FOR INTERNAL SCRUTINY (date of this version: 12/5/2010)

UNIVERSITY OF EDINBURGH
COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

FUNCTIONAL PROGRAMMING AND SPECIFICATION
SAMPLE EXAM

Thursday 1% April 2010

00:00 to 00:00

Year 3 Courses

Convener: ITO-Will-Determine
External Examiners: ITO-Will-Determine

INSTRUCTIONS TO CANDIDATES

Answer any TWO questions.

All questions carry equal weight.

FOR INTERNAL SCRUTINY (date of this version: 12/5/2010)

. Your answers to this question should be split into three separate files;
see below for details.
Consider binary trees defined as follows:

datatype ’a tree = empty | tip of ’a | node of ’a tree * ’a tree
The deepest tips are the ones that are furthest from the root of the tree. So in

node (node(node(tip 2, empty),
tip 1),
node (empty,
node(tip 3, tip 2)))

the deepest tips are the ones underlined. Note that all of the deepest tips are at
the same depth.

(a) Save your answer to this sub-question in a file qla.sml and submit
that file when you are finished using the command: examsubmit
qla.sml

We want a function deepest : ’a tree -> ’a list that returns a list
containing the labels of the deepest tips in a tree, in the order that they
appear. In the example above, the result would be [2,3,2].

One algorithm for deepest works by computing the depth of the deepest
tip and then using this result in a function that returns the list of all tip
labels at a given depth. Implement this.

(b) Save your answer to this sub-question in a file q1b.sml and submit
that file when you are finished using the command: examsubmit
qlb.sml

Another algorithm for deepest works by traversing the tree, deciding at
each node which recursive applications of deepest are needed in the result
on the basis of the depth of that subtree. Implement this.

(c) Save your answer to this sub-question in a file qic.sml and submit
that file when you are finished using the command: examsubmit
qlc.sml

Implement shallowest : ’a tree -> ’a list, which returns a list con-
taining the labels of the shallowest tips in a tree. In the example above, the
result would be [1]. (Note: shallowest ¢ should be [] only if there are no
tips in ¢.)

Page 1 of 4

(8 marks |

(8 marks |

[9 marks |

FOR INTERNAL SCRUTINY (date of this version: 12/5/2010)

. Your answers to this question should be split into two separate files;

see below for details.

Sets of integers may be represented using lists of “intervals”: the interval [a, 0]
for a < b represents the set of integers between a and b inclusive, where [a, a]
represents the set {a}. A list containing several intervals represents the union of
the sets represented by the intervals. If the intervals do not overlap or “touch”
then this representation is space-efficient; if they are kept in ascending order then
manipulation of sets can be made time-efficient. We call a list of intervals valid

if it satisfies these conditions.

Here is an example of sets represented this way, and four non-examples. (We
represent the interval [a, b] in ML as the pair (a,b) :int*int.)

[(1,3),(7,7),(10,11)] is valid and represents {1,2,3,7,10, 11}.

[(2,1),(5,6)] is invalid:
[(1,4),(3,6)] is invalid:
[(1,4),(5,6)] is invalid:
[(3,4),(1,1)] is invalid:

[2,1] isn’t a valid interval.
intervals overlap.

intervals “touch”.

intervals aren’t in ascending order.

When implementing functions using this representation, one may assume that
sets provided as input are valid, and sets produced as results must be valid.

The most complicated function to implement is insertion of an integer into a set;
here it is. (You will find this code in a file named sets.sml.)

local

fun insert’(z,nil) = [(z,z)]
| insert’(z,(a,b)::1) =
if z<a then (z,z)::(a,b)::1
else if z<=b then (a,b)::1
else (a,b)::insert’(z,1)
fun fix nil = nil
| fix [(a,b)] = [(a,b)]
| fix((a,b)::(c,d)::1) =

if b+l=c then fix((a,d)::1) else (a,b)::(fix((c,d)::1))

in
fun insert(z,l) = fix(insert’(z,1))
end

(a) Save your answer to this sub-question in a file g2a.sml and submit

that file when you are finished using the command: examsubmit

g2a.sml

Implement the following.

i. The empty set
ii. Set membership: checking if an integer is in a set.

Page 2 of 4

[1 mark |
[5 marks |

FOR INTERNAL SCRUTINY (date of this version: 12/5/2010)

iii. Deletion of an integer from a set. [7 marks |

(b) Save your answer to this sub-question in a file g2b.sml and submit
that file when you are finished using the command: examsubmit
q2b.sml

The list-of-intervals representation of sets may be used for sets over domains
other than integers. Give an SML functor that implements sets over any
given linearly-ordered element type, by modifying the functions in your an-
swer to (a) and the definition of insert above. (Concentrate on discrete
domains like integers, disregarding domains such as the real numbers.) In-
clude both input and output signatures, with the output signature ascribed
transparently [9 marks |

or for full marks, opaquely. [+3 marks |

Page 3 of 4

FOR INTERNAL SCRUTINY (date of this version: 12/5/2010)

3. Save all of your answers to this question in a file q3.sml and submit
that single file when you are finished using the command: examsubmit
q3.sml

(a)

Define an ML function ncompose : (’a -> ’a) * int -> (’a -> ’a) that
takes a function f and a non-negative integer n and returns the n-fold com-
position of f with itself. If n = 0, ncompose should return the identity
function.
For instance, ncompose ((fn x => x+7), 4) returns a function that is equiv-
alent to the function (fn x => x+28) and ncompose((fn x => x+7), 0)
returns (fn x => x). [5 marks |
Define a function 1compose : (’a -> ’a) list -> (’a -> ’a) that takes
a list of functions and returns the sequential composition of the functions in
the list.
For instance, 1compose [fn x => 2*x, fn x => x-1] should return a func-
tion that is equivalent to the function fn x => 2x(x-1). When the list is
empty, lcompose should return the identity function.
Your solution should use the foldr function; recall that it is defined as

fun foldr f e nil = e

| foldr f e (h::t) = f(h,foldr f e t)

with type (’a * ’b -> ’b) -> ’b -> ’a list -> ’b. [5 marks |
The function createGate has type

(string -> string) * int * string * ’a -> (string -> ’a option)
createGate(f,n,s,v) returns a function that expects a string password.
When called with the correct password, this function returns SOME (v); oth-
erwise it returns NONE. The correct password is determined by applying the
function f to the string s, n times, where n is non-negative.
For instance, suppose rotate : string -> string is a function that ro-
tates a string one position to the right. Then evaluation of

val gate = createGate(rotate, 3, "abcdefg", "secret")
will yield gate : string -> string option which expects the password

"efgabcd". gate "efgabcd" will return SOME("secret") whereas gate
"wrong" will return NONE.

Define createGate. (8 marks |

Suppose that, in the scenario of part (c), you have discovered the function
f and the string s but not the number n. Define a function crack with type

(string -> ’a option) -> (string -> string) * string -> ’a

that searches until it finds the correct n and uses it to penetrate the gate.
For instance, crack gate (rotate,"abcdefg") should yield "secret". [7 marks |

Page 4 of 4

