) = sort (t′′)

The fully-qualified term ϕ→ t | t′ is only needed to deal with the conditional
term construct, see Section 2.3.4 below. An alternative is to deal with these
by transformation as described in Section 2.3.4.5 of the Casl Language
Summary. Then fully-qualified terms of the form ϕ → t | t′ are not required.
Since these terms are non-standard, this might be a better choice when it
comes to questions like the design of a proof system for Casl.

The many-sorted sentences in Sen(Σ) are the usual closed many-sorted
first-order logic formulae, built from atomic formulae (application of qual-
ified predicate symbols to argument terms of appropriate sorts, assertions
about the definedness of fully-qualified terms, and existential and strong
equations between fully-qualified terms of the same sort) using quantifica-
tion and logical connectives. Predicate application, existential equations,
implication and universal quantification are taken as primitive, the other
forms being regarded as derived.

1.3. SENTENCES Version 1.1: October 16, 2002 20

ϕ ∈ Formula =
pw〈t1, . . . , tn〉 ∈ QualPredName × FinSeq(FQTerm)]

t
e= t′ ∈ FQTerm × FQTerm]

false ∈ unit]
ϕ⇒ ϕ′ ∈ Formula × Formula]
∀xs.ϕ ∈ QualVarName × Formula

Requirements on a Σ-formula ϕ over an S-sorted set of variables X , for
Σ = (S,TF ,PF , P):

• if ϕ is pw〈t1, . . . , tn〉, then:

– pw is a valid qualified predicate name over Σ

– t1, . . . , tn are valid fully-qualified Σ-terms over X

– |w| = n

– w = 〈sort (t1), . . . , sort(tn)〉
• if ϕ is t e= t′, then:

– t and t′ are valid fully-qualified Σ-terms over X

– sort (t) = sort(t′)

• if ϕ is ϕ′ ⇒ ϕ′′, then ϕ′ and ϕ′′ are valid Σ-formulae over X

• if ϕ is ∀xs.ϕ′, then:

– xs is valid for S

– ϕ′ is a valid Σ-formula over X + {xs}

Abbreviations are defined as follows:

¬ϕ abbreviates ϕ⇒ false
ϕ ∨ ϕ′ abbreviates (¬ϕ)⇒ ϕ′

ϕ ∧ ϕ′ abbreviates ¬(¬ϕ∨ ¬ϕ′)
ϕ⇔ ϕ′ abbreviates (ϕ⇒ ϕ′) ∧ (ϕ′ ⇒ ϕ)

true abbreviates ¬false
D(t) abbreviates t

e= t

t
s= t′ abbreviates (t e= t⇒ t

e= t′) ∧ (t′ e= t′ ⇒ t
e= t′)

∀{x1
s1 , . . . , x

n
sn}.ϕ abbreviates ∀x1

s1. · · · ∀xnsn .ϕ
∃X.ϕ abbreviates ¬(∀X.¬ϕ)
∃!X.ϕ abbreviates ∃X.(ϕ ∧ ∀X̂.(ϕ[X̂/X]⇒ X

e= X̂))

where in the last clause the variables X̂ are variants of X chosen to avoid
all variable clashes, ϕ[X̂/X] is substitution, and X

e= X̂ abbreviates the
evident conjunction of equations.

1.3. SENTENCES Version 1.1: October 16, 2002 21

If n = 0 then ϕ1 ∧ · · · ∧ ϕn means true , ϕ1 ∨ · · · ∨ ϕn means false, and
∀x1

s1. · · · ∀xnsn .ϕ means ϕ. (This is metanotation: ellipses are not included
in the syntax of sentences.)

Let ϕ be a Σ-formula over X and let (σS, σTF, σPF, σP) be a signature mor-
phism σ : Σ → Σ′ where Σ = (S,TF ,PF , P) and Σ′ = (S′ ,TF ′,PF ′, P ′).
Let X ′ be the S′-sorted set of variables such that X ′s′ =

⋃
σS(s)=s′Xs for

all s′ ∈ S′. The translation of ϕ along σ is the Σ′-formula σ(ϕ) over X ′

obtained by replacing each qualified variable name xs in ϕ by xσS(s), each
qualified function name fws such that f ∈ TF ws by σTF

ws (f)σS(ws), each qual-
ified function name fws such that f ∈ PF ws by σPF

ws (f)σS(ws), and each
qualified predicate name pw by σP

w (p)σS(w).

Proposition 12 If σ : Σ → Σ′ is a signature morphism and ϕ is a Σ-
formula over X then σ(ϕ) is indeed a Σ′-formula over X ′. If X is empty
then so is X ′.

Proof: Straightforward. 2

The sentences Sen(Σ) also include sort-generation constraints, used to
require that models are reachable on a subset of sorts.

(S, F, σ) ∈ Constraint = SortSet ×FunSet × SignatureMorphism

Requirements on a Σ-constraint (S, F, σ):

• σ : Σ′→ Σ where Σ′ = (S ′,TF ′,PF ′, P ′), and then:

• S ⊆ S′

• Dom(F) = FinSeq (S′)× S′

• for all ws ∈ FinSeq(S′)× S′, Fws ⊆ TF ′ws ∪PF ′ws

Let σ′ : Σ→ Σ′′ be a signature morphism. The translation of a Σ-constraint
(S, F, σ) along σ′ is the Σ′′-constraint σ′(S, F, σ) = (S, F, σ′ ◦ σ).

Proposition 13 Translating a Σ-constraint along σ : Σ → Σ′′ gives a Σ′′-
constraint.

Proof: Obvious. 2

We use the abbreviation (S, F) for the Σ-constraint (S, F, idΣ). Only con-
straints of this kind are introduced by CASL specifications, see Sections 2.1.4.2
and 2.1.5. Constraints with non-identity third components arise only when
constraints introduced by CASL specifications are translated along signature
morphisms.

1.4. SATISFACTION Version 1.1: October 16, 2002 22

ψ ∈ Sentence = Formula]Constraint

Requirements on a Σ-sentence ψ:

• if ψ is a formula, it is required to be a valid Σ-formula over the empty
set of variables

• if ψ is a constraint, it is required to be a valid Σ-constraint

Proposition 14 The mapping from signatures Σ to sets of Σ-sentences,
together with translation of sentences along signature morphisms, gives a
functor Sen : Sig→ Set.

Proof: The requirement that variables cannot be overloaded is crucial be-
cause it allows the translated sets of variables X ′ above to be formed without
the use of disjoint union. Given this, the proof is straightforward. 2

(∆,Ψ) ∈ Enrichment = Extension ×FinSet (Sentence)

Requirements on an enrichment (∆,Ψ) relative to a signature Σ:

• ∆ is a signature extension relative to Σ

• Each ψ ∈ Ψ is a Σ ∪∆-sentence

1.4 Satisfaction

The satisfaction of a Σ-formula in a Σ-model is determined as usual by
the holding of its atomic formulae w.r.t. assignments of values to all the
variables that occur in them. The value of a term may be undefined, due
to the presence of partial functions. Note, however, that the satisfaction
of sentences is 2-valued.
A predicate application holds iff the values of all its argument terms are
defined and give a tuple that belongs to the predicate. A definedness
assertion holds iff the value of the term is defined. An existential equation
holds iff the values of both terms are defined and identical, whereas a
strong equation holds also when the values of both terms are undefined.

ρ ∈ Assignment = Sort fin→ PartialFun

Let Σ = (S,TF ,PF, P) be a signature, M a Σ-model, and X an S-sorted
set of variables. Requirements on an assignment ρ of X into M:

1.4. SATISFACTION Version 1.1: October 16, 2002 23

• Dom(ρ) = S

• for all s ∈ S, ρs : Xs → sM

If a ∈ sM then we write ρ[xs 7→ a] for the assignment of X + {xs} into
M such that ρ[xs 7→ a]s(x) = a, ρ[xs 7→ a]s(x′) = ρs(x′) for x′ 6= x, and
ρ[xs 7→ a]s′(x′) = ρs′ (x′) for s′ 6= s and x′ 6= x.

We now simultaneously define three things inductively by means of inference
rules:

• the value [[t]]ρ of a fully-qualified Σ-term t over X in a Σ-model M
with respect to an assignment ρ of X into M;

• satisfaction of a Σ-formula ϕ over X by a Σ-model M under an as-
signment ρ of X into M, written M |=ρ ϕ; and

• non-satisfaction of ϕ by M under ρ, written M 6|=ρ ϕ.

We define both |= and 6|= so as to avoid negative occurrences of |= in its own
definition.

ρs(xs) = a

[[xs]]ρ= a

[[t1]]ρ= a1 · · · [[tn]]ρ= an fM (a1, . . . , an) = a

[[fws〈t1, . . . , tn〉]]ρ= a

According to this rule, the value of fws〈t1, . . . , tn〉 is defined only if the values
of t1, . . . , tn are defined and the resulting tuple of values is in Dom(fM).

M |=ρ ϕ [[t]]ρ= a

[[ϕ → t | t′]]ρ= a

M 6|=ρ ϕ [[t′]]ρ= a′

[[ϕ→ t | t′]]ρ= a′

[[t1]]ρ= a1 · · · [[tn]]ρ= an (a1, . . . , an) ∈ pM
M |=ρ pw〈t1, . . . , tn〉

[[tj]]ρ not defined for some 1 ≤ j ≤ n
M 6|=ρ pw〈t1, . . . , tn〉

[[t1]]ρ= a1 · · · [[tn]]ρ= an (a1, . . . , an) 6∈ pM

M 6|=ρ pw〈t1, . . . , tn〉

[[t]]ρ= a [[t′]]ρ= a

M |=ρ t
e= t′

1.4. SATISFACTION Version 1.1: October 16, 2002 24

[[t]]ρ not defined

M 6|=ρ t
e= t′

[[t′]]ρ not defined

M 6|=ρ t
e= t′

[[t]]ρ= a [[t′]]ρ= a′ a 6= a′

M 6|=ρ t
e= t′

M 6|=ρ false

M 6|=ρ ϕ

M |=ρ ϕ⇒ ϕ′

M |=ρ ϕ
′

M |=ρ ϕ⇒ ϕ′

M |=ρ ϕ M 6|=ρ ϕ′

M 6|=ρ ϕ⇒ ϕ′

M |=ρ[xs7→a] ϕ for all a ∈ sM
M |=ρ ∀xs.ϕ

a ∈ sM M 6|=ρ[xs 7→a] ϕ

M 6|=ρ ∀xs.ϕ

Proposition 15 M |=ρ ϕ iff ¬M 6|=ρ ϕ and M 6|=ρ ϕ iff ¬M |=ρ ϕ.

Proof: By induction on the structure of ϕ (simultaneously for the two
forward implications, and simultaneously for the two backward implications).

2

A sort-generation constraint (S, F) is satisfied in a Σ-model M if the carri-
ers of the sorts in S are generated by the function symbols in F from the val-
ues in the carriers of sorts not in S. Then M |= (S, F, σ) iff M|σ |= (S, F).

Suppose M is a Σ-model and (S, F, σ) is a Σ-constraint with σ : Σ′ → Σ.
Then M satisfies (S, F, σ), written M |= (S, F, σ), if the carriers of M|σ of
the sorts in S are generated by the function symbols in F , i.e. for every sort

1.4. SATISFACTION Version 1.1: October 16, 2002 25

s ∈ S and every value a ∈ sM |σ , there is a Σ′-term t containing only function
symbols from F and variables of sorts not in S such that [[t]]ρ= a for some
assignment ρ into M|σ .

A Σ-model M satisfies a Σ-sentence ψ, written M |= ψ, if:

• ψ is a formula ϕ and M |=∅ ϕ, where ∅ is here the empty assignment
from the empty set of variables

• ψ is a constraint (S, F, σ) and M |= (S, F, σ)

We write M 6|= ψ for ¬M |= ψ.

Proposition 16 Satisfaction is compatible with reducts of models and trans-
lation of sentences: if σ : Σ→ Σ′ is a signature morphism, ψ is a Σ-sentence
and M ′ is a Σ′-model, then

M ′|σ |= ψ iff M ′ |= σ(ψ)

Proof: See Sect. 3.1 of [Mos]. 2

Theorem 17 Sig, Mod, Sen and |= form an institution [GB92]. Sig is
finitely cocomplete and Mod supports amalgamation of models and homo-
morphisms.

Proof: Directly from Props. 3, 10, 14 and 16. 2

Proposition 18 Satisfaction is preserved and reflected by isomorphisms: if
M,M ′ are Σ-models such that M ∼= M ′ and ψ is a Σ-sentence, then M |= ψ
iff M ′ |= ψ.

Proof: Straightforward. 2

Chapter 2

Basic Constructs

This chapter gives the abstract syntax of the constructs of many-sorted ba-
sic specifications, and defines their intended interpretation. Well-formedness
of phrases of the abstract syntax is defined by the static semantics, which
produces a “syntactic” object as result and fails to produce any result for
ill-formed phrases. The model semantics, which yields a class of models
as result, provides the corresponding model-theoretic part of the seman-
tics. In this chapter, only basic specifications themselves (phrases of type
BASIC-SPEC) are given both static and model semantics; other phrase types
are given only static semantics. In this particular case, the result of the
static semantics fully determines the result of the model semantics, but that
is not the case in other parts of Casl.

A many-sorted basic specification BASIC-SPEC is a sequence of
BASIC-ITEMS constructs. It determines an enrichment containing the sorts,
function symbols, predicate symbols and axioms that belong to the spec-
ification; these may make reference to symbols in the local environment.
This enrichment in turn determines a class of models.

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

Σ ` BASIC-SPEC � (∆,Ψ) Σ,M` BASIC-SPEC⇒M′

(∆,Ψ) is an enrichment relative to Σ. M is required to be a model class
over Σ. Each model in M′ is a valid Σ ∪∆-model that extends a model in
M and satisfies Ψ.

As will become clear in Part II, one use of basic specifications in Casl is in
extending existing specifications. Such a basic specification will often make

26

Version 1.1: October 16, 2002 27

reference to the sorts, function symbols and predicate symbols of the existing
specification (the local environment), for instance to declare a new function
taking an argument of an existing sort. This context is captured by the
signature Σ in the above judgements, with the Σ-models inM giving all the
possible interpretations of these symbols. In contrast, variable declarations
are local to basic specifications.

Σ, ∅ ` BASIC-ITEMS1 � (∆1,Ψ1), X1
· · ·

Σ ∪∆1 ∪ · · · ∪∆n−1, X1 + · · ·+Xn−1 ` BASIC-ITEMSn � (∆n,Ψn), Xn

Σ ` basic-spec BASIC-ITEMS1 . . . BASIC-ITEMSn � (∆1 ∪ · · · ∪∆n,Ψ1 ∪ · · · ∪ Ψn)

Making the incremental information from all the preceding BASIC-ITEMS
available to the next one in sequence gives linear visibility. The use of + to
combine variable sets means that a later declaration of a given variable will
override an earlier declaration of the same variable.

Σ ` basic-spec BASIC-ITEMS* � (∆,Ψ)
Σ,M` basic-spec BASIC-ITEMS* ⇒
{Σ ∪∆-model M ′ |M ′|Σ↪→Σ∪∆ ∈ M and ∀ψ ∈ Ψ.M ′ |= ψ}

Each BASIC-ITEMS construct determines part of a signature and/or some
sentences (except for VAR-ITEMS, which merely declares some global vari-
ables). There is linear visibility of declared symbols and variables in a list
of BASIC-ITEMS constructs, except within a list of datatype declarations.
Verbatim repetition of the declaration of a symbol is allowed, and does not
affect the semantics.

BASIC-ITEMS ::= SIG-ITEMS | FREE-DATATYPE | SORT-GEN
| VAR-ITEMS | LOCAL-VAR-AXIOMS | AXIOM-ITEMS

Σ, X ` BASIC-ITEMS � (∆,Ψ), X ′

X is required to be a valid set of variables over the sorts of Σ. (∆,Ψ) is
an enrichment relative to Σ, and X ′ is a valid set of variables over the sorts
of Σ ∪∆. (Actually, X ′ will be a valid set of variables over the sorts of Σ
since there happens to be no construct of BASIC-ITEMS that both declares
variables and introduces signature components.)

Σ ` SIG-ITEMS � (∆,∆′,Ψ)
Σ, X ` SIG-ITEMS qua BASIC-ITEMS � (∆ ∪∆′,Ψ), ∅

Σ ` FREE-DATATYPE � (∆,Ψ)
Σ, X ` FREE-DATATYPE qua BASIC-ITEMS � (∆,Ψ), ∅

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 28

Σ ` SORT-GEN � (∆,Ψ)
Σ, X ` SORT-GEN qua BASIC-ITEMS � (∆,Ψ), ∅

S ` VAR-ITEMS �X ′

(S,TF ,PF, P), X ` VAR-ITEMS qua BASIC-ITEMS � (∅, ∅), X ′

Σ, X ` LOCAL-VAR-AXIOMS � Ψ
Σ, X ` LOCAL-VAR-AXIOMS qua BASIC-ITEMS � (∅,Ψ), ∅

Σ, X ` AXIOM-ITEMS � Ψ
Σ, X ` AXIOM-ITEMS qua BASIC-ITEMS � (∅,Ψ), ∅

2.1 Signature Declarations

A list SORT-ITEMS of sort declarations determines some sorts. A list
OP-ITEMS of operation declarations/definitions determines some opera-
tion symbols, and possibly some sentences; similarly for predicate declara-
tions/definitions PRED-ITEMS. A list DATATYPE-ITEMS of datatype declara-
tions determines some sorts together with some constructor and (optional)
selector operations, and sentences defining the selector operations.

SIG-ITEMS ::= SORT-ITEMS | OP-ITEMS | PRED-ITEMS
| DATATYPE-ITEMS

Σ ` SIG-ITEMS � (∆,∆′,Ψ)

(∆ ∪∆′,Ψ) is an enrichment relative to Σ.

Here, ∆′ are the selectors declared by DATATYPE-DECLs in SIG-ITEMS and
∆ is everything else declared in SIG-ITEMS. These need to be kept separate
here because they are treated differently by the sort-generation construct,
see Section 2.1.5.

Σ ` SORT-ITEMS � (∆,Ψ)
Σ ` SORT-ITEMS qua SIG-ITEMS � (∆, ∅,Ψ)

Σ ` OP-ITEMS � (∆,Ψ)
Σ ` OP-ITEMS qua SIG-ITEMS � (∆, ∅,Ψ)

Σ ` PRED-ITEMS � (∆,Ψ)
Σ ` PRED-ITEMS qua SIG-ITEMS � (∆, ∅,Ψ)

Σ ` DATATYPE-ITEMS � (∆,∆′,Ψ),W
Σ ` DATATYPE-ITEMS qua SIG-ITEMS � (∆,∆′ ,Ψ)

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 29

2.1.1 Sorts

SORT-ITEMS ::= sort-items SORT-ITEM+
SORT-ITEM ::= SORT-DECL

Σ ` SORT-ITEMS � (∆,Ψ)

(∆,Ψ) is an enrichment relative to Σ.

Σ ` SORT-ITEM1 � (∆1,Ψ1) · · · Σ ` SORT-ITEMn � (∆n,Ψn)
Σ ` sort-items SORT-ITEM1 . . . SORT-ITEMn � (∆1 ∪ · · · ∪∆n,Ψ1 ∪ · · · ∪ Ψn)

The only reason why we have Σ ` SORT-ITEMS � (∆,Ψ) rather than simply
` SORT-ITEMS � S (and similarly for SORT-ITEM below) is to accommodate
the extension to subsorts in Chapters 3–4 where ∆ will include a subsorting
relation and Ψ will include axioms for defined subsorts.

Σ ` SORT-ITEM � (∆,Ψ)

(∆,Ψ) is an enrichment relative to Σ.

` SORT-DECL � S

Σ ` SORT-DECL qua SORT-ITEM � ((S, ∅, ∅, ∅), ∅)

2.1.1.1 Sort Declarations

A sort declaration SORT-DECL declares each of the sorts given.

SORT-DECL ::= sort-decl SORT+
SORT ::= TOKEN-ID

` SORT-DECL � S

` sort-decl s1 . . . sn � {s1, . . . , sn}

As promised in Section 1.1, we now define the universe Sort of sort names.

Sort = TOKEN-ID

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 30

2.1.2 Operations

OP-ITEMS ::= op-items OP-ITEM+
OP-ITEM ::= OP-DECL | OP-DEFN

Σ ` OP-ITEMS � (∆,Ψ)

(∆,Ψ) is an enrichment relative to Σ.

Σ ` OP-ITEM1 � (∆1,Ψ1)
· · ·

Σ ∪∆1 ∪ · · · ∪∆n−1 ` OP-ITEMn � (∆n,Ψn)
Σ ` op-items OP-ITEM1 . . . OP-ITEMn � (∆1 ∪ · · · ∪∆n,Ψ1 ∪ · · · ∪Ψn)

Making the signature extensions from all the preceding OP-ITEMs available
to the next one in sequence gives linear visibility. This is required here
for the sake of UNIT-OP-ATTR attributes and operation definitions, both of
which may refer to previously-declared function symbols.

Σ ` OP-ITEM � (∆,Ψ)

(∆,Ψ) is an enrichment relative to Σ.

Rules elided (see Sect. 0.4).

2.1.2.1 Operation Declarations

An operation declaration OP-DECL declares each given operation name as
a total or partial operation, with profile as specified, and having the given
attributes. If an operation is declared both as total and as partial with the
same profile, the resulting signature only contains the total operation.

OP-DECL ::= op-decl OP-NAME+ OP-TYPE OP-ATTR*
OP-NAME ::= ID
OP-TYPE ::= TOTAL-OP-TYPE | PARTIAL-OP-TYPE
TOTAL-OP-TYPE ::= total-op-type SORT-LIST SORT
PARTIAL-OP-TYPE ::= partial-op-type SORT-LIST SORT
SORT-LIST ::= sort-list SORT*

As promised in Section 1.1, we now define the universe FunName of opera-
tion names.

FunName = ID

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 31

(Recall from Section 1.1 that operations are also referred to as functions,
hence FunName .)

Σ ` OP-DECL � (∆,Ψ)

(∆,Ψ) is an enrichment relative to Σ.

(S,TF ,PF, P) = Σ ws = (〈s1 , . . . , sm〉, s)
{s1, . . . , sm, s} ⊆ S ∆ = (∅, {ws 7→ {f1, . . . , fn}}, ∅, ∅)

Σ∪∆, f1
ws ` OP-ATTR1 � Ψ11 · · · Σ ∪∆, fnws ` OP-ATTR1 � Ψn1
· · · · · ·

Σ ∪∆, f1
ws ` OP-ATTRp � Ψ1p · · · Σ ∪∆, fnws ` OP-ATTRp � Ψnp

Σ ` op-decl f1 . . . fn

(total-op-type (sort-list s1 . . . sm) s)
OP-ATTR1 . . . OP-ATTRp �

(∆, (Ψ11 ∪ · · · ∪Ψn1) ∪ · · · ∪ (Ψ1p ∪ · · · ∪ Ψnp))

(S,TF ,PF, P) = Σ ws = (〈s1 , . . . , sm〉, s)
{s1, . . . , sm, s} ⊆ S ∆ = (∅, ∅, {ws 7→ {f1, . . . , fn}}, ∅)

Σ∪∆, f1
ws ` OP-ATTR1 � Ψ11 · · · Σ ∪∆, fnws ` OP-ATTR1 � Ψn1

· · · · · ·
Σ ∪∆, f1

ws ` OP-ATTRp � Ψ1p · · · Σ ∪∆, fnws ` OP-ATTRp � Ψnp

Σ ` op-decl f1 . . . fn

(partial-op-type (sort-list s1 . . . sm) s)
OP-ATTR1 . . . OP-ATTRp �

(∆, (Ψ11 ∪ · · · ∪Ψn1) ∪ · · · ∪ (Ψ1p ∪ · · · ∪ Ψnp))

The use of ∪ to combine the extensions produced by these rules, in the rules
for OP-ITEMS and BASIC-SPEC, ensure that when an operation is declared
both as total and as partial with the same profile, the resulting signature only
contains the total operation. This is the purpose of the reconcile function
in the definition of union, see Section 1.1.

Operation Attributes

Operation attributes assert that the operations being declared (which must
be binary) have certain common properties: associativity, commutativity,
idempotency and/or having a unit. (This can also be used to add attributes
to operations that have previously been declared without them.)

OP-ATTR ::= BINARY-OP-ATTR | UNIT-OP-ATTR

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 32

BINARY-OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr
UNIT-OP-ATTR ::= unit-op-attr TERM

Σ, fws ` OP-ATTR � Ψ

fws is required to be a qualified function name over Σ. Ψ is a set of Σ-
sentences.

ws = (〈s, s〉, s)
Σ, fws ` assoc-op-attr �

{∀xs.∀ys.∀zs.fws〈xs , fws〈ys, zs〉〉 s= fws〈fws 〈xs , ys〉, zs〉}

ws = (〈s, s〉, s)
Σ, fws ` comm-op-attr � {∀xs.∀ys.fws〈xs , ys〉 s= fws〈ys, xs〉}

ws = (〈s, s〉, s)
Σ, fws ` idem-op-attr � {∀xs .fws〈xs , xs〉 s= xs}

ws = (〈s, s〉, s) Σ, ∅ ` TERM � t sort(t) = s

Σ, fws ` unit-op-attr TERM �

{∀xs .fws〈t, xs〉 s= xs, ∀xs.fws 〈xs , t〉 s= xs}

2.1.2.2 Operation Definitions

A total or partial operation may be defined at the same time as it is
declared, by giving its value (when applied to a list of argument variables)
as a term. The operation name may occur in the term, and may have
any interpretation satisfying the equation—not necessarily the least fixed
point.

OP-DEFN ::= op-defn OP-NAME OP-HEAD TERM
OP-HEAD ::= TOTAL-OP-HEAD | PARTIAL-OP-HEAD
TOTAL-OP-HEAD ::= total-op-head ARG-DECL* SORT
PARTIAL-OP-HEAD ::= partial-op-head ARG-DECL* SORT
ARG-DECL ::= arg-decl VAR+ SORT
VAR ::= SIMPLE-ID

Σ ` OP-DEFN � (∆,Ψ)

(∆,Ψ) is an enrichment relative to Σ.

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 33

(S,TF ,PF, P) = Σ S ` ARG-DECL* � 〈x1
s1 , . . . , x

n
sn〉

w = 〈s1, . . . , sn〉 s ∈ S
∆ = (∅, {(w, s) 7→ {f}}, ∅, ∅) X = complete({x1

s1 , . . . , x
n
sn}, S)

Σ ∪∆, X ` TERM � t sort (t) = s

Σ ` op-defn f (total-op-head ARG-DECL* s) TERM �

(∆, {∀X.fw,s〈x1
s1 , . . . , x

n
sn〉

s= t})

(S,TF ,PF, P) = Σ S ` ARG-DECL* � 〈x1
s1 , . . . , x

n
sn〉

w = 〈s1, . . . , sn〉 s ∈ S
∆ = (∅, ∅, {(w, s) 7→ {f}}, ∅) X = complete({x1

s1 , . . . , x
n
sn}, S)

Σ ∪∆, X ` TERM � t sort (t) = s

Σ ` op-defn f (partial-op-head ARG-DECL* s) TERM �

(∆, {∀X.fw,s〈x1
s1 , . . . , x

n
sn〉

s= t})

S ` ARG-DECL* � 〈x1
s1 , . . . , x

n
sn〉

Each xisi is a qualified variable name over S, and xi 6= xj for all 1 ≤ i 6= j ≤
n.

S ` ARG-DECL1 � 〈x11 , . . . , x1m1〉, s1 · · · S ` ARG-DECLp � 〈xp1, . . . , xpmp〉, sp
{xi1, . . . , ximi} ∩ {xj1, . . . , xjmj} = ∅ for all 1 ≤ i 6= j ≤ p

S ` ARG-DECL1 . . . ARG-DECLp � 〈x11
s1 , . . . , x

1m1
s1 , . . . , x

p1
sp , . . . , x

pmp
sp 〉

S ` ARG-DECL � 〈x1, . . . , xn〉, s

s is a sort in S and xi 6= xj for all 1 ≤ i 6= j ≤ n.

s ∈ S xi 6= xj for all 1 ≤ i 6= j ≤ n
S ` arg-decl x1 . . . xn s� 〈x1, . . . , xn〉, s

2.1.3 Predicates

PRED-ITEMS ::= pred-items PRED-ITEM+
PRED-ITEM ::= PRED-DECL | PRED-DEFN
PRED-NAME ::= ID

Σ ` PRED-ITEMS � (∆,Ψ)

(∆,Ψ) is an enrichment relative to Σ.

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 34

Σ ` PRED-ITEM1 � (∆1,Ψ1)
· · ·

Σ ∪∆1 ∪ · · · ∪∆n−1 ` PRED-ITEMn � (∆n,Ψn)
Σ ` pred-items PRED-ITEM1 . . . PRED-ITEMn � (∆1 ∪ · · · ∪∆n,Ψ1 ∪ · · · ∪ Ψn)

Making the signature extensions from all the preceding PRED-ITEMs available
to the next one in sequence gives linear visibility. This is required here
for the sake of predicate definitions which may refer to previously-declared
predicate symbols.

Σ ` PRED-ITEM � (∆,Ψ)

(∆,Ψ) is an enrichment relative to Σ.

Σ ` PRED-DECL � ∆
Σ ` PRED-DECL qua PRED-ITEM � (∆, ∅)

Rule for PRED-DEFN qua PRED-ITEM elided.

As promised in Section 1.1, we now define the universe PredName of predi-
cate names.

PredName = ID

2.1.3.1 Predicate Declarations

A predicate declaration PRED-DECL declares each given predicate name,
with profile as specified.

PRED-DECL ::= pred-decl PRED-NAME+ PRED-TYPE

Σ ` PRED-DECL � ∆

∆ is a signature extension relative to Σ.

S ` PRED-TYPE � w

(S,TF ,PF , P) ` pred-decl p1 . . . pn PRED-TYPE � (∅, ∅, ∅, {w 7→ {p1, . . . , pn}})

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 35

Predicate Types

PRED-TYPE ::= pred-type SORT-LIST

S ` PRED-TYPE � w

All the sorts in w are in S.

{s1, . . . , sn} ⊆ S
S ` pred-type (sort-list s1 . . . sn) � 〈s1, . . . , sn〉

2.1.3.2 Predicate Definitions

A predicate may be defined at the same time as it is declared, by asserting
its equivalence with a formula. The predicate name may occur in the
formula, and may have any interpretation satisfying the equivalence.

PRED-DEFN ::= pred-defn PRED-NAME PRED-HEAD FORMULA
PRED-HEAD ::= pred-head ARG-DECL*

Σ ` PRED-DEFN � (∆,Ψ)

(∆,Ψ) is an enrichment relative to Σ.

(S,TF ,PF, P) = Σ S ` ARG-DECL* � 〈x1
s1 , . . . , x

n
sn〉

w = 〈s1 , . . . , sn〉 ∆ = (∅, ∅, ∅, {w 7→ {p}})
X = complete({x1

s1 , . . . , x
n
sn}, S) Σ∪∆, X ` FORMULA � ϕ

Σ ` pred-defn p (pred-head ARG-DECL*) FORMULA �

(∆, {∀X.pw 〈x1
s1 , . . . , x

n
sn〉 ⇔ ϕ})

2.1.4 Datatypes

The order of the datatype declarations in a list DATATYPE-ITEMS is not
significant: there is non-linear visibility of the declared sorts. A list of
datatype declarations must not declare a function symbol both as a con-
structor and selector with the same profiles.

DATATYPE-ITEMS ::= datatype-items DATATYPE-DECL+

The semantics of datatype declarations is by far the most complicated part of
the semantics of basic specifications. Before proceeding, here is an overview.

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 36

Some examples of the results produced for free datatypes are given just
before Section 2.1.5; these should be helpful in understanding that part of
the semantics, and working backwards to see why these results are produced
should help in clarifying the semantics of non-free datatypes.

The main judgements are Σ ` DATATYPE-ITEMS � (∆,∆′,Ψ),W and Σ `
FREE-DATATYPE � (∆,Ψ). The former, for a list of datatype declarations,
is subordinate to the latter, for free datatypes. It is also subordinate to
the judgement for SIG-ITEMS, when used to declare non-free datatypes. All
of the information in its result is required to determine the semantics of
free datatypes but some is not required in the case of non-free datatypes.
The judgements that are subordinate to DATATYPE-ITEMS collect informa-
tion about declared sorts, constructors and selectors and check that various
restrictions are satisfied. A complicating factor in these is non-linear visi-
bility at the DATATYPE-ITEMS level.

All metavariables are used consistently in the judgement for DATATYPE-ITEMS
and all of its subordinate judgements. Here is a summary of what they
stand for, where these results are formed, and where and for what they are
required.

1. ∆ contains the sorts and constructors declared by the list of datatype
declarations. It is formed by the rules for DATATYPE-DECL (sorts) and
ALTERNATIVE (constructors).

2. ∆′ contains the declared selectors. It is formed by the rules for COMPONENTS.
The selectors need to be kept separate from the other signature compo-
nents for the sake of the disjointness condition in the DATATYPE-ITEMS
rule, to generate sentences in the rule for FREE-DATATYPE, and, in
the case of a non-free datatypes, to produce the result for SIG-ITEMS,
where a separation is required for the sake of SORT-GEN where selectors
receive special treatment.

3. Ψ contains sentences defining the value of each selector on the values
produced by the corresponding constructor. It is formed by the rules
for COMPONENTS.

4. W is a finite map taking each constructor name in ∆ to the correspond-
ing set of partial selectors from ∆′ (or to ∅ in case there are none). It
is formed in the rule for DATATYPE-DECL using information from the
ALTERNATIVEs it contains. W is needed in the rule for FREE-DATATYPE
to generate sentences that require a partial selector to return an un-
defined result when applied to a value produced by a constructor for
which it has not been declared.

Σ ` DATATYPE-ITEMS � (∆,∆′,Ψ),W

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 37

(∆ ∪∆′,Ψ) is an enrichment relative to Σ and W is a finite map taking
qualified function names over Σ ∪∆ from ∆ to sets of qualified function
names over Σ ∪∆ ∪∆′ from ∆′.

Σ′ ` DATATYPE-DECL1 � (∆1,∆′1,Ψ1),W1
· · ·

Σ′ ` DATATYPE-DECLn � (∆n,∆′n,Ψn),Wn

disjoint-functions(∆1 ∪ · · · ∪∆n,∆′1 ∪ · · · ∪∆′n)
Σ′ = Σ ∪∆1 ∪∆′1 ∪ · · · ∪∆n ∪∆′n

Σ ` datatype-items DATATYPE-DECL1 . . . DATATYPE-DECLn �

(∆1 ∪ · · · ∪∆n,∆′1 ∪ · · · ∪∆′n,Ψ1 ∪ · · · ∪Ψn),W1 ∪ · · · ∪Wn

where disjoint-functions((S,TF ,PF , P), (S′,TF ′,PF ′, P ′)) means

∀ws ∈ Dom(TF ∪PF) ∩Dom(TF ′ ∪PF ′).
(TF ∪ PF)(ws) ∩ (TF ′ ∪ PF ′)(ws) = ∅

The “recursion” in the premises of this rule is what provides non-linear
visibility, making the order of the DATATYPE-DECLs not significant. In the
subordinate judgements, it is important to remember that the context will
already include the signature extensions being produced. The disjointness
premise implements the requirement1 that a list of datatype declarations
must not declare a function symbol both as a constructor and selector with
the same profile.

2.1.4.1 Datatype Declarations

A datatype declaration DATATYPE-DECL declares the given sort, and for
each given alternative construct the given constructor and selector oper-
ations, and determines sentences asserting the expected relationship be-
tween selectors and constructors.

DATATYPE-DECL ::= datatype-decl SORT ALTERNATIVE+

Σ ` DATATYPE-DECL � (∆,∆′ ,Ψ),W

(∆ ∪∆′,Ψ) is an enrichment relative to Σ and W is a finite map taking
qualified function names over Σ ∪∆ from ∆ to sets of qualified function
names over Σ ∪∆ ∪∆′ from ∆′.

See the beginning of Section 2.1.4 for an explanation of the meaning of ∆,
∆′, Ψ and W in this part of the semantics.

1In the Language Summary this requirement is in Sect. 2.1.4.1, under Components.

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 38

(S,TF ,PF, P) = Σ
Σ, s ` ALTERNATIVE1 � (∆1,∆′1,Ψ1) (S1 ,TF1,PF1, P1) = ∆1

{(w1, s) 7→ {f1}} = TF1 ∪PF 1 (S′1,TF ′1,PF ′1, P ′1) = ∆′1
· · ·

Σ, s ` ALTERNATIVEn � (∆n,∆′n,Ψn) (Sn ,TFn,PFn, Pn) = ∆n

{(wn, s) 7→ {fn}} = TFn ∪PFn (S′n,TF ′n,PF ′n, P ′n) = ∆′n
Σ ` datatype-decl s ALTERNATIVE1 ALTERNATIVE2 . . . ALTERNATIVEn �

(({s}, ∅, ∅, ∅) ∪∆1 ∪ · · · ∪∆n,∆′1 ∪ · · · ∪∆′n,Ψ1 ∪ · · · ∪ Ψn),
{f1
w1,s 7→ {g〈s〉,s′ | s′ ∈ S ∪ {s}, g ∈ PF ′1(〈s〉, s′)}}

∪ · · ·∪
{fnwn,s 7→ {g〈s〉,s′ | s′ ∈ S ∪ {s}, g ∈ PF ′n(〈s〉, s′)}}

Note that s will be a sort in Σ because of non-linear visibility.

Alternatives

An ALTERNATIVE declares a constructor operation. Each component spec-
ifies one or more argument sorts for the profile; the result sort is the one
declared by the enclosing datatype declaration.

ALTERNATIVE ::= TOTAL-CONSTRUCT | PARTIAL-CONSTRUCT
TOTAL-CONSTRUCT ::= total-construct OP-NAME COMPONENTS*
PARTIAL-CONSTRUCT ::= partial-construct OP-NAME COMPONENTS+

Σ, s ` ALTERNATIVE � (∆,∆′,Ψ)

s is required to be a sort in Σ. (∆ ∪∆′,Ψ) is an enrichment relative to Σ
where ∆ contains exactly one function and this function has result sort s.

See the beginning of Section 2.1.4 for an explanation of the meaning of ∆, ∆′

and Ψ in this part of the semantics. In this judgement, s is the sort declared
by the enclosing DATATYPE-DECL, the function in ∆ is the constructor for
this alternative, and ∆′ are its selectors.

Σ, f,ws, 1 ` COMPONENTS1 � 〈s11, . . . , s1m1 〉, (∆′1,Ψ1)
· · ·

Σ, f,ws, 1 +m1 + · · ·+mn−1 ` COMPONENTSn � 〈sn1, . . . , snmn〉, (∆′n ,Ψn)
ws = (〈s11, . . . , s1m1 , . . . , sn1, . . . , snmn〉, s)

Σ, s ` total-construct f COMPONENTS1 . . . COMPONENTSn �

((∅, {ws 7→ {f}}, ∅, ∅),∆′1 ∪ · · · ∪∆′n,Ψ1 ∪ · · · ∪ Ψn)

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 39

Note that f will be a total function in Σ because of non-linear visibility.

Σ, f,ws, 1 ` COMPONENTS1 � 〈s11, . . . , s1m1 〉, (∆′1,Ψ1)
· · ·

Σ, f,ws, 1 +m1 + · · ·+mn−1 ` COMPONENTSn � 〈sn1, . . . , snmn〉, (∆′n ,Ψn)
ws = (〈s11, . . . , s1m1 , . . . , sn1, . . . , snmn〉, s)

Σ, s ` partial-construct f COMPONENTS1 . . . COMPONENTSn �

((∅, ∅, {ws 7→ {f}}, ∅),∆′1 ∪ · · · ∪∆′n,Ψ1 ∪ · · · ∪Ψn)

Note that f will be a partial function in Σ because of non-linear visibility.

Components

Each COMPONENTS construct specifies one or more argument sorts for the
constructor operation declared by the enclosing ALTERNATIVE, and option-
ally some selector operations with sentences determining their result on
values produced by that constructor. All sorts used must be declared in
the local environment.

COMPONENTS ::= TOTAL-SELECT | PARTIAL-SELECT | SORT
TOTAL-SELECT ::= total-select OP-NAME+ SORT
PARTIAL-SELECT ::= partial-select OP-NAME+ SORT

Σ, f,ws, m ` COMPONENTS � w′, (∆′,Ψ)

f is required to be a function name in Σ with profile ws = (〈s1, . . . , sn〉, s)
and 1 ≤ m ≤ n. w′ is a non-empty sequence of sorts in Σ and (∆′,Ψ) is an
enrichment relative to Σ.

See the beginning of Section 2.1.4 for an explanation of the meaning of
∆′ and Ψ in this part of the semantics. In this judgement, f is the con-
structor declared by the enclosing ALTERNATIVE, s is the sort declared by
the enclosing DATATYPE-DECL, and m is the first argument position corre-
sponding to these COMPONENTS. Then w′ are the sorts of these arguments, so
w′ = 〈sm, . . . , sm+|w′ |−1〉.

s′ ∈ S
(S,TF ,PF , P), f,ws, m ` s′ � 〈s′〉, (∅, ∅)

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 40

s′ ∈ S (〈s1, . . . , sn〉, s) = ws xi 6= xj for all 1 ≤ i 6= j ≤ n
(S,TF ,PF , P), f,ws , m ` total-select f1 . . . fp s′ �

〈 s′, . . . , s′︸ ︷︷ ︸
p times

〉, ((∅, {(〈s〉, s′) 7→ {f1, . . . , fp}}, ∅, ∅),
{∀{x1

s1 , . . . , x
n
sn}. D(fws〈x1

s1 , . . . , x
n
sn〉)⇒

f1
〈s〉,s′〈fws 〈x1

s1 , . . . , x
n
sn〉〉

s= xmsm ,

· · · ,
∀{x1

s1 , . . . , x
n
sn}. D(fws〈x1

s1 , . . . , x
n
sn〉)⇒

f
p
〈s〉,s′〈fws 〈x1

s1 , . . . , x
n
sn〉〉

s= xm+p−1
sm+p−1})

Note that f1, . . . , fp will be in TF because of non-linear visibility.

s′ ∈ S (〈s1, . . . , sn〉, s) = ws xi 6= xj for all 1 ≤ i 6= j ≤ n
(S,TF ,PF , P), f,ws , m ` partial-select f1 . . . fp s′ �

〈 s′, . . . , s′︸ ︷︷ ︸
p times

〉, ((∅, ∅, {(〈s〉, s′) 7→ {f1, . . . , fp}}, ∅),
{∀{x1

s1 , . . . , x
n
sn}. D(fws〈x1

s1 , . . . , x
n
sn〉)⇒

f1
〈s〉,s′〈fws 〈x1

s1 , . . . , x
n
sn〉〉

s= xmsm ,

· · · ,
∀{x1

s1 , . . . , x
n
sn}. D(fws〈x1

s1 , . . . , x
n
sn〉)⇒

fp〈s〉,s′〈fws 〈x1
s1 , . . . , x

n
sn〉〉

s= xm+p−1
sm+p−1

})

Note that f1, . . . , fp will be in PF because of non-linear visibility.

2.1.4.2 Free Datatype Declarations

A FREE-DATATYPE construct is only well-formed when its constructors are
total. The same sorts, constructors, and selectors are declared as in ordi-
nary datatype declarations. Apart from the sentences defining the values
of selectors, additional sentences require the constructors to be injective,
the ranges of constructors of the same sort to be disjoint, the declared
sorts to be generated by the constructors, and that applying a selector to
a constructor for which it has not been declared is undefined.

FREE-DATATYPE ::= free-datatype DATATYPE-ITEMS

Σ ` FREE-DATATYPE � (∆,Ψ)

(∆,Ψ) is an enrichment relative to Σ.

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 41

Σ ` DATATYPE-ITEMS � (∆,∆′,Ψ),W
(S,TF ,PF , P) = Σ (S′,TF ′, ∅, P ′) = ∆ S′′ = S ∪ S′

Σ ` free-datatype DATATYPE-ITEMS �

(∆ ∪∆′,Ψ ∪ {injective(fw,s) | w ∈ FinSeq (S′′), s ∈ S′′, f ∈ TF ′w,s}
∪ {disjoint-ranges(fw,s, gw′ ,s)

| w,w′ ∈ FinSeq (S′′), s ∈ S′′, f ∈ TF ′w,s, g ∈ TF ′w′ ,s
such that w 6= w′ or f 6= g}

∪ {undefined-selection(fw,s , g〈s〉,s′)
| fw,s, f ′w′,s ∈ Dom(W), g〈s〉,s′ ∈ W (f ′w′,s) \W (fw,s)}

∪ {(S′ , complete(TF ′,FinSeq(S′′) ×S′′))})

where:

• injective(fw,s) is the following (Σ∪∆∪∆′)-sentence which states that
fw,s is injective:

∀{x1
s1, . . . , x

n
sn, y

1
s1, . . . , y

n
sn}.

fw,s〈x1
s1 , . . . , x

n
sn〉

s= fw,s〈y1
s1 , . . . , y

n
sn〉 ⇒

x1
s1

s= y1
s1 ∧ · · · ∧ xnsn

s= ynsn

where 〈s1, . . . , sn〉 = w and x1, . . . , xn, y1, . . . , yn are distinct variables.

• disjoint-ranges(fw,s, gw′ ,s) is the following (Σ∪∆∪∆′)-sentence which
states that fw,s and gw′ ,s have disjoint ranges:

∀{x1
s1, . . . , x

m
sm , y

1
s′1
, . . . , yns′n}.¬(fw,s〈x1

s1 , . . . , x
m
sm〉

s= gw′ ,s〈y1
s′1
, . . . , yns′n〉)

where 〈s1, . . . , sm〉 = w, 〈s′1 , . . . , s′n〉 = w′ and x1, . . . , xm, y1, . . . , yn

are distinct variables.

• undefined-selection(fw,s , g〈s〉,s′) is the following (Σ ∪∆ ∪∆′)-sentence
which states that the value of applying the selector g〈s〉,s′ to values
produced by the constructor fw,s (for which it has not been declared)
is undefined:

∀{x1
s1 , . . . , x

n
sn}.¬D(g〈s〉,s′〈fw,s〈x1

s1 , . . . , x
n
sn〉〉)

where 〈s1, . . . , sn〉 = w and x1, . . . , xn are distinct variables.

See the beginning of Section 2.1.4 for an explanation of ∆, ∆′, Ψ and W as
produced by the judgement for DATATYPE-ITEMS. The third premise im-
poses the condition that all declared constructors are total. Note that
(S′, complete(TF ′,FinSeq (S′′)×S′′)) in the last line of the rule is a sort gen-
eration constraint, and recall that this abbreviates (S′ , complete(TF ′,FinSeq(S′′)×
S′′), id Σ∪∆∪∆′). This requires that all values of sorts declared by DATATYPE-ITEMS
are generated by the declared constructors.

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 42

The following proposition states that the resulting model class is the same
as for a free extension with the datatype declarations.

Proposition 19 Consider a declaration free-datatype DATATYPE-ITEMS,
a signature Σ and a model class M over Σ, and suppose

Σ ` DATATYPE-ITEMS � (∆,∆′,Ψ),W
Σ ` free-datatype DATATYPE-ITEMS � (∆ ∪∆′,Ψ′)

such that DATATYPE-ITEMS fulfils the following conditions (all referring to
fully qualified symbols):

• The sorts in ∆ are not in the local environment Σ, and each DATATYPE-DECL
declares a different sort.

• The constructors in ∆ are distinct from each other.

• The selectors within each ALTERNATIVE are distinct.

• The constructors in ∆ and selectors in ∆′ are distinct from the symbols
in the local environment Σ.

• Any selector in ∆′ is total only when the same selector is present in
all ALTERNATIVEs for that sort.

Let C be the full subcategory of Mod(Σ ∪ ∆ ∪ ∆′) containing those (Σ ∪
∆ ∪∆′)-models M ′′ such that ∀ψ ∈ Ψ.M ′′ |= ψ, and letM′ and M′′ be the
(Σ ∪∆ ∪∆′)-model classes

M′ = {(Σ ∪∆ ∪∆′)-model M ′

|M ′|Σ↪→Σ∪∆∪∆′ ∈M and M ′ is free over M ′|Σ↪→Σ∪∆∪∆′

w.r.t. .|Σ↪→Σ∪∆∪∆′ : C →Mod(Σ)}
M′′ = {(Σ ∪∆ ∪∆′)-model M ′

|M ′|Σ↪→Σ∪∆∪∆′ ∈M and ∀ψ′ ∈ Ψ′.M ′ |= ψ′}

Then M′ =M′′.

Proof: See Theorem 25 in Section 4.1.2 for a more general result. 2

A few examples should help to clarify the above definitions. Since there is no
overloading in these examples, ordinary function names are used instead of
qualified function names to reduce clutter, and the usual syntax for variable
typing is used.

Here is an example of a free datatype declaration where all alternatives are
constants, which corresponds to an unordered enumeration type:

free type Colour ::= red | blue

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 43

The result is the following enrichment (relative to the empty signature):

(Σ, {red 〈〉 s= red〈〉 ⇒ true ,
blue〈〉 s= blue〈〉 ⇒ true ,
¬(red 〈〉 s= blue〈〉),
¬(blue〈〉 s= red 〈〉),
({Colour},TF, idΣ)}

where Σ = (S,TF ,PF , P) is the signature containing the sort Colour, the
total function symbols red and blue, and no partial function symbols or pred-
icate symbols. The first two sentences are from the injective condition and
are tautologous, as always for nullary constructors. The next two sentences
are from the disjoint-ranges condition and are equivalent (such duplication
will always be present but it does no harm). The final sentence is a sort
generation constraint which requires every value of sort Colour to be pro-
duced by either red 〈〉 or blue〈〉. Each model has a carrier of sort Colour
containing exactly two values.

Here is the standard example of lists, with selectors:

free type List ::= nil | cons(first :?Elem; rest :?List)

The result is the following enrichment (relative to a signature Σ containing
just the sort Elem):

(∆, {∀x:Elem, x′:List.D(cons〈x, x′〉)⇒ first 〈cons〈x, x′〉〉 s= x,

∀x:Elem, x′:List.D(cons〈x, x′〉)⇒ rest〈cons 〈x, x′〉〉 s= x′,
nil〈〉 s= nil〈〉 ⇒ true,
∀x:Elem, x′:List, y:Elem, y′:List.

cons〈x, x′〉 s= cons〈y, y′〉 ⇒ x
s= y ∧ x′ s= y′,

∀x:Elem, x′:List.¬(nil〈〉 s= cons〈x, x′〉),
∀x:Elem, x′:List.¬(cons〈x, x′〉 s= nil〈〉),
¬D(first 〈nil〈〉〉),
¬D(rest〈nil〈〉〉),
({List},TF, idΣ∪∆)}

where ∆ = (S,TF ,PF, P) is the signature extension (relative to Σ) con-
taining the sort List, the total function symbols nil and cons , the partial
function symbols first and rest, and no predicate symbols. The first two
sentences are generated by the rules for COMPONENTS and specify the rela-
tionship between the constructor cons and the selectors first and rest . The
next two sentences are from the injective condition. The next two sentences
are from the disjoint-ranges condition; again, they are equivalent. The next
two sentences are from the undefined-selection condition. The final sentence
is a sort generation constraint which requires each value of sort List to be

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 44

produced by a term of the form

cons〈x1 , . . . , cons〈xn , nil〉 . . .〉.

for some assignment of values of sort Elem to the variables x1, . . . , xn. Mod-
els are as one would expect from this specification, with “no junk” and “no
confusion”, and the selectors defined only for values produced by cons .

Here is a type containing two copies of the natural numbers, with the same
selector for both:

free type Twonats ::= left(get : Nat) | right (get : Nat)

The result is the following enrichment (relative to a signature Σ containing
just the sort Nat):

(∆, {∀x:Nat.D(left〈x〉)⇒ get〈left 〈x〉〉 s= x,

∀x:Nat.D(right 〈x〉) ⇒ get〈right 〈x〉〉 s= x,

∀x:Nat, x′:Nat .left〈x〉 s= left〈x′〉 ⇒ x
s= x′,

∀x:Nat, x′:Nat .right〈x〉 s= right〈x′〉 ⇒ x
s= x′,

∀x:Nat, x′:Nat .¬(left〈x〉 s= right〈x′〉),
∀x:Nat, x′:Nat .¬(right〈x〉 s= left〈x′〉),
({Twonats},TF ′, idΣ∪∆)}

where ∆ = (S,TF ,PF, P) is the signature extension (relative to Σ) con-
taining the sort Twonats , the total function symbols left, right and get,
and no partial function symbols or predicate symbols, and TF ′ contains
the total function symbols left and right. The first two sentences are gen-
erated by the rules for COMPONENTS and specify the relationship between
the constructors left and right and the selector get . The next two sen-
tences are from the injective condition. The next two sentences are from
the disjoint-ranges condition; once more, they are equivalent. The final
sentence is a sort generation constraint which requires each value of sort
Twonats to be produced by either left〈x〉 or right 〈x〉 for some assignment
of a value of sort Nat to x. Models are as one would expect. Note that the
total selector get : Twonats → Nat which is present in both ALTERNATIVEs
becomes a single selector in the rule for DATATYPE-DECL: we have

Σ,Twonats ` total-construct left (total-select get Nat)� (∆1,∆′1,Ψ1)

Σ,Twonats ` total-constructright (total-selectget Nat)�(∆2,∆′2,Ψ2)

where ∆1 contains left, ∆2 contains right, ∆′1 = ∆′2 contains get , Ψ1 contains
∀x:Nat .D(left〈x〉) ⇒ get〈left〈x〉〉 s= x and Ψ2 contains ∀x:Nat.D(right 〈x〉) ⇒
get〈right 〈x〉〉 s= x.

Changing the declaration to

2.1. SIGNATURE DECLARATIONS Version 1.1: October 16, 2002 45

free type Twonats ::= left(get : Nat) | right (Nat)

would cause the sentence ∀x:Nat.D(right 〈x〉) ⇒ get 〈right 〈x〉〉 s= x to be
omitted from the result, but otherwise there would be no difference. Note
that the term get〈right 〈x〉〉 is still required to have some defined value for
every x, since get and right are total function symbols, but that value is
unconstrained.

Finally, here is what happens when an attempt is made to define an empty
type as a free datatype:

free type Empty ::= f(Empty)

The result is the following enrichment (relative to the empty signature):

(Σ, {∀x:Empty, y:Empty.f〈x〉 s= f〈y〉 ⇒ x
s= y,

({Empty},TF , idΣ)}

where Σ = (S,TF ,PF , P) is the signature containing the sort Empty, the
total function symbol f , and no partial function symbols or predicate sym-
bols. The first sentence is from the injective condition. The second sentence
is a sort generation constraint which requires every value of sort Empty to
be produced by a Σ-term containing no variables. There are no such terms
since there are no constants of sort Empty ; hence this requires the carrier
of sort Empty to be empty. But models are required to have non-empty
carriers, and therefore there are no models.

2.1.5 Sort Generation

A sort generation SORT-GEN determines the same signature elements and
sentences as its list of SIG-ITEMSs, together with a sort generation con-
straint requiring the declared sorts to be generated by the declared oper-
ations, but excluding operations declared as selectors.

SORT-GEN ::= sort-gen SIG-ITEMS+

Σ ` SORT-GEN � (∆,Ψ)

(∆,Ψ) is an enrichment relative to Σ.

2.2. VARIABLES Version 1.1: October 16, 2002 46

Σ ` SIG-ITEMS1 � (∆1 ,∆′1,Ψ1)
· · ·

Σ ∪∆1 ∪∆′1 ∪ · · · ∪∆n−1 ∪∆′n−1 ` SIG-ITEMSn � (∆n,∆′n,Ψn)
(S,TF ,PF, P) = ∆ = ∆1 ∪ · · · ∪∆n ∆′ = ∆′1 ∪ · · · ∪∆′n

(S′ ,TF ′,PF ′, P ′) = Σ ∪∆ ∪∆′ S 6= ∅
Σ ` sort-gen SIG-ITEMS1 . . . SIG-ITEMSn �

(∆ ∪∆′,Ψ1 ∪ · · · ∪Ψn ∪ {(S, complete(TF ∪PF ,FinSeq(S ′) ×S′))})

In this rule, ∆ represents the signature extension declared by SIG-ITEMS1 . . .SIG-ITEMSn,
excluding the operations declared as selectors since these do not contribute
to the resulting sort generation constraint. The predicate symbols in ∆ also
make no contribution.

2.2 Variables

Variables for use in terms may be declared globally, locally, or with explicit
quantification. Globally or locally declared variables are implicitly univer-
sally quantified in subsequent axioms of the enclosing basic specification.

2.2.1 Global Variable Declarations

VAR-ITEMS ::= var-items VAR-DECL+

S ` VAR-ITEMS �X

X is a valid set of variables over S.

S ` VAR-DECL1 �X1 · · · S ` VAR-DECLn �Xn

S ` var-items VAR-DECL1 . . . VAR-DECLn �X1 + · · ·+Xn

A variable declaration VAR-DECL declares the given variables to be of the
given sort for use in subsequent axioms. This adds a universal quantifi-
cation on those variables to the subsequent axioms of the enclosing basic
specification.

VAR-DECL ::= var-decl VAR+ SORT
VAR ::= SIMPLE-ID

S ` VAR-DECL �X

2.3. AXIOMS Version 1.1: October 16, 2002 47

X is a valid set of variables over S.

s ∈ S
S ` var-decl x1 . . . xn s� complete({s 7→ {x1, . . . , xn}}, S)

A later declaration for a variable overrides an earlier declaration for the
same identifier because of the use of + to combine variable sets in the rules
for BASIC-SPEC and VAR-ITEMS. Universal quantification over all declared
variables, both global and local, is added in the rule for AXIOM.

Var = SIMPLE-ID

2.2.2 Local Variable Declarations

A LOCAL-VAR-AXIOMS construct declares variables for local use in the given
axioms, and adds a universal quantification on those variables to all those
axioms.

LOCAL-VAR-AXIOMS ::= local-var-axioms VAR-DECL+ AXIOM+

Σ, X ` LOCAL-VAR-AXIOMS � Ψ

X is required to be a valid set of variables over the sorts of Σ. Ψ is a set of
Σ-sentences.

(S,TF ,PF , P) = Σ
S ` VAR-DECL1 �X1 · · · S ` VAR-DECLm �Xm

Σ, X +X1 + · · ·+Xm ` AXIOM1 � ψ1 · · · Σ, X +X1 + · · ·+Xm ` AXIOMn � ψn

Σ, X ` local-var-axioms VAR-DECL1 . . . VAR-DECLm AXIOM1 . . . AXIOMn � {ψ1, . . . , ψn}

2.3 Axioms

Each well-formed axiom determines a sentence of the underlying basic
specification (closed by universal quantification over all declared variables).

AXIOM-ITEMS ::= axiom-items AXIOM+
AXIOM ::= FORMULA

Σ, X ` AXIOM-ITEMS � Ψ

2.3. AXIOMS Version 1.1: October 16, 2002 48

X is required to be a valid set of variables over the sorts of Σ. Ψ is a set of
Σ-sentences.

Σ, X ` AXIOM1 � ψ1 · · · Σ, X ` AXIOMn �ψn

Σ, X ` axiom-items AXIOM1 . . . AXIOMn � {ψ1, . . . , ψn}

Σ, X ` AXIOM � ψ

X is required to be a valid set of variables over the sorts of Σ. ψ is a
Σ-sentence.

Σ, X ` FORMULA � ϕ

Σ, X ` FORMULA qua AXIOM � ∀X.ϕ

All declared variables are universally quantified. Quantification over vari-
ables that do not occur free in the axiom has no effect since carriers are
assumed to be non-empty.

A formula is constructed from atomic formulae using quantification and
the usual logical connectives.

FORMULA ::= QUANTIFICATION | CONJUNCTION | DISJUNCTION
| IMPLICATION | EQUIVALENCE | NEGATION | ATOM

Σ, X ` FORMULA � ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a
Σ-formula over X .

Rules elided, except for the one for ATOM qua FORMULA which is near the
beginning of Section 2.3.3 below to keep it together with subordinate rules
for atomic formulae.

2.3.1 Quantifications

Universal, existential and unique existential quantification are as usual.
An inner declaration for a variable with the same identifier as in an outer
declaration overrides the outer declaration, regardless of whether the sorts
of the variables are the same.

QUANTIFICATION ::= quantification QUANTIFIER VAR-DECL+ FORMULA

2.3. AXIOMS Version 1.1: October 16, 2002 49

QUANTIFIER ::= universal | existential | unique-existential

Σ, X ` QUANTIFICATION � ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a
Σ-formula over X .

(S,TF ,PF , P) = Σ
S ` VAR-DECL1 �X1 · · · S ` VAR-DECLn �Xn

Σ, X +X1 + · · ·+Xn ` FORMULA � ϕ

Σ, X ` quantification universal VAR-DECL1 . . . VAR-DECLn FORMULA �

∀X1 + · · ·+Xn.ϕ

(S,TF ,PF , P) = Σ
S ` VAR-DECL1 �X1 · · · S ` VAR-DECLn �Xn

Σ, X +X1 + · · ·+Xn ` FORMULA �ϕ

Σ, X ` quantification existential VAR-DECL1 . . . VAR-DECLn FORMULA �

∃X1 + · · ·+Xn.ϕ

(S,TF ,PF , P) = Σ
S ` VAR-DECL1 �X1 · · · S ` VAR-DECLn �Xn

Σ, X +X1 + · · ·+Xn ` FORMULA �ϕ

Σ, X ` quantification unique-existential VAR-DECL1 . . . VAR-DECLn FORMULA �

∃!X1 + · · ·+Xn.ϕ

2.3.2 Logical Connectives

The logical connectives are as usual, except that conjunction and disjunc-
tion apply to lists of two or more formulae.

2.3.2.1 Conjunction

CONJUNCTION ::= conjunction FORMULA+

Σ, X ` CONJUNCTION � ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a
Σ-formula over X .

Σ, X ` FORMULA1 � ϕ1 Σ, X ` FORMULA2 �ϕ2 · · · Σ, X ` FORMULAn � ϕn
Σ, X ` conjunction FORMULA1 FORMULA2 . . . FORMULAn � (· · · (ϕ1 ∧ ϕ2) ∧ · · ·) ∧ ϕn

2.3. AXIOMS Version 1.1: October 16, 2002 50

2.3.2.2 Disjunction

DISJUNCTION ::= disjunction FORMULA+

Σ, X ` DISJUNCTION � ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a
Σ-formula over X .

Σ, X ` FORMULA1 � ϕ1 Σ, X ` FORMULA2 �ϕ2 · · · Σ, X ` FORMULAn � ϕn
Σ, X ` disjunction FORMULA1 FORMULA2 . . . FORMULAn � (· · · (ϕ1 ∨ ϕ2) ∨ · · ·) ∨ ϕn

2.3.2.3 Implication

IMPLICATION ::= implication FORMULA FORMULA

Σ, X ` IMPLICATION � ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a
Σ-formula over X .

Σ, X ` FORMULA � ϕ Σ, X ` FORMULA′ � ϕ′

Σ, X ` implication FORMULA FORMULA′ � ϕ⇒ ϕ′

2.3.2.4 Equivalence

EQUIVALENCE ::= equivalence FORMULA FORMULA

Σ, X ` EQUIVALENCE � ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a
Σ-formula over X .

Σ, X ` FORMULA � ϕ Σ, X ` FORMULA′ � ϕ′

Σ, X ` equivalence FORMULA FORMULA′ � ϕ⇔ ϕ′

2.3. AXIOMS Version 1.1: October 16, 2002 51

2.3.2.5 Negation

NEGATION ::= negation FORMULA

Σ, X ` NEGATION � ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a
Σ-formula over X .

Σ, X ` FORMULA � ϕ

Σ, X ` negation FORMULA �¬ϕ

2.3.3 Atomic Formulae

An atomic formula is well-formed if it is well-sorted and expands to a
unique atomic formula for constructing sentences. The notions of when an
atomic formula is well-sorted, of when a term is well-sorted for a particular
sort, and of the expansions of atomic formulae and terms, are captured by
the rules below.

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS
| EXISTL-EQUATION | STRONG-EQUATION

(The following rule really belongs just before Section 2.3.1 above. It is here
in order to keep it together with the subordinate rules for atomic formulae,
because of the complications introduced by the “unique expansion” require-
ment.)

∃!ϕ such that Σ, X ` ATOM � ϕ
Σ, X ` ATOM � ϕ

Σ, X ` ATOM qua FORMULA � ϕ

The first premise of this rule imposes the requirement that ATOM expands
to a unique (fully-qualified) atomic formula. In this premise, the static se-
mantics of ATOM occurs in a negative position (introduced by ∃!). This is
potentially problematic, especially since there is a circularity: the judge-
ment Σ, X ` ATOM � ϕ depends on the judgement Σ, X ` FORMULA � ϕ′ if
ATOM contains a conditional term. But since FORMULA will then be strictly
contained within ATOM, there is no problem: we can (implicitly) impose a
stratification on the judgements for FORMULA and ATOM where the semantics
of larger formulae/atoms is based on the (fixed) semantics of strictly smaller
formulae/atoms.

2.3. AXIOMS Version 1.1: October 16, 2002 52

Σ, X ` ATOM � ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a
Σ-formula over X .

Rules elided, except for the following one:

` TRUTH � ϕ

Σ, X ` TRUTH qua ATOM � ϕ

2.3.3.1 Truth

The atomic formulae for truth and falsity are always well-sorted, and ex-
pand to primitive sentences.

TRUTH ::= true-atom | false-atom

` TRUTH � ϕ

ϕ is a Σ-formula over X for any Σ and X .

` true-atom � true

` false-atom � false

2.3.3.2 Predicate Application

The application of a predicate symbol is well-sorted when there is a declara-
tion of the predicate name such that all the argument terms are well-sorted
for the respective argument sorts. It then expands to an application of the
qualified predicate name to the fully-qualified expansions of the argument
terms for those sorts.

PREDICATION ::= predication PRED-SYMB TERMS
PRED-SYMB ::= PRED-NAME | QUAL-PRED-NAME
QUAL-PRED-NAME ::= qual-pred-name PRED-NAME PRED-TYPE
TERMS ::= terms TERM*

Σ, X ` PREDICATION � ϕ

2.3. AXIOMS Version 1.1: October 16, 2002 53

X is required to be a valid set of variables over the sorts of Σ. ϕ is a
Σ-formula over X .

Σ ` PRED-SYMB � p, 〈s1, . . . , sn〉
Σ, X ` TERMS � 〈t1, . . . , tn〉

sort(t1) = s1 · · · sort(tn) = sn

Σ, X ` predication PRED-SYMB TERMS � p〈s1,...,sn〉〈t1, . . . , tn〉

Σ ` PRED-SYMB � p, w

p is a predicate symbol in Σ with profile w.

{s1, . . . , sn} ⊆ S p ∈ P〈s1,...,sn〉
(S,TF ,PF, P) ` p� p, 〈s1, . . . , sn〉

S ` PRED-TYPE � w p ∈ Pw
(S,TF ,PF, P) ` qual-pred-name p PRED-TYPE � p, w

Σ, X ` TERMS � 〈t1, . . . , tn〉

X is required to be a valid set of variables over the sorts of Σ. t1, . . . , tn are
fully-qualified Σ-terms over X .

Σ, X ` TERM1 � t1 · · · Σ, X ` TERMn � tn
Σ, X ` terms TERM1 . . . TERMn � 〈t1, . . . , tn〉

2.3.3.3 Definedness

A definedness formula is well-sorted when the term is well-sorted for some
sort. It then expands to a definedness assertion on the fully-qualified ex-
pansion of the term.

DEFINEDNESS ::= definedness TERM

Σ, X ` DEFINEDNESS � ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a
Σ-formula over X .

Σ, X ` TERM � t

Σ, X ` definedness TERM �D(t)

2.3. AXIOMS Version 1.1: October 16, 2002 54

2.3.3.4 Equations

An equation is well-sorted if both terms are well-sorted for some sort. It
then expands to the corresponding equation on the fully-qualified expan-
sions of the terms for that sort.

EXISTL-EQUATION ::= existl-equation TERM TERM
STRONG-EQUATION ::= strong-equation TERM TERM

Σ, X ` EXISTL-EQUATION � ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a
Σ-formula over X .

Σ, X ` TERM � t Σ, X ` TERM′ � t′

sort(t) = sort (t′)

Σ, X ` existl-equation TERM TERM ′ � t
e= t′

Σ, X ` STRONG-EQUATION � ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a
Σ-formula over X .

Σ, X ` TERM � t Σ, X ` TERM′ � t′

sort(t) = sort (t′)

Σ, X ` strong-equation TERM TERM ′ � t
s= t′

2.3.4 Terms

A term is constructed from variables by applications of operations. All
names used in terms may be qualified by the intended types, and the
intended sort of the term may be specified.

TERM ::= SIMPLE-ID | QUAL-VAR | APPLICATION
| SORTED-TERM | CONDITIONAL

Σ, X ` TERM � t

X is required to be a valid set of variables over the sorts of Σ. t is a fully-
qualified Σ-term over X .

Rules elided, except for the two rules in the next subsection which are for
the case SIMPLE-ID.

2.3. AXIOMS Version 1.1: October 16, 2002 55

2.3.4.1 Identifiers

An unqualified simple identifier in a term may be a variable or a constant,
depending on the local environment and the variable declarations. Either
is well-sorted for the sort specified in its declaration; a variable expands to
the (sorted) variable itself, whereas a constant expands to an application
of the qualified symbol to the empty list of arguments.

s ∈ S x ∈ Xs

(S,TF ,PF , P), X ` x� xs

s ∈ S f ∈ TF〈〉,s ∪PF 〈〉,s
(S,TF ,PF, P), X ` f � f〈〉,s〈〉

2.3.4.2 Qualified Variables

A qualified variable is well-sorted for the given sort.

QUAL-VAR ::= qual-var VAR SORT

Σ, X ` QUAL-VAR � t

X is required to be a valid set of variables over the sorts of Σ. t is a fully-
qualified Σ-term over X .

s ∈ S x ∈ Xs

(S,TF ,PF, P), X ` qual-var x s� xs

2.3.4.3 Operation Application

An application is well-sorted for some sort s when there is a declaration of
the operation name such that all the argument terms are well-sorted for
the respective argument sorts, and the result sort is s. It then expands
to an application of the qualified operation name to the fully-qualified
expansions of the argument terms for those sorts.

APPLICATION ::= application OP-SYMB TERMS
OP-SYMB ::= OP-NAME | QUAL-OP-NAME
QUAL-OP-NAME ::= qual-op-name OP-NAME OP-TYPE

2.3. AXIOMS Version 1.1: October 16, 2002 56

TERMS ::= terms TERM*

Σ, X ` APPLICATION � t

X is required to be a valid set of variables over the sorts of Σ. t is a fully-
qualified Σ-term over X .

Σ ` OP-SYMB � f, (〈s1, . . . , sn〉, s)
Σ, X ` TERMS � 〈t1, . . . , tn〉

sort(t1) = s1 · · · sort(tn) = sn

Σ, X ` application OP-SYMB TERMS � f〈s1,...,sn〉,s〈t1, . . . , tn〉

Σ ` OP-SYMB � f,ws

f is a function symbol in Σ with profile ws .

{s1, . . . , sn, s} ⊆ S f ∈ TF〈s1,...,sn〉,s ∪PF 〈s1,...,sn〉,s
(S,TF ,PF , P) ` f � f, (〈s1, . . . , sn〉, s)

{s1, . . . , sn, s} ⊆ S f ∈ TF 〈s1,...,sn〉,s
(S,TF ,PF , P) ` qual-op-name f (total-op-type (sort-list s1 . . . sn) s) �

f, (〈s1, . . . , sn〉, s)
{s1, . . . , sn, s} ⊆ S f ∈ PF 〈s1,...,sn〉,s

(S,TF ,PF , P) ` qual-op-name f (partial-op-type (sort-list s1 . . . sn) s) �

f, (〈s1, . . . , sn〉, s)

Σ, X ` TERMS � 〈t1, . . . , tn〉

X is required to be a valid set of variables over the sorts of Σ. t1, . . . , tn are
fully-qualified Σ-terms over X .

Σ, X ` TERM1 � t1 · · · Σ, X ` TERMn � tn
Σ, X ` terms TERM1 . . . TERMn � 〈t1, . . . , tn〉

2.3. AXIOMS Version 1.1: October 16, 2002 57

2.3.4.4 Sorted Terms

A sorted term is well-sorted if the given term is well-sorted for the given
sort. It then expands to those fully-qualified expansions of the component
term that have the specified sort.

SORTED-TERM ::= sorted-term TERM SORT

Σ, X ` SORTED-TERM � t

X is required to be a valid set of variables over the sorts of Σ. t is a fully-
qualified Σ-term over X .

Σ, X ` TERM � t sort (t) = s

Σ, X ` sorted-term TERM s� t

2.3.4.5 Conditional Terms

A conditional term is well-sorted for some sort when both given terms
are well-sorted for that sort and the given formula is well-formed. It then
expands to a fully-qualified term built from that formula and the fully-
qualified expansions of the given terms for that sort.

CONDITIONAL ::= conditional TERM FORMULA TERM

Σ, X ` CONDITIONAL � t

X is required to be a valid set of variables over the sorts of Σ. t is a fully-
qualified Σ-term over X .

Σ, X ` TERM � t Σ, X ` FORMULA �ϕ Σ, X ` TERM ′ � t′

sort(t) = sort (t′)
Σ, X ` conditional TERM FORMULA TERM′ �ϕ → t | t′

Conditional terms are interpreted as fully-qualified terms, as explained in
Section 1.3, rather than being handled by transformation of the enclosing
atomic formula as is suggested in the Language Summary; such a transfor-
mation would be difficult to define using this style of semantics.

2.4. IDENTIFIERS Version 1.1: October 16, 2002 58

2.4 Identifiers

The internal structure of identifiers ID is insignificant in the context of basic
specifications. (ID is extended with compound identifiers, whose structure
is significant, in connection with generic specifications in Section 6.5.)

SIMPLE-ID ::= WORDS
ID ::= TOKEN-ID
TOKEN-ID ::= TOKEN
TOKEN ::= WORDS | DOT-WORDS | SIGNS | DIGIT | QUOTED-CHAR

Chapter 3

Subsorting Concepts

59

Chapter 4

Subsorting Constructs

60

Part II

Structured Specifications

61

Chapter 5

Structuring Concepts

62

Chapter 6

Structuring Constructs

63

Part III

Architectural Specifications

64

Chapter 7

Architectural Concepts

65

Chapter 8

Architectural Constructs

66

Part IV

Specification Libraries

67

Chapter 9

Library Concepts

68

Chapter 10

Library Constructs

69

Bibliography

[CGRW95] Ingo Claßen, Martin Große-Rhode, and Uwe Wolter. Categorical
concepts for parameterized partial specification. Mathematical
Structures in Computer Science, 5:153–188, 1995.

[CoF] CoFI. The Common Framework Initiative for algebraic specifi-
cation and development, electronic archives. Notes and Docu-
ments accessible from http://www.brics.dk/Projects/CoFI/.

[CoF01] CoFI Language Design Task Group. Casl – The CoFI
Algebraic Specification Language – Summary. Docu-
ments/CASL/Summary, in [CoF], March 2001.

[GB92] Joseph A. Goguen and Rodney M. Burstall. Institutions: ab-
stract model theory for specification and programming. Journal
of the ACM, 39(1):95–146, 1992.

[GM82] Joseph A. Goguen and José Meseguer. Completeness of many-
sorted equational logic. ACM SIGPLAN Notices, 17(1):9–17,
1982.

[HS73] Horst Herrlich and George Strecker. Category Theory. Allyn
and Bacon, 1973.

[Kah88] Gilles Kahn. Natural semantics. In K. Fuchi and M. Nivat,
editors, Programming of Future Generation Computers, pages
237–258. North Holland, 1988.

[Mos] Till Mossakowski. Relating CASL with other specification lan-
guages: the institution level. Theoretical Computer Science. To
appear.

[Mos98a] Till Mossakowski. Cocompleteness of the Casl signature cate-
gory. Note S-7, in [CoF], February 1998.

[Mos98b] Till Mossakowski. Colimits of order-sorted specifications. In
Recent Trends in Algebraic Development Techniques, Proc. 12th
International Workshop, WADT ’97, Tarquinia, 1997, Selected

70

BIBLIOGRAPHY Version 1.1: October 16, 2002 71

Papers, volume 1376 of LNCS, pages 316–332. Springer-Verlag,
1998.

[Mos00] Till Mossakowski. Specification in an arbitrary institution with
symbols. In C. Choppy, D. Bert, and P. Mosses, editors, Re-
cent Trends in Algebraic Development Techniques, 14th Inter-
national Workshop, WADT’99, Bonas, France, volume 1827 of
Lecture Notes in Computer Science, pages 252–270. Springer-
Verlag, 2000.

[Pie91] Benjamin Pierce. Basic Category Theory for Computer Scien-
tists. MIT Press, 1991.

[Prz88] Teodor Przymusinski. On the declarative semantics of deductive
databases and logic programs. In Jack Minker, editor, Foun-
dations of Deductive Databases and Logic Programming, pages
193–216. Morgan Kaufmann, 1988.

[vG96] Rob van Glabbeek. The meaning of negative premises in tran-
sition system specifications II. In F. Meyer auf der Heide and
B. Monien, editors, Proc. 23rd Intl. Colloq. on Automata, Lan-
guages and Programming, ICALP’96, Paderborn, volume 1099
of Lecture Notes in Computer Science, pages 502–513. Springer-
Verlag, 1996.

[Wag99] Eric Wagner. On the category of signatures. Presentation at
WADT’99, Bonas, 1999.

Appendices

72

Appendix A

Abstract Syntax

The entire abstract syntax as in Appendix A of the Casl Language Sum-
mary [CoF01] is included here for convenience.

The abstract syntax is presented as a set of production rules in which each
sort of entity is defined in terms of its subsorts:

SOME-SORT ::= SUBSORT-1 | ... | SUBSORT-n

or in terms of its constructor and components:

SOME-CONSTRUCT ::= some-construct COMPONENT-1 ... COMPONENT-n

The notation COMPONENT* indicates repetition of COMPONENT any number of
times; COMPONENT+ indicates repetition at least once.

The following nonterminal symbols correspond to lexical syntax, and are
left unspecified in the abstract syntax: WORDS, DOT-WORDS, SIGNS, DIGIT,
DIGITS, NUMBER, QUOTED-CHAR, PLACE, URL, and PATH.

A.1 Basic Specifications
BASIC-SPEC ::= basic-spec BASIC-ITEMS*

BASIC-ITEMS ::= SIG-ITEMS | FREE-DATATYPE | SORT-GEN
| VAR-ITEMS | LOCAL-VAR-AXIOMS | AXIOM-ITEMS

SIG-ITEMS ::= SORT-ITEMS | OP-ITEMS | PRED-ITEMS
| DATATYPE-ITEMS

SORT-ITEMS ::= sort-items SORT-ITEM+
SORT-ITEM ::= SORT-DECL

SORT-DECL ::= sort-decl SORT+

A–1

A.1. BASIC SPECIFICATIONS Version 1.1: October 16, 2002 A–2

OP-ITEMS ::= op-items OP-ITEM+
OP-ITEM ::= OP-DECL | OP-DEFN

OP-DECL ::= op-decl OP-NAME+ OP-TYPE OP-ATTR*
OP-TYPE ::= TOTAL-OP-TYPE | PARTIAL-OP-TYPE
TOTAL-OP-TYPE ::= total-op-type SORT-LIST SORT
PARTIAL-OP-TYPE ::= partial-op-type SORT-LIST SORT
SORT-LIST ::= sort-list SORT*
OP-ATTR ::= BINARY-OP-ATTR | UNIT-OP-ATTR
BINARY-OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr
UNIT-OP-ATTR ::= unit-op-attr TERM

OP-DEFN ::= op-defn OP-NAME OP-HEAD TERM
OP-HEAD ::= TOTAL-OP-HEAD | PARTIAL-OP-HEAD
TOTAL-OP-HEAD ::= total-op-head ARG-DECL* SORT
PARTIAL-OP-HEAD ::= partial-op-head ARG-DECL* SORT
ARG-DECL ::= arg-decl VAR+ SORT

PRED-ITEMS ::= pred-items PRED-ITEM+
PRED-ITEM ::= PRED-DECL | PRED-DEFN

PRED-DECL ::= pred-decl PRED-NAME+ PRED-TYPE
PRED-TYPE ::= pred-type SORT-LIST
PRED-DEFN ::= pred-defn PRED-NAME PRED-HEAD FORMULA
PRED-HEAD ::= pred-head ARG-DECL*

DATATYPE-ITEMS ::= datatype-items DATATYPE-DECL+
DATATYPE-DECL ::= datatype-decl SORT ALTERNATIVE+
ALTERNATIVE ::= TOTAL-CONSTRUCT | PARTIAL-CONSTRUCT
TOTAL-CONSTRUCT ::= total-construct OP-NAME COMPONENTS*
PARTIAL-CONSTRUCT::= partial-construct OP-NAME COMPONENTS+
COMPONENTS ::= TOTAL-SELECT | PARTIAL-SELECT | SORT
TOTAL-SELECT ::= total-select OP-NAME+ SORT
PARTIAL-SELECT ::= partial-select OP-NAME+ SORT

FREE-DATATYPE ::= free-datatype DATATYPE-ITEMS

SORT-GEN ::= sort-gen SIG-ITEMS+

VAR-ITEMS ::= var-items VAR-DECL+
VAR-DECL ::= var-decl VAR+ SORT

LOCAL-VAR-AXIOMS ::= local-var-axioms VAR-DECL+ AXIOM+

AXIOM-ITEMS ::= axiom-items AXIOM+

AXIOM ::= FORMULA
FORMULA ::= QUANTIFICATION | CONJUNCTION | DISJUNCTION

| IMPLICATION | EQUIVALENCE | NEGATION | ATOM
QUANTIFICATION ::= quantification QUANTIFIER VAR-DECL+ FORMULA
QUANTIFIER ::= universal | existential | unique-existential
CONJUNCTION ::= conjunction FORMULA+
DISJUNCTION ::= disjunction FORMULA+

A.2. BASIC SPECIFICATIONS WITH SUBSORTSVersion 1.1: October 16, 2002 A–3

IMPLICATION ::= implication FORMULA FORMULA
EQUIVALENCE ::= equivalence FORMULA FORMULA
NEGATION ::= negation FORMULA

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS
| EXISTL-EQUATION | STRONG-EQUATION

TRUTH ::= true-atom | false-atom
PREDICATION ::= predication PRED-SYMB TERMS
PRED-SYMB ::= PRED-NAME | QUAL-PRED-NAME
QUAL-PRED-NAME ::= qual-pred-name PRED-NAME PRED-TYPE
DEFINEDNESS ::= definedness TERM
EXISTL-EQUATION ::= existl-equation TERM TERM
STRONG-EQUATION ::= strong-equation TERM TERM

TERMS ::= terms TERM*
TERM ::= SIMPLE-ID | QUAL-VAR | APPLICATION

| SORTED-TERM | CONDITIONAL
QUAL-VAR ::= qual-var VAR SORT
APPLICATION ::= application OP-SYMB TERMS
OP-SYMB ::= OP-NAME | QUAL-OP-NAME
QUAL-OP-NAME ::= qual-op-name OP-NAME OP-TYPE
SORTED-TERM ::= sorted-term TERM SORT
CONDITIONAL ::= conditional TERM FORMULA TERM

SORT ::= TOKEN-ID
OP-NAME ::= ID
PRED-NAME ::= ID
VAR ::= SIMPLE-ID

SIMPLE-ID ::= WORDS
ID ::= TOKEN-ID | MIXFIX-ID
TOKEN-ID ::= TOKEN
TOKEN ::= WORDS | DOT-WORDS | SIGNS | DIGIT | QUOTED-CHAR
MIXFIX-ID ::= TOKEN-PLACES
TOKEN-PLACES ::= token-places TOKEN-OR-PLACE+
TOKEN-OR-PLACE ::= TOKEN | PLACE

A.2 Basic Specifications with Subsorts
SORT-ITEM ::= ... | SUBSORT-DECL | ISO-DECL | SUBSORT-DEFN

SUBSORT-DECL ::= subsort-decl SORT+ SORT
ISO-DECL ::= iso-decl SORT+
SUBSORT-DEFN ::= subsort-defn SORT VAR SORT FORMULA

ALTERNATIVE ::= ... | SUBSORTS
SUBSORTS ::= subsorts SORT+

ATOM ::= ... | MEMBERSHIP
MEMBERSHIP ::= membership TERM SORT

TERM ::= ... | CAST

A.3. STRUCTURED SPECIFICATIONSVersion 1.1: October 16, 2002 A–4

CAST ::= cast TERM SORT

A.3 Structured Specifications
SPEC ::= BASIC-SPEC | TRANSLATION | REDUCTION

| UNION | EXTENSION | FREE-SPEC | LOCAL-SPEC
| CLOSED-SPEC | SPEC-INST

TRANSLATION ::= translation SPEC RENAMING
RENAMING ::= renaming SYMB-MAP-ITEMS+

REDUCTION ::= reduction SPEC RESTRICTION
RESTRICTION ::= HIDDEN | REVEALED
HIDDEN ::= hidden SYMB-ITEMS+
REVEALED ::= revealed SYMB-MAP-ITEMS+

UNION ::= union SPEC+
EXTENSION ::= extension SPEC+
FREE-SPEC ::= free-spec SPEC
LOCAL-SPEC ::= local-spec SPEC SPEC
CLOSED-SPEC ::= closed-spec SPEC

SPEC-DEFN ::= spec-defn SPEC-NAME GENERICITY SPEC
GENERICITY ::= genericity PARAMS IMPORTED
PARAMS ::= params SPEC*
IMPORTED ::= imported SPEC*

SPEC-INST ::= spec-inst SPEC-NAME FIT-ARG*

FIT-ARG ::= FIT-SPEC | FIT-VIEW
FIT-SPEC ::= fit-spec SPEC SYMB-MAP-ITEMS*
FIT-VIEW ::= fit-view VIEW-NAME FIT-ARG*

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE
SYMB-MAP-ITEMS*

VIEW-TYPE ::= view-type SPEC SPEC

SYMB-ITEMS ::= symb-items SYMB-KIND SYMB+
SYMB-MAP-ITEMS ::= symb-map-items SYMB-KIND SYMB-OR-MAP+
SYMB-KIND ::= implicit | sorts-kind | ops-kind | preds-kind

SYMB ::= ID | QUAL-ID
QUAL-ID ::= qual-id ID TYPE
TYPE ::= OP-TYPE | PRED-TYPE
SYMB-MAP ::= symb-map SYMB SYMB
SYMB-OR-MAP ::= SYMB | SYMB-MAP

SPEC-NAME ::= SIMPLE-ID
VIEW-NAME ::= SIMPLE-ID

TOKEN-ID ::= ... | COMP-TOKEN-ID
MIXFIX-ID ::= ... | COMP-MIXFIX-ID

A.4. ARCHITECTURAL SPECIFICATIONSVersion 1.1: October 16, 2002 A–5

COMP-TOKEN-ID ::= comp-token-id TOKEN ID+
COMP-MIXFIX-ID ::= comp-mixfix-id TOKEN-PLACES ID+

A.4 Architectural Specifications
ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC
ARCH-SPEC ::= BASIC-ARCH-SPEC | ARCH-SPEC-NAME
BASIC-ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT

UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN
UNIT-DECL ::= unit-decl UNIT-NAME UNIT-SPEC UNIT-IMPORTED
UNIT-IMPORTED ::= unit-imported UNIT-TERM*
UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC
UNIT-SPEC ::= UNIT-TYPE | SPEC-NAME | ARCH-UNIT-SPEC

| CLOSED-UNIT-SPEC
ARCH-UNIT-SPEC ::= arch-unit-spec ARCH-SPEC
CLOSED-UNIT-SPEC ::= closed-unit-spec UNIT-SPEC
UNIT-TYPE ::= unit-type SPEC* SPEC

RESULT-UNIT ::= result-unit UNIT-EXPRESSION
UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM
UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC
UNIT-TERM ::= UNIT-REDUCTION | UNIT-TRANSLATION | AMALGAMATION

| LOCAL-UNIT | UNIT-APPL
UNIT-TRANSLATION ::= unit-translation UNIT-TERM RENAMING
UNIT-REDUCTION ::= unit-reduction UNIT-TERM RESTRICTION
AMALGAMATION ::= amalgamation UNIT-TERM+
LOCAL-UNIT ::= local-unit UNIT-DEFN+ UNIT-TERM
UNIT-APPL ::= unit-appl UNIT-NAME FIT-ARG-UNIT*
FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

ARCH-SPEC-NAME ::= SIMPLE-ID
UNIT-NAME ::= SIMPLE-ID

A.5 Specification Libraries

LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEM*
LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN

| ARCH-SPEC-DEFN | UNIT-SPEC-DEFN
| DOWNLOAD-ITEMS

DOWNLOAD-ITEMS ::= download-items LIB-NAME ITEM-NAME-OR-MAP+
ITEM-NAME-OR-MAP ::= ITEM-NAME | ITEM-NAME-MAP
ITEM-NAME-MAP ::= item-name-map ITEM-NAME ITEM-NAME
ITEM-NAME ::= SIMPLE-ID

LIB-NAME ::= LIB-ID | LIB-VERSION
LIB-VERSION ::= lib-version LIB-ID VERSION-NUMBER

A.5. SPECIFICATION LIBRARIES Version 1.1: October 16, 2002 A–6

VERSION-NUMBER ::= version-number NUMBER+
LIB-ID ::= DIRECT-LINK | INDIRECT-LINK
DIRECT-LINK ::= direct-link URL
INDIRECT-LINK ::= indirect-link PATH

