How To Do Proofs

Myra VanInwegen

December 2, 1997

The purpose of this handout is give a general guide as to how to prove theorems.
This should give you some help in answering questions that begin with “Show that
the following is true ...”. First, I'll explain it intuitively, giving a couple of examples.
Then I'll explain how this intuition is reflected in the sequent rules in Logic and
Proof.

1 Intuition

In the following, I'll call any logic statement a formula. In general, what we’ll be
trying to do is prove a formula, using a collection of formulas that we know to be
true or are assuming to be true. There’s a big difference between using a formula
and proving a formula. In fact, what you do is in many ways opposite. So, I'll start
by explaining how to prove a formula.

1.1 Meet the Connectives

Here are the logical connectives and a very brief decription of what each means.
PAQ P and Q are both true
PV Q Pistrue, or () is true, or both are true
—P P is not true (P is false)

P =@ if P is true then @ is true

P < @ P is true exactly when @ is true
Vo € S.P(z) forall z in S, P is true of =
dz € S.P(z) there exists an z in S such that P holds of =

1.2 Equivalences

These are formulas that mean the same thing, and this is indicated by a ~ between
them. The fact that they are equivalent to each other is justified by the truth tables
of the connectives.

definition of = P=Q ~ —-PVvVQ
definition of < PeQ ~ (P=Q)AN(Q=P)
definition of — -P ~ P = false
de Morgan’s Laws -(PAQ) ~ —-PV-Q
—|(P V Q) ~ =PA _|Q
extension to quantifiers -(Vz.P(z)) =~ 3Jz.-P(x)
=(3z.P(z)) =~ Vz.-P(x)
distributive laws PV(QAR) ~ (PVQ)AN(PVR)
PAQVR) ~ (PANQ)V(PAR)
coalescing quantifiers (Vz.P(z)) A (Vz.Q(z)) =~ Vz.(P(z) A Q(z))
(Fz.P(z)) V (Fz.Q(z)) ~ FJz.(P(z)V Q(x))
these ones apply if (Vz.P(z)) NQ =~ (Vz.P(x) AQ)
z is not free in @ (Vz.P(z))VQ =~ (Vz.P(x)V Q)
(Fz.P(x)) NQ =~ (Fz.P(xz)ANQ)
(Fz.P(z))vVQ =~ (Fz.P(z)V Q)

1.3 How to Prove a Formula
For each of the logical connectives, I'll explain how to handle them.

m This means “For all z in S, P is true of .” Such a formula is called a
universally quantified formula. The goal is to prove that the property P, which has
some zs somewhere in it, is true no matter what value in S z takes on. Often the
“e 87 is left out. For example, in a discussion of lists, you might be asked to prove
Vi.lengthl > 0 = Jz.member(z,l). Obviously, [is a list, even if it isn’t explicitly
stated as such.

There are several choices as to how to prove a formula beginning with Vz. The
standard thing to do is to just prove P(z), not assuming anything about . Thus,
in doing the proof you sort of just mentally strip off the Vz. What you would write
when doing this is “Let z be any S”. However, there are some subtleties—if you’re
already using an x for something else, you can’t use the same z, because then you
would be assuming something about z, namely that it equals the you're already
using. In this case, you need to use alpha-conversion' to change the formula you
want to prove to Vy € S.P(y), where y is some variable you're not already using,
and then prove P(y). What you could write in this case is “Since z is already in
use, we’ll prove the property of y”.

An alternative is induction, if S is a set that is defined with a structural def-
inition. Many objects you're likely to be proving properties of are defined with a
structural definition. This includes natural numbers, lists, trees, and terms of a
computer language. Sometimes you can use induction over the natural numbers to
prove things about other objects, such as graphs, by inducting over the number of
nodes (or edges) in a graph. You’ll get a handout about structural definition and
induction so I won’t say much about it here.

! Alpha-equivalence says that the name of a bound variable doesn’t matter, so you can change it
at will (this is called alpha-conversion). You'll get to know the exact meaning of this soon enough
so I won’t explain this here.

You use induction when you see that during the course of the proof you would
need to use the property P for the subparts of z in order to prove it for z. This
usually ends up being the case if P involves functions defined recursively (i.e., the
return value for the function depends on the function value on the subparts of the
argument).

A special case of induction is case analysis. It’s basically induction where you
don’t use the inductive hypothesis: you just prove the property for each possible
form that = could have. Case analysis can be used to prove the theorem about lists
above.

A final possibility (which you can use for all formulas, not just for universally
quantified ones) is to assume the contrary, and then derive a contradiction.

m This says “There exists an z in S such that P holds of z.” Such a
formula is called an existentially quantified formula. The main way to prove this
is to figure out what x has to be (that is, to find a concrete representation of it),
and then prove that P holds of that value. Sometimes you can’t give a completely
specified value, since the value you pick for z has to depend on the values of other
things you have floating around. For example, say you want to prove

Ve,y e Rz <yAsinz <0Asiny >0=Jzx<zAz<yAsinz=0

where R is the set of real numbers. By the time you get to dealing with the Jz.2 <
zNz < yAsinz = 0, you will have already assumed that = and y were any real
numbers. Thus the value you choose for z has to depend on whatever z and y are.

An alternative way to prove 3z € S.P(z) is, of course, to assume that no such z
exists, and derive a contradiction.

To summarize what I've gone over so far: to prove a universally quantified
formula, you must prove it for a generic variable, one that you haven’t used before.
To prove an existentially quantified formula, you get to choose a value that you want
to prove the property of.

P = Q| This says “If P is true, then @ is true”. Such a formula is called an
implication, and it is often pronounced “P implies Q)”. The part before the = sign
(here P) is called the antecedent, and the part after the = sign (here Q) is called
the consequent. P = (Q is equivalent to =P V @, and so if P is false, or if () is true,
then P = @ is true.

The standard way to prove this is to assume P, then use it to help you prove Q.
Note that I said that you will be using P. Thus you will need to follow the rules in
Section 1.4 to deal with the logical connectives in P.

Other ways to prove P = @ involve the fact that it is equivalent to =P V Q.
Thus, you can prove =P without bothering with (), or you can just prove) without
bothering with P. To reason by contradiction you assume that P is true and that
@ is not true, and derive a contradiction.

Another alternative is to prove the contrapositive: =) = —P, which is equivalent
to it.

This says “P is true if and only if @ is true”. The phrase “if and only if” is
usually abbreviated “iff”. Basically, this means that P and @) are either both true,
or both false.

Iff is usually used in two main ways: one is where the equivalence is due to one
formula being a definition of another. For example, AC B & V.o € A=z € Bis
the standard definition of subset. For these iff statements, you don’t have to prove
them. The other use of iff is to state the equivalence of two different things. For
example, you could define an SML function fact:

1
n *x fact (n - 1)

fun fact O
| fact n

Since in SML whole numbers are integers (both positive and negative) you may be
asked to prove: fact z terminates < z > 0. The standard way to do this is us the
equivalence P < (@) is equivalent to P = Q A Q) = P. And so you'd prove that
(fact z terminates = x > 0) A (x > 0 = fact z terminates).

This says “P is not true”. It is equivalent to P = false, thus this is one
of the ways you prove it: you assume that P is true, and derive a contradic-
tion (that is, you prove false). Here’s an example of this, which you’ll run into
later this year: the undecidability of the halting problem can be rephrased as
—dx € RM. x solves the halting problem, where RM is the set of register machines.
The proof of this in your Computation Theory notes follows exactly the pattern I
described—it assumes there is such a machine and derives a contradiction.

The other major way to prove =P is to figure out what the negation of P is,
using equivalences like De Morgan’s Law, and then prove that. For example, to
prove =Vz € N. 3y € N. z = y?, where N is the set of natural numbers, you could
push in the negation to get: 3z € N.Vy € M.z # %2, and then you could prove
that.

This says “P is true and @) is true”. Such a formula is called a conjunction.
To prove this, you have to prove P, and you have to prove ().

This says “P is true or @ is true”. This is inclusive or: if P and @ are both
true, then PV @ is still true. Such a formula is called a disjunction. To prove this,
you can prove P or you can prove (). You have to choose which one to prove. For
example, if you need to prove (5 mod 2 = 0) V (5 mod 2 = 1), then you'll choose
the second one and prove that.

However, as with existentials, the choice of which one to prove will often depend
on the values of other things, like universally quantified variables. For example,
when you are studying the theory of programming languages (you will get a bit of
this in Semantics), you might be asked to prove

VP € ML. P is properly typed =
(the evaluation of P runs forever) V (P evaluates to a value)

where ML is the set of all ML programs. You don’t know in advance which of these
will be the case, since some programs do run forever, and some do evaluate to a
value. Generally, the best way to prove the disjunction in this case (when you don’t
know in advance which will hold) is to use the equivalence with implication. For
example, you can use the fact that PV (@ is equivalent to =P = (), then assume —P,
then use this to prove (). For example, your best bet to proving this programming
languages theorem is to assume that the evaluation of P doesn’t run forever, and
use this to prove that P evaluates to a value.

1.4 How to Use a Formula

You often end up using a formula to prove other formulas. You can use a formula
if someone has already proved that it’s true, or you are assuming it because it was
in an implication, namely, the A in A = B. For each logical connective, T’ll tell you
how to use it.

Vx € S.P(z) | This formula says that something is true of all elements of S. Thus,

when you use it, you can pick any value at all to use instead of z (call it v), and
then you can use P(v).

Jdz € S.P(x)| This formula says that there is some z that satisfies P. However,
you do not know what it is, so you can not assume anything about it. The usual
approach it to just say that the thing that is being said to exist is just x, and use
the fact that P holds of x to prove something else. However, if you're already using
an x for something else, you have to pick another variable to represent the thing
that exists.

To summarize this: to use a universally quantified formula, you can choose any
value, and use that the formula holds for that variable. To prove an existentially
quantified formula, you must not assume anything about the value that is said to
exists, so you just use a variable (one that you haven’t used before) to represent it.
Note that this is more or less opposite of what you do when you prove a universally
or existentially quantified formula.

Usually, the main use of this formula is to prove the negation of something else.
An example is the use of reduction to prove the unsolvability of various problems
in the Computation Theory (you’ll learn all about this in Lent term). You want to
prove =@, where @) states that a certain problem (Problem 1) is decidable (in other
words, you want to prove that Problem 1 is not decidable). You know =P, where P
states that another problem (Problem 2) is decidable (i.e. =P says that Problem 2
is not decidable). What you do basically is this. You first prove () = P, which says
that if Problem 1 is decidable, then so is Problem 2. Since Q = P ~ - P = —(Q),
you have now proved =P = —(Q. You already know —P, so you use modus ponens’
to get that —@Q).

The main way to use this is that you prove P, and then you use modus
ponens to get (), which you can then use.

The main use of this is to replace an occurrence of P in a formula with @),

and vise versa.

Here you can use both P and (). Note, you're not required to use both of
them, but they are both true and are waiting to be used by you if you need them.

Here, you know that one of P or () is true, but you do not know which one.
To use this to prove something else, you have to do a split: first you prove the thing
using P, then you prove it using Q).

Note that in each of the above, there is again a difference in the way you use
a formula, verses the way you prove it. They are in a way almost opposites. For
example, in proving P A), you have to prove both P and @), but when you are
using the formula, you don’t have to use both of them.

2Modus ponens says that if A = B and A are both true, then B is true.

2 An Example

Do you remember Regular Languages and Finite Automata? If not, time to remind
yourself of them. The Pumping Lemma for regular sets (PL for short) is an aston-
ishingly good example of the use of quantifiers. We’ll go over the proof and use of
the PL, paying special attention to the logic of what’s happening.

2.1 Proving the PL

My favorite book on regular languages, finite automata, and their friends is the
Hopcroft and Ullman book Introduction to Automata Theory, Languages, and Com-
putation. You should locate this book in your college library, and if it isn’t there,
insist that your DoS oder it for you—we’ll be making plenty of use of it next term.
Also, T hope that your library already has the Aho, Hopcroft, and Ullman book
Data Structures and Algorithms, since next week you’ll get a reading assignment
from it. Let me know if you don’t have this book available, and I'll get the relevant
pages photocopied for you.

Anyway, in the Automata Theory book, the Pumping Lemma is stated as: “Let
L be a regular set. Then there is a constant n such that if z is any word in L, and
|z| > n, we may write z = uvw in such a way that |uv| < n, |v| > 1, and for all i > 0,
uv'w is in L.” The Pumping Lemma is, in my experience, one of the most difficult
things about learning automata theory. It is difficult because people don’t know
what to do with all those logical connectives. Let’s write it as a logical formula.

VL € RegularLanguages.

dn.VzeL.|z| >n=

Juvw. z=uvw A |uv| <nAlfv] >1A
Vi > 0. uwv'w € L

Complicated, eh? Well, let’s prove it, using the facts that Hopcroft and Ullman
have established in the chapters previous to the one wih the PL. T'll give the proof
and put in square brackets comments about what I'm doing.

Let L be any regular language. [Here I'm dealing with the VL € RegularLanguages
by stating that I’'m not assuming anything about L.] Let M be a minimal-state de-
terministic finite state machine accepting L. [Here I'm using a fact that Hopcroft
and Ullman have already proved about the equivalence of regular languages and
finite automata.] Let n be the number of states in this finite state machine. [I'm
dealing with the dn by giving a very specific value of what it will be, based on the
arbitrary L.] Let z be any word in L. [Thus I deal with Vz € L.] Assume that
|z| > n. [Thus I'm taking care of the = by assuming the antecedent.]

Say z is written aqas...a,;,, where m > n. Consider the states that M is in
during the processing of the first n symbols of z, ajas...a,. There are n + 1 of
these states. Since there are only n states in M, there must be a duplicate. Say
that after symbols a; and a; we are in the same state, state s (i.e. there’s a loop
from this state that the machine goes through as it accepts z), and say that j < k.
Now, let u = ajasz . ..a;. This represents the part of the string that gets you to state
s the first time. Let v = a;jy1...a,. This represents the loop that takes you from
s and back to it again. Let w = ag41...an,, the rest of word z. [We have chosen
definite values for u, v, and w.] Then clearly z = wvw, since u, v, and w are just

different sections of z. |uv| < n since u and v occur within the first n symbols of z.
|u| > 1 since j < k. [Note that we're dealing with the formulas connected with A
by proving each of them.]

Now, let i be a natural number (i.e. > 0). [This deals with Vi > 0.] Then
uwv'w € L. [Finally our conclusion, but we have to explain why this is true.] This is
because we can repeat the loop from s to s (represented by v) as many times as we
like, and the resulting word will still be accepted by M.

2.2 Using the PL

Now we use the PL to prove that a language is not regular. This is a rewording of Ex-
ample 3.1 from Hoperoft and Ullman. I'll show that L = {0’ | is an integer, i > 1}
is not regular. Note that L consists of all strings of 0’s whose length is a perfect
square. I will use the PL. I want to prove that L is not regular. I'll assume the
negation (i.e., that L is regular) and derive a contradiction. So here we go. Remem-
ber that what I’'m emphasizing here is not the finite automata stuff itself, but how
to use a complicated theorem to prove something else.

Assume L is regular. We will use the PL to get a contradiction. Since L is
regular, the PL applies to it. [We note that we're using the V part of the PL for
this particular L.] Let n be as described in the PL. [This takes care of using the
Jn. Note that we are not assuming anything about its actual value, just that it’s a
natural number.] Let z = 0"*. [Since the PL says that something is true of all zs,
we can choose the one we want to use it for.] So by the PL there exist u, v, and w
such that z = wow, |uv| < n, |v| > 1. [Note that we don’t assume anything about
what the u, v, and w actually are; the only thing we know about them is what the
PL tells us about them. This is where people trying to use the PL usually screw
up.] The PL then says that for any i, then uv'w € L. Well, then uv?w € L. [This
is using the Vi > 0 bit.] However, n? < |uv?w| < n? + n, since 1 < |v| < n. But
n? +n < (n+1)% Thus |uv?w| lies properly between n? and (n + 1)? and is thus
not a perfect square. Thus wv?w is not in L. This is a contradiction. Thus our
assumption (that L was regular) was incorrect. Thus L is not a regular language.

3 Sequent Calculus Rules

In this section, I will show how the intuitive approach to things that I've described
above is reflected in the sequent calculus rules. A sequent is 7 F A, where 7 and A
are sets of formulas.? Technically, this means that

Al/\AQ/\...An:>Bl\/BQ\/...Bm (1)

where A1, A, ... A, are the formulas in ? , and By, Bs,... B, are the formulas in
A. Less formally, this means “using the formulas in ? we can prove that one of the
formula in A is true.” This is just the intuition I described above about using vs
proving formulas, except that T only talked about proving that one formula is true,

*In your Logic and Proof notes, the symbol that divides I' from A is =. However, that conflicts
with the use of = as implication. Thus I will use F. You will see something similar in Semantics,
where it separates assumptions (of the types of variables) from something that they allow you to
prove.

rather than proving that one of several formulas is true. In order to handle the V
connective, there can be any number of formulas on the right hand side of the |-

For each logic connective,® I'll give the rules for it, and explain how it relates
to the intuitive way of using or proving formulas. For each connective there are at
least two rules for it: one for the left side of the -, and one for the right side. This
corresponds to having different ways to treat a formula depending on whether you're
using it (for formulas on the left hand side of the i) or proving it (for formulas on
the right side of the).

It’s easiest to understand these rules from the bottom up. The conclusion of
the rule (the sequent below the horizontal line) is what we want to prove. The
hypotheses of the rule (the sequents above the horizontal line) are how we go about
proving it. We’ll have to use more rules, adding to the top, to build up the proof of
the hypothesis, but this at least tells us how to get going.

You can stop when the formula you have on the top is a basic sequent. This is
7 F A where there’s at least one formula (say P) that’s in both ? and A. You can
see why this is the basic true formula: it says that if P and the other formulas in ?
are true, then P or one of the other formula in A is true.

In building proofs from these rules, there are several ways that you end up with
formulas to the left of the I, where you can use them rather than proving them.
One is that you’ve already proved it before. This is shown with the cut rule:

?FAP P?FA
TFA

(cut)

The A, P in the first sequent in the hypotheses means that to the right of the -
we have the set consisting of the formula P plus all the formulas in A, i.e., if all
formulas in 7 are true, then P or one of the formulas in A is true. Similarly P,?
to the left of the - in the second sequent means the set consisting of the formula P
plus all the formulas in 7.

We read this rule from the bottom up to make sense of it. Say we want to prove
one of the formulas in A from the formulas in 7, and we want to make use of a
formula P that we’ve already proved. The fact that we’ve proved P is shown by the
left hypothesis (of course, unless the left hypothesis is itself a basic sequent, then
in a completed proof there will be more lines on top of the left hypothesis, showing
the actual proof of the sequent). The fact that we are allowed to use P in the proof
of A is shown in the right hand hypothesis. We continue to build the proof up from
there, using P.

Some other ways of getting formulas to the left of the - are shown in the rules
(—-r) and (= r) below.

Vx € S.P(z) | The two rules for universally quantified formulas are:

Pv),?7 FA 7 A P(x)
veP@ A Y T Avep@)

In the (Vr) rule, z must not be free in the conclusion.

I won’t mention iff here: as P < @ is equivalent to P = Q A Q = P, we don’t need separate
rules for it.

Now, what’s going on here? In the (VI) rule, the Vz.P(z) is on the left side of
the . Thus, we are using it (along with some other formula, those in 7) to prove
something (A). According to the intuition above, in order to use Vz.P(x), you can
use it with any value, where v is used to represent that value. In the hypothesis,
you see the formula P(v) to the left of the . This is just P with v substituted for
z. The use of this corresponds exactly to using the fact that P is true of any value
whatsoever, since we are using it with v, which is any value of our choice.

In the (Vr) rule, the Vx.P(z) is on the right side of the . Thus, we are proving
it. Thus, we need to prove it for a generic z. This is why the Vz is gone in the
hypothesis. The z is still sitting somewhere in the P, but we're just using it as a
plain variable, not assuming anything about it. And this explains the side condition
too: “In the (Vr) rule, z must not be free in the conclusion.” If z is not free in the
conclusion, this means that z is not free in the formulas in 7 or A. That means
the only place the z occurs free in the hypothesis is in P itself. This corresponds
exactly with the requirement that we’re proving that P is true of a generic z: if x
were free in 7 or A, we would be assuming something about x, namely that value
of z is the same as the z used in those formulas.

Note that induction is not mentioned in the rules. This is because the sequent
calculus used here just deals with pure logic. In more complicated presentations
of logic, it is explained how to define new types via structural induction, and from
there you get mechanisms to allow you to do induction.

Jz € S.P(x) | The two rules for existentially quantified formulas are:

P(z),? A 7 A, P(v)
2 P@ 7 A D T A @)

In the (31) rule, must not be free in the conclusion.

In (31), we are using 3x.P(z). Thus we cannot assume anything about the value
that the formula says exists, so we just use it as z in the hypothesis. The side
condition about = not being free in the conclusions comes from the requirement not
to assume anything about z (since we don’t know what it is). If z isn’t free in the
conclusion, then it’s not free in 7 or A. If it were free in 7 or A, then we would be
assuming that the x used there is the same as the = we're assuming exists, and this
isn’t allowed.

In (3r), we are proving Jz.P(z). Thus we must pick a particular value (call it
v) and prove P for that value. The value v is allowed to contain variables that are
free in 7 or A, since you can set it to anything you want.

The rules for negation are:

PEAP P7FA
prra D rEa-p ()

Let’s start with the right rule first. I said that the way to prove =P is to assume
P and derive a contradiction. If A is the empty set, then this is exactly what this
rule says: If there are no formulas to the right hand side of the I, then this means
that the formulas in 7 are inconsistent (that means, they cannot all be true at the
same time). This means that you have derived a contradiction. So if A is the
empty set, the hypothesis of the rule says that, assuming P, you have obtained a

contradiction. Thus, if you are absolutely certain about all your other hypotheses,
then you can be sure that P is not true. The best way to understand the rule if A
is not empty is to write out the meaning of the sequents in terms of the meaning
of the sequent given by Equation 1 and work out the equivalence of the top and
bottom of the rule using the equivalences in your Logic and Proof notes.

The easiest way to understand (—l) is again by using equivalences.

The two rules for implication are:

?FA,P QJ%A(jD P7+FAQ
P=Q.7FA TEAP=Q

(=)

The rule (= [) easily understood using the intuitive explanation of how to use
P = @ given above. First, we have to prove P. This is the left hypothesis. Then
we can use (), which is what the right hypothesis says.

The right rule (= r) is also easily understood. In order to prove P = @, we
assume P, then use this to prove (). This is exactly what the hypothesis says.

The rules for conjunction are:

P,Q,7 FA) PEAP ?7FAQ
PAQ,?FA TEAPAQ

(Ar)

Both of these rules are easily explained by the intuition above. The left rule (Al)
says that when you use P A), you can use P and). The right rule says that to
prove P A () you must prove P, and you must prove). You may wonder why we
need separate hypotheses for the two different proofs. We can’t just put P, Q) to the
right of the I~ in a single hypothesis, because that would mean that we’re proving
one of the other of them (see the meaning of the sequent given in Equation 1). So
we need separate hypotheses to make sure that each of P and () has actually been
proved.

The rules for disjunction are:

P2FA Q7FA ? A PQ
pvorra Y srapvg M

These are also easily understood by the intuitive explanations above. The left
rule says that to prove something (namely, one of the formulas in A) using P V @,
you need to prove it using P, then prove it using). The right rule says that in
order to prove PV @, you can prove one or the other. The hypothesis says that you
can prove one or the other, because in order to show a sequent 7 - A true, you only
need to show that one of the formulas in A is true.

10

Homework for next week (October 20-24)

1. Use the Pumping Lemma to prove that {0™170™*™ |m > 1 and n > 1} is not
a regular language.

2. Assume the following statements.

(1) good_job = enough_money A enjoy_work
(2) enough_money A have_love = i_am_happy
(3) nice_boyfriend = have_love

Prove: nice_boyfriend A good_job = i_am_happy.
3. Prove by induction that

n(n+1)(2n + 1)
6

12+22+... 4+n?=

11

