
How To Do ProofsMyra VanInwegenDecember 2, 1997The purpose of this handout is give a general guide as to how to prove theorems.This should give you some help in answering questions that begin with \Show thatthe following is true . . . ". First, I'll explain it intuitively, giving a couple of examples.Then I'll explain how this intuition is reected in the sequent rules in Logic andProof.1 IntuitionIn the following, I'll call any logic statement a formula. In general, what we'll betrying to do is prove a formula, using a collection of formulas that we know to betrue or are assuming to be true. There's a big di�erence between using a formulaand proving a formula. In fact, what you do is in many ways opposite. So, I'll startby explaining how to prove a formula.1.1 Meet the ConnectivesHere are the logical connectives and a very brief decription of what each means.P ^Q P and Q are both trueP _Q P is true, or Q is true, or both are true:P P is not true (P is false)P) Q if P is true then Q is trueP , Q P is true exactly when Q is true8x 2 S:P (x) for all x in S, P is true of x9x 2 S:P (x) there exists an x in S such that P holds of x1.2 EquivalencesThese are formulas that mean the same thing, and this is indicated by a ' betweenthem. The fact that they are equivalent to each other is justi�ed by the truth tablesof the connectives.
1

de�nition of) P) Q ' :P _Qde�nition of , P , Q ' (P) Q) ^ (Q) P)de�nition of : :P ' P) falsede Morgan's Laws :(P ^Q) ' :P _ :Q:(P _Q) ' :P ^ :Qextension to quanti�ers :(8x:P (x)) ' 9x::P (x):(9x:P (x)) ' 8x::P (x)distributive laws P _ (Q ^R) ' (P _Q) ^ (P _R)P ^ (Q _R) ' (P ^Q) _ (P ^R)coalescing quanti�ers (8x:P (x)) ^ (8x:Q(x)) ' 8x:(P (x) ^Q(x))(9x:P (x)) _ (9x:Q(x)) ' 9x:(P (x) _Q(x))these ones apply if (8x:P (x)) ^Q ' (8x:P (x) ^Q)x is not free in Q (8x:P (x)) _Q ' (8x:P (x) _Q)(9x:P (x)) ^Q ' (9x:P (x) ^Q)(9x:P (x)) _Q ' (9x:P (x) _Q)1.3 How to Prove a FormulaFor each of the logical connectives, I'll explain how to handle them.8x 2 S:P (x) This means \For all x in S, P is true of x." Such a formula is called auniversally quanti�ed formula. The goal is to prove that the property P , which hassome xs somewhere in it, is true no matter what value in S x takes on. Often the\2 S" is left out. For example, in a discussion of lists, you might be asked to prove8l:length l > 0) 9x: member(x; l). Obviously, l is a list, even if it isn't explicitlystated as such.There are several choices as to how to prove a formula beginning with 8x. Thestandard thing to do is to just prove P (x), not assuming anything about x. Thus,in doing the proof you sort of just mentally strip o� the 8x. What you would writewhen doing this is \Let x be any S". However, there are some subtleties|if you'realready using an x for something else, you can't use the same x, because then youwould be assuming something about x, namely that it equals the x you're alreadyusing. In this case, you need to use alpha-conversion1 to change the formula youwant to prove to 8y 2 S:P (y), where y is some variable you're not already using,and then prove P (y). What you could write in this case is \Since x is already inuse, we'll prove the property of y".An alternative is induction, if S is a set that is de�ned with a structural def-inition. Many objects you're likely to be proving properties of are de�ned with astructural de�nition. This includes natural numbers, lists, trees, and terms of acomputer language. Sometimes you can use induction over the natural numbers toprove things about other objects, such as graphs, by inducting over the number ofnodes (or edges) in a graph. You'll get a handout about structural de�nition andinduction so I won't say much about it here.1Alpha-equivalence says that the name of a bound variable doesn't matter, so you can change itat will (this is called alpha-conversion). You'll get to know the exact meaning of this soon enoughso I won't explain this here. 2

You use induction when you see that during the course of the proof you wouldneed to use the property P for the subparts of x in order to prove it for x. Thisusually ends up being the case if P involves functions de�ned recursively (i.e., thereturn value for the function depends on the function value on the subparts of theargument).A special case of induction is case analysis. It's basically induction where youdon't use the inductive hypothesis: you just prove the property for each possibleform that x could have. Case analysis can be used to prove the theorem about listsabove.A �nal possibility (which you can use for all formulas, not just for universallyquanti�ed ones) is to assume the contrary, and then derive a contradiction.9x 2 S:P (x) This says \There exists an x in S such that P holds of x." Such aformula is called an existentially quanti�ed formula. The main way to prove thisis to �gure out what x has to be (that is, to �nd a concrete representation of it),and then prove that P holds of that value. Sometimes you can't give a completelyspeci�ed value, since the value you pick for x has to depend on the values of otherthings you have oating around. For example, say you want to prove8x; y 2 <:x < y ^ sinx < 0 ^ sin y > 0) 9z:x < z ^ z < y ^ sin z = 0where < is the set of real numbers. By the time you get to dealing with the 9z:x <z ^ z < y ^ sin z = 0, you will have already assumed that x and y were any realnumbers. Thus the value you choose for z has to depend on whatever x and y are.An alternative way to prove 9x 2 S:P (x) is, of course, to assume that no such xexists, and derive a contradiction.To summarize what I've gone over so far: to prove a universally quanti�edformula, you must prove it for a generic variable, one that you haven't used before.To prove an existentially quanti�ed formula, you get to choose a value that you wantto prove the property of.P) Q This says \If P is true, then Q is true". Such a formula is called animplication, and it is often pronounced \P implies Q". The part before the) sign(here P) is called the antecedent, and the part after the) sign (here Q) is calledthe consequent. P) Q is equivalent to :P _Q, and so if P is false, or if Q is true,then P) Q is true.The standard way to prove this is to assume P , then use it to help you prove Q.Note that I said that you will be using P . Thus you will need to follow the rules inSection 1.4 to deal with the logical connectives in P .Other ways to prove P) Q involve the fact that it is equivalent to :P _ Q.Thus, you can prove :P without bothering with Q, or you can just prove Q withoutbothering with P . To reason by contradiction you assume that P is true and thatQ is not true, and derive a contradiction.Another alternative is to prove the contrapositive: :Q) :P , which is equivalentto it.P , Q This says \P is true if and only if Q is true". The phrase \if and only if" isusually abbreviated \i�". Basically, this means that P and Q are either both true,or both false. 3

I� is usually used in two main ways: one is where the equivalence is due to oneformula being a de�nition of another. For example, A � B , 8x: x 2 A) x 2 B isthe standard de�nition of subset. For these i� statements, you don't have to provethem. The other use of i� is to state the equivalence of two di�erent things. Forexample, you could de�ne an SML function fact:fun fact 0 = 1| fact n = n * fact (n - 1)Since in SML whole numbers are integers (both positive and negative) you may beasked to prove: fact x terminates, x � 0. The standard way to do this is us theequivalence P , Q is equivalent to P) Q ^ Q) P . And so you'd prove that(fact x terminates) x � 0) ^ (x � 0) fact x terminates).:P This says \P is not true". It is equivalent to P) false, thus this is oneof the ways you prove it: you assume that P is true, and derive a contradic-tion (that is, you prove false). Here's an example of this, which you'll run intolater this year: the undecidability of the halting problem can be rephrased as:9x 2 RM: x solves the halting problem, where RM is the set of register machines.The proof of this in your Computation Theory notes follows exactly the pattern Idescribed|it assumes there is such a machine and derives a contradiction.The other major way to prove :P is to �gure out what the negation of P is,using equivalences like De Morgan's Law, and then prove that. For example, toprove :8x 2 N : 9y 2 N : x = y2, where N is the set of natural numbers, you couldpush in the negation to get: 9x 2 N : 8y 2 N : x 6= y2, and then you could provethat.P ^Q This says \P is true and Q is true". Such a formula is called a conjunction.To prove this, you have to prove P , and you have to prove Q.P _Q This says \P is true or Q is true". This is inclusive or: if P and Q are bothtrue, then P _Q is still true. Such a formula is called a disjunction. To prove this,you can prove P or you can prove Q. You have to choose which one to prove. Forexample, if you need to prove (5 mod 2 = 0) _ (5 mod 2 = 1), then you'll choosethe second one and prove that.However, as with existentials, the choice of which one to prove will often dependon the values of other things, like universally quanti�ed variables. For example,when you are studying the theory of programming languages (you will get a bit ofthis in Semantics), you might be asked to prove8P 2 ML: P is properly typed)(the evaluation of P runs forever) _ (P evaluates to a value)where ML is the set of all ML programs. You don't know in advance which of thesewill be the case, since some programs do run forever, and some do evaluate to avalue. Generally, the best way to prove the disjunction in this case (when you don'tknow in advance which will hold) is to use the equivalence with implication. Forexample, you can use the fact that P _Q is equivalent to :P) Q, then assume :P ,then use this to prove Q. For example, your best bet to proving this programminglanguages theorem is to assume that the evaluation of P doesn't run forever, anduse this to prove that P evaluates to a value.4

1.4 How to Use a FormulaYou often end up using a formula to prove other formulas. You can use a formulaif someone has already proved that it's true, or you are assuming it because it wasin an implication, namely, the A in A) B. For each logical connective, I'll tell youhow to use it.8x 2 S:P (x) This formula says that something is true of all elements of S. Thus,when you use it, you can pick any value at all to use instead of x (call it v), andthen you can use P (v).9x 2 S:P (x) This formula says that there is some x that satis�es P . However,you do not know what it is, so you can not assume anything about it. The usualapproach it to just say that the thing that is being said to exist is just x, and usethe fact that P holds of x to prove something else. However, if you're already usingan x for something else, you have to pick another variable to represent the thingthat exists.To summarize this: to use a universally quanti�ed formula, you can choose anyvalue, and use that the formula holds for that variable. To prove an existentiallyquanti�ed formula, you must not assume anything about the value that is said toexists, so you just use a variable (one that you haven't used before) to represent it.Note that this is more or less opposite of what you do when you prove a universallyor existentially quanti�ed formula.:P Usually, the main use of this formula is to prove the negation of something else.An example is the use of reduction to prove the unsolvability of various problemsin the Computation Theory (you'll learn all about this in Lent term). You want toprove :Q, where Q states that a certain problem (Problem 1) is decidable (in otherwords, you want to prove that Problem 1 is not decidable). You know :P , where Pstates that another problem (Problem 2) is decidable (i.e. :P says that Problem 2is not decidable). What you do basically is this. You �rst prove Q) P , which saysthat if Problem 1 is decidable, then so is Problem 2. Since Q) P ' :P) :Q,you have now proved :P) :Q. You already know :P , so you use modus ponens2to get that :Q.P) Q The main way to use this is that you prove P , and then you use modusponens to get Q, which you can then use.P , Q The main use of this is to replace an occurrence of P in a formula with Q,and vise versa.P ^Q Here you can use both P and Q. Note, you're not required to use both ofthem, but they are both true and are waiting to be used by you if you need them.P _Q Here, you know that one of P or Q is true, but you do not know which one.To use this to prove something else, you have to do a split: �rst you prove the thingusing P , then you prove it using Q.Note that in each of the above, there is again a di�erence in the way you usea formula, verses the way you prove it. They are in a way almost opposites. Forexample, in proving P ^ Q, you have to prove both P and Q, but when you areusing the formula, you don't have to use both of them.2Modus ponens says that if A) B and A are both true, then B is true.5

2 An ExampleDo you remember Regular Languages and Finite Automata? If not, time to remindyourself of them. The Pumping Lemma for regular sets (PL for short) is an aston-ishingly good example of the use of quanti�ers. We'll go over the proof and use ofthe PL, paying special attention to the logic of what's happening.2.1 Proving the PLMy favorite book on regular languages, �nite automata, and their friends is theHopcroft and Ullman book Introduction to Automata Theory, Languages, and Com-putation. You should locate this book in your college library, and if it isn't there,insist that your DoS oder it for you|we'll be making plenty of use of it next term.Also, I hope that your library already has the Aho, Hopcroft, and Ullman bookData Structures and Algorithms, since next week you'll get a reading assignmentfrom it. Let me know if you don't have this book available, and I'll get the relevantpages photocopied for you.Anyway, in the Automata Theory book, the Pumping Lemma is stated as: \LetL be a regular set. Then there is a constant n such that if z is any word in L, andjzj � n, we may write z = uvw in such a way that juvj � n, jvj � 1, and for all i � 0,uviw is in L." The Pumping Lemma is, in my experience, one of the most di�cultthings about learning automata theory. It is di�cult because people don't knowwhat to do with all those logical connectives. Let's write it as a logical formula.8L 2 RegularLanguages:9n: 8z 2 L: jzj � n)9u v w: z = uvw ^ juvj � n ^ jvj � 1 ^8i � 0: uviw 2 LComplicated, eh? Well, let's prove it, using the facts that Hopcroft and Ullmanhave established in the chapters previous to the one wih the PL. I'll give the proofand put in square brackets comments about what I'm doing.Let L be any regular language. [Here I'm dealing with the 8L 2 RegularLanguagesby stating that I'm not assuming anything about L.] Let M be a minimal-state de-terministic �nite state machine accepting L. [Here I'm using a fact that Hopcroftand Ullman have already proved about the equivalence of regular languages and�nite automata.] Let n be the number of states in this �nite state machine. [I'mdealing with the 9n by giving a very speci�c value of what it will be, based on thearbitrary L.] Let z be any word in L. [Thus I deal with 8z 2 L.] Assume thatjzj � n. [Thus I'm taking care of the) by assuming the antecedent.]Say z is written a1a2 : : : am, where m � n. Consider the states that M is induring the processing of the �rst n symbols of z, a1a2 : : : an. There are n + 1 ofthese states. Since there are only n states in M , there must be a duplicate. Saythat after symbols aj and ak we are in the same state, state s (i.e. there's a loopfrom this state that the machine goes through as it accepts z), and say that j < k.Now, let u = a1a2 : : : aj . This represents the part of the string that gets you to states the �rst time. Let v = aj+1 : : : ak. This represents the loop that takes you froms and back to it again. Let w = ak+1 : : : am, the rest of word z. [We have chosende�nite values for u, v, and w.] Then clearly z = uvw, since u, v, and w are just6

di�erent sections of z. juvj � n since u and v occur within the �rst n symbols of z.jvj � 1 since j < k. [Note that we're dealing with the formulas connected with ^by proving each of them.]Now, let i be a natural number (i.e. � 0). [This deals with 8i � 0.] Thenuviw 2 L. [Finally our conclusion, but we have to explain why this is true.] This isbecause we can repeat the loop from s to s (represented by v) as many times as welike, and the resulting word will still be accepted by M .2.2 Using the PLNow we use the PL to prove that a language is not regular. This is a rewording of Ex-ample 3.1 from Hopcroft and Ullman. I'll show that L = f0i2 ji is an integer, i � 1gis not regular. Note that L consists of all strings of 0's whose length is a perfectsquare. I will use the PL. I want to prove that L is not regular. I'll assume thenegation (i.e., that L is regular) and derive a contradiction. So here we go. Remem-ber that what I'm emphasizing here is not the �nite automata stu� itself, but howto use a complicated theorem to prove something else.Assume L is regular. We will use the PL to get a contradiction. Since L isregular, the PL applies to it. [We note that we're using the 8 part of the PL forthis particular L.] Let n be as described in the PL. [This takes care of using the9n. Note that we are not assuming anything about its actual value, just that it's anatural number.] Let z = 0n2 . [Since the PL says that something is true of all zs,we can choose the one we want to use it for.] So by the PL there exist u, v, and wsuch that z = uvw, juvj � n, jvj � 1. [Note that we don't assume anything aboutwhat the u, v, and w actually are; the only thing we know about them is what thePL tells us about them. This is where people trying to use the PL usually screwup.] The PL then says that for any i, then uviw 2 L. Well, then uv2w 2 L. [Thisis using the 8i � 0 bit.] However, n2 < juv2wj � n2 + n, since 1 � jvj � n. Butn2 + n < (n + 1)2. Thus juv2wj lies properly between n2 and (n + 1)2 and is thusnot a perfect square. Thus uv2w is not in L. This is a contradiction. Thus ourassumption (that L was regular) was incorrect. Thus L is not a regular language.3 Sequent Calculus RulesIn this section, I will show how the intuitive approach to things that I've describedabove is reected in the sequent calculus rules. A sequent is � ` �, where � and �are sets of formulas.3 Technically, this means thatA1 ^A2 ^ : : : An) B1 _B2 _ : : : Bm (1)where A1; A2; : : : An are the formulas in � , and B1; B2; : : : Bn are the formulas in�. Less formally, this means \using the formulas in � we can prove that one of theformula in � is true." This is just the intuition I described above about using vsproving formulas, except that I only talked about proving that one formula is true,3In your Logic and Proof notes, the symbol that divides � from � is). However, that conictswith the use of) as implication. Thus I will use `. You will see something similar in Semantics,where it separates assumptions (of the types of variables) from something that they allow you toprove. 7

rather than proving that one of several formulas is true. In order to handle the _connective, there can be any number of formulas on the right hand side of the `.For each logic connective,4 I'll give the rules for it, and explain how it relatesto the intuitive way of using or proving formulas. For each connective there are atleast two rules for it: one for the left side of the `, and one for the right side. Thiscorresponds to having di�erent ways to treat a formula depending on whether you'reusing it (for formulas on the left hand side of the `) or proving it (for formulas onthe right side of the `).It's easiest to understand these rules from the bottom up. The conclusion ofthe rule (the sequent below the horizontal line) is what we want to prove. Thehypotheses of the rule (the sequents above the horizontal line) are how we go aboutproving it. We'll have to use more rules, adding to the top, to build up the proof ofthe hypothesis, but this at least tells us how to get going.You can stop when the formula you have on the top is a basic sequent. This is� ` � where there's at least one formula (say P) that's in both � and �. You cansee why this is the basic true formula: it says that if P and the other formulas in �are true, then P or one of the other formula in � is true.In building proofs from these rules, there are several ways that you end up withformulas to the left of the `, where you can use them rather than proving them.One is that you've already proved it before. This is shown with the cut rule:� ` �; P P;� ` �� ` � (cut)The �; P in the �rst sequent in the hypotheses means that to the right of the `we have the set consisting of the formula P plus all the formulas in �, i.e., if allformulas in � are true, then P or one of the formulas in � is true. Similarly P;�to the left of the ` in the second sequent means the set consisting of the formula Pplus all the formulas in �.We read this rule from the bottom up to make sense of it. Say we want to proveone of the formulas in � from the formulas in �, and we want to make use of aformula P that we've already proved. The fact that we've proved P is shown by theleft hypothesis (of course, unless the left hypothesis is itself a basic sequent, thenin a completed proof there will be more lines on top of the left hypothesis, showingthe actual proof of the sequent). The fact that we are allowed to use P in the proofof � is shown in the right hand hypothesis. We continue to build the proof up fromthere, using P .Some other ways of getting formulas to the left of the ` are shown in the rules(:r) and () r) below.8x 2 S:P (x) The two rules for universally quanti�ed formulas are:P (v);� ` �8x:P (x);� ` � (8l) � ` �; P (x)� ` �;8x:P (x) (8r)In the (8r) rule, x must not be free in the conclusion.4I won't mention i� here: as P , Q is equivalent to P) Q ^Q) P , we don't need separaterules for it. 8

Now, what's going on here? In the (8l) rule, the 8x:P (x) is on the left side ofthe `. Thus, we are using it (along with some other formula, those in �) to provesomething (�). According to the intuition above, in order to use 8x:P (x), you canuse it with any value, where v is used to represent that value. In the hypothesis,you see the formula P (v) to the left of the `. This is just P with v substituted forx. The use of this corresponds exactly to using the fact that P is true of any valuewhatsoever, since we are using it with v, which is any value of our choice.In the (8r) rule, the 8x:P (x) is on the right side of the `. Thus, we are provingit. Thus, we need to prove it for a generic x. This is why the 8x is gone in thehypothesis. The x is still sitting somewhere in the P , but we're just using it as aplain variable, not assuming anything about it. And this explains the side conditiontoo: \In the (8r) rule, x must not be free in the conclusion." If x is not free in theconclusion, this means that x is not free in the formulas in � or �. That meansthe only place the x occurs free in the hypothesis is in P itself. This correspondsexactly with the requirement that we're proving that P is true of a generic x: if xwere free in � or �, we would be assuming something about x, namely that valueof x is the same as the x used in those formulas.Note that induction is not mentioned in the rules. This is because the sequentcalculus used here just deals with pure logic. In more complicated presentationsof logic, it is explained how to de�ne new types via structural induction, and fromthere you get mechanisms to allow you to do induction.9x 2 S:P (x) The two rules for existentially quanti�ed formulas are:P (x);� ` �9x:P (x);� ` � (9l) � ` �; P (v)� ` �;9x:P (x) (9r)In the (9l) rule, x must not be free in the conclusion.In (9l), we are using 9x:P (x). Thus we cannot assume anything about the valuethat the formula says exists, so we just use it as x in the hypothesis. The sidecondition about x not being free in the conclusions comes from the requirement notto assume anything about x (since we don't know what it is). If x isn't free in theconclusion, then it's not free in � or �. If it were free in � or �, then we would beassuming that the x used there is the same as the x we're assuming exists, and thisisn't allowed.In (9r), we are proving 9x:P (x). Thus we must pick a particular value (call itv) and prove P for that value. The value v is allowed to contain variables that arefree in � or �, since you can set it to anything you want.:P The rules for negation are:� ` �; P:P;� ` � (:l) P;� ` �� ` �;:P (:r)Let's start with the right rule �rst. I said that the way to prove :P is to assumeP and derive a contradiction. If � is the empty set, then this is exactly what thisrule says: If there are no formulas to the right hand side of the `, then this meansthat the formulas in � are inconsistent (that means, they cannot all be true at thesame time). This means that you have derived a contradiction. So if � is theempty set, the hypothesis of the rule says that, assuming P , you have obtained a9

contradiction. Thus, if you are absolutely certain about all your other hypotheses,then you can be sure that P is not true. The best way to understand the rule if �is not empty is to write out the meaning of the sequents in terms of the meaningof the sequent given by Equation 1 and work out the equivalence of the top andbottom of the rule using the equivalences in your Logic and Proof notes.The easiest way to understand (:l) is again by using equivalences.P) Q The two rules for implication are:� ` �; P Q;� ` �P) Q;� ` � () l) P;� ` �; Q� ` �; P) Q () r)The rule () l) easily understood using the intuitive explanation of how to useP) Q given above. First, we have to prove P . This is the left hypothesis. Thenwe can use Q, which is what the right hypothesis says.The right rule () r) is also easily understood. In order to prove P) Q, weassume P , then use this to prove Q. This is exactly what the hypothesis says.P ^Q The rules for conjunction are:P;Q;� ` �P ^Q;� ` � (^l) � ` �; P � ` �; Q� ` �; P ^Q (^r)Both of these rules are easily explained by the intuition above. The left rule (^l)says that when you use P ^ Q, you can use P and Q. The right rule says that toprove P ^ Q you must prove P , and you must prove Q. You may wonder why weneed separate hypotheses for the two di�erent proofs. We can't just put P;Q to theright of the ` in a single hypothesis, because that would mean that we're provingone of the other of them (see the meaning of the sequent given in Equation 1). Sowe need separate hypotheses to make sure that each of P and Q has actually beenproved.P _Q The rules for disjunction are:P;� ` � Q;� ` �P _Q;� ` � (_l) � ` �; P;Q� ` �; P _Q (_r)These are also easily understood by the intuitive explanations above. The leftrule says that to prove something (namely, one of the formulas in �) using P _Q,you need to prove it using P , then prove it using Q. The right rule says that inorder to prove P _Q, you can prove one or the other. The hypothesis says that youcan prove one or the other, because in order to show a sequent � ` � true, you onlyneed to show that one of the formulas in � is true.
10

Homework for next week (October 20{24)1. Use the Pumping Lemma to prove that f0m1n0m+n jm � 1 and n � 1g is nota regular language.2. Assume the following statements.(1) good job) enough money ^ enjoy work(2) enough money ^ have love) i am happy(3) nice boyfriend) have loveProve: nice boyfriend ^ good job) i am happy.3. Prove by induction that12 + 22 + : : :+ n2 = n(n+ 1)(2n+ 1)6

11

