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Abstract

The Extended ML specification language provides a framework for the formal stepwise development of
modular programs in the Standard ML programming language from specifications. The object of this
paper is to equip Extended ML with a semantics which is completely independent of the logical system
used to write specifications, building on Goguen and Burstall’s work on the notion of an institution
as a formalisation of the concept of a logical system. One advantage of this is that it permits freedom
in the choice of the logic used in writing specifications; an intriguing side-effect is that it enables
Extended ML to be used to develop programs in languages other than Standard ML since we view
programs as simply Extended ML specifications which happen to include only “executable” axioms.
The semantics of Extended ML is defined in terms of the primitive specification-building operations

of the ASL kernel specification language which itself has an institution-independent semantics.

It is not possible to give a semantics for Extended ML in an institutional framework without
extending the notion of an institution; the new notion of an institution with syntaz is introduced to
provide an adequate foundation for this enterprise. An institution with syntax is an institution with
three additions: the category of signatures is assumed to form a concrete category; an additional
functor is provided which gives concrete syntactic representations of sentences; and a natural trans-
formation associates these concrete objects with the “abstract” sentences they represent. We use the
first addition to “lift” certain necessary set-theoretic constructions to the category of signatures, and
the other two additions to deal with the low-level semantics of axioms.

1 Introduction

Beginning with [GTW 76], [Gut 75] and [Zil 74], work on the algebraic approach to program specific-
ation has focused on developing techniques of specifying programs (abstract data types in particular)
and on formalising the notion of refinement as used in stepwise refinement (see e.g. [Ehr 79] and
[EKMP 82]). The ultimate goal of this work is to provide a formal basis for program development
which would support a methodology for the systematic evolution of programs from specifications by
means of verified refinement steps. But so far comparatively little work has been done on applying
these theoretical results to programming, with a few exceptions such as CIP-L [Bau 81], IOTA [NY 83]
and Anna [LHKO 84].

The Extended ML language [ST 85a] was the result of our attempt to apply ideas about algebraic
specifications in the context of the Standard ML programming language [Mil 85]. Extended ML is an
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extension to Standard ML whereby axioms are permitted in module interface declarations and in place
of code in module definitions. Some Extended ML specifications are executable, since Standard ML
function definitions are just axioms of a certain special form. Hence Extended ML is a wide spectrum
language in the sense of CIP-L, i.e. it can be used to express every stage in the development of a
Standard ML program from the initial high-level specification to the final program itself.

The semantics of Extended ML, as sketched in [ST 85a], is expressed in terms of the primitive
specification-building operations of the ASL kernel specification language [SW 83], [Wir 83]. From this
semantic basis Extended ML inherits its formal notion of refinement as well as proof rules which enable
refinement steps to be proved correct; moreover, the results concerning observational and behavioural
abstraction in [ST 85b] can be used to obtain a better understanding of the relation between an
Extended ML module and its interface.

In order to remain in the comfortable and standard framework of many-sorted algebras, it was
necessary in [ST 85a] to restrict attention to the development of Standard ML programs which fit into
this formalism. This meant restricting to the applicative subset of Standard ML (without assignment
and exceptions) and disallowing use of polymorphic types, higher-order functions, and partial func-
tions. Axioms were expressed in first-order predicate calculus with equality. It was hinted that these
restrictions could be avoided by extending the underlying logical system appropriately; for example,
partial functions could be allowed by changing the notion of an algebra (so that functions associated
with operation names are not required to be total) and extending axioms and the definition of the

satisfaction of an axiom by an algebra so as to provide some way of specifying the domains of functions

(see [BW 82]).

In fact, there is no need to choose a particular fixed logical system. It is possible to paramet-
erise Extended ML by an arbitrary logical system, or institution [GB 84]. An institution comprises
definitions of signature, model (algebra), sentence (axiom) and a satisfaction relation subject to a
few consistency conditions. By avoiding the choice of a particular institution when defining Fxten-
ded ML, we leave open the possibility of adopting either a simple institution for use in developing a
restricted class of Standard ML programs, or a more elaborate and expressive institution for use in
developing programs in full Standard ML. Moreover, since the use of Extended ML as a vehicle for
program development depends on viewing programs as axioms which happen to be executable, by
basing Extended ML on an arbitrary institution we make it possible to develop programs in different
languages within the Extended ML framework. With an appropriate change to the underlying insti-
tution, Extended “ML” becomes Extended Prolog (i.e. Prolog + modules + specifications), Extended
Pascal, etc. Of course, the choice of institution determines not only the target programming language
but also the rest of the logical system (including the form of non-executable axioms) which may be
used to write specifications during earlier stages of program development.

Following [ST 85a], an institution-independent semantics for Extended ML may be given by de-
fining a translation of each Extended ML specification into an ASL specification. This specification
will in turn have a well-defined class of models. ASL provides a suitable basis for this enterprise since
it already has an institution-independent semantics [ST 85c]. The translation from Extended ML to
ASL must itself be institution-independent if the result is to express the meaning of Extended ML spe-
cifications in an arbitrary institution. This is not easy to accomplish since many of the manipulations
involved in the standard case (see [ST 8ha]) use set-theoretic operations like union and intersection
to build signatures. Such manipulations are not possible in the context of an arbitrary institution
since we have no information about the set-theoretic properties of signatures — we know only that

signatures and their morphisms form a category.



In this paper we study extensions to the notion of institution which are sufficient to define an
institution-independent semantics of Extended ML by translation into ASL. The basic idea will be to
add the extra assumption that the category of signatures forms a concrete category [Macl, 71], i.e. that
it comes equipped with a faithful functor to the category of sets. This functor gives the vocabulary of
names provided by each signature and the translation of names induced by each signature morphism.
This enables us to view signatures as sets of names with structure which differs from one institution
to another. In order to “lift” the constructions outlined in [ST 85a] to an arbitrary institution it is

necessary to make a few assumptions about the properties of this functor.

Another aspect of the usual notion of institutions is inconsistent with our goals. Namely, the
sentences in an institution are merely abstract objects. A semantics which covers the “low-level”
details of Extended ML needs more information about sentences than this; an axiom which appears
in an Extended ML specification is not an abstract entity but a syntactic representation of one. In
order to take this into account we will assume that an institution comes equipped with an additional
functor giving the set of syntactic representations of sentences over a vocabulary of names as well as

a (partial) function which associates syntactic representations with sentences.

The next section provides a brief introduction to Extended ML. Section 3 reviews the notion of an
institution and gives three examples. The new notion of an institution with syntax is then presented,
and it is shown how the three example institutions can be extended to institutions with syntax. This
is followed by a discussion of the additional assumptions which are necessary to allow signatures to be
viewed as sets with structure, insofar as this is required by the semantics of Extended ML. The main
ideas of the semantics itself are presented in section 4. As this presentation of the semantics glosses
over some of the more complicated but uninteresting details, the fastidious reader may wish to refer
to the full semantics which will appear separately as [ST 86].

2 Extended ML — an overview

The aim of this section is to review the main features of and motivations behind the Extended ML
specification language in an attempt to make this paper self-contained. A more complete introduction
to Extended ML is given in [ST 85a]. Although the examples below will contain bits of Standard ML
code, the reader need not be acquainted with the features and syntactic details of Standard ML
itself, especially since one of the goals of this paper is to make Extended ML entirely independent of
Standard ML (although not of Standard ML’s modularisation facilities, which we regard in this paper
as separate from Standard ML itself). It will be sufficient to know that a collection of Standard ML
declarations defines a set of types and values, where some values are functions and others are constants.
A complete description of the language appears in [Mil 85].

Extended ML is based on the modularisation facilities for Standard ML proposed in [MacQ 85].
These facilities are designed to allow large Standard ML programs to be structured into modules with

explicitly-specified interfaces. Under this proposal, interfaces (called signatures) and their implement-



ations (called structures®) are defined separately. Every structure has a signature which gives the
names of the types and values defined in the structure. Structures may be built on top of existing
structures, so each one is actually a hierarchy of structures, and this is also reflected in its signature.
Components of structures are accessed using qualified names such as A.B.n (referring to the compon-
ent n of the structure component B of the structure A). Functors® are “parameterised” structures; the
application of a functor to a structure yields a structure. (Contrary to category-theorists’ expecta-
tions, there is no “morphism part”!) A functor has an input signature describing structures to which
it may be applied, and an output signature describing the result of an application. A functor may
have several parameters. It is possible, and sometimes necessary to allow interaction between different
parts of a program, to declare that certain substructures (or just certain types) in the hierarchy are

identical or shared

An example of a simple program in Standard ML with modules is the following:

signature P0Sig =
sig type elem
val le : elem * elem -> bool

end

signature SortSig =
sig structure Elements : POSig
val sort : Elements.elem list -> Elements.elem list

end

functor Sort(PO : POSig) : SortSig =
struct structure Elements = PO
fun insert(a,nil) = a::nil
| insert(a,b::1) = if Elements.le(a,b) then a::b::1
else b::insert(a,l)
and sort nil = nil
| sort(a::1) = insert(a,sort 1)

end

structure IntP0 : POSig =
struct type elem = int
val le = op <=

end

structure SortInt = Sort(IntP0)

Now, SortInt.sort may be applied to the list [11,5,8] to yield [5,8,11]

In this example, the types of the values sort and insert in the functor Sort are inferred by
the ML typechecker; the type of sort must be as declared in the signature SortSig while the value

Structures were called instances in the 1984 version of [MacQ 85].
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insert is local to the definition of Sort since it is not mentioned in SortSig. Certain built-in types
and values are pervasive — that is, they are implicitly a part of every signature and structure. In
this example, the pervasive types int and list are used together with the pervasive values nil, ::
(add an element to the front of a list), and <= (i.e. <). The pervasive types and values may be
regarded as forming a structure Perv with signature PervSig which is automatically included as an
open substructure of every signature and structure (“open” means that a component n of Perv may be
accessed using the name n rather than the name Perv.n). By the way, 1ist is a so-called polymorphic
type constructor, since it can be applied to any type t to form a type t 1list. The function :: is
a polymorphic function of type a * a list -> « list, meaning that it can be used to build lists

with elements of any (uniform) type.

The information in a signature is sufficient for the use of Standard ML as a programming language,
but when viewed as an interface specification a signature does not provide enough information to
permit proving program correctness (for example). To make signatures more useful as interfaces of
structures in program specification and development, one could allow them to include azioms which
put constraints on the permitted behaviour of the components of the structure. An example of such

a signature’ is the following more informative version of the signature P0Sig above:

signature P0Sig =
sig type elem
val le : elem * elem -> bool
axiom forall x:elem. le(x,x) = true
and forall x,y:elem. le(x,y) = true and le(y,x) = true => x=y
and forall x,y,z:elem.
le(x,y) = true and le(y,z) = true => le(x,z) = true

end

This includes the previously-unexpressible precondition which IntPO must satisfy if Sort (IntP0) is
to function as expected, namely that IntP0.1le is a partial order on IntP0.elem.

Formal specifications can be viewed as abstract programs. Some specifications are so completely
abstract that they give no hint of an algorithm (e.g. the specification of the inverse of a matrix A as
that matrix A™' such that A x A™" = I) and often it is not clear if an algorithm exists at all, while
other specifications are so concrete that they amount to programs (e.g. Standard ML programs, which
are just equations of a certain form which happen to be executable). In order to allow different stages
in the evolution of a program to be expressed in the same framework, one could allow structures to
contain a mixture of ML code and non-executable axioms. Functors could include axioms as well since
they are simply parameterised structures. For example, a stage in the development of the functor Sort
might be the following:

"We retain the term “signature” although this new version of POSig looks much more like a theory or
specification than a signature (as these words are used in algebraic specification).



functor Sort(PO : POSig) : SortSig =
struct structure Elements = PO
val insert : Elements.elem * Elements.elem list -> Elements.elem list
axiom forall a,al,a2:Elements.elem, 1,11,12:Elements.elem list.
insert(a,l) = 110(a::12)
=> 11012 =1
and (member(al,l1) => Elements.le(al,a))
and (member(a2,12) => Elements.le(a,a2))
fun sort nil = nil
| sort(a::1) = insert(a,sort 1)

end

(where @ is the append function on lists). In this functor declaration, the function sort has been

defined in an executable fashion in terms of insert which is so far only constrained by an axiom.

Extended ML is the result of extending the modularisation facilities of Standard ML as indicated
above, that is by allowing axioms in signatures and in structures. Syntactically, the only significant
change is to add the construct axiom az to the list of alternative forms of elementary specifications
(i.e. declarations allowed inside a signature body) and elementary declarations (declarations allowed
inside a structure body). Signatures and structures both denote classes of algebras, where a signature
Y may be regarded as an interface for a structure S if the class of algebras associated with S is
contained in the class associated with ¥. Functors are functions taking classes of algebras (contained
in the class associated with its input signature) to classes of algebras (contained in the class associated
with its output signature). The role of signatures as interfaces suggests that they should be regarded
only as descriptions of the externally observable behaviour of structures. Thus, signatures should
not distinguish between behaviourally equivalent algebras in which computations produce the same
results of “external” types. Said another way, a signature identifies algebras which satisfy the same
sentences from a pre-specified set ® meant to describe the properties of structures which are externally
observable, i.e. it describes a class of algebras which is closed under observational equivalence with
respect to @ (see [ST 85b] for an explanation of how this covers behavioural equivalence as a special
case, more motivation for the use of this notion here, and much more technical detail). This is
achieved in the semantics by first obtaining the class of algebras which “literally” satisfies the axioms
of a signature and then behaviourally abstracting (closing under observational equivalence with respect
to @) to obtain the class of algebras which “behaviourally” satisfies the axioms (cf. [Rei 84]).

In section 4 the semantics of Extended ML will be defined by translation into the ASL kernel
specification language [SW 83], [Wir 83], [ST 85¢|. From this semantic basis Extended ML inherits a
formal notion of what it means for one specification to be an implementation or refinement of another.
It also inherits proof rules which enable refinement steps to be proved correct. By composing verified
refinement steps, it is possible to develop a guaranteed-correct program from a specification in a
stepwise and modular fashion. An example of (part of) the development of an interpreter for a very

simple programming language in Extended ML is given in [ST 85a).



3 Institutions with syntax

Any approach to formal specification must be based on some logical framework. The pioneering papers
[GTW 76], [Gut 75], [Zil 74] used many-sorted equational logic for this purpose. Nowadays, however,
examples of logical systems in use include first-order logic (with and without equality), Horn-clause
logic, higher-order logic, infinitary logic, temporal logic and many others. Note that all these logical
systems may be considered with or without predicates, admitting partial operations or not. This leads
to different concepts of signature and of model; for example, to specify Standard ML programs we need
polymorphic signatures and algebras with partial operations (so-called partial algebras), higher-order

functions, etc.

The informal notion of a logical system has been formalised by Goguen and Burstall [GB 84],
who introduced for this purpose the notion of an institution. An institution consists of a collection
of signatures together with for any signature ¥ a set of Y-sentences, a collection of ¥-models and a
satisfaction relation between ¥-models and Y-sentences. Note that signatures are arbitrary abstract
objects in this approach, not necessarily the usual “algebraic” signatures used in many standard
approaches to algebraic specification (see e.g. [GTW 76]). The only “semantic” requirement is that
when we change signatures, the induced translations of sentences and models preserve the satisfaction
relation. This condition expresses the intended independence of the meaning of a specification from

the actual notation. Formally:

Definition 1 An institution INS consists of:
e « category Signing (of signatures),

e o functor Senyns: Sighyng — Set (where Set is the category of all sets; Senins gives for
any signature ¥ the set of Y-sentences and for any signature morphism o: ¥ — X' the function
Senins(c): Senins(X) — Senins(X') translating Y-sentences to X'-sentences),

e a functor Modins: Signinyg — Cat® (where Cat is the category of all categories;” Modns
gives for any signature X the category of L-models and for any signature morphismo: ¥ — Y/ the
o-reduct functor Modins(c): Modins(X') — Modins(X) translating X'-models to Y-models),
and

e « satisfaction relation FEyxinsC [Modins(X)| X Senins(X) for each signature ¥

such that for any signature morphism o: ¥ — X' the translations Modins(c) of models and Senins (o)
of sentences preserve the satisfaction relation, i.e. for any ¢ € Senins(X) and M’ € Modins(X')|

M' Esi1ns Senins(0)(¢) <= Modins(0)(M') Exins ¢ (Satisfaction condition)

°0Of course, some foundational difficulties are connected with the use of this category, as discussed in
[MacL 71]. We do not discuss this point here, and we disregard other such foundational issues in this paper;
in particular, we sometimes use the term “collection” to denote a “set” which may be too large to really be
a set.



The work of [Bar 74] on abstract model theory is similar in intent to the theory of institutions but
the notions used and the conditions they must satisfy are more restrictive and rule out many of the

examples we would like to deal with.

Notational conventions:

e The subscripts INS and ¥ are omitted when there is no danger of confusion.

e For any signature morphism o: ¥ — ¥, Sen(o) is denoted just by ¢ and Mod(o) is denoted
by —|s (i.e. for ¢ € Sen(Y), o(¢) stands for Sen(o)(¢) and for M’ € [Mod(Y)], M"U stands
for Mod(a)(M")).

e Satisfaction relations are extended to collections of models and sentences in the usual way.
Example 1 The institution GEQ of ground equations

An algebraic signature is a pair (5,9Q) where S is a set (of sort names) and € is a family of
mutually disjoint sets {Qy s }wesses (of operation names). We write f: w — s to denote w € S7,
s €S, fe Qs An agebraic signature morphism o: (S,Q) — (5", Q') is a pair (Tuorts, Topns) Where
Oeorts: S — S and Topns = {Ow.s: Qus — Q;*(w),g(s)}weS*,seS is a family of maps where o™(s1,...,5,)
denotes sorts(S1), - - - s Osorts(8n) for 81,..., 8, € 5. We will write o(s) for osots(s), o(w) for o*(w) and

o(f) for o, s(f), where f € Q5.

The category of algebraic signatures AlgSig has algebraic signatures as objects and algebraic
signature morphisms as morphisms; the composition of morphisms is the composition of their corres-

ponding components as functions. (This obviously forms a category.)
Let ¥ = (5,Q) be an algebraic signature.

A Y-algebra A consists of an S-indexed family of carrier sets |A| = {|A|s}ses and for each
fis1,...,8, — s a function f4: |[Als, X -+ X |Als, — |Als. A X-homomorphism from a Y-algebra
A to a Y-algebra B, h: A — B, is a family of functions {hs: |A|s — |B|s}ses such that for any
frs1,.o,8, = sand aq € |Alsy, ... an € |Als,, hs(falar, ... a,)) = fa(hs (a1),... ks, (an)).

The category of ¥-algebras Alg(X) has Y-algebras as objects and ¥-homomorphisms as morphisms;
the composition of homomorphismsis the composition of their corresponding components as functions.

(This obviously forms a category.)

For any algebraic signature morphism o: ¥ — ' and Y'-algebra A’, the o-reduct of A’ is the
Y-algebra A"g such that |A"g|5 = |Al,() for s € S and fA/|U = o(f)a for f: w — s in X. For
a Y'-homomorphism A': A* — B’ where A’ and B’ are Y'-algebras, the o-reduct of A’ is the -
homomorphism h/‘g: A"U — B"g defined analogously. The mappings A’ +— A"g, B h"g form a
functor from Alg(X’) to Alg(X).

For any algebraic signature ¥, Alg(¥) contains an initial object Tx which is (to within isomorph-
ism) the algebra of ground Y-terms (see e.g. [GTW 76]). A ground Y-equation is a pair (¢,1') (usually

written as ¢ = t') where ¢,¢" are ground X-terms of the same sort.

By definition, for any Y-algebra A there is a unique ¥-homomorphism h: Ty, — A. For any ground
term ¢ € |Tx|s (for s in the sorts of ¥) we write ¢4 rather than h,(t) to denote the value of ¢ in A. For
any Y-algebra A and ground Y-equation ¢ = ' we say that ¢ = ' holds in A (or A salisfies t = t'),
written A =t =1 ift4 =1,.



Let o: ¥ — Y be an algebraic signature morphism. The unique ¥-homomorphism h: Ts — T ‘U
determines a translation of ¥-terms of ¥'-terms. For a ground Y-term ¢ of sort s we write o(¢) rather
than hg(t). This in turn determines a translation (again denoted by o) of ground Y-equations to

ground Y-equations: o(t = ') =4 o(t) = o(t').

All of the above notions combine to form the institution of ground equations GEQ:
e Signgpq is the category of algebraic signatures AlgSig.

e For an algebraic signature ¥, Sengrq(Y) is the set of all ground Y-equations; for an algebraic
signature morphism o: 3 — Y'| Sengrq(c) maps any ground Y-equation ¢ = ¢’ to the ground
Y-equation o(t) = o(t').

e For an algebraic signature ¥, Modggrq(Y) is Alg(Y); for an algebraic signature morphism
o: Y — Y Modgrq(o) is the functor _‘g: Alg(Y) — Alg(Y).

e For an algebraic signature ¥, =5 grq is the satisfaction relation as defined above.

It is easy to check that GEQ is an institution (the satisfaction condition is a special case of the

Satisfaction Lemma of [BG 80]).

We have presented the above example in such detail to show explicitly how standard definitions
may be put together to fit into the mould of an institution. The following examples will be presented

in a more sketchy way.
Example 2 The institution OSGEQ of ground equations in order-sorted algebras

This example is based on [GJM 85] where the reader may find a more detailed presentation, a
number of interesting technical results and examples indicating how this institution may be used in

algebraic specification.

An order-sorted signature is a triple (5, <, Q) where (S, <) is a partially ordered set (of sort names)
and Q = {Q, s }wesses is a family of sets (of operation names). If s < s’ for 5,5’ € S, we say that
s is a subsort of s'. Thus, roughly, an order-sorted signature is an algebraic signature with a subsort
ordering on sorts. We extend the subsort ordering to lists of sorts of the same length in the usual
(component-wise) way. We also use the same notational conventions as in the previous example for
algebraic signatures. Unlike the case of algebraic signatures, however, we do not require the sets
{Qu,s wes* ses to be mutually disjoint. On the contrary, we assume that if f: w — s is an operation
name then f: w’ — s’ is also an operation name for any w’ < w and s < s’. Moreover, for technical
reasons (cf. [GJM 85]) we assume that order-sorted signatures are regular, i.e. for any w™ € S™, if

f:w — s for some w” < w then there is a least {w',s’) € §* x S such that w* < w’ and f: v — 5.

Order-sorted signature morphisms are defined in the same way as algebraic signature morphisms,
except that additionally their sort components are required to be monotonic with respect to the
subsort orderings and their operation-name components to preserve the identity of operation names

with different arities and result sorts.

This defines the category OrdSig of (regular) order-sorted signatures and their morphisms, which
is the category of signatures in the institution OSGEQ.

Let ¥ = (5, <, Q) be an order-sorted signature.



An order-sorted Y-algebra is just a (S5, Q)-algebra A (in the sense of the previous example) such
that |A|; C |A|y whenever s < s"in ¥, and such that for f: w — s, w’ < w and s < ', the function
corresponding to f: w' — s’ in A is the set-theoretic restriction of the function corresponding to
frw — s. Similarly, an order-sorted ¥-homomorphism is just a (5, €)-homomorphism h such that
hs is a restriction of hy if s < s’. This defines the category OSAlg(Y) of order-sorted Y-algebras,
which is the category of ¥-models in OSGEQ. For any order-sorted signature morphism o: ¥ — Y/,
we define the o-reduct functor _‘g: OSAlg(Y') — OSAlg(Y) exactly as in GEQ.

Finally, the sentences of OSGEQ and their satisfaction by order-sorted algebras is defined in the
same way as in the standard algebraic case, i.e. in GEQ. Notice, however, that in the order-sorted
case terms may have more than one sort. It turns out (see [GJM 85]) that every term built over
a regular order-sorted signature has a least (most general) sort. Moreover, the value of a term in
an order-sorted algebra does not depend on which of its sorts we consider. Thus, whether a ground
equation ¢ = t' is satisfied by an order-sorted algebra or not is independent of which of the common

sorts of ¢ and ¢’ we choose to evaluate the terms in.

Please note that the above examples deal with ground equations for the sake of simplicity of
exposition rather than because of any inability of the notion of institution to cope with variables.
For example, an institution FOEQ may be obtained from GEQ by changing the definition of the
Sen functor so that when applied to ¥ € |AlgSig| it produces the set of all sentences of first-order
predicate logic over ¥ with equality (the satisfaction relation must be modified accordingly). Another
institution may be obtained from OSGEQ in the same fashion. There are in fact general constructions
for introducing variables into the sentences of an arbitrary institution and for binding such variables
with different quantifiers (see [ST 85¢], [Tar 84]) as well as for introducing logical connectives (cf.
[Bar 74]), so FOEQ can be produced from GEQ by “iterative” application of a sequence of general

constructions.
Example 3 The institution CRCAT of commutativity requirements in categories

The third example we consider is of a slightly non-standard character. We present a simple logic
for stating that certain diagrams in a category commute. We will consider categories with named
objects and morphisms. Sentences of the logical system we describe will allow one to require that

morphisms produced by composition of series of (named) morphisms coincide.

The category of signatures in CRCAT is the category Graph of directed graphs, i.e. the category
of algebras over the algebraic signature having the two sorts node and edge and the two operations
source: edge — node and target: edge — node, together with their (homo)morphisms.

Then, a model over a graph (& is a category C having a subcategory with “shape” G i.e. a graph
morphism F: G — C from G to the underlying graph (the pre-category) of C.

For two G-models F'1: G — C1 and F2: G — C2, a G-morphism in Modcrcar(G) from F1 to
F21is a functor F: C1 — C2 such that F1;F = F2.

For any graph G and two nodes s, € |G 0des, @ path in GG with source s and target ¢ (or, from
s to 1) is a sequence €q...e, (n > 1) of edges in G such that sourceg(er) = s, targeta(e,) =t and
sourceg(e;) = targetg(e,—1) for 1 < i < n. Moreover, for each node s we have the empty path e

(from s to s).

For any G-model F': G — C, a path p from s to ¢ in ¢ determines a morphism F(p): F(s) — F(t)
in C defined by F(e,) = idp() for s € |Glnoaes and Fey...e,) = F(eq);---:1F (e,) for a non-empty
path e;...¢, in G.



(The above definitions may be formulated in a much more compact way using the standard ma-
chinery of category theory. Namely, for any graph G, the category of (G-models has an initial model,
which is — up to isomorphism — the category of paths in . The evaluation p — F(p) is given by
the unique G-morphism — a functor — from this initial G-model to F: G — C.)

By a path equation in (¢ we mean any pair of paths in G with the same sources and targets,
respectively. We say that a G-model F: ¢ — C satisfies a path equation (p,q) if F(p) = F(q).

Finally, for any graph G' (a signature in Signcgpcar) G-sentences in CRCAT are sets of path

equations in (&, where a GG-model satisfies a GG-sentence ® if it satisfies all path equations ¢ € ®.

As mentioned before, the notion of an institution is not sufficiently rich to deal with all the
syntactic-level details of the Extended ML semantics we want to describe. We need to associate with
every signature of the underlying institution the vocabulary of names it provides. Then, we assume
that the sentences over any signature have “syntactic representations” built using the vocabulary of
names provided by the signature. We require that every signature morphism o: ¥ — ' induces a
translation of the names of ¥ to the names of ¥'. This in turn will induce a translation between
the syntactic representations of Y-sentences and X'-sentences, which must be compatible with the

translation of sentences in the underlying institution. All this leads to the following definition:

Definition 2 An institution with syntax is an institution INS = (Sign,Sen, Mod, {|=x}scsign|)
together with:

e « functor Names: Sign — Set (which gives the vocabulary of names a signature provides),

e an endofunctor Syn: Set — Set (which gives the set of syntactic representations of sentences
over a vocabulary of names),

o for any signature ¥ € |Sign|, a partial function repry: Syn(Names(X)) =~ Sen(X) (which

associates syntactic representations with sentences)
such that:

1. the functor Names is faithful, i.e. for any two “parallel” signature morphisms oy, 09: ¥ — Y,
if Names(cy) = Names(oy) then o1 = 0y;

2. any syntactic representation of a sentence determines the set of names it actually uses, i.ec.
Jor any set N and ax € Syn(N), there is a least set N' C N such that ax € Syn(N');

3. the family of representation functions is a natural transformation repr: Names;Syn — Sen
(in the category of sets with partial functions), i.e. for any signature morphism o: % — %' we
have Syn(Names(o));reprss = repry;Sen(o) (as partial functions), which is to say that the
following diagram commutes:

repry;

Syn(Names(Y)) Sen(Y)
Syn(Names(o)) Sen(o)

Syn(Names(%')) —eprs— Sen(¥)



The intuition behind the representation functions {reprs }sesign| is that computing the value of
such a function on an argument corresponds to the parsing and typechecking of (a representation of)
a sentence. Notice that for any signature ¥, repry is only a partial function. There may be objects
in Syn(Names(Y)) which actually do not represent any sentence from Sen(X). This corresponds,
for example, to the case of ill-typed equations (see examples below). We do not require repry to
be surjective either; this allows some sentences to have no syntactic representation. For example, if
Sen(Y) is some class of infinitary formulae, it might be possible to find syntactic representations for
some sentences (e.g. the finitely presentable ones) but not for others. Alternatively, suppose Sen(X)
includes data constraints [GB 84]; one would expect those involving theories with no recursively
enumerable axiomatization to have no syntactic representation. Furthermore, we do not require
repry to be injective, since a sentence might have multiple syntactic representations. To take a
simple example, we could allow redundant parentheses to be inserted into syntactic representations
of first-order formulae. We do require repry to be a function, which means that representations are
unambiguous, i.e. any syntactic object over the vocabulary of names of a signature represents at most

one sentence over this signature.

The recent work of Goguen and Burstall [GB 86] on charters and parchments opens similar possib-
ilities as our notion of an institution with syntax does (among others). In their “parchment chartered
institutions”, however, sentences just are (rather than are represented by, as in our institutions with
syntax) well-formed finitary syntactic objects, which excludes some of the cases mentioned above.
It may be interesting to check if our semantics of Extended ML may be given in the framework of
parchments (with some additional assumptions corresponding to our assumptions about the functor
Names).

Example 1 The institution GEQ of ground equations (revisited)

There is a natural way to extend the institution GEQ to an institution with syntax. Namely, for
any algebraic signature ¥ = (5, ), let Namesgrq(X) be the disjoint union of S and (the union of) Q.
Then, for any set IV, let Synggqg(/V) be the set of all pairs of (any representation of) finite trees with
nodes labelled by elements of N. Both of these extend to functors in the obvious way. Finally, for any
algebraic signature ¥ and pair of labelled trees (¢, ") € Syn(INames(X)), to compute reprs geq({t,1'))
one has to check whether ¢ and ¢ are syntactically well-formed and well-typed X-terms of the same
sort. If this is the case, the result is the obvious equation in Sengrq(X); otherwise the result is

undefined. It is easy to check that these extensions to GEQ satisfy the required conditions.
Example 2 The institution OSGEQ of ground equations in order-sorted algebras (revisited)

The institution OSGEQ may be extended to an institution with syntax in exactly the same way
as the institution GEQ was in the previous example. The only difference is that the typechecking of

terms is more elaborate in the order-sorted case (cf. [GJM 85]).
Example 3 The institution CRCAT of commutativity requirements in categories (revisited)

Again, the definition of the vocabulary of names used in a graph G (a signature in |Signcrcar!|)
is obvious: Namescrcat(() is the disjoint union of the sets of nodes and of edges in (. Then, for
any set N, Syncrear(N) is the set of all (isomorphism classes of) finite directed graphs with nodes
and edges labelled by elements of N. Again, both of these extend in the obvious way to functors.



For any graph ' € [Signcrear| and graph D € Syncrcar(Namescrcar(G)), to compute
repra.orear (D) we first check whether the labelling of D is consistent with (7, i.e. whether the nodes
of D are labelled by nodes of G and whether the edges of D are labelled by edges of G with source
and target nodes as in (7. If this is not the case, the result is undefined. Otherwise, reprg crcar(D)
is the set of path equations over (G corresponding — by taking sequences of edge labels instead of
sequences of edges — to the set of pairs of finite (and possibly empty) paths in D with the same

sources and targets, respectively.

In other words, reprg.crcar(D) is a set of path equations semantically equivalent to the require-
ment that D is a commutative diagram.” Note that in contrast to the two previous examples, the

representation functions in CRCAT are neither injective nor surjective in general.

In the rest of this section we will explore the possibilities opened by our having enriched the
structure of the category Sign in an institution with syntax to form a concrete category (Sign, Names)
(see [MacL 71]). The idea is that we want to “lift” some basic set-theoretic notions from the sets of
names in signatures to signatures themselves, i.e. from the category Set to the (concrete) category
Sign. We will need some additional assumptions, used also later in the definition of the semantics of
Extended ML. (What follows works in an arbitrary concrete category and may in fact be well-known
folklore in the theory of concrete categories, but we were not able to locate appropriate references.)

We say that a signature morphism ¢: ¥ — X' is a signature inclusion if Names(:) is an inclusion
(of Names(Y) into Names(Y')). If there exists a signature inclusion from X to ¥, we call ¥ a
subsignature of ¥'. Notice that then the signature inclusion is unique, since the functor Names is

faithful; we denote it by txcyy.

A subsignature ¥ of X' is said to be full if every subsignature of ¥’ with the same set of names
as Y is a subsignature of ¥. Notice that in (AlgSig, Namesggq) and (Graph, Namescrcar) the
notions of subsignature and of full subsignature coincide — every subsignature is full. This is not the
case in (OrdSig, Namesosgrq), though. An order-sorted subsignature ¥ of ¥ is full if and only if

¥ inherits from Y all the subsort requirements concerning the sorts of .

We call a set of names N C Names(X) closed in ¥ if there is a subsignature ¥’ of X with the set
of names N, i.e. such that Names(X') = N.

For any set N C Names(Y), a signature generated in ¥ by N is a full subsignature X’ of 3 such
that Names(X') is the smallest set containing N and closed in .

Assumption 1 For any signature ¥ and set N C Names(X) there exists a unique signature gener-
ated by N in X, denoted Z‘N.

Corollary  If «: ¥ — X' is an isomorphism such that Names(¢) is an identity (on Names(Y) =
Names(X')) then ¢ is ilself an identity (on X =X').

Proof By definition we have ¥ = Z"Names@/) = Y. Then, since the functor Names is faithful

(and, of course, preserves identities) « must be the identity morphism.

"The definitions could be altered slightly to more accurately reflect normal usage, so that (for example)
the diagram A—f>BZ::CW0111d require that f;g = f;h but not that ¢ = h. The corresponding diagram in
our present version of CRCAT is a square with two copies of B and f.



Let S be a set of signatures, X a set and ® = {¢x: Names(¥) — X}yes a family of functions.
We say that S is compatible along ® if there exists a signature ¥y;, such that X C Names(2;,) (let
in: X — Names(X;;,) be the inclusion) and a family of signature morphisms {os: ¥ — Y4, }ves
such that Names(oy) = pxin for ¥ € S. If this is the case, we say that Y, contains S wvia
{ox: ¥ — Yp,}tres. The signature induced by S along @ is, intuitively, the least such signature
Ypig. Formally, we say that ¥,,4 together with a family of signature morphisms {ox: ¥ — ¥4} ves
is induced by S along ® if:

o Y,,q contains § via {ox: ¥ — Y4} ves;
e Names(X,,4) = X; and
e Y, is a subsignature of any signature X;;, which contains § via {og: ¥ — Xy, }ses-
Notice that if such a signature X;,4 exists (together with such a family of signature morphisms) then:
1. Yinq 18 unique;

2. For each ¥ € §, the signature morphism og: ¥ — ¥,,4 is unique (ox will be denoted ¢y in the

sequel); and

3. For any 3, with {oe: Y — Yhig res as above, the “universal inclusion” ¢: ¥, — Yy, is unique
and oyx;t = oy for ¥ € S.

Proof Parts 2 and 3 follow directly from the faithfulness of Names. For 1, suppose that both ;.4
and X}, are induced by S along ®. Then there exist signature inclusions v: Yig — M., and ' X —
Yina. Hence, both ;' and ;¢ are signature inclusions, and hence identities (since Names(X;,q) =
X = Names(X!,,;)). Thus, ¢ is an isomorphism and Names(¢) is an identity, which implies (by the

corollary to assumption 1) that ;.0 = X .

Of course, in general ¥;,; does not have to exist. Even in the most standard case, for algebraic
signatures, the role of each element of X in the induced signature must be identified. On a more

formal level, this amounts to the requirement that the family @ is (collectively) surjective, i.e. for
every @ € X there exists some ¥ € § and n € Names(X) such that pg(n) = .

Assumption 2 For any family of signatures & C |Sign| compatible along a surjective family of
functions ® = {py: Names(X) — X}yues there exists a signature induced by S along ® (which is

then unique, by the above remarks).

Let & be a family of signatures, N = Uscs Names(X), and let 7 = {iny: Names(X) — N}ses

be the family of inclusions.

We say that S is compatible if it is compatible along 7. By the union of S, written |JS, we mean
the signature induced by S along Z. (If S is finite we may use the usual infix notation for the union.)
We say that a signature ¥ is compatible with S if the family S U {¥} is compatible.

Lemma 1 Let S be a compatible set of signatures.

1. Any subset 8" C S is compatible;



2. If ¥ is a subsignature of a signature in S then X is compatible with §; and

3. For any subset S' C S, US' is compatible with S.

Proof Obvious, since any signature which contains S also contains: (1) S', (2) ¥, and (3) US'.

Intuitively, conflicts between signatures arise (signatures are incompatible) when different signa-

tures use the same names in different ways. We formalise this intuition as follows:

Assumption 3 Any finite family of signatures with disjoint names apart from a common full subsig-
nature is compatible; i.e. for any finite family S of signatures, if there is a signature ¥, which is
a full subsignature of each signature in S such that the sets Names(¥X) — Names(X,.,,) are disjoint
for different X € S, then § is compatible.

4 The semantics of Extended ML

In this section we outline the main ideas behind the semantics of Extended ML (EML). Although some
of the purely technical issues are not discussed here, all of the non-standard aspects of the semantics

are treated. The reader who is interested in the full details of the semantics of Extended ML is referred

to [ST 86].

As discussed in the introduction, the ideas presented here and the details in [ST 86] are independent
of the institution with syntax in which the user of the language may choose to work. This means
that we actually describe a family of specification languages, each one obtained by instantiating the
definitions we provide in a given institution with syntax (together with some low-level details — see
below). The examples in section 2 are written in the variant of Extended ML obtained by instantiating
the definitions in a version of the institution FOEQ in which “executable” axioms may be written
in Standard ML syntax to distinguish them from non-executable ones. We will use the term “the
standard variant” to refer to this language below.

Throughout this section we assume that we are given an arbitrary but fixed institution with syntax,
INS = (Sign, Set, Mod, =, Names, Syn, repr). To clarify the overloaded term “signature” (sorry,
but it’s not our fault!) we adopt the convention that “signature” refers to signatures of INS (objects
of Sign), denoted by X, X' etc. while “EML signature” refers to the concept of signature appearing
in the specification language. For consistency, we will also use the terms “EML structure” and “EML
functor”.

The semantics of Extended ML we present is based on the ASL kernel specification language
described in the framework of an arbitrary institution in [ST 85¢]. Informally in this section (and

formally in [ST 86]) we refer to the following specification-building operations of ASL:

e Form the union of a family of Y-specifications {SP,;}.cr, specifying the collection of ¥-models
satisfying SP; for all ¢ € I. We sometimes speak of the intersection of model classes instead.

o Translate a Y-specification to another signature ¥’ along a signature morphism o: ¥ — X'
This together with union allows large specifications to be built from smaller and more or less

independent specifications.



o Derive a Y-specification from a specification over a richer signature ¥ using a signature morph-
ism o: ¥’ — Y. This makes it possible to forget or rename components of a specification while

essentially preserving its collection of models.

o Abstract away from certain details of a specification, admitting any models which are observa-
tionally equivalent to a model of the specification with respect to some given set of properties

(defined using sentences of the institution).

These operations can be viewed as functions on classes of models over a given signature.

The basic entities of Extended ML are EML signatures, structures and functors. We discuss each

of these in turn.

4.1 EML signatures

As indicated before, an EML signature essentially denotes a class of models over a given signature .
However, we inherit from Standard ML certain complications which force us to adopt a more complex
view. The most obvious one is that in Standard ML the same object may have multiple names which
are said to share. The way we adopt here to cope with this is to assume that the names which occur in
Y are unique internal semantic-level names which are associated with one or more external identifiers

to which the user may refer. Thus, the denotation of an EML signature is taken to be a quadruple

(N,7,%,C) where:
e N is a set of (external) identifiers,
e Y is a signature,

e 7: N — Names(Y) is a function assigning an internal name to each external identifier, and
e C C |Mod(Y)| is a class of ¥-models.

We call quadruples of this form EML values. We occasionally identify EML signatures (and structures)
with the EML values they denote. Sharing is determined by identity of internal names, i.e. it n,m € N
are two external identifiers then n and m share iff 7(n) = 7(m). Every EML signature is closed in the
sense that all components of its underlying signature ¥ have associated external identifiers in NV, i.e.
7 is surjective. Substructures are not handled by maintaining an explicit hierarchy of EML values.
Rather, this is done at the level of external identifiers by using identifiers like A.n for the component

n of the substructure A; any identifier having this form is assumed to refer to a component of A.

As in the standard variant, every EML signature contains the pervasive EML signature. This is
modelled by the implicit assumption that every EML value which is generated as the denotation of
an EML signature contains as a full subvalue the pervasive EML value (Npervs Tpervs Sipervy Cperv)s 1-€.
for any EML value (N, 7,3, CY, Npery € N, 7] Nperv = Tperv, Sperw 18 a full subsignature of ¥ and the
Yipero-models derived from €' using the signature inclusion tg,.,,cs are included in Cp,,. With this
in mind we adopt the convention that when we say that two sets of names are disjoint, we mean that
they are disjoint apart from pervasive names. Of course, the pervasive value depends on INS and

must be provided when Extended ML is instantiated in a given institution.

Thus we start elaboration of an EML signature sig by including in its denotation the pervasive

EML signature. This is gradually extended with each elementary specification in szg.



The most basic kind of elementary specification is to extend the underlying signature of the
current EML value (in the standard variant, by adding new types/values). Again, this is one of the
things which cannot be treated in a completely institution-independent way; we must assume that a
signature morphism describing the extension is given. After all, the way such extensions arise depends
fundamentally on what signatures really are and what structure is available on them. We assume,
however, that this morphism never changes the existing names of the signature.

Thus, as a replacement for Standard ML syntax like val f:t->t and type t, Extended ML
contains a construct extend along i: ¥ — X' where ¥ is the underlying signature of the current
EML value and ¢ is a signature inclusion. We assume that some syntax analogous to val f:t->t
and type t for describing such signature inclusions is provided when Extended ML is instantiated in
a given institution. We will regard the Standard ML declaration val v:t = exp as an abbreviation
for val v:t; axiom v = exp, and fun f(paty:t):t’ = exp; | ... | £(pat,:t):t’ = exp, as an
abbreviation for val f:t->t’; axiom f(pat;) = exp; and ... and f(pat,) = exp,. However, the

declaration type t = t’ is an abbreviation for new name t for t’ (see below).

Note that ¢ may not only introduce new names; it also could enrich the structure of the signature
Y. For example, in order-sorted logic ¥ may be the signature with two sorts t,t’ and X' could be &
together with the requirement that t < t' (and possibly some new names as well).

The semantics of this construct is straightforward: we simply change the current underlying sig-
nature to X', translate the class of models along ¢, and make the new internal names Names(¥') —

Names(X) available as external identifiers.

To simulate a different kind of elementary specification (e.g. type t = t’ in the standard variant)
which introduces a new external identifier for an existing internal object, Extended ML provides the
construct new name n for m where n is a new external identifier and m is required to be an external
identifier available in the current EML value. This construct just introduces the new external identifier

n and binds it to the internal name associated with m.

Note that this construct already introduces the possibility of sharing by allowing a new external
identifier to be bound to an existing object. Two existing external identifiers n and m can be forced
to share by the elementary specification sharing n = m. The intuitive meaning of this is that nothing
happens if n and m share already; otherwise the resulting underlying signature will identify the
internal names associated with n and m. To describe the nontrivial case formally, consider a function
©: Names(X) — (Names(X) — {7(n),7(m)} U {new}) where ¥ is the underlying signature of the

current EML value and new is an arbitrary name not in Names(X) — {7(n), 7(m)}, such that:

o(z) = { new if x € {r(n),7(m)}

x otherwise

(A little more care is necessary if either 7(n) or 7(m) is pervasive.) The resulting underlying sig-
nature is the signature induced by X along ¢; the set of external identifiers remains the same, the
correspondence between external identifiers and the new internal names is altered in the obvious way,
and the models are translated along @ (recall that ¢ is the signature morphism from ¥ to the new
signature such that Names(p) = ¢).

Of course, ¥ does not have to be compatible along ¢, which means that we are attempting to
identify incompatible components (in the standard variant, this happens if n denotes a type and m
denotes a value or if n and m denote values having different types). If this is the case, the elaboration
of the elementary specification yields an error. Assumption 2 guarantees that otherwise the signature

induced by ¥ along ¢ exists.



We will not consider here the intricacies of sharing constraints for substructures inherited from
Standard ML; a first approximation would be to regard such a sharing constraint as an abbreviation
for a set of sharing constraints for the corresponding components of the substructures — see [ST 86]

for the complete details.

The last way to extend EML signatures is to add a substructure of a given EML signature using
the construct structure A : sig’ where A is an atomic identifier and sig’ is an EML signature, either
defined here explicitly or taken from the environment. Intuitively, this adds si¢’ to the current EML
signature, renaming each external identifier n of sig’ to A.n. This is not enough, though, because it
is necessary to avoid unintended sharing which may occur if si¢g’ happens to use some of the same
internal names as the current EML value. More formally, let (V,7,%,C) denote the current EML
value and (N', 7/, %' (") denote sig’. To elaborate structure A : sig’ we have to choose a signature
¥ isomorphic to ¥’ (where i: ' — ¥" is the isomorphism) but having names disjoint from the names
of 3, modulo pervasive names. If such a ¥” does not exist then we have (intuitively) run out of names
which causes an error — but this cannot happen in any of the example institutions from section 3.
Otherwise we take the union signature of ¥ and ¥ as the underlying signature of the result. It exists
by assumptions 2 and 3. The class of models is the intersection of the classes of models of C' and C’
translated into the union signature (along ¢scxusr and ijtzncsuny respectively). The new external
identifiers are the ones already present in IV together with the identifier A.n for each n € N’ with
the obvious association to internal names.

Axioms may be imposed on an EML signature to restrict its class of models. The syntactic
representation of sentences from INS is used to present axioms using the construct axiom ax. To
elaborate this in the current EML value (N, 7, ¥, C) we first check if ax uses only the available external
identifiers, i.e. if ax € Syn(N). Then we translate it to syntax over the internal names Names(Y),
i.e. to Syn(7)(ax), and find the sentence § in Sen(X) it represents, i.e. § = reprg(Syn(7)(ax)).
This process may be compared to the process of parsing and typechecking in Standard ML. If it is
unsuccessful, i.e. § does not exist, an error occurs. Otherwise we restrict the class of models C' to
those which satisfy § (according to the satisfaction relation |=y).

The elaboration of elementary specifications as discussed above gives us the literal interpretation
of all the axioms in an EML signature, giving an EML value (N, 7, %, C). As discussed in section 2,
we want to relax this interpretation using the notion of behavioural abstraction. This happens when
we complete elaboration of any EML signature. To the class of models €' we add all those ¥-models
which are observationally equivalent to the models already in C' with respect to a set ® of observable
sentences chosen to model an appropriate notion of behavioural equivalence (i.e. we add any model
which satisfies exactly the same sentences of ® as a model already in C'). Naturally, the choice of ®
cannot be made in an institution-independent way. All we can provide to guide this choice is the set
of names which should be viewed as having an externally fixed interpretation. These are the pervasive
names together with those occurring in substructures, i.e. having non-atomic external identifiers.
Thus we assume that when instantiating Extended ML in an institution with syntax we are provided
with a function beh which assigns to any signature ¥ and set of names OBS C Names(Y) a set of X-
sentences beh(X, OBSY) (more precisely, a set of open Y-formulae — see [ST 85b]) such that (intuitively)
observational equivalence with respect to beh(X, OBS) models behavioural equivalence of ¥-models
with respect to observable components OBS. For example, in the standard variant beh (¥, OBS) would
yield the set of all equations between Y-terms having sorts in OBS (and free variables of sorts in OBS).



4.2 EML structures

Like EML signatures, EML structures denote EML values (N, 7, ¥, C); and like EML values denoting
EML signatures, EML values denoting EML structures always contain the pervasive EML value as
a full subvalue. However, an essential difference arises from the fact that EML structures can freely
refer to components of previously-constructed EML structures. When an EML structure is constructed
using pieces of other EML structures, sharing across structure boundaries may occur. This implies that
EML structures cannot be treated as isolated entities; two components of different EML structures
share iff they have the same internal name. We must ensure by our choice of internal names that
such sharing does not arise unintentionally. The elaboration of structure expressions takes place in
the context of an environment binding atomic identifiers to EML (structure) values so the internal

names of all EML structures presently in existence are available.

As with EML signatures, the elaboration of an EML structure str starts by including the per-
vasive EML value and then proceeds by elaborating the elementary declarations in str. Elementary
declarations in EML structures include all elementary specifications which can appear in EML signa-
tures except for sharing constraints; sharing in EML structures arises by construction rather than by
declaration. The semantics of these constructs in an EML structure context is more complicated than
their interpretation in an EML signature context. To simplify slightly the description of the semantics
below we will assume that identifiers may not be redeclared within a given structure. In order to
permit redeclaration we would have to throw away components of the current EML value which are

no longer accessible via external identifiers in appropriate places in the semantics — see [ST 86] for

full details.

The first kind of elementary declaration extends the underlying signature without constrain-
ing the interpretation of the extension (in the standard variant this corresponds to declarations of
new types/values without binding them, such as type t or val v:t->t but not type t = int or
val v = exp). The syntax extend along «: X — X' and its semantics is the same as of the cor-
responding elementary specification in an EML signature. However, in order to avoid unintentional
sharing we additionally have to ensure that the newly-introduced internal names are different from
all those belonging to already-existing structures. We do this by changing the underlying signature
of the result to an isomorphic one while preserving the names of the current signature ¥. This may
be impossible if (intuitively) we have run out of names, in which case an error arises. This cannot

happen in any of the example institutions from section 3.

The semantics of new name n for m is as before if m is an external identifier of the current EML
value (N, 7,3, C). If not, it must be of the form A.p for some atomic identifier A naming an EML
structure (N', 7/, ¥’ ') available in the environment where p € N’. Then (intuitively) we have to
grab the internal name and interpretation of p and add it to the current EML value under the external
identifier n. More formally, let ¥, =4 Z"{T/(p)} be the subsignature of ¥’ generated by the internal
name of p and let €, be the restriction of the model class ' to Y, (along szgzl). We will need a
similar operation of restricting an EML value to a subset of its external identifiers again in the sequel
so let us define that for any EML value (N, 7', %' (") and set X C N’ the subvalue of (N', 7', 3, C")
generated by X is (N', 7', %' ") ‘X =aer (X, 71X, Y |1x), C") where C" is the class of ¥

derived from ¢ using the signature inclusion LX) CF-

#1(x)-models

Returning to the elaboration of the new name construct, the resulting EML value will have an
underlying signature X U X, external identifiers N U {n} with n assigned to the internal name 7'(p),
and a class of models which is the intersection of the appropriate translations of C' and C), into the

signature XU Y,. However, it may turn out that the union signature YUY, does not exist. Intuitively



this may occur if ¥ and X, have incompatible structures on some common part. In order-sorted
logic, suppose A is an EML structure containing sorts t and t’ and consider the following example
(where the constructs require and val are just convenient syntax for extend along in this particular

institution):

structure B struct structure C = A
require C.t < C.t’
val £ : C.t -> C.¢t’

end

structure D struct structure E = A
require E.t’ < E.t
new name g for B.f

end

The subsignature of B generated by £ must contain the sorts A.t = B.C.t = D.E.t and A.t’ =
B.C.t’ = D.E.t’ together with the subsort constraint A.t<A.t’. This is incompatible with the
subsort constraint in D that A.t’> <A.t. (Note that this does not contradict assumption 3; the common
subsignature here is not full.) However, this kind of situation cannot occur in the other two institutions
of section 3. We could have adjusted the category of order-sorted signatures to avoid this problem by

making either of the following changes:

1. Require that all signature morphisms be full with respect to the ordering on sorts, i.e. for
o: Y — Y and 5,5 sorts in X, o(s) < o(s') in ¥ implies s < s in X. This excludes signature

inclusions which introduce new structure, as in the above example.

2. Allow the sorts to be preordered rather than ordered. This would imply that structure on
signatures is never contradictory; in particular, the above example would succeed with both
A.t<A.t’ and A.t’<A.t as subsort constraints of D (implying the identity of the corresponding

carriers).

One way to add a substructure to an EML structure is to declare it using the construct structure A
without constraining the interpretation of the substructure A further than the EML signature sig re-
quires. The semantics of this is exactly the same as in an EML signature context. Note however that
in order to avoid unintended sharing we have to pick new internal names which are different not only
from the internal names of the current EML value but also from the internal names of all existing

structures.

Another way to add a substructure is using the construct structure A = str’ which introduces
a new substructure A and binds it to the EML structure str'. If (N, 7,3, C) is the current EML
value and str’ denotes the EML value (N', 7", ¥' C') then the underlying signature of the result is
YUY (unless ¥ and X' are incompatible, in which case an error is raised), the class of models is the
intersection of the translations of C' and C’ to the signature ¥ U X', the external identifiers consist
of the set NV together with the name A.p for each p € N', with the obvious association of internal
names. Note that this is equivalent (modulo syntactic details) to a sequence of new name declarations
of the form new name A.n for n where n and its internal interpretation come from the EML value
denoted by str. As a result the problem with incompatible signatures may arise here just as in the

case of the new name construct.

D sy



The construct structure A : sig = str’ also adds a substructure to the current structure. This is
defined to be equivalent to structure A = (str’ : sig), where str’ : sig defines an EML structure

as will be explained later.

As in EML signatures, it is possible to impose axioms which restrict the class of models of a
structure using the construct axiom ax. However, in this case ax may make use of non-local identifiers
and so its interpretation is more complicated. Let (IV,7,%,C) be the current EML value and let U
denote the set of all visible external identifiers, that is:

U=45 {An| A (Na,7a,%4,C4) is in the environment and n € Na} U N

We have to check that ax € Syn(U). If this is not the case (which happens when ax uses unavailable
identifiers) then an error occurs; otherwise let U,, be the set of external identifiers ax uses, i.e.
the least subset of U such that ax € Syn(U,;). This also determines the set of EML structures
in the current environment p which are relevant for the interpretation of ax, where a structure A
is relevant for ax if the set N}" =45 {n | An € U,} is nonempty. Furthermore, consider the
restriction of these EML structures to their minimal substructures necessary for the interpretation of
ar: STR . =def {p(A)‘sz | N4 # 0}. Now we have to require that the set of underlying signatures
of STR, is compatible and that ¥ (the current signature) is compatible with it. If it is not, an error
is raised as there can be no sensible interpretation for ax. Otherwise, we interpret az in the union
structure (Uyz, Tazy Baz, Caz) Where ¥, is the union of the underlying signatures of STR,, and ¥, Cy,
is the intersection of model classes of structures in STR,, translated into X,,, and 7,, associates the
external identifiers U,, with the appropriate internal names (an external identifier of the form A.n
is mapped to the internal name corresponding to n in p(A)). We start this interpretation by finding
the sentence 6 =45 repry,, (Syn(7.:)(ax)) which ax represents. If § does not exist an error occurs.
Finally, the resulting class of models is the restriction of the current model class C' to those ¥ models
which may be derived from models in C,, which additionally satisfy # (according to f=x,,); the other

components of the current EML value remain unchanged.

The intricacies of the above construction are mostly caused by the need to avoid forming a signature
any larger than necessary to interpret ax. The problem is that otherwise the error of incompatibility
may be raised even though ax has an interpretation in a smaller, compatible part of the environment.
In the case of equational logic and categorical logic, compatibility of the underlying signatures of
all existing EML structures is maintained (by our choice of internal names) and so a much simpler
construction, using the union of all the structures in the environment to interpret az, would suffice.
This would also be the case if we had guaranteed that compatibility is preserved by the extend along
construct. We have chosen instead to allow incompatible signatures to coexist as long as they do not
interfere with each other.

Once an EML structure has been elaborated, it is possible to require it to fit a given EML signature
using the construct str : sig’ which yields an error if str does not fit sig’ and otherwise reduces str
to the signature sig’, forgetting all of its extraneous components. More formally, if str denotes
(N,7,%,C) and sig’ denotes (N', 7', X', C') then str : sig’ yields an error if N' € N or if there is no
signature morphism o: ¥’ — ¥ such that for any n’ € N', Names(o)(7'(rn")) = 7(n').



N’ - N

Note if such a o exists then it is unique since 7’ is surjective (which comes from the fact that EML
signatures are closed): there is at most one function from Names(X') to Names(X) such that the
above diagram commutes and so (by faithfulness of Names) there is at most one signature morphism
o with the required properties. Then we have to check that the models admitted by str satisfy the
requirements of sig’, i.e. we raise an error unless the ¥'-models derived from C' using o are included
in C'. Finally, the resulting structure is (N, 7, %, C) ‘N/. Note that the above description allows str to

share more than is required by sig’ and that this sharing is carried over to str : sig’.

Another way to construct a new EML structure out of a given one is to extract one of its substruc-
tures using the notation str.A. Let (N,7,%,C) be the EML value denoted by str. An error occurs
if N contains no names of the form A.n. Otherwise the resulting EML value is (N, 7,3, C) ‘{A.nEN}
except that we change each external name A.n to n.

A requirement we inherit from Standard ML is that once the construction of a structure is complete,
it must be a closed EML value. This requirement is imposed for methodological reasons rather than
because of technical necessity. It cannot be required at intermediate stages of the construction of a
structure since the construct new name may add components to the underlying signature which remain
temporarily anonymous. It is straightforward to check this condition since it is just the requirement
that the assignment of internal names to external identifiers is surjective. But before checking for this
it is necessary to throw away components of the underlying signature which were introduced during
the construction of the structure but are no longer used. This is done by restricting the EML value

to the set of all its external identifiers.

4.3 EML functors

Semantically, an EML functor acts as a function taking a list of actual parameters (which are EML
structures over the formal parameter EML signatures) to a structure over the result EML signature.
However, we have chosen to describe the semantics of functors using a macro-expansion mechanism

and so no function of this kind appears explicitly in our semantics. The denotation of a functor
functor F'(A;:stg1,...,A,:5tg, sharing eq; and ... and eq,) :stg = sir

consists of a list of the formal parameter names Ay,..., A,, an EML value describing the combined

formal parameter signatures, which is just the denotation of the EML signature

sig structure A;:si¢gy; ...; structure A, :sg,;
sharing eqi; ...; sharing eq,

end ,



the body qualified by the result signature, str:sig, kept in its syntactic form, and the declaration-
time environment. Applying this functor to a list of actual parameters strq,...,str, is done by
elaborating the expression str:sitg in the declaration-time environment augmented by binding the
parameter names Ay, ..., A, to the actual parameter values (after fitting them to the formal parameter

signature).

5 Concluding remarks

In this paper we presented the institution-independent semantics of Extended ML (EML), a high-
level specification language based on the ideas of Standard ML modules. This required extending the
notion of an institution by adding facilities for manipulating the names associated with components
of signatures and for syntactic representation of axioms. Such an extended institution we call an
institution with syntaz. This provided a framework sufficient to give a nearly complete institution-

independent semantics of Extended ML. The only institution-dependent “leftovers” are:

1. the particular choice of the underlying pervasives which form a part of every EML signature and

structure;
2. the set of observations required for the notion of behavioural equivalence of models; and

3. the part of the language for describing “elementary” signature extensions (i.e. those which are
to be admitted in the given instantiation of EML).

The only other specification languages we know about which are defined in the framework of an
arbitrary institution are Clear [BG 80] and ASL [ST 85¢|. Extended ML as described here differs from

them in at least the following respects:

1. Both Clear (in its institution-independent form!) and ASL provide nothing more than a bunch
of specification-building operations. The syntax used to describe everything below the level of a
specification and the meaning of that syntax is institution-dependent and therefore not supplied.
In Extended ML we have attempted to deal even with the syntax of individual axioms; we have

indicated, for example, where and how the problems of parsing and type-checking would appear.

2. The only explicit structuring facility Extended ML offers to its user is the notion of a structure
(called a functor when parameterised) which is a direct extension of the notion of a structure in
Standard ML. This brings the structure of specifications in Extended ML closer to the structure
of programs and makes Extended ML more appropriate for design specification than either ASL
or Clear (although see the comment at the end of 3 below), in that it allows the user not only to
indicate the desired functional properties of a program /system, but also to design the structure

of its implementation.

3. Extended ML is a wide spectrum language (see [Bau 81]), where programs are just specifications
which happen to include only executable axioms. In [GB 80], Goguen and Burstall outline a
scheme for developing programs from Clear specifications, but in this framework the specification
language and programming language are kept separate although it is suggested that program
modules could be put together using Clear’s specification-building operations. Of course, both
Clear and ASL could be used as wide spectrum languages; the difference is only that Exten-
ded ML was designed with this specific goal.



This work can be viewed from two different perspectives. From one point of view it is an exercise
in applying the theory of institutions in the field of algebraic specifications. As in the case of e.g.
[Tar 84,85], there is a limited amount which can be accomplished within the framework of an arbitrary
institution as originally defined in [GB 84]; the “game” is to identify a minimal set of extra assumptions

necessary for a particular purpose.

From another point of view, this work is a step towards a practical framework for formal pro-
gram development. In [ST 85a] Extended ML was introduced as a vehicle for the development of
Standard ML programs. However, the use of the standard algebraic framework there excluded (for
example) the use of partial functions, polymorphic types and assignment. By providing an institution-
independent semantics for Extended ML here, we make it possible in principle to remove these restric-
tions by plugging in an appropriate institution with syntax. For example, an institution permitting the
use of partial functions based on [BW 82] is described in [ST 85¢], and it is obvious how to extend this
to an institution with syntax. Moreover, it is more or less apparent that Extended ML instantiated to
this institution with syntax would allow one to treat partial functions in a satisfactory way. However,
the situation with polymorphic types is much less clear. It is possible to construct an institution for
polymorphism (see [SB 83] for some hints) and we do not anticipate problems in extending such an
institution to an institution with syntax. But preliminary investigations along these lines indicate that
Extended ML in this institution would not work as expected (the problem here has to do with the
structure which is imposed on the set of type names in the presence of polymorphism). Assignment
poses even bigger problems; at the moment we just do not know what an appropriate institution
would be. Difficulties of this kind must be overcome before it will be possible to use Extended ML to
develop programs in full Standard ML.

Another advantage of an institution-independent semantics for Extended ML is that it permits
freedom in the choice of the logic used to specify Standard ML programs. Even more intriguing, it
makes Extended ML ML-independent: since Extended ML uses only the modularisation facilities of
Standard ML, it could be used to specify and develop programs in Prolog, Pascal, etc. by choosing
an institution which includes program fragments in the desired language as sentences.
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