
Extended ML: an institution-independent frameworkfor formal program developmentDonald Sannella1 and Andrzej Tarlecki2AbstractThe Extended ML speci�cation language provides a framework for the formal stepwise development ofmodular programs in the Standard ML programming language from speci�cations. The object of thispaper is to equip Extended ML with a semantics which is completely independent of the logical systemused to write speci�cations, building on Goguen and Burstall's work on the notion of an institutionas a formalisation of the concept of a logical system. One advantage of this is that it permits freedomin the choice of the logic used in writing speci�cations; an intriguing side-e�ect is that it enablesExtended ML to be used to develop programs in languages other than Standard ML since we viewprograms as simply Extended ML speci�cations which happen to include only \executable" axioms.The semantics of Extended ML is de�ned in terms of the primitive speci�cation-building operationsof the ASL kernel speci�cation language which itself has an institution-independent semantics.It is not possible to give a semantics for Extended ML in an institutional framework withoutextending the notion of an institution; the new notion of an institution with syntax is introduced toprovide an adequate foundation for this enterprise. An institution with syntax is an institution withthree additions: the category of signatures is assumed to form a concrete category; an additionalfunctor is provided which gives concrete syntactic representations of sentences; and a natural trans-formation associates these concrete objects with the \abstract" sentences they represent. We use the�rst addition to \lift" certain necessary set-theoretic constructions to the category of signatures, andthe other two additions to deal with the low-level semantics of axioms.1 IntroductionBeginning with [GTW 76], [Gut 75] and [Zil 74], work on the algebraic approach to program speci�c-ation has focused on developing techniques of specifying programs (abstract data types in particular)and on formalising the notion of re�nement as used in stepwise re�nement (see e.g. [Ehr 79] and[EKMP 82]). The ultimate goal of this work is to provide a formal basis for program developmentwhich would support a methodology for the systematic evolution of programs from speci�cations bymeans of veri�ed re�nement steps. But so far comparatively little work has been done on applyingthese theoretical results to programming, with a few exceptions such as CIP-L [Bau 81], IOTA [NY 83]and Anna [LHKO 84].The Extended ML language [ST 85a] was the result of our attempt to apply ideas about algebraicspeci�cations in the context of the Standard ML programming language [Mil 85]. Extended ML is an1Department of Arti�cial Intelligence, University of Edinburgh and Laboratory for Foundations of Com-puter Science, Department of Computer Science, University of Edinburgh2Institute of Computer Science, Polish Academy of Sciences, Warsaw

extension to Standard ML whereby axioms are permitted in module interface declarations and in placeof code in module de�nitions. Some Extended ML speci�cations are executable, since Standard MLfunction de�nitions are just axioms of a certain special form. Hence Extended ML is a wide spectrumlanguage in the sense of CIP-L, i.e. it can be used to express every stage in the development of aStandard ML program from the initial high-level speci�cation to the �nal program itself.The semantics of Extended ML, as sketched in [ST 85a], is expressed in terms of the primitivespeci�cation-building operations of the ASL kernel speci�cation language [SW 83], [Wir 83]. From thissemantic basis Extended ML inherits its formal notion of re�nement as well as proof rules which enablere�nement steps to be proved correct; moreover, the results concerning observational and behaviouralabstraction in [ST 85b] can be used to obtain a better understanding of the relation between anExtended ML module and its interface.In order to remain in the comfortable and standard framework of many-sorted algebras, it wasnecessary in [ST 85a] to restrict attention to the development of Standard ML programs which �t intothis formalism. This meant restricting to the applicative subset of Standard ML (without assignmentand exceptions) and disallowing use of polymorphic types, higher-order functions, and partial func-tions. Axioms were expressed in �rst-order predicate calculus with equality. It was hinted that theserestrictions could be avoided by extending the underlying logical system appropriately; for example,partial functions could be allowed by changing the notion of an algebra (so that functions associatedwith operation names are not required to be total) and extending axioms and the de�nition of thesatisfaction of an axiom by an algebra so as to provide some way of specifying the domains of functions(see [BW 82]).In fact, there is no need to choose a particular �xed logical system. It is possible to paramet-erise Extended ML by an arbitrary logical system, or institution [GB 84]. An institution comprisesde�nitions of signature, model (algebra), sentence (axiom) and a satisfaction relation subject to afew consistency conditions. By avoiding the choice of a particular institution when de�ning Exten-ded ML, we leave open the possibility of adopting either a simple institution for use in developing arestricted class of Standard ML programs, or a more elaborate and expressive institution for use indeveloping programs in full Standard ML. Moreover, since the use of Extended ML as a vehicle forprogram development depends on viewing programs as axioms which happen to be executable, bybasing Extended ML on an arbitrary institution we make it possible to develop programs in di�erentlanguages within the Extended ML framework. With an appropriate change to the underlying insti-tution, Extended \ML" becomes Extended Prolog (i.e. Prolog + modules + speci�cations), ExtendedPascal, etc. Of course, the choice of institution determines not only the target programming languagebut also the rest of the logical system (including the form of non-executable axioms) which may beused to write speci�cations during earlier stages of program development.Following [ST 85a], an institution-independent semantics for Extended ML may be given by de-�ning a translation of each Extended ML speci�cation into an ASL speci�cation. This speci�cationwill in turn have a well-de�ned class of models. ASL provides a suitable basis for this enterprise sinceit already has an institution-independent semantics [ST 85c]. The translation from Extended ML toASL must itself be institution-independent if the result is to express the meaning of Extended ML spe-ci�cations in an arbitrary institution. This is not easy to accomplish since many of the manipulationsinvolved in the standard case (see [ST 85a]) use set-theoretic operations like union and intersectionto build signatures. Such manipulations are not possible in the context of an arbitrary institutionsince we have no information about the set-theoretic properties of signatures | we know only thatsignatures and their morphisms form a category.

In this paper we study extensions to the notion of institution which are su�cient to de�ne aninstitution-independent semantics of Extended ML by translation into ASL. The basic idea will be toadd the extra assumption that the category of signatures forms a concrete category [MacL 71], i.e. thatit comes equipped with a faithful functor to the category of sets. This functor gives the vocabulary ofnames provided by each signature and the translation of names induced by each signature morphism.This enables us to view signatures as sets of names with structure which di�ers from one institutionto another. In order to \lift" the constructions outlined in [ST 85a] to an arbitrary institution it isnecessary to make a few assumptions about the properties of this functor.Another aspect of the usual notion of institutions is inconsistent with our goals. Namely, thesentences in an institution are merely abstract objects. A semantics which covers the \low-level"details of Extended ML needs more information about sentences than this; an axiom which appearsin an Extended ML speci�cation is not an abstract entity but a syntactic representation of one. Inorder to take this into account we will assume that an institution comes equipped with an additionalfunctor giving the set of syntactic representations of sentences over a vocabulary of names as well asa (partial) function which associates syntactic representations with sentences.The next section provides a brief introduction to Extended ML. Section 3 reviews the notion of aninstitution and gives three examples. The new notion of an institution with syntax is then presented,and it is shown how the three example institutions can be extended to institutions with syntax. Thisis followed by a discussion of the additional assumptions which are necessary to allow signatures to beviewed as sets with structure, insofar as this is required by the semantics of Extended ML. The mainideas of the semantics itself are presented in section 4. As this presentation of the semantics glossesover some of the more complicated but uninteresting details, the fastidious reader may wish to referto the full semantics which will appear separately as [ST 86].2 Extended ML | an overviewThe aim of this section is to review the main features of and motivations behind the Extended MLspeci�cation language in an attempt to make this paper self-contained. A more complete introductionto Extended ML is given in [ST 85a]. Although the examples below will contain bits of Standard MLcode, the reader need not be acquainted with the features and syntactic details of Standard MLitself, especially since one of the goals of this paper is to make Extended ML entirely independent ofStandard ML (although not of Standard ML's modularisation facilities, which we regard in this paperas separate from Standard ML itself). It will be su�cient to know that a collection of Standard MLdeclarations de�nes a set of types and values, where some values are functions and others are constants.A complete description of the language appears in [Mil 85].Extended ML is based on the modularisation facilities for Standard ML proposed in [MacQ 85].These facilities are designed to allow large Standard ML programs to be structured into modules withexplicitly-speci�ed interfaces. Under this proposal, interfaces (called signatures) and their implement-

ations (called structures3) are de�ned separately. Every structure has a signature which gives thenames of the types and values de�ned in the structure. Structures may be built on top of existingstructures, so each one is actually a hierarchy of structures, and this is also re
ected in its signature.Components of structures are accessed using quali�ed names such as A.B.n (referring to the compon-ent n of the structure component B of the structure A). Functors4 are \parameterised" structures; theapplication of a functor to a structure yields a structure. (Contrary to category-theorists' expecta-tions, there is no \morphism part"!) A functor has an input signature describing structures to whichit may be applied, and an output signature describing the result of an application. A functor mayhave several parameters. It is possible, and sometimes necessary to allow interaction between di�erentparts of a program, to declare that certain substructures (or just certain types) in the hierarchy areidentical or shared.An example of a simple program in Standard ML with modules is the following:signature POSig =sig type elemval le : elem * elem -> boolendsignature SortSig =sig structure Elements : POSigval sort : Elements.elem list -> Elements.elem listendfunctor Sort(PO : POSig) : SortSig =struct structure Elements = POfun insert(a,nil) = a::nil| insert(a,b::l) = if Elements.le(a,b) then a::b::lelse b::insert(a,l)and sort nil = nil| sort(a::l) = insert(a,sort l)endstructure IntPO : POSig =struct type elem = intval le = op <=endstructure SortInt = Sort(IntPO)Now, SortInt.sort may be applied to the list [11,5,8] to yield [5,8,11].In this example, the types of the values sort and insert in the functor Sort are inferred bythe ML typechecker; the type of sort must be as declared in the signature SortSig while the value3Structures were called instances in the 1984 version of [MacQ 85].4Functors were called modules in the 1984 version of [MacQ 85].

insert is local to the de�nition of Sort since it is not mentioned in SortSig. Certain built-in typesand values are pervasive | that is, they are implicitly a part of every signature and structure. Inthis example, the pervasive types int and list are used together with the pervasive values nil, ::(add an element to the front of a list), and <= (i.e. �). The pervasive types and values may beregarded as forming a structure Perv with signature PervSig which is automatically included as anopen substructure of every signature and structure (\open" means that a component n of Pervmay beaccessed using the name n rather than the name Perv.n). By the way, list is a so-called polymorphictype constructor, since it can be applied to any type t to form a type t list. The function :: isa polymorphic function of type � * � list -> � list, meaning that it can be used to build listswith elements of any (uniform) type.The information in a signature is su�cient for the use of Standard ML as a programming language,but when viewed as an interface speci�cation a signature does not provide enough information topermit proving program correctness (for example). To make signatures more useful as interfaces ofstructures in program speci�cation and development, one could allow them to include axioms whichput constraints on the permitted behaviour of the components of the structure. An example of sucha signature5 is the following more informative version of the signature POSig above:signature POSig =sig type elemval le : elem * elem -> boolaxiom forall x:elem. le(x,x) = trueand forall x,y:elem. le(x,y) = true and le(y,x) = true => x=yand forall x,y,z:elem.le(x,y) = true and le(y,z) = true => le(x,z) = trueendThis includes the previously-unexpressible precondition which IntPO must satisfy if Sort(IntPO) isto function as expected, namely that IntPO.le is a partial order on IntPO.elem.Formal speci�cations can be viewed as abstract programs. Some speci�cations are so completelyabstract that they give no hint of an algorithm (e.g. the speci�cation of the inverse of a matrix A asthat matrix A�1 such that A� A�1 = I) and often it is not clear if an algorithm exists at all, whileother speci�cations are so concrete that they amount to programs (e.g. Standard ML programs, whichare just equations of a certain form which happen to be executable). In order to allow di�erent stagesin the evolution of a program to be expressed in the same framework, one could allow structures tocontain a mixture of ML code and non-executable axioms. Functors could include axioms as well sincethey are simply parameterised structures. For example, a stage in the development of the functor Sortmight be the following:
5We retain the term \signature" although this new version of POSig looks much more like a theory orspeci�cation than a signature (as these words are used in algebraic speci�cation).

functor Sort(PO : POSig) : SortSig =struct structure Elements = POval insert : Elements.elem * Elements.elem list -> Elements.elem listaxiom forall a,a1,a2:Elements.elem, l,l1,l2:Elements.elem list.insert(a,l) = l1@(a::l2)=> l1@l2 = land (member(a1,l1) => Elements.le(a1,a))and (member(a2,l2) => Elements.le(a,a2))fun sort nil = nil| sort(a::l) = insert(a,sort l)end(where @ is the append function on lists). In this functor declaration, the function sort has beende�ned in an executable fashion in terms of insert which is so far only constrained by an axiom.Extended ML is the result of extending the modularisation facilities of Standard ML as indicatedabove, that is by allowing axioms in signatures and in structures. Syntactically, the only signi�cantchange is to add the construct axiom ax to the list of alternative forms of elementary speci�cations(i.e. declarations allowed inside a signature body) and elementary declarations (declarations allowedinside a structure body). Signatures and structures both denote classes of algebras, where a signature� may be regarded as an interface for a structure S if the class of algebras associated with S iscontained in the class associated with �. Functors are functions taking classes of algebras (containedin the class associated with its input signature) to classes of algebras (contained in the class associatedwith its output signature). The role of signatures as interfaces suggests that they should be regardedonly as descriptions of the externally observable behaviour of structures. Thus, signatures shouldnot distinguish between behaviourally equivalent algebras in which computations produce the sameresults of \external" types. Said another way, a signature identi�es algebras which satisfy the samesentences from a pre-speci�ed set � meant to describe the properties of structures which are externallyobservable, i.e. it describes a class of algebras which is closed under observational equivalence withrespect to � (see [ST 85b] for an explanation of how this covers behavioural equivalence as a specialcase, more motivation for the use of this notion here, and much more technical detail). This isachieved in the semantics by �rst obtaining the class of algebras which \literally" satis�es the axiomsof a signature and then behaviourally abstracting (closing under observational equivalence with respectto �) to obtain the class of algebras which \behaviourally" satis�es the axioms (cf. [Rei 84]).In section 4 the semantics of Extended ML will be de�ned by translation into the ASL kernelspeci�cation language [SW 83], [Wir 83], [ST 85c]. From this semantic basis Extended ML inherits aformal notion of what it means for one speci�cation to be an implementation or re�nement of another.It also inherits proof rules which enable re�nement steps to be proved correct. By composing veri�edre�nement steps, it is possible to develop a guaranteed-correct program from a speci�cation in astepwise and modular fashion. An example of (part of) the development of an interpreter for a verysimple programming language in Extended ML is given in [ST 85a].

3 Institutions with syntaxAny approach to formal speci�cation must be based on some logical framework. The pioneering papers[GTW 76], [Gut 75], [Zil 74] used many-sorted equational logic for this purpose. Nowadays, however,examples of logical systems in use include �rst-order logic (with and without equality), Horn-clauselogic, higher-order logic, in�nitary logic, temporal logic and many others. Note that all these logicalsystems may be considered with or without predicates, admitting partial operations or not. This leadsto di�erent concepts of signature and of model; for example, to specify Standard ML programs we needpolymorphic signatures and algebras with partial operations (so-called partial algebras), higher-orderfunctions, etc.The informal notion of a logical system has been formalised by Goguen and Burstall [GB 84],who introduced for this purpose the notion of an institution. An institution consists of a collectionof signatures together with for any signature � a set of �-sentences, a collection of �-models and asatisfaction relation between �-models and �-sentences. Note that signatures are arbitrary abstractobjects in this approach, not necessarily the usual \algebraic" signatures used in many standardapproaches to algebraic speci�cation (see e.g. [GTW 76]). The only \semantic" requirement is thatwhen we change signatures, the induced translations of sentences and models preserve the satisfactionrelation. This condition expresses the intended independence of the meaning of a speci�cation fromthe actual notation. Formally:De�nition 1 An institution INS consists of:� a category SignINS (of signatures),� a functor SenINS: SignINS ! Set (where Set is the category of all sets; SenINS gives forany signature � the set of �-sentences and for any signature morphism �: �! �0 the functionSenINS(�): SenINS(�)! SenINS(�0) translating �-sentences to �0-sentences),� a functor ModINS: SignINS ! Catop (where Cat is the category of all categories;6 ModINSgives for any signature � the category of �-models and for any signature morphism �: �! �0 the�-reduct functor ModINS(�): ModINS(�0)!ModINS(�) translating �0-models to �-models),and� a satisfaction relation j=�;INS� jModINS(�)j � SenINS(�) for each signature �such that for any signature morphism �: �! �0 the translationsModINS(�) of models and SenINS(�)of sentences preserve the satisfaction relation, i.e. for any ' 2 SenINS(�) and M 0 2 jModINS(�0)jM 0 j=�0;INS SenINS(�)(')()ModINS(�)(M 0) j=�;INS ' (Satisfaction condition)6Of course, some foundational di�culties are connected with the use of this category, as discussed in[MacL 71]. We do not discuss this point here, and we disregard other such foundational issues in this paper;in particular, we sometimes use the term \collection" to denote a \set" which may be too large to really bea set.

The work of [Bar 74] on abstract model theory is similar in intent to the theory of institutions butthe notions used and the conditions they must satisfy are more restrictive and rule out many of theexamples we would like to deal with.Notational conventions:� The subscripts INS and � are omitted when there is no danger of confusion.� For any signature morphism �: � ! �0, Sen(�) is denoted just by � and Mod(�) is denotedby � (i.e. for ' 2 Sen(�), �(') stands for Sen(�)(') and for M 0 2 jMod(�0)j, M 0 � standsfor Mod(�)(M 0)).� Satisfaction relations are extended to collections of models and sentences in the usual way.Example 1 The institution GEQ of ground equationsAn algebraic signature is a pair hS;
i where S is a set (of sort names) and
 is a family ofmutually disjoint sets f
w;sgw2S�;s2S (of operation names). We write f : w ! s to denote w 2 S�,s 2 S, f 2
w;s. An algebraic signature morphism �: hS;
i ! hS 0;
0i is a pair h�sorts; �opnsi where�sorts: S ! S 0 and �opns = f�w;s:
w;s !
0��(w);�(s)gw2S�;s2S is a family of maps where ��(s1; : : : ; sn)denotes �sorts(s1); : : : ; �sorts(sn) for s1; : : : ; sn 2 S. We will write �(s) for �sorts(s), �(w) for ��(w) and�(f) for �w;s(f), where f 2
w;s.The category of algebraic signatures AlgSig has algebraic signatures as objects and algebraicsignature morphisms as morphisms; the composition of morphisms is the composition of their corres-ponding components as functions. (This obviously forms a category.)Let � = hS;
i be an algebraic signature.A �-algebra A consists of an S-indexed family of carrier sets jAj = fjAjsgs2S and for eachf : s1; : : : ; sn ! s a function fA: jAjs1 � � � � � jAjsn ! jAjs. A �-homomorphism from a �-algebraA to a �-algebra B, h: A ! B, is a family of functions fhs: jAjs ! jBjsgs2S such that for anyf : s1; : : : ; sn ! s and a1 2 jAjs1; : : : ; an 2 jAjsn, hs(fA(a1; : : : ; an)) = fB(hs1(a1); : : : ; hsn(an)).The category of �-algebrasAlg(�) has �-algebras as objects and �-homomorphisms as morphisms;the composition of homomorphisms is the composition of their corresponding components as functions.(This obviously forms a category.)For any algebraic signature morphism �: � ! �0 and �0-algebra A0, the �-reduct of A0 is the�-algebra A0 � such that jA0 �js = jAj�(s) for s 2 S and fA0 � = �(f)A0 for f : w ! s in �. Fora �0-homomorphism h0: A0 ! B 0 where A0 and B 0 are �0-algebras, the �-reduct of h0 is the �-homomorphism h0 �: A0 � ! B 0 � de�ned analogously. The mappings A0 7! A0 �, h0 7! h0 � form afunctor from Alg(�0) to Alg(�).For any algebraic signature �, Alg(�) contains an initial object T� which is (to within isomorph-ism) the algebra of ground �-terms (see e.g. [GTW 76]). A ground �-equation is a pair ht; t0i (usuallywritten as t = t0) where t; t0 are ground �-terms of the same sort.By de�nition, for any �-algebra A there is a unique �-homomorphism h: T� ! A. For any groundterm t 2 jT�js (for s in the sorts of �) we write tA rather than hs(t) to denote the value of t in A. Forany �-algebra A and ground �-equation t = t0 we say that t = t0 holds in A (or A satis�es t = t0),written A j= t = t0, if tA = t0A.

Let �: �! �0 be an algebraic signature morphism. The unique �-homomorphism h: T� ! T�0 �determines a translation of �-terms of �0-terms. For a ground �-term t of sort s we write �(t) ratherthan hs(t). This in turn determines a translation (again denoted by �) of ground �-equations toground �0-equations: �(t = t0) =def �(t) = �(t0).All of the above notions combine to form the institution of ground equations GEQ:� SignGEQ is the category of algebraic signatures AlgSig.� For an algebraic signature �, SenGEQ(�) is the set of all ground �-equations; for an algebraicsignature morphism �: � ! �0, SenGEQ(�) maps any ground �-equation t = t0 to the ground�0-equation �(t) = �(t0).� For an algebraic signature �, ModGEQ(�) is Alg(�); for an algebraic signature morphism�: �! �0, ModGEQ(�) is the functor �: Alg(�0)! Alg(�).� For an algebraic signature �, j=�;GEQ is the satisfaction relation as de�ned above.It is easy to check that GEQ is an institution (the satisfaction condition is a special case of theSatisfaction Lemma of [BG 80]).We have presented the above example in such detail to show explicitly how standard de�nitionsmay be put together to �t into the mould of an institution. The following examples will be presentedin a more sketchy way.Example 2 The institution OSGEQ of ground equations in order-sorted algebrasThis example is based on [GJM 85] where the reader may �nd a more detailed presentation, anumber of interesting technical results and examples indicating how this institution may be used inalgebraic speci�cation.An order-sorted signature is a triple hS;�;
i where hS;�i is a partially ordered set (of sort names)and
 = f
w;sgw2S�;s2S is a family of sets (of operation names). If s � s0 for s; s0 2 S, we say thats is a subsort of s0. Thus, roughly, an order-sorted signature is an algebraic signature with a subsortordering on sorts. We extend the subsort ordering to lists of sorts of the same length in the usual(component-wise) way. We also use the same notational conventions as in the previous example foralgebraic signatures. Unlike the case of algebraic signatures, however, we do not require the setsf
w;sgw2S�;s2S to be mutually disjoint. On the contrary, we assume that if f : w ! s is an operationname then f : w0 ! s0 is also an operation name for any w0 � w and s � s0. Moreover, for technicalreasons (cf. [GJM 85]) we assume that order-sorted signatures are regular, i.e. for any w� 2 S�, iff : w! s for some w� � w then there is a least hw0; s0i 2 S� � S such that w� � w0 and f : w0 ! s0.Order-sorted signature morphisms are de�ned in the same way as algebraic signature morphisms,except that additionally their sort components are required to be monotonic with respect to thesubsort orderings and their operation-name components to preserve the identity of operation nameswith di�erent arities and result sorts.This de�nes the category OrdSig of (regular) order-sorted signatures and their morphisms, whichis the category of signatures in the institution OSGEQ.Let � = hS;�;
i be an order-sorted signature.

An order-sorted �-algebra is just a hS;
i-algebra A (in the sense of the previous example) suchthat jAjs � jAjs0 whenever s � s0 in �, and such that for f : w ! s, w0 � w and s � s0, the functioncorresponding to f : w0 ! s0 in A is the set-theoretic restriction of the function corresponding tof : w ! s. Similarly, an order-sorted �-homomorphism is just a hS;
i-homomorphism h such thaths is a restriction of hs0 if s � s0. This de�nes the category OSAlg(�) of order-sorted �-algebras,which is the category of �-models in OSGEQ. For any order-sorted signature morphism �: �! �0,we de�ne the �-reduct functor �: OSAlg(�0)! OSAlg(�) exactly as in GEQ.Finally, the sentences of OSGEQ and their satisfaction by order-sorted algebras is de�ned in thesame way as in the standard algebraic case, i.e. in GEQ. Notice, however, that in the order-sortedcase terms may have more than one sort. It turns out (see [GJM 85]) that every term built overa regular order-sorted signature has a least (most general) sort. Moreover, the value of a term inan order-sorted algebra does not depend on which of its sorts we consider. Thus, whether a groundequation t = t0 is satis�ed by an order-sorted algebra or not is independent of which of the commonsorts of t and t0 we choose to evaluate the terms in.Please note that the above examples deal with ground equations for the sake of simplicity ofexposition rather than because of any inability of the notion of institution to cope with variables.For example, an institution FOEQ may be obtained from GEQ by changing the de�nition of theSen functor so that when applied to � 2 jAlgSigj it produces the set of all sentences of �rst-orderpredicate logic over � with equality (the satisfaction relation must be modi�ed accordingly). Anotherinstitution may be obtained fromOSGEQ in the same fashion. There are in fact general constructionsfor introducing variables into the sentences of an arbitrary institution and for binding such variableswith di�erent quanti�ers (see [ST 85c], [Tar 84]) as well as for introducing logical connectives (cf.[Bar 74]), so FOEQ can be produced from GEQ by \iterative" application of a sequence of generalconstructions.Example 3 The institution CRCAT of commutativity requirements in categoriesThe third example we consider is of a slightly non-standard character. We present a simple logicfor stating that certain diagrams in a category commute. We will consider categories with namedobjects and morphisms. Sentences of the logical system we describe will allow one to require thatmorphisms produced by composition of series of (named) morphisms coincide.The category of signatures in CRCAT is the category Graph of directed graphs, i.e. the categoryof algebras over the algebraic signature having the two sorts node and edge and the two operationssource: edge! node and target: edge! node, together with their (homo)morphisms.Then, a model over a graph G is a category C having a subcategory with \shape" G, i.e. a graphmorphism F : G! C from G to the underlying graph (the pre-category) of C.For two G-models F1: G ! C1 and F2: G ! C2, a G-morphism in ModCRCAT(G) from F1 toF2 is a functor F: C1! C2 such that F1;F = F2.For any graph G and two nodes s; t 2 jGjnodes, a path in G with source s and target t (or, froms to t) is a sequence e1 : : : en (n � 1) of edges in G such that sourceG(e1) = s, targetG(en) = t andsourceG(ei) = targetG(ei�1) for 1 < i � n. Moreover, for each node s we have the empty path "s(from s to s).For any G-model F : G! C, a path p from s to t in G determines a morphism F (p): F (s)! F (t)in C de�ned by F ("s) = idF (s) for s 2 jGjnodes and F (e1 : : : en) = F (e1); � � � ;F (en) for a non-emptypath e1 : : : en in G.

(The above de�nitions may be formulated in a much more compact way using the standard ma-chinery of category theory. Namely, for any graph G, the category of G-models has an initial model,which is | up to isomorphism | the category of paths in G. The evaluation p 7! F (p) is given bythe unique G-morphism | a functor | from this initial G-model to F : G! C.)By a path equation in G we mean any pair of paths in G with the same sources and targets,respectively. We say that a G-model F : G! C satis�es a path equation hp; qi if F (p) = F (q).Finally, for any graph G (a signature in SignCRCAT) G-sentences in CRCAT are sets of pathequations in G, where a G-model satis�es a G-sentence � if it satis�es all path equations ' 2 �.As mentioned before, the notion of an institution is not su�ciently rich to deal with all thesyntactic-level details of the Extended ML semantics we want to describe. We need to associate withevery signature of the underlying institution the vocabulary of names it provides. Then, we assumethat the sentences over any signature have \syntactic representations" built using the vocabulary ofnames provided by the signature. We require that every signature morphism �: � ! �0 induces atranslation of the names of � to the names of �0. This in turn will induce a translation betweenthe syntactic representations of �-sentences and �0-sentences, which must be compatible with thetranslation of sentences in the underlying institution. All this leads to the following de�nition:De�nition 2 An institution with syntax is an institution INS = hSign;Sen;Mod; fj=�g�2jSignjitogether with:� a functor Names: Sign! Set (which gives the vocabulary of names a signature provides),� an endofunctor Syn: Set! Set (which gives the set of syntactic representations of sentencesover a vocabulary of names),� for any signature � 2 jSignj, a partial function repr�: Syn(Names(�))�!Sen(�) (whichassociates syntactic representations with sentences)such that:1. the functor Names is faithful, i.e. for any two \parallel" signature morphisms �1; �2: �! �0,if Names(�1) = Names(�2) then �1 = �2;2. any syntactic representation of a sentence determines the set of names it actually uses, i.e.for any set N and ax 2 Syn(N), there is a least set N 0 � N such that ax 2 Syn(N 0);3. the family of representation functions is a natural transformation repr: Names;Syn .!Sen(in the category of sets with partial functions), i.e. for any signature morphism �: � ! �0 wehave Syn(Names(�));repr�0 = repr�;Sen(�) (as partial functions), which is to say that thefollowing diagram commutes: Syn(Names(�))Syn(Names(�0)) Sen(�)Sen(�0)?Syn(Names(�)) ?Sen(�)-repr� -repr�0

The intuition behind the representation functions frepr�g�2jSignj is that computing the value ofsuch a function on an argument corresponds to the parsing and typechecking of (a representation of)a sentence. Notice that for any signature �, repr� is only a partial function. There may be objectsin Syn(Names(�)) which actually do not represent any sentence from Sen(�). This corresponds,for example, to the case of ill-typed equations (see examples below). We do not require repr� tobe surjective either; this allows some sentences to have no syntactic representation. For example, ifSen(�) is some class of in�nitary formulae, it might be possible to �nd syntactic representations forsome sentences (e.g. the �nitely presentable ones) but not for others. Alternatively, suppose Sen(�)includes data constraints [GB 84]; one would expect those involving theories with no recursivelyenumerable axiomatization to have no syntactic representation. Furthermore, we do not requirerepr� to be injective, since a sentence might have multiple syntactic representations. To take asimple example, we could allow redundant parentheses to be inserted into syntactic representationsof �rst-order formulae. We do require repr� to be a function, which means that representations areunambiguous, i.e. any syntactic object over the vocabulary of names of a signature represents at mostone sentence over this signature.The recent work of Goguen and Burstall [GB 86] on charters and parchments opens similar possib-ilities as our notion of an institution with syntax does (among others). In their \parchment charteredinstitutions", however, sentences just are (rather than are represented by, as in our institutions withsyntax) well-formed �nitary syntactic objects, which excludes some of the cases mentioned above.It may be interesting to check if our semantics of Extended ML may be given in the framework ofparchments (with some additional assumptions corresponding to our assumptions about the functorNames).Example 1 The institution GEQ of ground equations (revisited)There is a natural way to extend the institution GEQ to an institution with syntax. Namely, forany algebraic signature � = hS;
i, letNamesGEQ(�) be the disjoint union of S and (the union of)
.Then, for any set N , let SynGEQ(N) be the set of all pairs of (any representation of) �nite trees withnodes labelled by elements of N . Both of these extend to functors in the obvious way. Finally, for anyalgebraic signature � and pair of labelled trees ht; t0i 2 Syn(Names(�)), to compute repr�;GEQ(ht; t0i)one has to check whether t and t0 are syntactically well-formed and well-typed �-terms of the samesort. If this is the case, the result is the obvious equation in SenGEQ(�); otherwise the result isunde�ned. It is easy to check that these extensions to GEQ satisfy the required conditions.Example 2 The institution OSGEQ of ground equations in order-sorted algebras (revisited)The institution OSGEQ may be extended to an institution with syntax in exactly the same wayas the institution GEQ was in the previous example. The only di�erence is that the typechecking ofterms is more elaborate in the order-sorted case (cf. [GJM 85]).Example 3 The institution CRCAT of commutativity requirements in categories (revisited)Again, the de�nition of the vocabulary of names used in a graph G (a signature in jSignCRCATj)is obvious: NamesCRCAT(G) is the disjoint union of the sets of nodes and of edges in G. Then, forany set N , SynCRCAT(N) is the set of all (isomorphism classes of) �nite directed graphs with nodesand edges labelled by elements of N . Again, both of these extend in the obvious way to functors.

For any graph G 2 jSignCRCATj and graph D 2 SynCRCAT(NamesCRCAT(G)), to computereprG;CRCAT(D) we �rst check whether the labelling of D is consistent with G, i.e. whether the nodesof D are labelled by nodes of G and whether the edges of D are labelled by edges of G with sourceand target nodes as in G. If this is not the case, the result is unde�ned. Otherwise, reprG;CRCAT(D)is the set of path equations over G corresponding | by taking sequences of edge labels instead ofsequences of edges | to the set of pairs of �nite (and possibly empty) paths in D with the samesources and targets, respectively.In other words, reprG;CRCAT(D) is a set of path equations semantically equivalent to the require-ment that D is a commutative diagram.7 Note that in contrast to the two previous examples, therepresentation functions in CRCAT are neither injective nor surjective in general.In the rest of this section we will explore the possibilities opened by our having enriched thestructure of the category Sign in an institution with syntax to form a concrete category hSign;Namesi(see [MacL 71]). The idea is that we want to \lift" some basic set-theoretic notions from the sets ofnames in signatures to signatures themselves, i.e. from the category Set to the (concrete) categorySign. We will need some additional assumptions, used also later in the de�nition of the semantics ofExtended ML. (What follows works in an arbitrary concrete category and may in fact be well-knownfolklore in the theory of concrete categories, but we were not able to locate appropriate references.)We say that a signature morphism �: �! �0 is a signature inclusion if Names(�) is an inclusion(of Names(�) into Names(�0)). If there exists a signature inclusion from � to �0, we call � asubsignature of �0. Notice that then the signature inclusion is unique, since the functor Names isfaithful; we denote it by ����0 .A subsignature � of �0 is said to be full if every subsignature of �0 with the same set of namesas � is a subsignature of �. Notice that in hAlgSig;NamesGEQi and hGraph;NamesCRCATi thenotions of subsignature and of full subsignature coincide | every subsignature is full. This is not thecase in hOrdSig;NamesOSGEQi, though. An order-sorted subsignature � of �0 is full if and only if� inherits from �0 all the subsort requirements concerning the sorts of �.We call a set of names N � Names(�) closed in � if there is a subsignature �0 of � with the setof names N , i.e. such that Names(�0) = N .For any set N � Names(�), a signature generated in � by N is a full subsignature �0 of � suchthat Names(�0) is the smallest set containing N and closed in �.Assumption 1 For any signature � and set N � Names(�) there exists a unique signature gener-ated by N in �, denoted � N .Corollary If �: � ! �0 is an isomorphism such that Names(�) is an identity (on Names(�) =Names(�0)) then � is itself an identity (on � = �0).Proof By de�nition we have � = �0 Names(�0) = �0. Then, since the functor Names is faithful(and, of course, preserves identities) � must be the identity morphism.7The de�nitions could be altered slightly to more accurately re
ect normal usage, so that (for example)the diagram A B C-f -g-h would require that f ;g = f ;h but not that g = h. The corresponding diagram inour present version of CRCAT is a square with two copies of B and f .

Let S be a set of signatures, X a set and � = f'�: Names(�) ! Xg�2S a family of functions.We say that S is compatible along � if there exists a signature �big such that X � Names(�big) (letin: X ,! Names(�big) be the inclusion) and a family of signature morphisms f��: � ! �bigg�2Ssuch that Names(��) = '�;in for � 2 S. If this is the case, we say that �big contains S viaf��: � ! �bigg�2S . The signature induced by S along � is, intuitively, the least such signature�big. Formally, we say that �ind together with a family of signature morphisms f��: � ! �indg�2Sis induced by S along � if:� �ind contains S via f��: �! �indg�2S;� Names(�ind) = X; and� �ind is a subsignature of any signature �big which contains S via f�0�: �! �bigg�2S .Notice that if such a signature �ind exists (together with such a family of signature morphisms) then:1. �ind is unique;2. For each � 2 S, the signature morphism ��: � ! �ind is unique (�� will be denoted b'� in thesequel); and3. For any �big with f�0�: �! �bigg�2S as above, the \universal inclusion" �: �ind ! �big is uniqueand ��;� = �0� for � 2 S.Proof Parts 2 and 3 follow directly from the faithfulness of Names. For 1, suppose that both �indand �0ind are induced by S along �. Then there exist signature inclusions �: �ind ! �0ind and �0: �0ind !�ind. Hence, both �;�0 and �0;� are signature inclusions, and hence identities (since Names(�ind) =X = Names(�0ind)). Thus, � is an isomorphism and Names(�) is an identity, which implies (by thecorollary to assumption 1) that �ind = �0ind.Of course, in general �ind does not have to exist. Even in the most standard case, for algebraicsignatures, the role of each element of X in the induced signature must be identi�ed. On a moreformal level, this amounts to the requirement that the family � is (collectively) surjective, i.e. forevery x 2 X there exists some � 2 S and n 2 Names(�) such that '�(n) = x.Assumption 2 For any family of signatures S � jSignj compatible along a surjective family offunctions � = f'�: Names(�) ! Xg�2S there exists a signature induced by S along � (which isthen unique, by the above remarks).Let S be a family of signatures, N = S�2S Names(�), and let I = fin�: Names(�) ,! Ng�2Sbe the family of inclusions.We say that S is compatible if it is compatible along I. By the union of S, written SS, we meanthe signature induced by S along I. (If S is �nite we may use the usual in�x notation for the union.)We say that a signature � is compatible with S if the family S [f�g is compatible.Lemma 1 Let S be a compatible set of signatures.1. Any subset S 0 � S is compatible;

2. If � is a subsignature of a signature in S then � is compatible with S; and3. For any subset S 0 � S, SS 0 is compatible with S.Proof Obvious, since any signature which contains S also contains: (1) S 0, (2) �, and (3) SS 0.Intuitively, con
icts between signatures arise (signatures are incompatible) when di�erent signa-tures use the same names in di�erent ways. We formalise this intuition as follows:Assumption 3 Any �nite family of signatures with disjoint names apart from a common full subsig-nature is compatible; i.e. for any �nite family S of signatures, if there is a signature �perv which isa full subsignature of each signature in S such that the sets Names(�) �Names(�perv) are disjointfor di�erent � 2 S, then S is compatible.4 The semantics of Extended MLIn this section we outline the main ideas behind the semantics of Extended ML (EML). Although someof the purely technical issues are not discussed here, all of the non-standard aspects of the semanticsare treated. The reader who is interested in the full details of the semantics of Extended ML is referredto [ST 86].As discussed in the introduction, the ideas presented here and the details in [ST 86] are independentof the institution with syntax in which the user of the language may choose to work. This meansthat we actually describe a family of speci�cation languages, each one obtained by instantiating thede�nitions we provide in a given institution with syntax (together with some low-level details | seebelow). The examples in section 2 are written in the variant of Extended ML obtained by instantiatingthe de�nitions in a version of the institution FOEQ in which \executable" axioms may be writtenin Standard ML syntax to distinguish them from non-executable ones. We will use the term \thestandard variant" to refer to this language below.Throughout this section we assume that we are given an arbitrary but �xed institution with syntax,INS = hSign;Set;Mod; j=;Names;Syn; repri. To clarify the overloaded term \signature" (sorry,but it's not our fault!) we adopt the convention that \signature" refers to signatures of INS (objectsof Sign), denoted by �, �0 etc. while \EML signature" refers to the concept of signature appearingin the speci�cation language. For consistency, we will also use the terms \EML structure" and \EMLfunctor".The semantics of Extended ML we present is based on the ASL kernel speci�cation languagedescribed in the framework of an arbitrary institution in [ST 85c]. Informally in this section (andformally in [ST 86]) we refer to the following speci�cation-building operations of ASL:� Form the union of a family of �-speci�cations fSPigi2I , specifying the collection of �-modelssatisfying SPi for all i 2 I. We sometimes speak of the intersection of model classes instead.� Translate a �-speci�cation to another signature �0 along a signature morphism �: � ! �0.This together with union allows large speci�cations to be built from smaller and more or lessindependent speci�cations.

� Derive a �0-speci�cation from a speci�cation over a richer signature � using a signature morph-ism �: �0 ! �. This makes it possible to forget or rename components of a speci�cation whileessentially preserving its collection of models.� Abstract away from certain details of a speci�cation, admitting any models which are observa-tionally equivalent to a model of the speci�cation with respect to some given set of properties(de�ned using sentences of the institution).These operations can be viewed as functions on classes of models over a given signature.The basic entities of Extended ML are EML signatures, structures and functors. We discuss eachof these in turn.4.1 EML signaturesAs indicated before, an EML signature essentially denotes a class of models over a given signature �.However, we inherit from Standard ML certain complications which force us to adopt a more complexview. The most obvious one is that in Standard ML the same object may have multiple names whichare said to share. The way we adopt here to cope with this is to assume that the names which occur in� are unique internal semantic-level names which are associated with one or more external identi�ersto which the user may refer. Thus, the denotation of an EML signature is taken to be a quadruplehN; �;�; Ci where:� N is a set of (external) identi�ers,� � is a signature,� � : N ! Names(�) is a function assigning an internal name to each external identi�er, and� C � jMod(�)j is a class of �-models.We call quadruples of this form EML values. We occasionally identify EML signatures (and structures)with the EML values they denote. Sharing is determined by identity of internal names, i.e. if n;m 2 Nare two external identi�ers then n and m share i� � (n) = � (m). Every EML signature is closed in thesense that all components of its underlying signature � have associated external identi�ers in N , i.e.� is surjective. Substructures are not handled by maintaining an explicit hierarchy of EML values.Rather, this is done at the level of external identi�ers by using identi�ers like A:n for the componentn of the substructure A; any identi�er having this form is assumed to refer to a component of A.As in the standard variant, every EML signature contains the pervasive EML signature. This ismodelled by the implicit assumption that every EML value which is generated as the denotation ofan EML signature contains as a full subvalue the pervasive EML value hNperv; �perv;�perv; Cpervi, i.e.for any EML value hN; �;�; Ci, Nperv � N , � �Nperv = �perv, �perv is a full subsignature of � and the�perv-models derived from C using the signature inclusion ��perv�� are included in Cperv. With thisin mind we adopt the convention that when we say that two sets of names are disjoint, we mean thatthey are disjoint apart from pervasive names. Of course, the pervasive value depends on INS andmust be provided when Extended ML is instantiated in a given institution.Thus we start elaboration of an EML signature sig by including in its denotation the pervasiveEML signature. This is gradually extended with each elementary speci�cation in sig.

The most basic kind of elementary speci�cation is to extend the underlying signature of thecurrent EML value (in the standard variant, by adding new types/values). Again, this is one of thethings which cannot be treated in a completely institution-independent way; we must assume that asignature morphism describing the extension is given. After all, the way such extensions arise dependsfundamentally on what signatures really are and what structure is available on them. We assume,however, that this morphism never changes the existing names of the signature.Thus, as a replacement for Standard ML syntax like val f:t->t and type t, Extended MLcontains a construct extend along �: �! �0 where � is the underlying signature of the currentEML value and � is a signature inclusion. We assume that some syntax analogous to val f:t->tand type t for describing such signature inclusions is provided when Extended ML is instantiated ina given institution. We will regard the Standard ML declaration val v:t = exp as an abbreviationfor val v:t; axiom v = exp, and fun f(pat1:t):t' = exp1 | : : : | f(patn:t):t' = expn as anabbreviation for val f:t->t'; axiom f(pat1) = exp1 and : : : and f(patn) = expn. However, thedeclaration type t = t' is an abbreviation for new name t for t' (see below).Note that � may not only introduce new names; it also could enrich the structure of the signature�. For example, in order-sorted logic � may be the signature with two sorts t; t0 and �0 could be �together with the requirement that t � t0 (and possibly some new names as well).The semantics of this construct is straightforward: we simply change the current underlying sig-nature to �0, translate the class of models along �, and make the new internal names Names(�0) �Names(�) available as external identi�ers.To simulate a di�erent kind of elementary speci�cation (e.g. type t = t' in the standard variant)which introduces a new external identi�er for an existing internal object, Extended ML provides theconstruct new name n for m where n is a new external identi�er and m is required to be an externalidenti�er available in the current EML value. This construct just introduces the new external identi�ern and binds it to the internal name associated with m.Note that this construct already introduces the possibility of sharing by allowing a new externalidenti�er to be bound to an existing object. Two existing external identi�ers n and m can be forcedto share by the elementary speci�cation sharing n = m. The intuitive meaning of this is that nothinghappens if n and m share already; otherwise the resulting underlying signature will identify theinternal names associated with n and m. To describe the nontrivial case formally, consider a function': Names(�) ! (Names(�) � f� (n); � (m)g [fnewg) where � is the underlying signature of thecurrent EML value and new is an arbitrary name not in Names(�) � f� (n); � (m)g, such that:'(x) = (new if x 2 f� (n); � (m)gx otherwise(A little more care is necessary if either � (n) or � (m) is pervasive.) The resulting underlying sig-nature is the signature induced by � along '; the set of external identi�ers remains the same, thecorrespondence between external identi�ers and the new internal names is altered in the obvious way,and the models are translated along b' (recall that b' is the signature morphism from � to the newsignature such that Names(b') = ').Of course, � does not have to be compatible along ', which means that we are attempting toidentify incompatible components (in the standard variant, this happens if n denotes a type and mdenotes a value or if n and m denote values having di�erent types). If this is the case, the elaborationof the elementary speci�cation yields an error. Assumption 2 guarantees that otherwise the signatureinduced by � along ' exists.

We will not consider here the intricacies of sharing constraints for substructures inherited fromStandard ML; a �rst approximation would be to regard such a sharing constraint as an abbreviationfor a set of sharing constraints for the corresponding components of the substructures | see [ST 86]for the complete details.The last way to extend EML signatures is to add a substructure of a given EML signature usingthe construct structure A : sig0 where A is an atomic identi�er and sig0 is an EML signature, eitherde�ned here explicitly or taken from the environment. Intuitively, this adds sig0 to the current EMLsignature, renaming each external identi�er n of sig0 to A.n. This is not enough, though, because itis necessary to avoid unintended sharing which may occur if sig0 happens to use some of the sameinternal names as the current EML value. More formally, let hN; �;�; Ci denote the current EMLvalue and hN 0; � 0;�0; C 0i denote sig0. To elaborate structure A : sig0 we have to choose a signature�00 isomorphic to �0 (where i: �0 ! �00 is the isomorphism) but having names disjoint from the namesof �, modulo pervasive names. If such a �00 does not exist then we have (intuitively) run out of nameswhich causes an error | but this cannot happen in any of the example institutions from section 3.Otherwise we take the union signature of �00 and � as the underlying signature of the result. It existsby assumptions 2 and 3. The class of models is the intersection of the classes of models of C and C 0translated into the union signature (along ����[�00 and i;��00��[�00 respectively). The new externalidenti�ers are the ones already present in N together with the identi�er A.n for each n 2 N 0 withthe obvious association to internal names.Axioms may be imposed on an EML signature to restrict its class of models. The syntacticrepresentation of sentences from INS is used to present axioms using the construct axiom ax. Toelaborate this in the current EML value hN; �;�; Ci we �rst check if ax uses only the available externalidenti�ers, i.e. if ax 2 Syn(N). Then we translate it to syntax over the internal names Names(�),i.e. to Syn(�)(ax), and �nd the sentence � in Sen(�) it represents, i.e. � = repr�(Syn(�)(ax)).This process may be compared to the process of parsing and typechecking in Standard ML. If it isunsuccessful, i.e. � does not exist, an error occurs. Otherwise we restrict the class of models C tothose which satisfy � (according to the satisfaction relation j=�).The elaboration of elementary speci�cations as discussed above gives us the literal interpretationof all the axioms in an EML signature, giving an EML value hN; �;�; Ci. As discussed in section 2,we want to relax this interpretation using the notion of behavioural abstraction. This happens whenwe complete elaboration of any EML signature. To the class of models C we add all those �-modelswhich are observationally equivalent to the models already in C with respect to a set � of observablesentences chosen to model an appropriate notion of behavioural equivalence (i.e. we add any modelwhich satis�es exactly the same sentences of � as a model already in C). Naturally, the choice of �cannot be made in an institution-independent way. All we can provide to guide this choice is the setof names which should be viewed as having an externally �xed interpretation. These are the pervasivenames together with those occurring in substructures, i.e. having non-atomic external identi�ers.Thus we assume that when instantiating Extended ML in an institution with syntax we are providedwith a function beh which assigns to any signature � and set of names OBS �Names(�) a set of �-sentences beh(�; OBS) (more precisely, a set of open �-formulae | see [ST 85b]) such that (intuitively)observational equivalence with respect to beh(�; OBS) models behavioural equivalence of �-modelswith respect to observable components OBS. For example, in the standard variant beh(�; OBS) wouldyield the set of all equations between �-terms having sorts in OBS (and free variables of sorts in OBS).

4.2 EML structuresLike EML signatures, EML structures denote EML values hN; �;�; Ci; and like EML values denotingEML signatures, EML values denoting EML structures always contain the pervasive EML value asa full subvalue. However, an essential di�erence arises from the fact that EML structures can freelyrefer to components of previously-constructed EML structures. When an EML structure is constructedusing pieces of other EML structures, sharing across structure boundaries may occur. This implies thatEML structures cannot be treated as isolated entities; two components of di�erent EML structuresshare i� they have the same internal name. We must ensure by our choice of internal names thatsuch sharing does not arise unintentionally. The elaboration of structure expressions takes place inthe context of an environment binding atomic identi�ers to EML (structure) values so the internalnames of all EML structures presently in existence are available.As with EML signatures, the elaboration of an EML structure str starts by including the per-vasive EML value and then proceeds by elaborating the elementary declarations in str. Elementarydeclarations in EML structures include all elementary speci�cations which can appear in EML signa-tures except for sharing constraints; sharing in EML structures arises by construction rather than bydeclaration. The semantics of these constructs in an EML structure context is more complicated thantheir interpretation in an EML signature context. To simplify slightly the description of the semanticsbelow we will assume that identi�ers may not be redeclared within a given structure. In order topermit redeclaration we would have to throw away components of the current EML value which areno longer accessible via external identi�ers in appropriate places in the semantics | see [ST 86] forfull details.The �rst kind of elementary declaration extends the underlying signature without constrain-ing the interpretation of the extension (in the standard variant this corresponds to declarations ofnew types/values without binding them, such as type t or val v:t->t but not type t = int orval v = exp). The syntax extend along �: �! �0 and its semantics is the same as of the cor-responding elementary speci�cation in an EML signature. However, in order to avoid unintentionalsharing we additionally have to ensure that the newly-introduced internal names are di�erent fromall those belonging to already-existing structures. We do this by changing the underlying signatureof the result to an isomorphic one while preserving the names of the current signature �. This maybe impossible if (intuitively) we have run out of names, in which case an error arises. This cannothappen in any of the example institutions from section 3.The semantics of new name n for m is as before if m is an external identi�er of the current EMLvalue hN; �;�; Ci. If not, it must be of the form A.p for some atomic identi�er A naming an EMLstructure hN 0; � 0;�0; C 0i available in the environment where p 2 N 0. Then (intuitively) we have tograb the internal name and interpretation of p and add it to the current EML value under the externalidenti�er n. More formally, let �p =def �0 f� 0(p)g be the subsignature of �0 generated by the internalname of p and let Cp be the restriction of the model class C 0 to �p (along ��p��0). We will need asimilar operation of restricting an EML value to a subset of its external identi�ers again in the sequelso let us de�ne that for any EML value hN 0; � 0;�0; C 0i and set X � N 0, the subvalue of hN 0; � 0;�0; C 0igenerated byX is hN 0; � 0;�0; C 0i X =def hX; � 0�X;�0 � 0(X); C 00i where C 00 is the class of �0 � 0(X)-modelsderived from C 0 using the signature inclusion ��0 � 0(X)��0 .Returning to the elaboration of the new name construct, the resulting EML value will have anunderlying signature � [�p, external identi�ers N [fng with n assigned to the internal name � 0(p),and a class of models which is the intersection of the appropriate translations of C and Cp into thesignature �[�p. However, it may turn out that the union signature �[�p does not exist. Intuitively

this may occur if � and �p have incompatible structures on some common part. In order-sortedlogic, suppose A is an EML structure containing sorts t and t' and consider the following example(where the constructs require and val are just convenient syntax for extend along in this particularinstitution):structure B = struct structure C = Arequire C.t < C.t'val f : C.t -> C.t'endstructure D = struct structure E = Arequire E.t' < E.tnew name g for B.fendThe subsignature of B generated by f must contain the sorts A.t = B.C.t = D.E.t and A.t' =B.C.t' = D.E.t' together with the subsort constraint A.t�A.t'. This is incompatible with thesubsort constraint in D that A.t'�A.t. (Note that this does not contradict assumption 3; the commonsubsignature here is not full.) However, this kind of situation cannot occur in the other two institutionsof section 3. We could have adjusted the category of order-sorted signatures to avoid this problem bymaking either of the following changes:1. Require that all signature morphisms be full with respect to the ordering on sorts, i.e. for�: � ! �0 and s; s0 sorts in �, �(s) � �(s0) in �0 implies s � s0 in �. This excludes signatureinclusions which introduce new structure, as in the above example.2. Allow the sorts to be preordered rather than ordered. This would imply that structure onsignatures is never contradictory; in particular, the above example would succeed with bothA.t�A.t' and A.t'�A.t as subsort constraints of D (implying the identity of the correspondingcarriers).One way to add a substructure to an EML structure is to declare it using the construct structure A : sigwithout constraining the interpretation of the substructure A further than the EML signature sig re-quires. The semantics of this is exactly the same as in an EML signature context. Note however thatin order to avoid unintended sharing we have to pick new internal names which are di�erent not onlyfrom the internal names of the current EML value but also from the internal names of all existingstructures.Another way to add a substructure is using the construct structure A = str0 which introducesa new substructure A and binds it to the EML structure str0. If hN; �;�; Ci is the current EMLvalue and str0 denotes the EML value hN 0; � 0;�0; C 0i then the underlying signature of the result is� [�0 (unless � and �0 are incompatible, in which case an error is raised), the class of models is theintersection of the translations of C and C 0 to the signature � [�0, the external identi�ers consistof the set N together with the name A.p for each p 2 N 0, with the obvious association of internalnames. Note that this is equivalent (modulo syntactic details) to a sequence of new name declarationsof the form new name A.n for n where n and its internal interpretation come from the EML valuedenoted by str. As a result the problem with incompatible signatures may arise here just as in thecase of the new name construct.

The construct structure A : sig = str0 also adds a substructure to the current structure. This isde�ned to be equivalent to structure A = (str0 : sig), where str0 : sig de�nes an EML structureas will be explained later.As in EML signatures, it is possible to impose axioms which restrict the class of models of astructure using the construct axiom ax. However, in this case ax may make use of non-local identi�ersand so its interpretation is more complicated. Let hN; �;�; Ci be the current EML value and let Udenote the set of all visible external identi�ers, that is:U =def fA:n j A 7! hNA; �A;�A; CAi is in the environment and n 2 NAg [NWe have to check that ax 2 Syn(U). If this is not the case (which happens when ax uses unavailableidenti�ers) then an error occurs; otherwise let Uax be the set of external identi�ers ax uses, i.e.the least subset of U such that ax 2 Syn(Uax). This also determines the set of EML structuresin the current environment � which are relevant for the interpretation of ax, where a structure Ais relevant for ax if the set NaxA =def fn j A:n 2 Uaxg is nonempty. Furthermore, consider therestriction of these EML structures to their minimal substructures necessary for the interpretation ofax: STRax =def f�(A) NaxA j NaxA 6= ;g. Now we have to require that the set of underlying signaturesof STRax is compatible and that � (the current signature) is compatible with it. If it is not, an erroris raised as there can be no sensible interpretation for ax. Otherwise, we interpret ax in the unionstructure hUax; �ax;�ax; Caxi where �ax is the union of the underlying signatures of STRax and �, Caxis the intersection of model classes of structures in STRax translated into �ax, and �ax associates theexternal identi�ers Uax with the appropriate internal names (an external identi�er of the form A:nis mapped to the internal name corresponding to n in �(A)). We start this interpretation by �ndingthe sentence � =def repr�ax(Syn(�ax)(ax)) which ax represents. If � does not exist an error occurs.Finally, the resulting class of models is the restriction of the current model class C to those � modelswhich may be derived from models in Cax which additionally satisfy � (according to j=�ax); the othercomponents of the current EML value remain unchanged.The intricacies of the above construction are mostly caused by the need to avoid forming a signatureany larger than necessary to interpret ax. The problem is that otherwise the error of incompatibilitymay be raised even though ax has an interpretation in a smaller, compatible part of the environment.In the case of equational logic and categorical logic, compatibility of the underlying signatures ofall existing EML structures is maintained (by our choice of internal names) and so a much simplerconstruction, using the union of all the structures in the environment to interpret ax, would su�ce.This would also be the case if we had guaranteed that compatibility is preserved by the extend alongconstruct. We have chosen instead to allow incompatible signatures to coexist as long as they do notinterfere with each other.Once an EML structure has been elaborated, it is possible to require it to �t a given EML signatureusing the construct str : sig0 which yields an error if str does not �t sig0 and otherwise reduces strto the signature sig0, forgetting all of its extraneous components. More formally, if str denoteshN; �;�; Ci and sig0 denotes hN 0; � 0;�0; C 0i then str : sig0 yields an error if N 0 6� N or if there is nosignature morphism �: �0 ! � such that for any n0 2 N 0, Names(�)(� 0(n0)) = � (n0).

N 0 N�Names(�0) Names(�)-Names(�)?� 0 ?��0 �-�Note if such a � exists then it is unique since � 0 is surjective (which comes from the fact that EMLsignatures are closed): there is at most one function from Names(�0) to Names(�) such that theabove diagram commutes and so (by faithfulness of Names) there is at most one signature morphism� with the required properties. Then we have to check that the models admitted by str satisfy therequirements of sig0, i.e. we raise an error unless the �0-models derived from C using � are includedin C 0. Finally, the resulting structure is hN; �;�; Ci N 0. Note that the above description allows str toshare more than is required by sig0 and that this sharing is carried over to str : sig0.Another way to construct a new EML structure out of a given one is to extract one of its substruc-tures using the notation str.A. Let hN; �;�; Ci be the EML value denoted by str. An error occursif N contains no names of the form A.n. Otherwise the resulting EML value is hN; �;�; Ci fA:n2Ngexcept that we change each external name A.n to n.A requirementwe inherit from Standard ML is that once the construction of a structure is complete,it must be a closed EML value. This requirement is imposed for methodological reasons rather thanbecause of technical necessity. It cannot be required at intermediate stages of the construction of astructure since the construct new namemay add components to the underlying signature which remaintemporarily anonymous. It is straightforward to check this condition since it is just the requirementthat the assignment of internal names to external identi�ers is surjective. But before checking for thisit is necessary to throw away components of the underlying signature which were introduced duringthe construction of the structure but are no longer used. This is done by restricting the EML valueto the set of all its external identi�ers.4.3 EML functorsSemantically, an EML functor acts as a function taking a list of actual parameters (which are EMLstructures over the formal parameter EML signatures) to a structure over the result EML signature.However, we have chosen to describe the semantics of functors using a macro-expansion mechanismand so no function of this kind appears explicitly in our semantics. The denotation of a functorfunctor F(A1:sig1,: : :,An:sign sharing eq1 and : : : and eqm) :sig = strconsists of a list of the formal parameter names A1; : : : ; An, an EML value describing the combinedformal parameter signatures, which is just the denotation of the EML signaturesig structure A1:sig1; ...; structure An:sign;sharing eq1; ...; sharing eqmend ,

the body quali�ed by the result signature, str:sig, kept in its syntactic form, and the declaration-time environment. Applying this functor to a list of actual parameters str1; : : : ; strn is done byelaborating the expression str:sig in the declaration-time environment augmented by binding theparameter namesA1; : : : ; An to the actual parameter values (after �tting them to the formal parametersignature).5 Concluding remarksIn this paper we presented the institution-independent semantics of Extended ML (EML), a high-level speci�cation language based on the ideas of Standard ML modules. This required extending thenotion of an institution by adding facilities for manipulating the names associated with componentsof signatures and for syntactic representation of axioms. Such an extended institution we call aninstitution with syntax. This provided a framework su�cient to give a nearly complete institution-independent semantics of Extended ML. The only institution-dependent \leftovers" are:1. the particular choice of the underlying pervasives which form a part of every EML signature andstructure;2. the set of observations required for the notion of behavioural equivalence of models; and3. the part of the language for describing \elementary" signature extensions (i.e. those which areto be admitted in the given instantiation of EML).The only other speci�cation languages we know about which are de�ned in the framework of anarbitrary institution are Clear [BG 80] and ASL [ST 85c]. Extended ML as described here di�ers fromthem in at least the following respects:1. Both Clear (in its institution-independent form!) and ASL provide nothing more than a bunchof speci�cation-building operations. The syntax used to describe everything below the level of aspeci�cation and the meaning of that syntax is institution-dependent and therefore not supplied.In Extended ML we have attempted to deal even with the syntax of individual axioms; we haveindicated, for example, where and how the problems of parsing and type-checking would appear.2. The only explicit structuring facility Extended ML o�ers to its user is the notion of a structure(called a functor when parameterised) which is a direct extension of the notion of a structure inStandard ML. This brings the structure of speci�cations in Extended ML closer to the structureof programs and makes Extended ML more appropriate for design speci�cation than either ASLor Clear (although see the comment at the end of 3 below), in that it allows the user not only toindicate the desired functional properties of a program/system, but also to design the structureof its implementation.3. Extended ML is a wide spectrum language (see [Bau 81]), where programs are just speci�cationswhich happen to include only executable axioms. In [GB 80], Goguen and Burstall outline ascheme for developing programs from Clear speci�cations, but in this framework the speci�cationlanguage and programming language are kept separate although it is suggested that programmodules could be put together using Clear's speci�cation-building operations. Of course, bothClear and ASL could be used as wide spectrum languages; the di�erence is only that Exten-ded ML was designed with this speci�c goal.

This work can be viewed from two di�erent perspectives. From one point of view it is an exercisein applying the theory of institutions in the �eld of algebraic speci�cations. As in the case of e.g.[Tar 84,85], there is a limited amount which can be accomplished within the framework of an arbitraryinstitution as originally de�ned in [GB 84]; the \game" is to identify a minimal set of extra assumptionsnecessary for a particular purpose.From another point of view, this work is a step towards a practical framework for formal pro-gram development. In [ST 85a] Extended ML was introduced as a vehicle for the development ofStandard ML programs. However, the use of the standard algebraic framework there excluded (forexample) the use of partial functions, polymorphic types and assignment. By providing an institution-independent semantics for Extended ML here, we make it possible in principle to remove these restric-tions by plugging in an appropriate institution with syntax. For example, an institution permitting theuse of partial functions based on [BW 82] is described in [ST 85c], and it is obvious how to extend thisto an institution with syntax. Moreover, it is more or less apparent that Extended ML instantiated tothis institution with syntax would allow one to treat partial functions in a satisfactory way. However,the situation with polymorphic types is much less clear. It is possible to construct an institution forpolymorphism (see [SB 83] for some hints) and we do not anticipate problems in extending such aninstitution to an institution with syntax. But preliminary investigations along these lines indicate thatExtended ML in this institution would not work as expected (the problem here has to do with thestructure which is imposed on the set of type names in the presence of polymorphism). Assignmentposes even bigger problems; at the moment we just do not know what an appropriate institutionwould be. Di�culties of this kind must be overcome before it will be possible to use Extended ML todevelop programs in full Standard ML.Another advantage of an institution-independent semantics for Extended ML is that it permitsfreedom in the choice of the logic used to specify Standard ML programs. Even more intriguing, itmakes Extended ML ML-independent: since Extended ML uses only the modularisation facilities ofStandard ML, it could be used to specify and develop programs in Prolog, Pascal, etc. by choosingan institution which includes program fragments in the desired language as sentences.AcknowledgementsOur thanks to Rod Burstall and Joseph Goguen for their work on institutions, to Rod Burstall forthe idea of adding axioms to a programming language, to David MacQueen for his work on modulesfor Standard ML and to Martin Wirsing for helping to develop ASL. This work was supported by the(U.K.) Science and Engineering Research Council, the Polish Academy of Sciences and the Universityof Edinburgh.6 References[Bar 74] Barwise, K.J. Axioms for abstract model theory. Annals of Math. Logic 7 pp. 221-265.[Bau 81] Bauer, F.L. et al (the CIP Language Group) Report on a wide spectrum language forprogram speci�cation and development. Report TUM-I8104, Technische Univ. M�unchen. Seealso: The Wide Spectrum Language CIP-L. Springer LNCS 183 (1985).[BW 82] Broy, M. and Wirsing, M. Partial abstract types. Acta Informatica 18 pp. 47-64.

[BG 80] Burstall, R.M. and Goguen, J.A. The semantics of Clear, a speci�cation language. Proc. ofAdvanced Course on Abstract Software Speci�cations, Copenhagen. Springer LNCS 86, pp. 292-332.[Ehr 79] Ehrich, H.-D. On the theory of speci�cation, implementation, and parametrization of ab-stract data types. Report 82, Univ. of Dortmund. Also in: Journal of the Assoc. for ComputingMachinery 29 pp. 206-227 (1982).[EKMP 82] Ehrig, H., Kreowski, H.-J., Mahr, B. and Padawitz, P. Algebraic implementation ofabstract data types. Theoretical Computer Science 20 pp. 209-263.[GB 80] Goguen, J.A. and Burstall, R.M. CAT, a system for the structured elaboration of correctprograms from structured speci�cations. Technical report CSL-118, SRI International.[GB 84] Goguen, J.A. and Burstall, R.M. Introducing institutions. Proc. Logics of ProgrammingWorkshop (E. Clarke and D. Kozen, eds.), Carnegie-Mellon University. Springer LNCS 164,pp. 221-256.[GB 86] Goguen, J.A. and Burstall, R.M. A study in the foundations of programming methodology:speci�cations, institutions, charters and parchments. Proc. Workshop on Category Theory andComputer Programming, Guildford (this volume). Springer LNCS.[GJM 85] Goguen, J.A., Jouannaud, J.-P. and Meseguer, J. Operational semantics for order-sortedalgebra. Proc. 12th Intl. Colloq. on Automata, Languages and Programming, Nafplion, Greece.Springer LNCS 194, pp. 221-231.[GTW 76] Goguen, J.A., Thatcher, J.W. and Wagner, E.G. An initial algebra approach to thespeci�cation, correctness, and implementation of abstract data types. IBM research reportRC 6487. Also in: Current Trends in Programming Methodology, Vol. 4: Data Structuring(R.T. Yeh, ed.), Prentice-Hall, pp. 80-149 (1978).[Gut 75] Guttag, J.V. The speci�cation and application to programming of abstract data types.Ph.D. thesis, Univ. of Toronto.[LHKO 84] Luckham, D.C., von Henke, F.W., Krieg-Br�uckner, B. and Owe, O. Anna: a language forannotating Ada programs (preliminary reference manual). Technical report 84-248, ComputerSystems Laboratory, Stanford University.[MacL 71] MacLane, S. Categories for the Working Mathematician. Springer.[MacQ 85] MacQueen, D.B. Modules for Standard ML. Polymorphism 2, 2. See also: Proc. 1984ACM Symp. on LISP and Functional Programming, Austin, Texas, pp. 198-207.[Mil 85] Milner, R.G. The Standard ML core language. Polymorphism 2, 2. See also: A proposal forStandard ML. Proc. 1984 ACM Symp. on LISP and Functional Programming, Austin, Texas,pp. 184-197.[NY 83] Nakajima, R. and Yuasa, T. (eds.) The IOTA Programming System: A Modular Program-ming Environment. Springer LNCS 160.

[Rei 84] Reichel, H. Behavioural validity of conditional equations in abstract data types. Contribu-tions to General Algebra 3: Proc. of the Vienna Conference. Verlag H�older-Pichler-Tempsky,pp. 301-324.[SB 83] Sannella, D.T. and Burstall, R.M. Structured theories in LCF. Proc. 8th Colloq. on Trees inAlgebra and Programming, L'Aquila, Italy. Springer LNCS 159, pp. 377-391.[ST 85a] Sannella, D.T. and Tarlecki, A. Program speci�cation and development in Standard ML.Proc. 12th ACM Symp. on Principles of Programming Languages, New Orleans, pp. 67-77.[ST 85b] Sannella, D.T. and Tarlecki, A. On observational equivalence and algebraic speci�cation.Report CSR-172-84, Dept. of Computer Science, Univ. of Edinburgh; to appear in Journal ofComputer and Systems Sciences. Extended abstract in: Proc. 10th Colloq. on Trees in Algebraand Programming, Joint Conf. on Theory and Practice of Software Development (TAPSOFT),Berlin. Springer LNCS 185, pp. 308-322.[ST 85c] Sannella, D.T. and Tarlecki, A. Speci�cations in an arbitrary institution. Report CSR-184-85, Dept. of Computer Science, Univ. of Edinburgh; to appear in Information and Control. Seealso: Building speci�cations in an arbitrary institution, Proc. Intl. Symposium on Semantics ofData Types, Sophia-Antipolis. Springer LNCS 173, pp. 337-356 (1984).[ST 86] Sannella, D.T. and Tarlecki, A. An institution-independent semantics for Extended ML.Research report, Laboratory for Foundations of Computer Science, Dept. of Computer Science,Univ. of Edinburgh (in preparation).[SW 83] Sannella, D.T. and Wirsing, M. A kernel language for algebraic speci�cation and implement-ation. Report CSR-131-83, Dept. of Computer Science, Univ. of Edinburgh. Extended abstractin: Proc. Intl. Conf. on Foundations of Computation Theory, Borgholm, Sweden. SpringerLNCS 158, pp. 413-427.[Tar 84] Tarlecki, A. Quasi-varieties in abstract algebraic institutions. Report CSR-173-84, Dept. ofComputer Science, Univ. of Edinburgh; to appear in Journal of Computer and Systems Sciences.[Tar 85] Tarlecki, A. On the existence of free models in abstract algebraic institutions. TheoreticalComputer Science 37 pp. 269-304.[Wir 83] Wirsing, M. Structured algebraic speci�cations: a kernel language. Habilitation thesis,Technische Univ. M�unchen.[Zil 74] Zilles, S.N. Algebraic speci�cation of data types. Computation Structures Group memo 119,Laboratory for Computer Science, MIT.

