
Functional Programming and Specification

Practical 1

This practical exercise is to be completed by 4pm on Tuesday 8th February. It will be marked
but the mark will not contribute to the overall mark for the course. Please use Moscow ML to
test your programs before you submit them, using the DICE submit command, like so:

For UG3 students: submit cs3 fps-3 1 myfile1 myfile2 . . . myfilen

For UG4/MSc students: submit msc fps-4 1 myfile1 myfile2 . . . myfilen

You may use any functions in the Moscow ML library.
Please use the exact type names and function names given below to allow some degree of

automation to be used in testing your solution. (This is not the only way that your solution will
be assessed, but it is a useful filter.)

Exercise 1 : BSTW compression
The BSTW algorithm, named after its inventors (Bentley, Sleator, Tarjan and Wei), compresses

text. It is a one-pass algorithm that maintains a table containing all the words it has seen so far.
When compression of a message begins, the table is empty. When a word that has not been seen
before is encountered, it is added to the output and also entered at the beginning of the table.
When a word that has been seen before is encountered, its position is added to the output instead
of the word itself, and then its entry is moved to the beginning of the table, pushing all the other
words down one place. Thus recently seen words will remain near the beginning of the table.
This makes the algorithm “locally adaptive”, taking advantage of the tendency for words to occur
frequently for short periods of time then fall into long periods of disuse. The compressed message
contains enough information for the uncompression algorithm to construct and maintain a copy
of the compressor’s table “on the fly”.

Write ML functions implementing BSTW compression and uncompression. Your solution
should include functions bstw:string->bstw_message and unbstw:bstw_message->string where

datatype element = Word of string | Index of int
type bstw_message = element list

You should assume that the original input contains no numbers. Don’t worry about preserving
the exact pattern of spaces and line breaks.

Exercise 2 : One-time passwords
One-time passwords are passwords that work once. After you’ve used such a password, you

need to use a new password the next time. An acceptor function checks to make sure you are
using the correct password; if so, it returns two items, namely:

1. your new password, for use next time; and

2. a new acceptor function for that password.

Otherwise it returns an error message.
Let’s model one-time passwords using the following datatype:

datatype passaccept = Wrong | Good of int * (int -> passaccept)

We can think of one-time passwords as a sequence of values

Good(p0,acc0), Good(p1,acc1), . . .

where Good(pi,acci) : passaccept for each i. The idea is that pi is the password you use at the
ith step. If you use it correctly, then acci returns the next password along with the next acceptor
function:

acci(n) =
{

Good(pi+1,acci+1) if n = pi

Wrong otherwise

We need to provide Good(p0,acc0) to start off the whole sequence.

1. Define a value even : passaccept that gives the password sequence of even integers starting
from 0. Hint: Use an auxiliary function of the form

fun check p i = if i=p then Good(... , check ...) else Wrong

2. Define a value fib : passaccept that gives the password sequence of Fibonacci numbers
1, 1, 2, 3, 5, 8, 13,

3. Define a value rand : passaccept that gives a random sequence of integer passwords be-
tween 0 and 1000, using functions from the Random library module.

?

If you want to learn more (no extra credit):

• Implement a version of BSTW that produces/consumes a sequence of bits or bytes — see
Word8 in the Moscow ML library. (In a real BSTW compression/uncompression program,
a message is encoded as a sequence of bits where indices are distinguished from words and
small indices take fewer bits than large indices.)

• There is a nice introduction to data compression on the web in http://www.ics.uci.edu/
~dan/pubs/DataCompression.html. Try to implement some other compression methods in
ML, for example Lempel-Ziv coding (the basis for Unix compress and gzip).

• You can read about S/KEYTM, a widely known one-time password (OTP) scheme, at http:
//homepages.inf.ed.ac.uk/dts/fps/papers/skey.ps. It uses a “secure hash function” f
that is easy to compute but infeasible to invert. The first password p0 is fN (s), where s is a
secret key and N is a number, and the ith password pi is fN−i(s). Thus f(pi+1) = pi. Since
f cannot be inverted, an eavesdropper who discovers one password pi cannot compute the
next password pi+1. One-time passwords are a solution to the problem of authentication,
which is one aspect of computer security.

