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ABSTRACT

We present a modular system for Rule-Based Languages as an application of a
functional theory of modularity. The theory can be applied to modularize any flat
rule-based language because it is practically independent of the internal nature of
modules. The resulting system supports the construction of structured large
Knowledge-Bases using generic modules and provides facilities for information
hiding (data abstraction). The module language requires minimal alteration of the
underlying flat rule-based language; it is in fact a metalanguage which can be easily
implemented on top of the existing rule-based language. Main hints for th. ' ling

of a compiler that translates from the module language to the flat language are
provided.

TINTRODUCTION

Many existing rule-based languages have few structuring facilities for
“programming in the large”. This is one of the reasons why the development of large
applications is difficult. To improve this situation, there exist different proposals, from
just adding some syntactic modular facilities to the rule-based language, up to the use
of new object-oriented languages (SHWES87).

Our proposal lies in between. It is a semantic approach in the sense that modules
have a natural connection with the underlying theory of the language, and it provides
static parameterized modules that are close to objects in object-oriented languages. We
have adopted this solution because it allows to keep unmodified our rule-based
language MILORD (GLSV87) and, at the same time facilitates structuring the
applications developed with MILORD. Furthermore, by this means we can experiment
object-oriented concepts with minimum effort.

The functional approach to modularity that we present is based on ML modular
system (HMMB86). The same approach has been applied by (SW87) to logic
programming. Other authors have also investigated modularity in the setting of
functional and logic programming. (OK85, M86).

Some approaches to modularity require significant extensions to the interpreter of
the flat language (i.e. (FGMOB87) ). To avoid this and to ensure decoupling of the
module system from the underlying KBS language two restrictions are imposed:

1) modules should be declared before any reference to them is made, and

2) modules may not be created by rules.

The second restriction forbids to dinamically construct and to manipulate modules.
If we leave this restriction out the result woud be a new KBS language in the object-
oriented paradigm. In this case a module will become the equivalent of an object. This
Copyright 1989 by Elsevier Science Publishing Co., Inc.

Methodologies for Intelligent Systems, 4
Zbigniew W. Ras, Editor



44

aspect will be faced in the future.

But now, our main goal is to define a module system which can be easily
implemented on top of any existing Knowledge Based System. That is, here we show
how to build compilers which translate a module language program into a flat
equivalent program.

In the rest of this introduction a functional approach to modularity is presented
defining what our modules are and how they interact. The second section explains
details of the module language by means of an example. The example is shown in
Annex A. Finally, in section 3, some hints of the compilation process are given.

1.1 Modularity by functional abstraction

Modular programming is a strategy to reduce the difficulty of designing, verifying
and modifying a program. This can be made by structuring the program as a number
of components calicd modules with precisely defined interconnections or interfaces. To
make the interfaces explicit between modules, a standard technique called functional
abstraction will be used. This standard technique consists of isolating a piece of
program or module from its context and then abstracting it by specifying:

1) Those modules which the abstracted module may depend upon (requirements
or import interface).

2) The contribution of the abstracted module to the rest of the program (resulis
or export interface).

The internal definition of this abstracted module is made in terms of the import
interfaces.

The obvious example of this technique is functional programming, where such
abstractions form the basic program units. The function body defines how to compute
the output (results) in terms of the input (requirements). For modular programming
we abstract encapsulated sets of the underlying language primitive declarations. Such
abstractions are in fact program-valued functions and are called parametric or generic
modules (the parameter's type being the import interfaces). When applied to
particular modules that satisfy their import interface they result in a new module
which satisfies their export interface. The method for building large KB systems
consists in applying generic modules to previously built particular modules .

The functional approach to modularity does not prescribe the internal nature of the
modules themselves. So, we can adapt this general approach to any flat rule-based
language. From here on, we will call modules to the encapsulated sets of primitive
rule-based language declarations (mainly fact and rule declarations) and call generic
modules the parameterized modules. The interfaces will be called specifications,
suggesting that they are the first step of the programming process.

Summarizing, modules are the basic units and are hierarchically organized . A
generic module is a parameterized unit with explicit specification of parameters.
Specifications describe the information that a module provides to the external world.
Specifications, modules and generic modules are declared with explicit names (Annex
A contains an example of modular program ).

1.2 Modules and their interactions

To apply the mentioned theory of modularity to any flat rule-based language it
must be precisely decided what modules are and how they may legitimately interact.
The criteria chosen here are oriented to: facilitate the program construction, avoid
common programming errors, support information hiding and maintain the module
language decoupled from the flat language, in order to keep it unmodified.

We consider that a structured rule-based system is built up from individual
modules, and each one consists primarily of a set of rules that define facts or execute
actions. Interactions between modules arise by means of references to facts in the if-
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part of rules. To manage such interactions the set of visible facts in a module must be
controlled. In this respect a module is considered well-formed only when every fact
used in the if-part of rules is either : 1) defined inside the module, 2) user asserted and
declared as being dynamic or 3) imported from other modules. In this way the module
language contributes to detect errors faster than post-processing facilities and it also
allows to define safe name spaces.

2THE RULE-BASED MODULE LANGUAGE

In this section the major elements of the module language are introduced by means
of an example. The example shows a very simplified structure of an expert system
application developed for the diagnosis of pneumoniae (PNEUMON-TA) (1.SSV87). Tt
appears in the Annex A and it will be referred from here on by numbers between
brackets (i.e. the module Bact-Lab- <24h in Annex A will be referred as [10]).

2.1 Syntactic aspects

2.1.1Primitive declarations

The flat rule language is considered to have no restrictions in the visibility of facts.
That is, any fact is visible from everywhere. In the module language we consider two
kind of fact declarations: dynamic and exportable. Dynamic facts are asserted by users
at run time; those available inside a module are declared by Dynafacts facty, . . . ,
fact. Exported facts are facts allowed to be used by other modules; they are declared
by Export fact;, . . ., fact,. All exported facts must be conclusions of rules in the
module. Conclusions not mentioned in Expofacts are hidden. The example in Annex
A shows different modules with both kinds of declaration.

The rule declarations in module language are kept exactly the same as they were
in flat language. So all rules of existing expert system applications written in flat
language can be reused.

2.1.2. Structure declarations

We have no restrictions on flat rule language. All structures defined in the module
language will be compiled into rules. Module language introduces three kinds of
declarations : set, specification and module.

Set declaration

Module language allows to give a name to a set of facts. The example [1, 2] in Anex
A shows two fact set declarations : laboratory and exploration. The conceptual
structure of a domain can be expressed with set declarations and operations on sets.
From the point of view of compilation they act as read-macros that facilitate the
writing of Dynafacts and Expofacts declarations.

Specification declaration

Specifications define the language which modules provide to the external world.
The example [3-8] in Annex A shows different specification declarations. Later in the
example there are module declarations instantiating them. The module declaration
Bact-exp-coma [12] is an instance of the specification Bact-exp [5].

Specifications reflect the same submodule structure that modules have. For
example, the specification Bact-Lab [4] reflects the dependence of Bact-Lab- <24k [10]
on module Definitions-lab [5] by means of the declaration: Module X: Def-Lab.

Specifications can be inferred from modules in a direct way. When a module is
declared with an associated specification identifier (i.e. Bact-Lab- <24h: Bact-Lab) the
specification inferred from the module (i.e. Bact-lab- <24h) must match the explicit
specification (i.e. Bact-Lab). A specification S| matches S if a) S1 has a subset of the
dynafacts of Sz and a superset of the expofacts of Sg, and b) exported submodules by S)
are a superset of exported submodules by Sa. Were the inferred specification larger
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than the explicit specification, the additional facts would be hidden (not visible from
outside) in the resulting module.

The syntax of specifications is similar to that of modules as shown in Annex A.
Module declarations
They have the form:
Module modidentifier = modexpression
where modexpresion can be either
a) an encapsulated set of declarations with limited scope,
b) a module name previously defined, or
¢) a generic module application.
a.- Encapsulated declarations :
The module Bact-exp-coma [12] is an example of an encapsulated set of declarations. It
contains a Dynafacts, Expofacts and Rules definitions. The Rules component
concludes about Bacterianicity over patientsin coma.
b.- Module names:
Module names are used to reference previously defined modules. To represent the
explicit dependence of module A on module B, we write:
module A = begin moduleX =B ... end

This is the mechanism by which hierarchically structured K.B. are built. For
example, Bact-Lab- <24h module [10] referres the previously defined module
Definition-Lab by the submodule declaration Module X = Definitions-Lab and so it
makes all names of Definitions-Lab accessible to Bact-Lab- <24h module. That is,
facts defined in the submodule Definitions-Lab are used in Bact-Lab- <24k via prefix-
qualified names such as X -> Leukocytosis. The prefix indicates the access path to the
fact.

The prefixing serves to distinguish between different instances of the same facts
which could have different definitions associated with them. For instance, the module
Bact-Lab-more-24h [11] concludes Bacterian and Atypical based on data from cultures
that were obtained more than 24 hours ago. Similarly Bact-Lab- <24h concludes the
same facts based on data from cultures obtained less than 24 hours ago.

To make the facts of a module directly accessible within another module we declare
it open by: Open modidentifier. For example in the module Bact-exp-nocoma [13] we
declare Open Bact-exp-nocoma, then no prefix is requiered to reference the facts of the
opened module.

On the other hand, the fact left deviation of the Bact-Lab- <24h module is declared
dynamic by the Dynafacts declaration and is considered a fact to be asserted at run
time. Dynamic fact declarations are very useful in pure hierarchies because they allow
to explicitly define which conceptual subdomains (set of data) will be used, so the
compiler can check them.

By default all conclusions of a module are visible from outside using prefixed
names. The Expofacts declarations restrict visible conclusions to a given set. In Bact-
Lab-more-24h module it would not have been necessary to declare Expofacts because
all conclusions are exported. However, to always declare Expofacts is a good
methodology, so that future modifications of the module will not introduce
undesiderable side effects (i.e. adding a new conclusion that must not be seen from
outside).

c.- Generic module application.

The application of a generic module to actual parameters is considered as a module
declaration. This topic will be explained in the next paragraph.
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2.2 Semantics Aspects

2.2.1 Generic Modules

A module language without generic modules has some limitations. To see it let us
consider an example. In Annex A, Definition-Lab [9] module is an instance of Def-Lab
[3] specification. Bact-Lab- <24h : Bact-Lab [10] refers to Definition-Lab [9] and so the
former can be considered as an extension of it. Extensions of new instances of Def-Lab
[3] specification would require the rewriting of new Bact-Lab- <24h modules. This
rewriting seams unnecessary because Bact-Lab- <24h code does not depend on any
actual Def-Lab specification instance. So Bact-Lab- <24h could be abstracted from any
Bact-Lab instance, thus obtaining a generic module. Then, each extension of an
instance of Def-Lab could be generated by applying the generic module to this
instance, and no code rewriting process would be performed by the programmer. This
use of generic modules is safe because the code of the generic module is written only
once avoiding inconsitencies.

Bact [14] is an example of generic module definition. It can be considered as an
abstraction of the following particular module :

Module Pre-Bact = begin module X = Bact-Lab-<24h module Y = Bact-exp-
coma ... end

This very generic module Bact [14] takes as parameters any two modules which

matches its parameter specifications Bact-Lab [4] and Bact-exp [5] and it returns a

module matching the specification Bacterianicity [6]. Other examples of generic

modules having Bacterianicity as their parameter specification are [15, 16].

To build particular K.B. modules we apply the generic modules to previously
defined particular modules. For instance, the module resulting from the following
nested generic module applications:

Pneumococ (Bact (Bact-Lab- <24h, Bact-exp-coma))
concludes Pneumococcus in the situation of less than 24 hours and coma. On the other
hand, the same generic modules applied with different parameters would lead to a
different module. For instance:

Pneumococ (Bact (Bact-Lab-more-24h, Bact-exp-coma))
allows to conclude Pneuwmococcus in the situation of more than 24 hours and coma.

The specification of parameters and results in a generic module is made in order to
check the matching with the actual parameters and results. It is also a kind of
documentation. For example, the specification of the module resulting from Bact [14]
application must be Bacterianicity [6] which in turn is the specification of the
Pneum[15] parameter. The result of applying Pneum is a module with Pneumococcal
[7] specification.

2.2.2 Abstraction process

Abstraction is a technique used both to limit the interaction between modules and
to obtain simple specifications containing a designer's controlled amount of
information. We want to hide internal details of a module to other modules so that
some alteration in that module will not require alterations in the other modules. In
this way we ensure that the modules depend only on exported facts.

Facts used in a module that are not mentioned in the result specification are
hidden. This can be used to do data abstraction. For example, in module Bact-exp-
coma [12] the conclusion dehydrated of rules r4, r5 and ré used as premise of rule r3 is
hidden. So, the module Bact(Bact-lab- <24h;Back-exp-coma) [14] can not use this fact
as premise of its rules.
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2.2.3 Incremental KB building

We want to support the process of incremental KB building. So whenever
definitions in a module change, these changes must be reflected in the rest of the
program. The way to do it is simply by repeating the module applications that refer to
the changed module. This relinking process can be automatized by the compiler, so the
user gets rid of this cumbersome task.

2.2.4 Sharing declarations
Interactions between KB modules occur via common submodules. For instance, given
the modules:

Pneumococ (Bact (Bact-Lab- <24, Bact-exp-coma)) : Pneumococcal

Myco(Bact (Bact-Lab- <24, Bact-exp-coma)) : Mycoplasmal
a generic module with parameter specifications: Pneumococcal and Mycoplasmal can
be defined as follows:

Module Diag-same-date(X: Pneumococcal; Y : Mycoplasmal) =

begin module U = X moduleV =Y
{Here a rule is assumed: it uses facts of submodule Bact-Lab- <24h common to
parameters X, Y}

end
We build now our KB in the following way:

Module Pneumococcus-diag <24-coma =
Pneumococ (Bact (Bact-Lab- <24h, Bact-exp-coma))
Module Mycopla-diag-more-24-coma =
Myco(Bact (Bact-Lab-more-24, Bact-anam-coma))
Module Diag-same-Labdate = Diag-same-date(Pneumococcus-diag-more-24-coma,
Mycopla-diag-more-24-coma)

Suppose that the definition of Diag-same-Labdate needs the same instance of Bact-
Lab for both parameters of Diag-same-date. For example, one reason can be that we
want to use the same date for both parameters (less than 24 hours or more than 24
hours in our example). However, in the former example they are defined by generic
module applications using different instances of Bact-Lab. To solve this problem we
wish to impose a restriction on the parameters of Diag-same-date. Sharing
declarations are used to do it. Sharing declarations are equalities between submodules
and are declared after the parameters of generic modules (path equations). For
example, our Diag-same-date generic module should be rewritten as follows:

Module Diag-same-date(X : Pneumococcal; Y : Mycoplasmal

sharing X-> X-> X = Y->X->X)

Where the path equation X -> X -> X = Y->X ->X indicates that the instances

of Bact-Lab in the bacterianicity instance of X and Y must be the same. Finally the
well formed K.B. would be:

Module Pneumonia-diag- < 24-coma =

Pneumococ (Bact (Bact-Lab- <24h, Bact-exp-coma)
Module Micopla-diag-<24-coma=

Myco(Bact (Bact-Lab- <24h, Bact-exp-coma)
Module Diag-same-labdate =

Diag-same-date (Pneumonia-diag < 24-coma, Micopla-diag- < 24-coma)
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3 COMPILATION PROCESS

To build the compiler it is necessary to structure the semantic relations between
the module language and the flat language. To do so, semantic functions in the
framework of denotational semantics are used. The identifiers (names) of the flat
language are the semantic elements needed to define:

1) Semantic objects
2) Semantic operations
3) Semantic equations

3.1 Semantic objects

The proposed semantic objects are tables which translate names in the module
language into names in the flat language. The process of compilation builds these
tables by analyzing the program syntax. The number of the tables corresponds to the
classes of identifiers allowed by the module language.

3.2 Semantic operations

To facilitate the writing of semantic equations some operations on the semantic
objects are needed. For instance, the matching of two specifications is made by using
fitting operations between tables.

3.3 Semantic equations

The semantic functions are defined equationally. They generate and modify the
semantic objects from syntactic structures.

Notice that flat language determines the semantic objects. Once they have been
stablished it is easy to adapt the semantic operations and the equations of our
compiler to any language.

Generic modules are treated as macros; they keep their bodies as syntactic objects
rather than as some sort of parameterized structure.

The result of the compilation process will both be a flat language code and some
tables, which are built during the process. The whole compiler has been written in
Vaxlisp on DEC VAX machines.

4 CONCLUSIONS

Here we have presented a module system for KBS based on a functional approach
to modularity, and we have shown its applicability to any flat rule-based language.
The system supports the construction of large KBS using generic modules and
provides facilities for abstraction. The system includes a notion of well formed
structured KB which avoids common KB programming errors. The module system
requires no alteration of the underlying flat KB language because it is a
metalanguage easily implementable on top of it.
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Annex A: Example of PNEUMON-IA

Set Lab = ( Leukocytes : integer; Granulocytes% : [0 100] ; left_deviation

fuzzy)
Set Exploration = (Pleuritic_pain : fuzzy ; Expectoration : boolean ;
Instauration : [subacute, acute] ; Hypotension : fuzzy ; Cough :

boolean ; State : [mild, serious, very_serious] ; Skin fold : fuzzy;
Tachypnea : fuzzy; Dry_tongue : fuzzy; Axillar_sweat: boolean;
fever : fuzzy; Headache : boolean)

Specification Def lab =

begin
Dynafacts = Lab
Expofacts = ( Leukocytosis : fuzzy ; Leukopenia : fuzzy;
Neutrophilia : fuzzy )
end
Specification Baci-lab =
begin

Module X : Def lab
Dynafacts = Lab
Expofacts = (Bacterian : fuzzy ; Atipical : fuzzy)

end
Specification Bact-exp =
begin
Dynafacts = Exploration
Expofacts = (Bacterian : fuzzy ; Atipical : fuzzy)
end

Specification Bacterianicity = begin ... end
Specification Pneumococcal = begin .. end
Specification Mycoplasmal = begin ... end
Module Definitions_lab: Def lab = begin ... end

[10] Module Bact-Lab-<24h : Bact-lab =

Begin
Module X = Definitions_lab
Rules
rl if X->Leukocytosis and Left-deviation then Bacterian is Possible
12 if X->Leukopenia and Left-deviation then Bacterian is Almost_sure
r3 if X->Neutrophilia then Bacterian is Possible
r4 if no X->Leukopenia and no X->Leukocytosis and no Left-deviation

then Atipical is Quite_possible

end
[11] Module Bact-lab-more-24 ; Bact-lab =
begin
Module X = Definitions_lab
Dynafacts = Lab
Expofacts = (Bacterian : fuzzy ; Atipical : fuzzy)
Rules ...
end
(12] Module Bact_exp_coma : Bact-exp =
Begin
Rules

rl if Instauration is acute then Bacterian is Moderately Possible
r2 if State is serious or very serious and Hypotension
then Bacterian is Quite_possible
r3 if Cough and no Expectoration and no Dehydrated
then Atipical is Slightly possible
r4 if skin_fold then Dehydrated is Quite_possible
r5 if no Tachypnea and dry tongue then Dehydrated is sure
16 if no Axillar_sweat and fever then Dehydrated is Quite_possible
end I St
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[13] Module Bact-exp-nocoma : Bact-exp =
begin

Open Bact-exp-coma

Rules

rl if pleuritic-pain then Bacterian is moderately-possible

r2 if no (State is serious or very_serious) and Headache
then Atipical is Possible

end
[14] Module Bact( X : Bact-lab ; Y : Bact-exp ) : Bacterianicity =
begin
Inherit X
Inherit Y
rules
rl if X->bacterian >= Y->bacterian

then Bacterian = X->bacterian is sure
r2 if X->atipical >= Y->atipical then Atipical = X->atipical is sure
r3 if X->bacterian or Y->bacterian then Bacterian is Almost_sure
r4 if X->atipical or Y->atipical then Atipical is Almost sure

end
[15] Module Pneum( X : Bacterianicity ) : Pneumococcal =
begin
Inherit X
Expofacts = (Pneumococcus : fuzzy)
rules
end
[16] Module Myco( X : Bacterianicity ) : Mycoplasmal =
begin
Inherit X
Expofacts = (Mycoplasm : fuzzy)
rules
end
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