
Functional Programming and Specification Lecture Note 3, 11 March 2011

Proving that a function meets its specification

We can show that a program satisfies its specification by proving that it satisfies all of the
axioms in the specification. This is the main point of making the specification precise.

For example, here is a program for maxelem : int list -> int:

fun maxelem nil = 0
| maxelem([a]) = a
| maxelem(a::b::l) = if a>maxelem(b::l) then a else maxelem(b::l)

Since the definition is recursive, we can use structural induction to prove that it satisfies its
specification:

Forall l => l<>nil implies member(maxelem l, l)
Forall (a,l) => member(a,l) implies (maxelem l) >= a

The specification and the program make use of other functions (e.g. member, >=). A really
formal proof would have to refer to the definitions of these or to previously-established prop-
erties of them. We will be a little less formal and just use properties as required without
proof.

Theorem: Forall l => l<>nil implies member(maxelem l, l)
Proof: By induction on l.
Base cases:

l=nil: the precondition is false
l=[a]: member(maxelem [a],[a]) = member(a,[a]) = true

Step case: l=a::b::l’

Inductive hypothesis: member(maxelem b::l’,b::l’)
To prove: member(maxelem a::b::l’,a::b::l’).

Case 1: a > maxelem(b::l’)
member(maxelem a::b::l’,a::b::l’) = member(a,a::b::l’) = true

Case 2: maxelem(b::l’) >= a
member(maxelem a::b::l’,a::b::l’) = member(maxelem(b::l’),a::b::l’) =
true (by IH and properties of member).

Theorem: Forall (a,l) => member(a,l) implies (maxelem l) >= a
Proof: By induction on l.
Base cases:

l=nil: there is no a such that member(a,l)
l=[b]: member(a,[b]) implies a=b and so maxelem [b] = b >= a

Step case: l=a::b::l’

Inductive hypothesis: member(c,b::l’) implies (maxelem(b::l’)) >= c
To prove: member(c,a::b::l’) implies (maxelem(a::b::l’)) >= c

Case 1: a > maxelem(b::l’)
Then maxelem(a::b::l’) = a. For every c such that member(c,a::b::l’),
either c=a and so maxelem(a::b::l’) = a >= c, or member(c,b::l’) and so
maxelem(a::b::l’) = a > maxelem(b::l’) (by case assumption) >= c (by IH).
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Case 2: maxelem(b::l’) >= a
Then maxelem(a::b::l’) = maxelem(b::l’). For every c such that member(c,a::b::l’),
either c=a and so maxelem(a::b::l’) = maxelem(b::l’) >= a (by case assump-
tion) = c or member(c,b::l’) and so maxelem(a::b::l’) = maxelem(b::l’)
>= c (by IH).

Structural induction. Recall that for natural numbers we had the following induction
principle:

To prove ∀n.P (n):
1. Base case: Prove P (0)
2. Step case: Assume P (n) (the inductive hypothesis) and prove P (n + 1)

For lists, we have structural induction:

To prove ∀l.P (l):
1. Base case: Prove P (nil)
2. Step case: Assume P (l) (the inductive hypothesis) and prove P (a::l)

Compare this with the definition of the list datatype:

datatype ’a list = nil | :: of ’a * ’a list

The base case of structural induction corresponds to the constructor that takes no arguments
of type ’a list (i.e. nil) and the step case corresponds to the constructor that does takes
an argument of type ’a list.

(For the proofs above, we used the following derived induction principle because of the
form of the maxelem function:

To prove ∀l.P (l):
1. Base case 1: Prove P (nil)
2. Base case 2: Prove P ([a])
3. Step case: Assume P (b::l) (the inductive hypothesis) and prove P (a::b::l)

This can be derived from usual structural induction for lists: the second base case and the
step case in the derived induction principle come from a case analysis in the step case of the
usual induction principle.)

Structural induction principles can be derived from the definition of other user-defined
datatypes. For instance, consider the tree datatype defined earlier:

datatype ’a tree = Empty | Node of ’a tree * ’a * ’a tree

Here’s the corresponding structural induction principle:

To prove ∀t.P (t):
1. Base case: Prove P (Empty)
2. Step case: Assume P (t) and P (t′) (the inductive hypotheses), prove P (Node(t, x, t′))

We get to make two inductive hypotheses because Node takes two tree arguments.
Recall the functions:

fun height Empty = 0
| height(Node(t1,_,t2)) = 1 + Int.max(height t1,height t2)

fun size Empty = 0
| size(Node(t1,_,t2)) = 1 + size t1 + size t2
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Theorem: Forall t => size t >= height t
Proof: By induction on t.
Base case: t=Empty

size Empty = 0 = height Empty

Step case: t=Node(t1,x,t2)

Inductive hypothesis 1: size t1 >= height t1
Inductive hypothesis 2: size t2 >= height t2
To prove: size(Node(t1,x,t2)) >= height(Node(t1,x,t2))

size(Node(t1,x,t2)) = 1 + size t1 + size t2 >= 1 + height t1 + size t2
(by IH1) >= 1 + height t1 + height t2 (by IH2) >= 1 + Int.max(height t1, height t2)
(property of Int.max) = height(Node(t1,x,t2))

We can read off a structural induction principle from the definition of most user-defined
ML datatypes. Another example:

datatype ’a tree = Empty
| Leaf of ’a
| Node1 of ’a * ’a tree
| Node2 of ’a tree * ’a * ’a tree

Here is the corresponding induction principle:

To prove ∀t.P (t):
1. Base case for Empty: Prove P (Empty)
2. Base case for Leaf: Prove P (Leaf(x))
3. Step case for Node1: Assume P (t) and prove P (Node1(x, t))
4. Step case for Node2: Assume P (t) and P (t′) and prove P (Node2(t, x, t′))

Leaf is a base case even though it has an argument, because the argument is not a tree.
Things get a little more complicated with mutually recursive datatypes, or when one

recursive datatype is used in the definition of another. Then to prove a property of values of
one type you need to come up with an appropriate property of values of the other type(s),
and do induction to prove both at once.

The details are left as an exercise; consider for instance

datatype ’a tree = Empty | Node of ’a * ’a tree list

datatype expr = Numeral of int
| Var of string
| Plus of expr * expr
| Times of expr * expr
| Comresult of com * expr

and com = Assign of string * expr
| While of expr * com

Some user-defined types do not give rise to an induction principle. Consider for instance:

datatype D = Int of int | Fun of D->D

The problem here is that a value of the form Fun(f) is not constructed directly from another
value of type D.

This kind of problem arises whenever the arguments of constructors have recursive oc-
currences of the type being defined on the left-hand side of -> (in general, in a “negative
position”). Such datatypes do not arise very often.
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