UNIVERSITY OF EDINBURGH
COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

FUNCTIONAL PROGRAMMING AND SPECIFICATION (LEVEL
9)

FUNCTIONAL PROGRAMMING AND SPECIFICATION (LEVEL
10)

Friday 215 May 2010

09:30 to 11:30

Year 3 Courses

Convener: K. Kalorloti
External Examiners: K. Eder, A. Frisch

INSTRUCTIONS TO CANDIDATES

Answer any TWO questions.
All questions carry equal weight.

CALCULATORS MAY NOT BE USED IN THIS EXAMINATION

1. Save all of your answers to this question in a file q1.sml and submit that
single file when you are finished using the command: examsubmit q1.sml

Consider the following datatype of “fat lists”:

(a)

(b)

= nil
| cons of ’a * ’a fatlist
| append of ’a fatlist * ’a fatlist

datatype ’a fatlist

Define variants of the list functions length, reverse and map for fat lists.
Define a function null : ’a fatlist -> bool which tells if a fat list is
empty (contains no elements) or not.

Define a function fold : (’a * ’b -> ’b) -> ’b -> ’a fatlist -> ’b
that is analogous to foldr on lists. Give a function f and a value v such
that fold £ v [is null [for all fat lists [. Give a function g and a value w
such that fold g w ! is length [for all fat lists (.

Define a function slim : ’a fatlist -> ’a list which converts a fat list
to an ordinary list of its elements in the same order. Give a function f (de-
pending on g) and a value v such that slim(fold f v) = slim(map g l)
for all fat lists {

Is there a function f (depending on g) and a value v such that fold f v =
map g [for all fat lists {7 Either give such an f and v or else briefly justify
why they cannot exist.

Page 1 of 5

[7 marks |

[6 marks |

[6 marks |

[6 marks |

2. Save all of your answers to this question in a file q2.sml and submit that
single file when you are finished using the command: examsubmit g2.sml

A bonsai tree is a binary tree with limited depth. The maximal permitted depth
of each bonsai tree is established when it is first created. New nodes are added
at the leaves; this fails if it would cause the tree to grow beyond its maximal
permitted depth.

(a) Implement bonsai trees in SML, recalling that ordinary binary trees can be
defined by

datatype ’a tree = empty | node of ’a * ’a tree * ’a tree

Provide a definition of the type of bonsai trees, ’a btree, and the following
functions on bonsai trees:

create : int -> ’a btree
Create an empty bonsai tree with the given maximal permitted depth.
add : ’a * ’a btree -> ’a btree
Add an element if there is space; raise an exception if not.
An empty tree has depth 0, so add("label",create 0) will raise an
exception while add("1label",create 1) will succeed.
prune : int * ’a btree -> ’a btree
Restrict maximal permitted depth to the depth given, removing all
growth that is deeper than this.
graft : ’a * ’a btree * ’a btree -> ’a btree
Let 01 and 02 be bonsai trees with maximal permitted depth d1 and
d2 respectively. Then graft(a,bl,b2) is a bonsai tree with maximal
permitted depth Int.max(dl,d2) formed by joining bl and b2 at their
roots with a as label, and pruning as necessary.

Please include
load "Int";

before the code for graft in order to load Int from the library, making
Int.max available. [15 marks |

QUESTION CONTINUES ON NEXT PAGE

Page 2 of 5

QUESTION CONTINUED FROM PREVIOUS PAGE

(b) Add a function

balance : ’a btree -> ’a btree

that creates a balanced version of a bonsai tree by inserting all of its ele-
ments, one by one, into an empty bonsai tree. You can maintain balance
of the resulting tree as it is built up by simply using a version of add that
switches left and right subtrees of each node that it visits in the course of
adding an element to the leftmost leaf, like so:

This yields a bonsai tree having the same elements as the original, and
the same maximal permitted depth, but with the subtrees at each node
having depths that differ by at most 1. (Note: It isn’t easy to see why
this algorithm produces a balanced tree, but it does! You don’t need to
understand why it works in order to write the program.) [10 marks |

Page 3 of 5

3. Your answers to this question should be split into two separate files;
see below for details.

Consider implementing integer arithmetic from scratch. Some operations are
more basic than other operations. For instance:

addition can be defined in terms of successor (n +— n + 1), negation and <0
subtraction can be defined in terms of negation and addition

multiplication can be defined in terms of addition, negation, zero, <0 and suc-
cessor

division can be defined in terms of zero, <0, negation, subtraction and successor

Here is SML code that implements arithmetic as sketched above. You will find
this code in a file named arith.sml.

type integer = int

val zero = 0

fun succ(n:integer)= n+1

fun neg(n:integer) = "n

fun leqzero(n:integer) = n<=0

fun output(n:integer) = Int.toString n

fun plus(n,m) =
if leqzero n andalso leqzero(neg n) then m
else if leqzero n then plus(succ n,neg(succ(neg m)))
else plus(neg(succ(neg n)),succ m)
fun minus(n,m) = plus(n,neg m)
fun times(n,m) =
if leqzero n andalso leqzero(neg n) then zero
else if leqzero n then neg(times(neg n,m))
else plus(m,times(neg(succ(neg n)),m))
fun divide(n,m) =
if leqzero n andalso leqzero(neg n) then zero
else if leqzero n then neg(divide(neg n,m))
else if leqzero m then neg(divide(n,neg m))
else if not(leqzero(minus(m,n))) then zero
else succ(divide(minus(n,m),m))

QUESTION CONTINUES ON NEXT PAGE

Page 4 of 5

(a)

QUESTION CONTINUED FROM PREVIOUS PAGE

Save all of your answers to this sub-question in a file g3a.sml
and submit that file when you are finished using the command:
examsubmit g3a.sml

Organize this code into a series of SML modules. Start with a structure
containing zero, succ, neg, leqzero and output. Addition, subtraction,
multiplication and division should be defined in separate functors, separating
each of these function definitions from the definitions of the functions on
which it depends. All modules, except substructures, should have explicit
signatures, using opaque ascription. A maximum of 75% credit will be given
for a solution that uses transparent ascription.

Once all of your modules have been defined, use them to define a structure
Arith that contains all of the functions mentioned above. The following
computation (see arith.sml):

let val one Arith.succ Arith.zero
val two Arith.succ one
val four = Arith.plus(two,two)
val result = Arith.divide(Arith.times(four,four),
Arith.minus(four,one))

in Arith.output result
end

should produce the string "5".

Save all of your answers to this sub-question in a file g3b.sml
and submit that file when you are finished using the command:
examsubmit g3b.sml

Consider the simultaneous use of two different representations of integers.
Revise your functors for addition and subtraction to allow an integer repre-
sented one way to be added to and subtracted from an integer represented
another way. (Do not attempt to revise subsequent modules to use these re-
vised functors.) Again, a maximum of 75% credit will be given for a solution
that uses transparent ascription.

Page 5 of 5

[15 marks |

[10 marks |

