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Abstract

The purpose of a logical framework such as LF is to provide a language for defining logical
systems suitable for use in a logic-independent proof development environment. All inferential
activity in an object logic (in particular, proof search) is to be conducted in the logical framework
via the representation of that logic in the framework. An important tool for controlling search
in an object logic, the need for which is motivated by the difficulty of reasoning about large and
complex systems, is the use of structured theory presentations. In this paper a rudimentary lan-
guage of structured theory presentations is presented, and the use of this structure in proof search
for an arbitrary object logic is explored. The behaviour of structured theory presentations under
representation in a logical framework is studied, focusing on the problem of “lifting” presentations
from the object logic to the metalogic of the framework. The topic of imposing structure on logic
presentations, so that logical systems may themselves be defined in a modular fashion, is also
briefly considered.

1 Introduction

In logic, the traditional way to present a theory is by giving a set of axioms. This is sufficient for dealing
with the simplest examples like groups or monoids. However, in Computer Science applications, such
a presentation of a theory describing the behaviour of a complex real-life software system would
involve a huge list of axioms, and the scale of such presentations makes them effectively useless. A
commonly-accepted way to cope with this problem is to impose structure on theory presentations
[BG77] and to build complex theories by combining smaller components. One advantage of such
“modular” or “structured” theory presentations is that they provide a basis for guiding proof search
in large theories. This was first considered in [SB83] in the context of Edinburgh LCF [GMWT79].
An LCF theory is presented by declaring base types, constants, and function symbols (i.e., by giving
an LCF signature), and by giving a set of axioms over the language induced by these declarations.
The fundamental idea in [SB83] is to exploit the invariance of consequence under changes of signature
described by “signature morphisms.” The language of structured presentations considered there (and
in this paper) uses signature morphisms to mediate the combination of theories and to provide a form
of “information hiding.” The primitives of the presentation language are sufficient for the definability
of a variety of interesting constructions such as instantiation of parametric presentations. All this
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can be generalized to the context of logical systems other than LCF; the main purpose of this paper
is to make this explicit and to consider the ramifications of these ideas in the context of a “universal
metalogic” such as LF.

The Logical Framework (LF) [HHP93] is a meta-language for defining formal systems. It is a three-
level typed A-calculus with II-types, closely related to the AUTOMATH type theories [dB80, vD80]. A
formal system is specified by giving an LF signature, a finite list of constant declarations that specifies
the syntax, judgement forms, and inference rules of the system. All of the syntactic apparatus of the
formal system, including proofs, are represented as LF terms. The LF type system is sufficiently
expressive to capture the uniformities of a large class of logical systems of interest to Computer
Science, including notions of schematic rules and proofs, derived rules of inference, and higher-order
judgement forms expressing consequence and generality.

According to the methodology of [HHP93, AHMPS8T]. a necessary condition for the correctness of
an encoding of an object logic £ in LF is that the consequence relation - of £ be fully and faithfully
embedded in the consequence relation < of LF by an encoding of the syntax of £ as LF terms.
(The consequence relation of LF is given by considering type inhabitation assertions, as in NuPRL
[Con86].) By focusing on the embedding of consequence relations, LF may be viewed as a universal
metalogic in which all inferential activity is to be conducted: object logics “exist” (for the purposes
of implementation) only insofar as they are encodable in LF.

One important form of inferential activity in a logical system L is proof search: given a set of
axioms or assumptions ® and a conjecture ¢, determine whether or not ® - ¢. In keeping with
the view of LI as a universal metalogic, proof in £ is to he reduced to proof in LF via the encoding
of £ in LF. Numerous interesting questions arise in the process of carrying out this program. Pym
[Pym90] considers a variety of issues related to proof search, in particular the definition of a unification
algorithm and methods for conducting proof search in the context of an arbitrary LF signature. Elliott
[E1I89] has also developed a unification algorithm for LF, and Pfenning [Pfe89], [Pfe91] bases a logic
programming language on it.

In this paper, we consider proof search in structured theory presentations. We focus on “lifting”
structured presentations from the level of the object logic to the level of the metalogic, in particular,
on the conditions under which proofs in the metalogic for lifted structured presentations soundly
represent proofs for structured presentations in the object logic.

Another important aspect of LF is that it opens up the possibility of using several logical systems at
once. For example, one may view the encoding of S4 modal logic given in [AHMP87] as a combination
of the truth and validity consequence relations of S4. In this paper we suggest some basic machinery of
a language of structured logic presentations that allows for “putting together logics,” just as structured
theory presentations provide the machinery for “putting together theories.” This machinery may be
used to formalize examples such as adding a connective to a logic, or the parameterization of Hoare
logic by the logic of assertions.

This paper is organized as follows. In Section 2 we introduce a general definition of a logical system
as a family of consequence relations indexed by signatures that satisfies a certain uniformity condition
with respect to change of signature. This resembles the formalization of a logical system as an institu-
tion from [GB84al]; the crucial difference is that institutions present a model-theoretic view of logical
systems while the formulation in this paper is centered directly around the notion of a consequence
relation. (See also [F'S87].) The sorts of consequence relations that we consider are motivated by the
strictures of encoding in LF. and thus are limited to one-sided consequence relations that are closed
under weakening. permutation, contraction, and cut, and which satisfy compactness. In Section 3
we consider structured presentations in an arbitrary logical system. Structured presentations denote
theories (sets of sentences closed under consequence), and the structure of the presentations induces a
natural proof search procedure guided by this structure, which we discuss in Section 4. Generalizing
the methodology of [HHP93], in Section 5 we introduce the notion of a representation of one logical



system in another, taking account of variability in signatures, and then consider the problem of “lift-
ing” a structured presentation along a representation of one logical system in another. Structured
presentations may not be simply translated via the representation and used in the target logic. In-
stead, we define a notion of proof that is conditioned by the representation, and give restrictions under
which we may achieve the goal of working entirely within the metalogic. In Section 6 we introduce the
metalogic of interest, LF, as a logical system, and define the notion of a logic presentation. A logic
presentation is essentially an LF signature (with an indication of which terms encode the judgements
of the object logic), together with a representation of the object logic in the logical system given by
the presentation. In Section 7 we return to the problem of proof in structured theory presentations
in the specific setting of logics encoded in LF. In Section 8 we explore the colimit construction as a
tool for building logics in a structured way; these ideas are more tentative than those in the rest of
the paper. Finally, in Sections 9 and 10 we discuss related work and suggest directions for future
research.

2 Consequence Relations and Logical Systems

Our treatment of logical systems centers on consequence relations (see [Avr9l] for a survey). We
take a consequence relation to be a binary relation between finite subsets and elements of a set of
“sentences” satisfying three conditions to be given below. We use ¢ and 1 to range over sentences, ¢
to range over arbitrary sets of sentences, and A to range over finite sets of sentences. We write A, A’
for union, and ¢, A for {¢}, A. If s: &; — &, is a function, then the extension of s to subsets of ¢4
is denoted by s as well. Function application will often be denoted by concatenation, e.g., s¢ stands

for s(o).

Definition 2.1 A consequence relation (CR) is a pair (S,F) where S is a set of sentences and F C
Fin(S) x S is a binary relation such that

1. (Reflexivity) ¢ F ¢.
2. (Transitivity) If A& ¢ and ¢, A"+, then A, A"+ 1.
3. (Weakening) If AF ), then ¢, A ).

The choice of conditions on consequence relations is motivated by our intention to consider encodings
of logical systems in LF (in a sense to be made precise below.) By considering only finite sets of
sentences, we implicitly restrict attention to compact consequence relations. Although the technical
development does not depend in any way on this choice, only compact consequence relations are
amenable to machine implementation.

The following apparently more general properties are easily seen to hold of any consequence rela-
tion:

Proposition 2.2
1. If € A, then A+ ¢.
2. If A+ ¢ and A, ¢, A+ b, then A, A"+ ).
3. If At &, then A, A" F ¢.

Definition 2.3 Let (S,F) be a consequence relation and let S' C S. The restriction of (S,F) to S,
written (S,F) [ S, is the consequence relation (S, F N (Fin(S") x S)).



Proposition 2.4 If (S,F) is a consequence relation and S" C S, then (S.) | S is indeed a con-
sequence relation.

Definition 2.5 A consequence relation (S,F) induces a closure operation on sets of sentences ¢ C S
defined by
Cle(®)={¢ | AF ¢ for some finite set A C P }.

We usually write ® for Clp(®) when F is clear from context.

Proposition 2.6 The function Cl. : Pow(S) — Pow(S) is indeed a closure operation:

1. If®, C &y, then Cl(®,) C Cl(D,);

Definition 2.7 A set ® is sentences is closed under = iff Clp(®) = ®. A theory (wrt ) is a set of
sentences closed under I-.

Definition 2.8 A morphism of consequence relations (CR morphism) s : (S;,F;) — (S3,F,) is a
function s 1 S; — S, (the translation of sentences) such that if Ay ¢, then sA bk, s¢. The CR

morphism s is an inclusion if it is an inclusion as a function in the category of sets, and is conservative

morphisms are CR morphisms, with identities and composition inherited from the category of sets.

Proposition 2.9 [fs: (S;.F) — (5;.F,) is a CR morphism and &, C S;, then

5(®y) C s(Py).

The containment is, in general, proper since the image of a theory under a CR morphism need not be

a theory. However, it follows from the above proposition (by Proposition 2.6) that s(®,) = s(®,).

Techniques for structuring theory presentations are hased on the idea of keeping explicit track of
the language of a theory. Building large theories from smaller ones generally involves expansion of this
language and/or change of the type/constant/function symbols used. Sometimes it is appropriate to
“hide” some of the symbols in the language, restricting the vocabulary in order to abstract away from
details of secondary interest. Consequently, a logical system is not viewed as being defined over an
arbitrary but fixed language, but is instead considered to be a family of consequence relations indexed
by a collection of signatures which determine the set of sentences considered. Variation in signature
(for example, renaming constants or replacing constants by terms over another signature) gives rise
to a natural translation of sentences over the signatures involved. Moreover, it is important that
consequence be preserved under this translation. This partly captures the idea that the consequence
relations in the family are defined uniformly with respect to their signatures, and leads to the following
definition:

Definition 2.10 A logical system, or logic, is a functor L : SigC — CR.'

LOf course this definition captures only some aspects of what is usually meant by the informal notion of “logical
system.”



The category SigC is called the category of signatures of L, with objects denoted by ¥ and morphisms
by o : ¥, — Y,. A signature morphism o : ¥; — Y, is to be thought of as specifying a “relative
interpretation” of the language defined by ¥, into the language defined by ¥,. Writing £(X) =
(IL]s, l—é), the definition of logical system implies that if o : ¥; — ¥, and A |—§1 ¢, then L(o)(A) f—§2
L(o)(¢). The function £(o) underlying the CR morphism is called the translation function induced
by o. To simplify notation, we write o(¢) for L(c)(¢) and o(A) for L(o)(A) when no confusion is
likely.

A logical system £ has inclusions’ iff the objects of SigE are pre-ordered by a distinguished
subcategory of morphisms, which will be referred to as inclusions, and £ maps signature inclusions to
inclusions of consequence relations. Inclusions are designated by ¢ : ¥, — ¥,. In the particular cases
that we study, signature morphisms are functions of some kind; we will normally assume without
explicit mention that the signature inclusions are inclusions in the usual sense. The requirement that
L preserve inclusions means that if ¢ : ¥; — ¥, and A l—gl @, then A |—§2 ¢. If C is a category with a
distinguished pre-order subcategory of inclusions, then we say that C has pushouts along inclusions iff
whenever f : A — A" and ¢ : A — A" are morphisms of C, the pushout of f and ¢ exists, and. moreover,
the morphism opposite the inclusion in the pushout diagram may be chosen to be an inclusion:

Y

f*A//

% A"

We require a canonical choice of p(f, A”) (and f*A”) which is functorial in f, i.e., p(f; f,A") =
p(f, A");p(f, £ A”) (dually to contextual categories, cf. [Car86]). This will be needed for Prop. 8.3
only.

As an example, we define the logical system associated with many-sorted equational logic.

J
A
A//

Definition 2.11 /et SigEQ be the category of many-sorted algebraic signatures having:

Objects: Pairs ¥ = (5,Q) consisting of a set S of type symbols and a family of sets Q@ = (0, ) ues+ses
of function symbols.

Morphisms: ¢ : (S,9Q) — (5. Q') consists of a function t : S — S’ together with a family of
functions (f,,: Q,, — Q;*(w),t(s)>w65*-,565' The composition of morphisms is the composition

of their corresponding components as functions. Inclusions are pairs consisting of an inclusion
and a family of inclusions.

Let ¥ = (5,9Q) be an algebraic signature. Define the set E¢(X) of Y-equations to be the set of
triples (X,#;,1,), where X is a finite sequence of mutually distinct variables decorated with elements
of S and t,,t, are ¥-terms of the same sort with variables from X. The equation (X,?,,t,) will be
written VX. t;, =15, or t; = 15 if X is the empty sequence. Equations with no variables will he called
ground equations. The consequence relation (£q(X), l_gg) is defined in the standard model-theoretic
way via a notion of satisfaction of a ¥-equation by a ¥-algebra, or equivalently by appropriate rules
of equational deduction (reflexivity, symmetry. etc. [GM81]).

?This is a much weaker concept than that of an inclusion system as introduced in [DGS92]. The requirements stated
here are sufficient for our purposes.



Definition 2.12 The functor £Q : SigEQ — CR s defined by

EQT) = (BEq(%).FL%)
EQ(o: % — X)) = the usual extension of o to a function Kq(X) — Fq(X')

GEQ(Y) is the restriction of EQ(X) to ground X-equations, and GEQ(co) is the corresponding restric-
tion of £EQ(0).

Proposition 2.13
1. £Q and GEQ are logical systems with inclusions.

2. SiggQ has pushouts along inclusions (in fact, is co-complete).

Proof £Q(c : ¥ — ¥) is a CR morphism because of the Satisfaction Lemma [BGS0]. Similarly for
GEQ. Pushouts in SiggQ are defined as in [GB84b].

In a similar manner we can present first-order logic with equality. The logical system FOEQ
has the same signatures as £Q (we take equality to be the only predicate) and for any many-sorted
algebraic signature ¥, FOEQ(Y) is the set of closed first-order logical formulae with equalities as
atomic formulae, with the consequence relation induced by the usual inference rules (or equivalently
by the usual satisfaction relation). For any signature morphism o : ¥ — ¥/ FOEQ(o) translates
closed Y-formulae to closed Y-formulae in the obvious way. Then FOEQ is a logical system with
inclusions.

Note that CR morphisms induced by signature morphisms in a logical system need not be conser-
vative. Non-conservativity arises in £Q and FOEQ (due to the infamous empty carrier phenomenon

— see [GM81]) but not in GEQ.

3 Theory Presentations

Let £ be an arbitrary logical system. As formulated above, £ comprises a family of consequence
relations satisfying some additional conditions. Thus, concepts introduced for consequence relations
lift to £. Of particular importance is the concept of theory:

Definition 3.1 An L-theory with signature ¥ is a set T C |L]y, of sentences closed under l—g.

Notice that in any given logical system, theories are classified by their signatures. Thus, for
example, the equational theory of monoids and the equational theory of Abelian groups have different
signatures although both are £Q-theories.

As mentioned in the introduction, the complexity of real-life software systems means that theories
describing their behavior must be built in a modular or structured fashion. Only the simplest theories
are presented in the traditional way by giving (a signature ¥ and) a set ® C |L|; of axioms, denoting
the theory ®. We define below a rudimentary language of structured theory presentations for building
more complex theories by combining and enriching such simple ones. The presentation language that
we choose is adapted from [SB83] for use in an arbitrary logical system.

Definition 3.2 A structured theory presentation in £ (L-presentation) is an expression in the lan-
gquage generated by the following grammar:

P = (X.9)
| PUP,
| translate P along o
| derive Pvia o



(Here ¥ is a Sigﬁ—signature, oisa Sigﬁ—morphism and ® is a set of L-sentences.)  Structured
presentations of the form (X, ®) are called basic presentations. A structured presentation is finite if
all the basic presentations it contains involve only finite sets of sentences.

In the above grammar we do not specify how signatures, signature morphisms, or sets of sentences
are presented. For logics with finite signatures, it is unproblematic to define a presentation language
for signatures and signature morphisms (e.g., [Wir86]). In practice infinite presentations are given
using some form of schematization. For the sake of simplicity we do not make this explicit here.

Definition 3.3 The signature SgC(P) of an L-presentation P is defined by induction on the structure
of P as follows: Sg'C(P) =Y iff

o P=(X,9), or
o« P=P,UP, and Sg"(P,) = Sg“(P,) =X, or
e P = translate P, along o, 0 : ¥y — X, and Sg'C(Pl) =Y, or
o P =derive P, viao,o:%X — ¥, and Sgﬁ(Pl) = 3.
P is well-formed iff Sgﬁ(P) is defined.

Definition 3.4 Let P be a well-formed L-presentation. The theory determined by P is defined as
follows:

Th*((Z.9)) =
Th®(P,UP,) = Th"(P,)UTh“P,)
Th*(translate P, along o) = L(co)(Th*(P,))
Th(derive P, via 0) = L(o) '(Th*(P,))

Proposition 3.5 For any well-formed L-presentation P, Th'C(P) is an L-theory with signature
Sg“(P).

Proof The non-trivial case is that of derive, where one has to notice that the co-image of a theory
under a signature morphism is a theory.

The language of structured presentations allows large theories to be built in a flexible and well-
structured fashion. Union is used to combine separate theories over the same signature. Theories over
different signatures may be combined using union together with translate. If a signature in SigE is
thought of as a vocabulary of type, constant and function symbols, where a morphism is a renaming of
the symbols in one signature to those in another, then the translate operation is useful for applying such
a renaming to a theory while the derive operation is used to “abstract” from a theory by hiding some
symbols (for example, auxiliary function symbols needed to finitely axiomatize some other function)
and perhaps renaming the rest. The operations used are almost the same as those in [SB83] (union is
inessentially different). The theory-building operations of the specification language CLEAR [BG80]
may be defined in terms of these primitives.

A few concrete examples should help to clarify the motivation behind structured theory present-
ations. See [BG81], [SB83] and Section 4 for further examples. We will consider structured theory
presentations over the logic £Q defined in Section 2.

Example 3.6 Let
YGroup = type G
constant ¢: &
functions o: G x G — G
my G — G



and
FEqGroup = {Vg:G.eog=y,

Vg:G. goe=g,

V9.9 9"G. go (g 0og")=(g904) 04",

Vg:G. goinv(g) = e,

Vg:G. inv(g)og = €}
using o as an infix function). We use a self-explanatory notation to introduce types and functions

g p y yp

(and constants, which are 0-ary functions). Then Group = (¥ Group, EqGroup) is an £Q-presentation.
Let

Y Abelian = type T
function op: T xT — T

and

EqAbelian = {Vt.t"T. op(t,1') = op(t',1)}

Then Abelian = (X Abelian, KqAbelian) is an € Q-presentation, and so is AbelianGroup = Group U
(translate Abelian along o4q) where o4, : Y Abelian — Y Group is defined by o,4(T) = G and
o4g(op) = o. This shows how union may be used to combine separate theories, and how translate is
used for adjusting signatures (in this case, to make union applicable). Let

YMonoid = type M
constant ¢: M
function o: M x M — M

Then Monoid = derive Group via oy and AbelianMonoid = derive AbelianGroup via oy are £Q-
presentations, where o5 @ XMonoid — X Group is defined by oy6(M) = G, oyg(o) = o and
oma(€) = €. This shows how derive may be used to hide functions, in this case inv.  Note that
this only hides inv; its existence is not totally forgotten. It happens to be the case here that this
does not have any consequences which are expressible as X Monoid-equations. If this example were

formulated in first-order logic with equality, then the resulting theory would include sentences like
VoM. dy:M. x oy = e.

Another example of the use of derive would be defining a function sort by specifying auxiliary
boolean-valued functions permutation and ordered, with the equations

Vi:list. ordered(sort(l)) = true
Vi:list. permutation(l, sort(l)) = true

to define sort, and then using derive to hide permutation and ordered. In general, it is possible to
give finite £Q-presentations using derive for theories which have no finite £ Q-presentations without
derive [TWWS82]. This is in contrast with the other theory-building operations; it is easy to see that
any finite L£-presentation built using only basic presentations, union and translate has the same theory
as a finite basic presentation.

In general, we will say that two well-formed L-presentations with the same signature are equi-
valent if they determine the same theory. A more general situation is when we want to compare
L-presentations with different signatures. This comparison is mediated by a morphism between the
two signatures involved.

Definition 3.7 An L-presentation morphism o : P — P’ is a Sig“-morphism o : Sg"(P) — Sg“(P’)
such that

o(Th“(P)) C Th*(P')
ThPres” is the category of L-presentations and morphisms between them, with identities, composition,
and inclusions inherited from Sig'c.



Pushouts in the category of presentations may be used to define CLEAR-style instantiation of
parameterized theories [BG80], [Ehr 82]. A presentation P is “parametric” in a presentation R if
there is a ThPres“-inclusion ¢ : R — P. The idea is that R is a “requirement” specification for the
theory P which may be regarded as taking any theory “matching” R as a parameter. The parametric
presentation P may be instantiated by any presentation A provided that there is a “fitting morphism”
o : R — A specifying how A is to be regarded as satisfying the requirements of R. The instance of P
by A via o, written P(A[c]), is obtained by taking the pushout of ¢ and ¢ in ThPres”. The conditions
under which this works are expressed by the following proposition:

Proposition 3.8 If SigE has pushouts along inclusions, then so does ThPres”. More specifically,
suppose that 1 : R — P and 0 : R — A are ThPres” morphisms, and let ¥ = Sg'c(l)). The pushout
of t and o is given by the object

0" P = (translate P along p(o,Y)) U (translate A along /")
and morphisms p(o. P) = p(0.¥) : P — ¢"P and " : A — P given by the pushout construction in
Sig”.

Thus the instance P(A[o]) of P by A is explicitly definable in the language of structured presentations.
It is important for the sequel that complex presentations involving parameterization, etc., may be
reduced to structured theory presentations involving only the primitives given above.

Example 3.9 Suppose Monoid is as defined in Example 3.6. Let

Y Alphabet = type A
YiInjAlph = types A M
function in: A— M

Let Alphabet = (X Alphabet. (), InjAlph = (X InjAlph, () and
Monoid WithAlphabet = (translate Monoid along o,,,,) U (translate InjAlph along o,,;)

: YMonoid — Y Monoid U XInjAlph and o
the inclusions into the union of the two signatures. There is an obvious ThPres”~-inclusion ¢ :
Alphabet — Monoid WithAlphabet; thus the £Q-presentation Monoid WithAlphabet is parametric in
Alphabet.

In the rest of the example we construct a simple instance of Monoid WithAlphabet. let

where o

mon

: YinjAlph — Y Monoid U X InjAlph are
£Q

inj

Y Nat = type N
constant 0: N
functions succ: N — N
+:NxN—=N
X:NxN-—=N

and
EqNat = {¥Yn:N.n+0=n,
Vn,n:N. n+ succ(n/) = succ(n + n/)
Yn:N. nx0=0,
Vn,n':N. n x suce(n’) = (n x n') + n}

(using + and x as infix). Let Nat = (X Nat, FgNat) and let o : Alphabet — Nat be the presentation
morphism defined by o(A) = N.



Then Monoid WithAlphabet(Nat[o]) is the pushout of ¢, o. This is (a rough approximation of’)
the theory of sequences of natural numbers with types M and N, constants € and 0 and functions o,
in, suce, + and x. If type names such as sequence and nat and/or different constant and function
names are required, these may be obtained using translate.

Example 3.10 Repeat example 3.9, but add the following to Alphabet:

constant neutral : A
function op: AxA— A
axioms  Va:A. op(neutral,a) = a,
Va:A. op(a, neutral) = a,
Ya,d',a":A. op(a,op(a’,a")) = op(op(a,ad’),a")

Add the above to InjAlph (and so to Monoid WithAlphabet) along with:

function accum : M — A
axioms  accum(e) = neutral
Va:A. accum(in(a)) = a
Y, m" M. accum(m om') = op(accum(m), accum(m'))

We still have the inclusion ¢ : Alphabet — Monoid WithAlphabet, and thus Monoid WithAlphabet is

still parametric in Alphabet. To construct an instance of it, we now have to ensure that the parameter

presentation matches Alphabet, which requires that it satisfies the new requirements in Alphabet.
Add the following axioms to FqNat:

Vn:N.04+n=n
Vn.n',n":N. n+ (n/ + n”) =(n+ n/) +n

"

(these may be proved from the axioms already in FqNat if an appropriate induction principle is
available). Then let o : Alphabet — Nat be defined by o(A) = N. o(neutral) = 0 and o(op) = +
(this is a presentation morphism).

Then Monoid WithAlphabet( Nat]o]) is the pushout of ¢, 0. This is the theory of sequences of
natural numbers with a summation function (accum). In this example we have included the monoid
axioms in the requirement theory Alphabet since these characterize the intended actual parameters.
The axioms for accum may force elements of the type matching A to be identified if the function
matching op is not associative or the constant matching neutral is not an identity for this function.
Requiring the fitting morphism to be a presentation morphism protects against such undesirable
instantiations.

A variety of other constructions are definable in ThPres”. For example, ThPres” has coproducts
whenever Sig'c does, and the theory of the coproduct is the disjoint union of the theories of the
components. Colimits of more complex diagrams in ThPres” may be used to express sharing; such
colimits exist if they exist in Sigﬁ. In particular, diagrams in Sigﬂ consisting only of inclusions arise
in a natural way from the hierarchical construction of theories by extension. In many interesting cases
all such diagrams have colimits, and we may therefore use colimits as the basis for a CLEAR-like or
ML-like syntax for managing sharing [S'T'85, ST86].

31t is well known that the first-order equational theory of the standard model of the natural numbers is not r.e. and
hence cannot be effectively presented in £Q. By enriching the logical system (e.g., by introducing induction schemes or
by adding non-first-order notions such as the “data constraints” of [BG80, MS85]), better approximations to the theory
may be given.
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A parametric presentation amounts to a function which maps a presentation and a fitting morphism
to another presentation, with the result determined by the pushout construction. Another obvious
mechanism for defining such functions is A-abstraction, and it would have been possible to use this
here instead of pushout-style parameterization as above. In fact, one advantage of this alternative
is that higher-order parameterization may be achieved without additional complications; see [SW83],

[Wir86] and [SST92].

4 Proof Search in Structured Presentations

For a basic L-presentation (¥, ®), the consequence relation l—é can be used directly to deduce con-

sequences of ®, that is, sentences in Thﬁ((E, ®)). More generally, for an arbitrary presentation P,
we would like to deduce sentences in Th”(P) from consequences of the component presentation(s) of
P. To capture this, we will introduce judgements of the form P I~ ¢, where ¢ is a Sg'c(P)—sen‘rence7
and show how they can be proved.

Definition 4.1 We define a family of relations P ||—§ ¢ between well-formed L-presentations P with
signature ¥ and sentences ¢ € |L|s by induction on the structure of P as follows:
1. (S,0) V5 ¢ iff there exists A C ® such that A FE ¢.
2. PLUP, ML ¢ iff there exists Ay C |L]y and A, C |L|y such that Py IFE Ay, Py IFE A,
and Ay, A, 5 ¢,
3. translate P, along o ||—§ ¢ (where o+ Xy — X) iff there exists Ay C |Ll]y, such that
Pl Ay and L(o)(A) b 6.
4. derive Py via o IFg ¢ (where o2 X — X)) iff Py kg L(0)(4).

Here, P ||—§ A stands for P H—é ¢ for all o € A.

Proposition 4.2 The relation P ||—§GL(P) ¢, where P is a well-formed L-presentation and ¢ is a

Sg'c(P)-.‘;ﬁntence, holds iff ¢ € Th'C(P).
Proof By structural induction on P, directly from Definition 4.1 and 3.4.

It should be obvious that Definition 4.1 embodies a proof system for entailment P ||—§ ¢ with rules

like:
PiFe Ay PIFE A, ALA L G

PUP I ¢

We can use this proof system as the basis for a proof procedure based on structured presentations.

To illustrate how such a proof procedure may take advantage of the structure of a presentation,
consider a logical system £ with inclusions. Let P, be an L-presentation with signature ¥, and let
¢ : ¥, — ¥ be an inclusion. If ¢ € |£L]y , then a useful heuristic for testing translate P, along ¢ |I—§ ¢ is
to take Ay in the above proposition to be { ¢ }, and to test P, ||—§1 ¢. According to Definition 4.1(3)
this is sufficient (but not necessary, in general), for since £ preserves inclusions, tA; = { ¢ }, and hence
the requirement (A, l—g ¢ is trivial. A generalization of this heuristic is embodied in the following
rule:

P 6

z (TRANSLATE)
translate P, along o IFy L(0)(9)
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Analogous rules arise from the other parts of Definition 4.1:

€
(/575 (Basic)
(X,®) Ik ¢
Py Iks
1—2(& (UNION-LEFT)
PLUP IS ¢
Py Ik
2—2(@ (UNION-RIGHT)
PUPIFE ¢

Py IFS L(0)(6)

derive P via o ||—§ 1)

(DERIVE)

Proof in the context of a structured theory presentation is fundamentally different from proof in
an ordinary (unstructured) theory presentation. Both kinds of presentations contain axioms which
form the basic constituents of proofs. In the case of an ordinary theory presentation, we have a single
set of axioms, and use of an axiom in a proof involves the application of the rule:

N SIVAN
L
AFS ¢

(AX10M)

In contrast, the axioms of a structured theory presentation tend to be scattered throughout the
structure. An axiom must be extracted from the basic presentation in which it resides when it is
needed in a proof, using rules such as TRANSLATE. Proof in a structured theory can thus involve
frequent changes of context, where proof fragments in the context of “small” theories correspond to
the proofs of lemmas which are then brought to bear on the main proof via translation to the context
of an appropriate “larger” theory. An analogy may perhaps be drawn with the use and discharge of
assumptions in natural deduction proofs, where different parts of the proof of a theorem take place in
the context of different sets of assumptions.

Given the goal of finding a proof for a theorem ¢ in a structured theory presentation P, where
the proof may potentially involve axioms from a number of different subpresentations of P, there are
two basic strategies which may be applied. Probably the most obvious of these involves reduction
to the familiar case of proof in an unstructured presentation, using a technique referred to in [SB83]
as dredging. One proceeds by extracting (“dredging up”) all of the possibly relevant axioms from
subpresentations and translating these to theorems in P using inference rules such as TRANSLATE.
These theorems may then be used in the proof of ¢. This is the strategy which is (implicitly) used in
systems with facilities for building new theories by combining and extending existing theories, such
as Edinburgh LCF [GMWT9] (also Cambridge LCF [Pau87] and Isabelle [Pau92|), in which the new
theory automatically contains all the axioms and theorems of its component theories. An alternative,
called diving in [SB83], is to translate ¢ to the context of an appropriate subpresentation P’ of P,
using rules such as TRANSLATE “backwards”. If a proof for the translation of ¢ can be found in P’,
then applying the same translation rules in the forward direction gives a proof of ¢ in P.

There are at least two problems with dredging. First, if P is large then dredging up «all the
axioms in P yields a large and unstructured set of axioms, many of which will (probably) make no
contribution to the proof of ¢. Second, dredging axioms from a structured presentation of the form
derive P’ via o tends to lead to loss of information. For example, consider the following structured
theory presentation based on the basic presentation Nat (over £Q) from Example 3.9:

Nat™ = derive Nat via ¢ : ¥Nat \ {+} — Y Nat

12



The only axiom of Nat which can be directly translated to the context of Nat™ is VYn:N. nx0 = 0, since
the remaining axioms of Nat involve the function + which is not available in SgEQ(NatX). Theorems
of Nat™ such as suce(0) x suce(0) = suee(0) are expressible in Sg®2(Nat™), but there are infinitely
many such consequences (and in £Q there is no finite way to present them all).

Likewise, diving by itself is not an appropriate strategy. For example, a proof of ¢ in a structured
theory presentation of the form P, U P, may involve the use of axioms from both P, and F,. A
successful attempt to prove ¢ will involve either dredging up axioms from both P, and F,, or the
formation of lemmas ¢; and ¢, such that P, I~ oy, P, I~ ¢, (establishing these may involve further
diving) and ¢, ¢, - ¢, or some combination of these. Similar problems can arise in structured
presentations of the form translate P’ along o.

The most promising strategy for proving ¢ in P involves a mixture of diving and dredging. First,
diving is used to focus on the smallest subpresentation P’ of P containing all the information relevant
to ¢. This is the most appropriate context in which to attempt the proof; if P is a large structured
presentation, such as the specification of a compiler, then in many cases P’ will be very much smaller
than P. Dredging may be used to extract axioms from P’, and the proof is then carried out using
these axioms by employing the following rule:

PlFg ¢y - PlFed,  61peendbs d
Plrs ¢

(Cur)

Alternatively, a small set of lemmas may be formulated from which (the translated version of) ¢
can be proved (again using CUT to lift this proof to the level of structured presentations); each of
these lemmas may then be proved in P’ separately, perhaps by means of further diving and dredging.
Lemma formation may be unavoidable if P’ involves union or translate with nested subpresentations
involving derive.

The first step of this strategy is to find a subpresentation P’ of P containing information relev-
ant to the goal ¢. The search for an appropriate P’ is helped by the fact that translate forms an
effective barrier to diving “too deeply”: given a presentation translate P, along o : ¥, — X and a
Y-sentence ¢, diving down to the level of P, will be impossible if ¢ is not expressible in the vocabu-
lary which ¥ provides, i.e. if there is no ¢; € |L|g, such that L(0)(¢;) = ¢. A common pattern is
(translate P, along o) U (translate P, along o,), where the two uses of translate “guard” the branches
of the union against inappropriate diving. Because translate has this effect, in a well-structured theory
presentation it is often possible to find an approximately correct subpresentation P’ by simple depth-
first search. See [SB83] for concrete details of the above strategies in the context of the Edinburgh
LCF system.

Example 4.3 The following structured theory presentation over £Q specifies symbol tables for an
Algol-like programming language with nested blocks. See [GHMT78] and [BG77] for variations on this
well-known example. For convenience we make use of a presentation-structuring operation enrich
which is defined in terms of union and translate as follows:

enrich P by types 1" constants (' functions F' axioms A = (translate P along () U (X, A)

where ¥ = 8g“(P) U (T,C U F) and ¢ : Sg°°(P) — ¥ is the inclusion.
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Item = type item

Stack = enrnich Item by

type stack

constant  nilstack : stack

functions push : item x stack — stack
pop : stack — stack
top : stack — item

axioms Vaitem, s:stack. pop(push(x,s)) =s
Vaiitem, s:stack. top(push(x,s)) =«

Boolean = type bool
constants true : bool
false : bool
functions not : bool — bool
axioms not(true) = false

not(false) = true

Index = enrich Boolean by
type index
function  eq: index x index — bool

Cond = enrich Boolean by
type value
function  cond : bool x value x value — value
axioms Vv, v walue. cond(true,v,v’') = v
Yo, v'iwalue. cond(false,v,v") =o'

Array = enrich (translate Index along ¢) U (translate Cond along (') by

type array

constant  nilarray : array

functions put : index X value X array — array
get @ index X array — value
present : index X array — bool

axioms Vizindex, vivalue, a:array. get(i, put(i,v,a)) =v
Vi, jrindex, vivalue , azarray. not(eq(i, 7)) = get(i, put(j,v,a)) = get(i,a)
Vivindex. present(i, nilarray) = false
Vizindex, vivalue, a:array. present(i, put(i,v,a)) = true
Vi, jrindex, vivalue, azarray. not(eq(e, 3)) = present (¢, put(j,v,a)) = present(s, a)

Here, © and // are the inclusions of Sg®S(Index) and Sg®<(Cond) respectively into Sg*°(Index) U
Sg“?(Cond), and b= 1 = t' is an abbreviation for cond(b,t,1') =1'.

14



There is a ThPres“ inclusion Item — Stack, and a ThPres®® morphism o : [ltem — Array
given by o(item) = array. Thus Stack is parametric in [tem and Stack can be applied to Array.

ArrayStack = Stack(Array[o])

SymTabl = enrich ArrayStack by

functions add : index X value X stack — stack
retrieve : index X stack — value
enterblock : stack — stack
leaveblock : stack — stack

axioms  Viiindex,v:value, s:stack. add(i,v,s) = push(put(i,v, top(s)), pop(s))
Vizindex, a:array, s:stack. present(i,a) = retrieve(i, push(a,s)) = get(i,a)
Yivindex, a:array, s:stack.

not(present(i,a)) = retrieve(r, push(a, s)) = retrieve(z, s)

Vs:stack. enterblock(s) = push(nilarray, s)
Vs:stack. leaveblock(s) = pop(s)

SymTab = derive SymTabl via o'

where o’ : ¥ — Sg2(SymTab1) is defined by o' (symtab) = stack, o'(niltable) = nilstack, and
o'(x) = x for all other symbols z in %, where:

Y = types symtab, index ., value, bool
constants true : bool
false : bool

niltable : symtab

functions eq : index X index — bool
add : index X value x symiab — symiab
retrieve : index X symtab — value
enterblock : symtab — symtab
leaveblock : symtab — symtab

Expanding all the uses of enrich and the single use of application, we obtain a structured theory
presentation containing eight basic presentations, seven uses of union, nine uses of translate and one
use of derive. All of the signature morphisms involved are inclusions except for o' (used in the final
derive step) and one which arises from the application of Stack to Array.

SymTab is expressible as a basic presentation so it is possible in principle to dredge up all the
information it contains. In practice this would be difficult: most of the axioms in the subpresenta-
tions of SymTab are not directly expressible in the signature SggQ(SymTa,b), so dredging would lose
information unless appropriate theorems which are expressible in that signature are first formulated
and proved in these subpresentations.

Now, suppose that we wish to prove that

Sym Tab |F§§gg(symn6) Vizindex, s:symtab. retrieve(, leaveblock(enterblock(s))) = retrieve(z, s)

According to DERIVE, it is sufficient to prove that

SymTab1 H-‘;?gg(symnbl) Viindex, s:stack. retrieve(i, leaveblock (enterblock(s))) = retrieve(i. s)

(This reduction can be viewed as diving to the level of SymTab1.) One way to proceed is to prove the
following lemma, from which the desired result follows by substitutivity:

SymTabl |l—g§5Q(SymTabI) Vs:stack. leaveblock (enterblock(s)) = s
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The last two axioms in the enrichment used to build SymTab! can be dredged up to the level of
SymTabl (by UNION-RIGHT) and used to reduce the goal to:

SymTab1 H-‘;gQgQ( ) Vs:stack. pop(push(nilarray,s)) = s

SymTabl
We can dive down to the level of ArrayStack with this goal (using UNION-LEFT followed by T'RANS-

LATE) to obtain the goal:

ArrayStack H-;?gg Vs:stack. pop(push(nilarray,s)) = s

(ArrayStack)

It is not possible to dive down to the level of Stack with this goal: the use of translate (along
p(a,Sng(Stack)), implicit in the application of Stack to Array) acts as a barrier, since there is
no constant corresponding to nilarray in Stack. But it is sufficient to prove:

ArrayStack H_(;gQgQ Va:array, s:stack. pop(push(z,s)) =s

(ArrayStack)

and it is possible to dive down to the level of Stack with this goal (using UNION-LEFT, TRANSLATE,
UNTON-RIGHT), where this is found to be an axiom in the enrichment used to build Stack.

The above procedure represents a successful LCF-style top-down goal-directed search for a proof
of the original theorem; such a proof may now be obtained by applying the corresponding inference
rules, proceeding bottom-up.

5 Logic Representations

The next issue to address is the sense in which one logical system can be represented or encoded in
terms of another logical system. The essence of such a representation is a mapping from the sentences
of the first system to those of the second, in such a way that consequence is accurately preserved.

Definition 5.1 A morphism of logics v : £ — L' is a pair (’ySig,’yOR) where %+ Sig” — Sigﬁl is
a functor and 7CP‘ : ﬁ'—>757"‘q;£/ : Sig’c — CR s a natural transformation. The identity is the pair
consisting of the identity functor on SigE and the identity natural transformation on L. Composition

is defined by
Sig CR\_, Sig CR Sig _Sig _CR., Sig. CR
N A A A B A A R I O R A )]
Log is the category of logics and logic morphisms.
A morphism of logics is to be thought of as an “encoding” of one logical system in another in such

a way that consequence is preserved. Let v : £ — £’ be a morphism of logics. The requirement that
CR . .
~7" be a natural transformation may be expressed by the equation

770 (8) = 77 (@) (7" (6))-

In words: it doesn’t matter whether we encode the translation (@) of ¢. or translate the encoding
v (4) of ¢ along the encoding v*“(c) of . To simplify notation, we write () for v°¥(X), and
v(¢) for ’yECR(gb) (for appropriate choice of ¥.)

Proposition 5.2 Ify: L — L' is a logic morphism, ¥ is an L-signature, and ® C |L|x, then

7(®) € (D).

1We use “” to denote not only composition in a category (e.g., the usual composition of functions and functors)

written in diagrammatic order, but also both vertical composition of natural transformations and the composition of a

natural transformation with a functor so that (7103; (713ig;7§3))2 = (»leR)E; (")/QC’R)’YSZQ(Z\'.
1 /
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Similarly as in Proposition 2.9, the containment is in general proper since the image of a theory
under a logic morphism need not be a theory. However, it follows from the above proposition that
(@) =~(®).

Further requirements on a logic morphism ~ : £ — £’ must be imposed to ensure that consequence
in £’ for translated sentences is sound with respect to consequence in L.

Definition 5.3 A logic morphism v : L — L' is a representation iff fySig is an embedding and each
CR . : : . S . CR . C ,
Yy, 18 conservative. A representation is surjective iff each Yy, 18 surjective as a function on the

underlying sets. A logic L is representable in a logic L iff there is a representation p : L — L.

Let p range over representations. It is easy to see that identities are representations and that the
composition of two representations is again a representation. Thus representations form a subcategory
of Log. The requirement that pSZg be an embedding implies that the category of signatures of the
source logic is faithfully encoded in the target logic, and the requirement of conservativity implies
that each consequence relation of the source is fully and faithfully encoded in the target. Thus if
p: L — L'is a logic representation then ® I—é ¢ iff p® l— s po. Note that surjectivity of p does not

entail that p°* be full, only that p“® be onto.

Example 5.4 For any algebraic signature ¥, there is an inclusion ¢x. of the set |EQ(Y)| of ¥-equations
into the set |[FOEQ(Y)| of first-order Y-sentences. These inclusions preserve consequence: if a set of
Y-equations A entails a YX-equation ¢ in £Q then (g (A) entails 1x(¢) in FOEQ, and so 1y : EQ(Y) —
JT(’)SQ( )is a CR morphism. The opposite implication holds as well, i.e. ¢y is conservative. Moreover,
¢ is compatible with the translation of ¥-equations under signature morphisms ¢ : ¥ — X', Thus we
have a logic representation p : EQ — FOEQ where p°*
3, )o2 = 1y, as defined above. Notice that p is (obviously) not surjective.

is the identity functor and for each signature

Proposition 5.2 of course holds for representations as well, but they also satisfy a stronger property:

Proposition 5.5 If p: L — L' is a representation, Y is an L-signature, and ® C |L|y, then
=
O =p (p(®))

where p~' (V) is the co-image of U under p.

If p is a representation of £ in £, then we may use £’ as an “inference engine” for £. We would like
to consider how this interacts with the ideas in the previous section concerning proofs in structured
theory presentations in £. The first step is to use the proof system introduced in Definition 4.1,
replacing all uses of A l—é ¢ by p(A) l—f(lz) p(¢). Then, the proof methodology discussed in the
previous section need not make any use of L for elementary inference. The proof process is still,
however, driven by an L-presentation P, and so involves the sentences, signatures and translations
induced by signature morphisms of £. But if our goal is to reduce all inferential activity in £ to
inferential activity in £', then we would like to “lift” P to an £'-presentation, and perform structured
proof in £ guided by the lifted presentation. To make this precise, we first define a natural lifting of
presentations.

Definition 5.6 Suppose that p : L — L' is a representation, and let P be an L-presentation with
signature . The representation of P in £ wrt p is given by the following function defined by induction
on the structure of P:

= (p™(2),pg (@)
= (P UH(R)
= translate p(P,) anng p* (o)

A(X, )

p(PLU Py)

p(translate P, along o)
p(derive P, via o) = derive p(P;) via p lg(a)
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Proposition 5.7 If P is an L-presentation, then p(P) is an L'-presentation with Sgy(ﬁ(P)) =
p*¥(Sg”(P)). Moreover, p(Th*(P)) C Th* (5(P)).
Proof By straightforward induction on the structure of P.

The above discussion suggests that in order to test P H—g ¢, one should encode P and ¢ in £,
and test p(P) ||—§(IE) p(¢). We would hope that this strategy is sound and complete, that is, that the

following conjecture holds.

Conjecture 5.8 Suppose that p : L — L' is a representation, and let P be an L-presentation with
signature X and ¢ € |L|sx. Then P |l—§ & iff p(P) ”_5(2) p(@).

Joining Proposition 5.7 with Proposition 4.2, we immediately obtain the implication from left to right
(i.e. completeness). Unfortunately, the converse implication (i.e. soundness) fails, as the following
counterexample illustrates.

Counterexample 5.9 Consider the following presentations in £Q. Let ¥, be the signature

!
types $,8
constants a: s

7
b,c:s

Let ¥ be the same signature with a removed, and let ¢ : ¥ — 3, be the corresponding signature
inclusion. Let Py = (X,,0), P, = derive Py via ¢« and P = P, U (X, {Va:s. b = c}).

Then, Tth( ) does not include b = ¢ since, in the context of the signature X, Va:s. b = ¢ does
not entail b = c.

Recall that we have a logic representation p: £Q — FOEQ. Then, Th™ ¢(j(P,)) contains the
sentence Ja:s. true. Consequently, Juz:s. true € Th™9°%(5(P,)), and b = ¢ € Th”9°C(j(P)), since
Jas. true,Vas. b= ¢ l_gogg b=c.

In terms of entailment relations, we have that p(P) H—gogg b = ¢ even though P H—‘;Q b = ¢ does
not hold.

A simpler but even more contrived counterexample may be found in [HST89a] (Counterexample 4.6).

The source of this failure of equivalence is a discrepancy between Th”(P) and Th"(p(P)). The
use of the derive operation may cause the following crucial property to be lost:

Th* (5(P)) C p(ThE(P)).

(The reverse inclusion follows directly from Proposition 5.7.) In the counterexample, the sentence
da:s. true is a witness to the failure of this containment. but is not, by itself, sufficient to refute the
conjecture, for it lies outside of the image of p. The union operation used in the counterexample to
construct P “exploits” this discrepancy to produce a sentence in the “lifted” theory that lies within
the image of p, and hence refutes the conjecture. The translate operation may be used instead of
union to exploit the discrepancy created by derive in a similar manner. But neither union nor translate
are able to create such a discrepancy. In fact, if an L-presentation P does not involve derive, then

Th* (p(P)) = p(Th*(P)).
Proposition 5.10 Consider an arbitrary representation p : £ — L.

1. Suppose (X, ®) is a well-formed basic L-presentation. Then

Th® (5((%. 9))) = p(Th*((2, ®))).
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2. Suppose P, P’ are well-formed L-presentations with the same signature satisfying Thy(ﬁ(P)) =
p(Th*(P)) and Th* (p(P')) = p(Th*(P")). Then

Th* (3(P U P")) = p(Th (P U P")).

3. Suppose P is a well-formed L-presentation satisfying Th'cl(/}(P)) = p(Th*(P)) and o : Sg“(P) —
Y. Then

Thﬁl(ﬁ(translate P along o)) = p(Th*(translate P along )).

4. Suppose P is a well-formed L-presentation satisfying Thﬁl(ﬁ(P)) = p(Th*(P)) and o : ¥ —
Sg“(P). Then

Thﬁ/(ﬁ(derive P via 0)) D p(Th*(derive P via o)).

The inclusion may be proper. However, we have:

_I(Thy(ﬁ(derive Pviao))=p" (p(Th’C(derive P via a))) (= Th*(derive P via o)).

Since the most obvious approach fails as explained above, is there a sense in which we can lift
structured presentations from £ to £'? The answer is given by considering an alternative definition
of the theory of an L-presentation that is conditioned by the representation p.

Definition 5.11 Let p: L — L' be a representation. For any well-formed L-presentation with signa-
ture 3, the £'-theory of P wrt p, written’ Th”(P), is defined as follows:

TH((S,8) = (@)
Th'(P, UP,) = Th(F)UTh (D)
Th”(translate P, along o) = p(o)(Th"(P,))
Th’(derive Py via o) = p(|L]g) N p(o)~(Th*(F,))

Note that we are defining the £'-theory of an L-presentation, conditioned by the representation
p of £ in L. This is because in the case of derive, the restriction to the range of p makes reference
to the L-signature ¥ of the L-presentation P. Although this restriction ensures that only £-sentence
images are taken from P, the closure of the result under < admits non- £ -sentence images into the
result. In effect, in the case of derive, only L-sentence images are admitted as intermediate lemmas,
whereas arbitrary £'-sentences are admitted as consequences of these lemmas. This will be reflected
in the proof search procedure associated with this definition.

Theorem 5.12 If P is a well-formed L-presentation, then Th’(P) is an L'-theory with signature

p(Sg”(P)) such that Th’(P) = p(Th*(P)).

Proof By a straightforward induction on the structure of P. The only interesting case is that of

derive; the others follow from Proposition 5.10. Suppose that P, is a well-formed L-presentation

and o : ¥ — Sg'c(Pl). Using the inductive hypothesis Th”(Py) = p(Th®(P,)), we have to prove

p([L]z) N p(0)~"(Th’(Py)) = p(a~"(Th ().

C: Take & € p(|C1)Nplo) (TW(P,)). Then & = p(6), for some 6 € |Cls, and plo)() € TH(P,)
By naturality of p and by the inductive assumption, we have p(a(8)) € p(Th*(P,)), that is for
some A C Th*(P,), p(A) l—f(lz) p(o(@)). Since representations are conservative, this implies
that A% o(¢) and so a(¢) € Th™(P). Thus, ¢' = p(¢) € p(c~" (Th*(P,))).

®Since £ and £’ are implicit in p, this notation carries all the data involved.
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D: Take ¢' € p(oc™ ' (Th”(P,))). Then ¢' = p(¢), for some ¢ € o~ (Th*(P,)), that is o($) € Th*(P,).
By the inductive assumption, p(o(¢)) € hp( 1) and since by naturality of p, p(o)(p(d)) =
p(a(8)). we conclude that ¢' = p(d) € (p(a))” (Th”(P,)), which completes the proof in this case
since clearly ¢' € p(|L]y).

As in the previous section, Definition 5.11 induces a corresponding entailment relation, between
L-presentations P and £'-sentences ¢’ with signature p(Sg“(P)).

Definition 5.13 We define a family of relations P IF{ ¢ between well-formed L-presentations P with
signature ¥ and sentences ¢’ € |ﬁl\p(2) by induction on the structure of P as follows:

1. (X,0) Ik ¢ iff there exists A C @ such that p(A) l_,f(/z) ¢

2. PLU P, L ¢ iff there exists Al Al C |£'\p(2) such that Py IFg A, Py IFg AL, and
AlLA! ME) ¢'.

3. translate P, along o I, ¢ (where o : X — X) iff there exists A'l - |£’\p(2) such that

PyIRg, A and p(o)(A)) Frg) @'

4. derive Py via o IF) ¢ (where 0 : ¥ — X,) iff there exists A" C p(|L]y) such that
P p(o)(A) and A’ I—f(z) ¢

Here, P IFg, A" stands for P -5 ¢ for all ¢ € A'.

Proposition 5.14 The relation P IF, @', where P is a well-formed L-presentation with signature X
and ¢’ € \£'|p(2), holds iff ' € Th”(P).
Proof By structural induction on P, directly from Definition 5.13 and 5.11.

Theorem 5.12 may be restated in terms of the entailment relations we have introduced.

w PIFE ¢ iff PIFL p(8).

Definition 5.13 provides the basis for a proof procedure for £ sentences relative to an L-presentation.
As we remarked above, we would like to achieve a complete reduction to £’ by working with the rep-
resentation p(P) of P. The conditions under which we can achieve this may be derived by comparing
the proof system determined by Definition 5.13 for P IF, p(¢) with that determined by Definition 4.1

for the case of p(P) “_5(2) p(o).

First, if we restrict attention to £'-sentences ¢’ in the image of p (i.e., such that there exists an
L-sentence ¢ with ¢' = p(¢)), then case (4) of Definition 5.13 may be simplified to

Corollary 5.15 For any L-presentation P with signature ¥ and ¢ € |L

derive P; via o |k ¢ iff P H’gl p(o)(9),

since p(a)(4") = p(a)(p(¢)) = p(a(0)) (the last step by naturality), and so we can take A" = { p(4) },
for which the condition A’ }—f(lz) p(¢) is trivial. Thus if p were surjective, then the proof procedure
given by Definition 5.13 would be essentially identical to the ordinary proof procedure, except that it
is guided by an L-presentation:

Corollary 5.16 Let p: L — L' be a surjective representation. Then for any well-formed L-presentation
P with signature ¥ and L-sentence ¢ € |L]s, P H—; o iff p(P) H—'C (%) p(@).
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Note, however, that requiring surjectivity is a rather strong restriction. As we shall see below, in
practical situations it is necessary to admit the use of £'-sentences lying outside of the range of p as
intermediate lemmas in the process of proving sentences lying within the range of p. It is therefore
important to admit arbitrary £’ sentences as goals of the “lifted” proof procedure.

Second, although the proof procedure induced by Definition 5.13 is guided by an £-presentation P,
it does not make direct use of any of the components of P, but rather only of their representations in
L'. For example, in the case of translate, the procedure applies p(c), not o (i.e., £'(p(c)), not L(a)).
In a sense the proof procedure forms p(P) “on the fly,” taking the representations of each component
of P in order to carry out the proof. The essential difference between an £ proof guided by () and
the above P-guided proof procedure lies in the restriction on A’ in the case of derive. To enforce this
restriction, the proof procedure must be able to decide, given p and ¢ € |£/|p(2); whether ¢" = p(o)
for some ¢ € |L|y. Such a test requires only the signature ¥ of derive P via ¢ and the representation
p. But since p is a representation, the component p‘%g is an embedding, and hence ¥ is determined by
p(¥). Therefore no L-entities are needed; it is enough to have the image p(X) of ¥. We may therefore
use p(P) to guide the proof, provided that p is a representation and we can test membership in the
range of p. To make this explicit, let us introduce yet another entailment relation.

Definition 5.17 Let L be a logical system, and let S be a family of sets Sy C |L|y for ¥ € Sigﬁ.
We define a family of relations P |l—§’5 ¢ between well-formed L-presentations P with signature > and
sentences ¢ € |L]y by induction on the structure of P as follows:

1. (¥,9) ||—§’5 ¢ iff there exists A C ® such that A l—g 0.

2. PLU Py IFSS 6 iff there exists Ay C |L]y and Ay C |Lly such that Py IF9S A,
Py be® Ay, and Ay A, 6.

3. translate P, along o Il-é’s ¢ (where o : ¥y — Y) iff there exists Ny C |Lly, such that
PSS Ay and L(o)(A)) by 6.

4. derive P, via o ||—§’S ¢ (where o+ ¥ — X, ) iff there exists A C Sy, such that P ||-§;S
o(A) and A F* ¢,

Here, P H—g’s A stands for P H-é’s ¢ for all o € A.

Corollary 5.18 Let p : L — L' be a representation and let S" be a family of sets of L -sentences
indexed by Sig” such that S;(Z) = p(|L]y) for © € Sig”. Then for any well-formed L-presentation P

with signature Y and L-sentence ¢ € L]y, P ||—§ o iff p(P) ||—§(I’ES)‘ p(@).
Proof By Corollary 5.16 and Definition 5.17.

Example 5.19 Recall Counterexample 5.9. In the context of the definitions given there. we do
not have that p(P) H—gogg’s b = ¢ where S, = p(£Qx). The reason for this is that the proof of

p(P) H—gOSQ b = ¢ cannot be repeated here: the necessary mediating formula Jx:s. true is filtered

out since it is not a representation of an equation (Jax:s. true ¢ S'Z) This illustrates the difference

between H—gogg (used in Counterexample 5.9) and H_;'OEQ,S .

To assess the practical implications of the requirement to keep track of the image of p and to check (in
the case of derive) whether a sentence is in this image, we turn in the next section to the representation

of logics in LF.
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6 Logical Systems and LF

We refer to [HHP93] for a complete definition of LF. A complete understanding of the detailed technic-
alities below requires a reasonable acquaintance with the intricacies of the LF type theory. However,
we hope that the general ideas are intelligible even without such background.

In order to discuss representations of logical systems in LF, we first define the logical system
associated with the LF type theory. The basic form of assertion in this logic is that a closed type
is inhabited. The restriction to closed types is a simplification that suffices for the purposes of this
paper, but would have to be relaxed in practice. (See Section 10 and [HST89b] for further discussion.)

An LF signature consists of a sequence of declarations of constants and types (and type families).
The former are written as c:A where A is the type of ¢, and the latter as ¢:Type (or for type families

indexed by elements of types Ay,... A, , ¢: Tzt A, ... Mz, :A, . Type). See [HHP93] for examples.

n?

Definition 6.1 An LF signature morphism o : ¥y — Y, is a function o mapping constants to closed
terms such that if c:A (¢:K) occurs in ¥, then Fs, o(c) : o"A ( Fs, o(c) : 0"'K). (The function o
is the natural extension of o to LF terms.) The identity morphism on X is the identity map, and
composition is defined by oy; 09 = 04 ag. Inclusions are the inclusion functions on the underlying sets

of constants. Sigﬁf is the category of LF signatures and LI signature morphisms.

"is an inclusion, and hence is usually

Note that if ¢ is an inclusion between LF signatures, then ¢
omitted.

The following proposition expresses the stability of the assertions of the LF type theory under
change of signature, which is the crucial fact used to justify the well-formedness of the definitions

given throughout the rest of this section; detailed proofs are omitted.

Proposition 6.2 If 0 : ¥, — ¥, and Fyg, o, then by, ol for each assertion o of the LI type
system.

Definition 6.3 Let ¥ be an LF signature. LF(X) is the consequence relation (Typesz,l—gf) where
Typesy = { A |y A: Type} and

Apveo Ay FST A T Ay A b Mk A

for some M and any pairwise distinct variables v, ..., x,. That is, LF(X) is the set of closed LF
types over the signature %, with the consequence relation induced by type inhabitation.

This consequence relation has a straightforward Gentzen-style axiomatization similar to that used in
NuPRL [Con86] that may be used as the basis for interactive proof search.
This construction extends to a functor in a straightforward way.

Definition 6.4 The functor LF : Sig’c}- — CR is defined by taking:
o LF(Y), for¥ e Sigm:, to be the consequence relation of Definition 6.3.

o LF(0), foro: ¥, — X, to be o [ Typesy, , the restriction of o' to closed Y, -types.
Proposition 6.5 LF is a logical system with inclusions.

For the purposes of encoding a logical system L, we are interested in “specializations” of LF
obtained by fixing a “base” signature X, specifying the syntax, assertions, and rules of £ [HHP93],
[AHMP&T7]. The signatures of £ are then represented as extensions to ¥, and signature morphisms
are represented as LF signature morphisms on these extensions leaving 3., fixed. Inferential activity
for L is then reduced to inferential activity in the specialization of LF to ¥,. To make this precise,
some additional machinery is needed.
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Definition 6.6 Let X be an LF signature. The category of extensions of X, written Sigé}-, is the full

subcategory of the slice category X | Sigm: determined by the inclusions ¢+ ¥ — X'. More explicitly,
Sigéf has as objects pairs consisting of a signature ¥ € \Sig£}-| together with an inclusion 1 : ¥ — X'

In the following we will simply write 1 = ¥ — X' for objects of Sigé}—. A morphism from 1, - ¥ — ¥
to 1y : X — ¥, in Sigéf is a signature morphism o : ¥y — Y, in Sig™ such that 150 = 1,. The

identities and composition are inherited from Sigﬁf.
Every LF signature induces a logical system based on that signature as follows:

Definition 6.7 Let ¥ be an LF signature. The functor LFy : Siggj: — CR s defined on objects by
LFs(1:% =Y =LFX)
and on morphisms o : X' — X" (in the category of extensions of ¥3) by
LFy (o) = LF(0).
Proposition 6.8 LFy is a logical system with inclusions.

An encoding of a logical system £ in LF comprises not only an LF signature ¥, but also an
“internal type family” distinguishing the basic judgements of £ in the encoding. For example, in the
encoding of first-order logic given in [HHP93], the constant true of kind o — Type represents the
basic judgement form of first-order logic. The significance of true for the encoding becomes apparent

~

in the statement of the adequacy theorem: terms of type true(¢) in a context with variables x; of

type true(g¢;) represent proofs of ¢ from the ¢,’s (where ¢ is the syntactic coding of ¢ in LF). This
methodology is formalized in our setting as follows.

Definition 6.9 An internal type family of X is a term F' such that by F : K for some kind K. (Note
that if by K, then K has normal form M :Aq. .. .. My Ay Type for some ay, ..., and Ay, ..., Ay.)
The range of an internal type family F' of X2 is defined to be the set

Rnge(F)={Inf(FM; ... M) |Fg FM, ... My : Type},
where Inf(M) is the long fn-normal form of M.

If 7 is a set of internal type families of X, then

Rngy(J) = U Rngz(F).
Feg

Definition 6.10 A logic presentation is a pair (X, J) where ¥ is an LF signature and J is a finite
set of internal type families of 2.

Definition 6.11 Let (X,J) be a logic presentation. The logical system presented by (X, 7), P(¥,J),

2

is the restriction of LFy, to the range of J . Specifically, P(X,T) : Sigéf — CR is defined on objects
by
PE,T)(e: Y —Y) = LF(Y) | Rngy(J)

and on morphisms o : ¥ — X" in the slice category by
P, T)o)=LF(o) | Rngs:(T)

(notice that since v : Y. — ¥ is an inclusion, J is also an internal type family of ¥').
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Proposition 6.12 P(X,7): Sigéf — CR s indeed a logical system and has inclusions.

Definition 6.13 A logical system is uniformly encodable (in LF) iff there exists a logic presentation
(X;,Tz) and a surjective representation py : L — P(X..Tp). The triple (X, Tz, pr) is called a
uniform encoding of L.

The word “uniform” reflects the fact that we require a “natural” encoding of the entire family of
consequence relations of £ in LF, rather than a signature-by-signature encoding as is suggested by the
account in [HHP93]. The requirement of surjectivity ensures that J accurately describes the images
of L-sentences in LF. For example, in the encoding of first-order logic in [HHP93], all closed long
normal forms of the shape true(M) represent first-order sentences.

As an example of a uniform encoding, we consider the logical system £Q defined in Section 2.
The encoding of £Q will be given in Example 6.16 but for the benefit of readers unfamiliar with LF
we will work our way up to this gradually, beginning with the single-sorted case. Thus single-sorted
algebraic signatures are families of the form (€,,),~o where the type of individuals is left implicit and
for n > 0, Q, is the set of n-ary function symbols. Call this logical system £Q,. We begin with the
even simpler case of single-sorted ground equational logic, GEQ;.

Example 6.14 Let X.GE£Q; be the LF signature

L . Type

eq i L — 1 — Type

refl  : llzu. eqrx

sym ¢ Mz, Hyi. eqry — eqyx

trans : axuw. Hyw, Mz, eqry — eqyz — eqr 2z

cong : Hfu— o Haw Uy eqay — eq(fa)(fy)

and let JGEQ; = {eq}. A uniform encoding of GEQ, is the triple (XGEQ,,JGEQ,, p) where p :
GEQ, — P(XGEQ,. JGEQ,) is a surjective representation defined as follows:

e For each single-sorted algebraic signature Q = (Q,),,5q. p*¥(Q) is the extension of YGEQ, by
the constant f : ¢ — -+ — 1+ — ¢ for each f € ,. We assume that 2, does not contain eq, refl,
N—_— ————

n times

ete. for each n > 0. Then pSig extends to a functor pSig : Siggsgl

— Sigéé-gg1 in the obvious
way.

¢ There is an obvious bijection between the set of ground Q-terms and the set of closed LF terms
of type ¢ in pSi'q(Q) and hence between ground -equations and the set of closed LF types of
the form eqtt' in pSig(Q). This determines a surjective function pg : [GEQ,|q — Rng,sig(€q)
which is natural in Q and which is a conservative CR morphism pg, : GEQ,(Q) — LF(p°(Q)) |
Rngpsw(ﬂ)(EQ)'

Let Q be an algebraic signature with {a,d’,b.b'} C Q, and {f} € Q,. The following is derivable

in LF:
azl:eq(a,a’), ar2:eq(b,b') F ()

trans (fab) (fat) (')
(cong (fa)bb az2)
(cong (Aeze. fab)ad axl) :eq(fab)(fa'd)

This represents a proof of the congruence property for the two-argument function f:

a=db=0F% fla.b) = f(d,b).
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The generalization of this example to single-sorted non-ground equational logic is not entirely
straightforward. Since sentences of a logic are represented by closed types, it is necessary to introduce
an explicit quantifier to bind the free variables and to simulate the implicit universal quantification
of sentences in £Q. In order to conform with the type theory of LF, we add an intermediate type o
of formulae, where the universal quantifier takes a term of type ¢ — o and produces a term of type o

[HHP93].

Example 6.15 Let ZQSQ; be the LF signature

L . Type

0 . Type

true : o — Type

eq S L—1—o0

refl  : Haw. true(eqx x)

sym ¢ Lz, My true(eqzy) — true(eqy x)

trans : Haw Uy Uzl true(eqay) — true(eqy z) — true(eqx z)

cong : Ilfi— . o — o Ha. y:e.
true(eqxy) — true(o(f v)) — true(o(f y))

and let ngQ;’ = { true }.

We have generalized the earlier congruence rule to allow predicates other than eq to be added
without additional congruence rules. This is not necessary for the examples below in which we deal
with logics having equality as the only atomic predicate. It may be shown that the rule cong above is
equivalent (in the presence of refl) to the following two rules:

cong; = Ifu — o e My true(eqxy) — true(eq(f2)(fy))
x) — frw(qﬁy)

The new presentation of single-sorted ground equational logic allows universal quantification to be
introduced in a natural way. Let ¥£Q, be the signature

Egggiv

V : (t—=o)—o

VI M — o, (Haw. true(pa)) — true(V ¢)
VE : Il¢:w — o. Ha. true(V o) — true(ox)

cong, + g — o N My true(eqxy) — true(o

and let J€Q, = {true}. We can define a surjective representation p : £Q;, — P(XEQ,.TEQ,)
similarly as in Example 6.14. This yields a uniform encoding (X£Q,, JEQ;, p) of £Q;.
Let © be an algebraic signature with {a,b} C Qg and {f} C Q4. The following is derivable in LF:

azl:true(V(Az:e. eq(fx)a)), ax2:true(V(Az:e. eq(fx)b)) F, s
(Ayze. transa(fy)b
(sym (Fy)a (VE (\aze. eq(f 2)a) p ar))
(VE (Az:e. eq(fx)b)y ax2)
Ja :true(eqab)

This represents a proof that
Va. f(z) = a,Ya. f(z)=bF5 a=b.

A careful analysis of examples like this one shows how the quantifier elimination and introduction
rules together with LF’s substitution mechanism simulate the substitution rule of equational logic,
taking correct account of the possibility that the domain of quantification might be empty [GMS81].
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The final step is to add mechanisms to encode the possibility of having more than one sort of
individuals to the above encoding of single-sorted equational logic. We add a type of sort names and
we attach to each sort name the type of its values. Then. both the syntactic operations (eq and V)
and the inference rules must be supplied with a sort name as an additional parameter.

Example 6.16 Let ¥£Q be the LF signature

sorts : Type

0bj : sorts — Type

0 : Type

true : o — Type

eq : Ils:sorts. 0bj s — objs — o

refl  : s:sorts. [la:obj s. true(eqsxx)

sym : lls:sorts. la:obj s. Hy:o0bj s. true(eqsxy) — true(eqsyx)

trans : lls:sorts. [lz:obj s. Tly:0bj s. 11z:0b5 s.
true(eqsay) — true(eqsy z) — true(eqsx z)
cong : lls:sorts. Ils":sorts. I f:0bj s — obj s'. Tld:0bj s — o. a:0bj s. Iy:0bj s.
true(eqsaxy) — true(o(fx)) — true(o(fy))

v : s:sorts. (obj s — 0) — o
VI o Ilsisorts. Tlg:0bj s — o. (Ila:0bj s. true(¢x)) — true(¥s @)
VE : Us:sorts. llg:obj s — o. lla:obj s. true(V s ¢) — true(dx)

and let JEQ = { true }.
A uniform encoding of £Q is the triple (X£Q,JEQ,p) where p : £Q — P(XEQ, JEQ) is a

surjective representation defined as follows:

e For each many-sorted algebraic signature ¥ = (5,Q), p*#(2) is the extension of $EQ by the
constant s : sorts for each s € S and the constant f : obj(s;) — -+ — obj(s,) — obj(s) for each
J sy x - x5, — sin X. We assume that eq, refl, elc. do not occur in ¥. Then pszg extends

to a functor p°” : Sig"¢ — Sigé?Q in the obvious way.

o The surjective mapping pg : [£Q|g — Rngsiy(s)(true) is determined as in the examples above,
e.g.
ps(Vais,y:s'. fz,y) =b) = Vs (Axiobjs. Vs’ (A\y:obj s’ true (eqs(fzy)b)))
for a signature ¥ with sorts s,s’, constant b : s and a binary operation f : s x s — s. This
function py is natural in ¥ and is a conservative CR morphism py : EQ(X) — LF(p** (X)) |
Rng ,si(x)(true).

Let ¥ = (5,9) be an algebraic signature with sorts s and s’, constants a:s and b:s, and an operation
f:s — s Then pSig(E) is the extension of X£Q as described above. The following is derivable in
LTI

axl:true(¥s (Az:0bj s'. eqs(fx)a)), ax2:true(¥Vs' (\z:obj s'. eqs(fz)b)) F s (x)
VIs' (A\z:objs'. egsab)
(Ay:obj s, trans sa(fy)b
(syms(fy)a(VEs (Az:obj s’ eqs(fx)a)yazl))
(VEs" (Ax:obj s’ eqs(fa)b)yaz2)
) :true(Vs (Ax:obj s’ eqsab))

This represents a proof that
Vo:s'. f(z)=aVe:s. flz)= b}—;Q Va:s'. a=h.
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Notice that in £€Q we cannot derive
Vo:s. f(z)=a,Ve:s. flz)=b I—;Q a=b.

and correspondingly this cannot be derived in the LF encoding either: in the LI signature pSig(Z)
and the context axl:true(Vs' (A\z:objs’. eqs(fz)a)), az2:true(Vs' (Az:0bjs’. eqs(fx)b)) there is no
term of type true(eqsab).

More complex examples may be built using the various representations of logical systems in LF

presented in [AHMP87].

7 Proof Search under Uniform Encodings

Let us now return to the problem of proof in structured theory presentations. Given a uniform
encoding of a logical system £, we intend to exploit the proof mechanisms of LF to conduct proofs in
structured L-presentations.

Since the representation part of a uniform encoding of a logic £ is required to be surjective, it
might be thought that we may use the naive lifting of L-presentations to LF, relying on Corollary 5.16.
But this is not the case, for in practice we work not in P(X.,J.), but in LF(X,), which is to say
that we cannot restrict attention to sentences in the range of 7, only. For example, in the encoding of
S4 [AHMPS8T], sentences are represented by terms of the form true(M ). But to prove, say, true(0(M)),
we must, in certain cases, prove valid(M). But this type lies outside of the image of p (and cannot
be soundly included in it).

Now since P(X. ) is defined to be the restriction of LFy to the range of J, there is an obvious
“inclusion” of P(X.,J) into LF which is typically not surjective. However, the set of sentences
considered is explicitly determined by 7.

Consider a uniform encoding (X, J;.p;) of L. Let R be the family of LF types given by
Rsy = Rngsi(J;) for ¥ extending ¥,. By Corollary 5.18, for any well-formed L-presentation P
with signature ¥ and L-sentence ¢ € |L|y, P ||—§ o iff pp(P) H—fj’; pe(@). It is important to realize
that the right-hand side of this equivalence refers only to LF entities, and the corresponding proof
search as determined by Definition 5.17 can be carried out entirely within LF.

An essential part of this proof activity is to test whether a type A of LF(X') is in the image of
pr, where X' = p,(Q) for some Q € Sig”, that is whether or not A € Rngs/(J.). This amounts to
matching in the LF type theory: A € Rngy,(J;) iff there exists J € J and M;,..., M, (where k is
determined by .J) such that A is convertible to J(M,. ..., M}). This test may be implemented using
the unification algorithms developed by Pym [Pym90] or Elliot [ElI89]. In practice, J is often a single
constant, in which case this test is trivial; it is an open problem whether the matching problem is. in
general, decidable.

Example 7.1 Recall the presentations given in Counterexample 5.9: ¥, is the signature with sorts
s and s’ and constants a:s and b, ¢:s’, ¥ is the same signature with a removed, ¢ : ¥ — % is the
inclusion, Py = (X,0), P, = derive Py via ¢ and P = P, U (X, {Va:s. b = ¢}). Consider the uniform
encoding (X£Q. JEQ, p) of £Q in LF given in Example 6.16. We will conduct inference in P via this
encoding.

The LF signature p(X,) is the extension of ££Q by constants s,s":sorts, a:o0bj s and b, c:obj s’
The following is derivable in LF:

t:Type '_p(Eo) (Afiobjs —t. fa):(objs—t)—t
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Thus, in the inhabitation logic of LF, we have in particular

|_L']-"

o(zo) (0] 8 — true (eq s'be)) — true (eqs be)

The following is also derivable:

azl:true (Vs (Az:s. eqs'be)), ar2:(obj s — true (eqs' be)) — true (eqs'be) Fos)
ar2(Az:obj s. VE s (Ax:objs. eqs be)xarl) : true (eqs'be)

Consequently, in the inhabitation logic of LF, we have

true (Vs (Az:s. eq s be)). (objs — true (eqs be)) — true (eqs be)

o(x) true (eq s'be)

The above entailments in the inhabitation logic of LF justify the following (cf. Definition 4.1):

p(Py) H—pﬁéo) (0bj s — true (eqs'be)) — true (eqs' be)

p(Py) H_,f(}z—) (obj s — true (eq s be)) — true (eqs' be)

p(P) ||—§(§) true (eq s be)

Note that we have just proved that p(P) H—jé) p(b = ¢) even though P H—;Q b = ¢ does not hold. In
essence, what is happening here is similar to what was illustrated in Counterexample 5.9. except that
a higher-order type is used in place of an existential formula. As in Example 5.19, this shows the need
for keeping track of the image of the encoding. The crucial mediating type, (0bj s — true (eq s be)) —
true (eq s"be) which is inhabited in p(¥,), does not encode a sentence of £Q (is not in the range of
true) and so will be filtered out in the modified proof procedure determined by Definition 5.17: we
do not have p(P)) H-E(J;’)R (0bj s — true (eqs'be)) — true (eqs' be) where Ry = Rngy (JEQ) for ¥
extending X€Q.

8 Putting Together Logics

In this section we consider the adaptation of the idea of presenting theories in a structured way to logic
presentations. As a first step in this direction we investigate the use of pushouts to give an account
of parameterization and instantiation of logic presentations. We have in mind such examples as: the
parameterization of Peano arithmetic by the underlying predicate calculus, with instantiations like
classical Peano arithmetic and Heyting arithmetic; the parameterization of Hoare logic by the logic
of assertions; the parameterization of the calculus of synchronization trees by the synchronization

algebra [Win81].

Proposition 8.1 Sigﬁf has pushouts along inclusions.
Proof Ifo: X — %" and ¢ : ¥ — X", then the pushout is given by

O*Z// — Z’ p(a. E//)ﬁzm

(where X" =, 5" since ¢ is a signature inclusion, it is always possible to present ¥ in this way)
and
m, v | oole) if ¢c€dom(X)
plo, X7)(e) = { c otherwise
(This assumes that X" is disjoint from Y'; otherwise, p(o,X") would have to rename symbols appro-

priately.)
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Note that Sigm: is not finitely co-complete.

Definition 8.2 A logic presentation morphism o : (¥, 7) — (X, J") is a signature morphism o :
Y=Y in Sigﬁf such that for every ¥ € J with

Fy Follzg:AyL . 2, AL Type,
there exists F' € J' such that

o'F = Aviot AL 2ot Ap FI(My, ..., M,)

for some My, ..., M,. Identity and composition are inherited from Sigm:. LogPres is the category
of logic presentations and logic presentation morphisms.

Note that ; ¢ FV(F') (1 <i < k) since F' is closed.

Proposition 8.3 The assignment (¥,J ) — P(X,J) extends to a functor P : LogPres — Log.
Sketch of construction Consider a presentation morphism o : (¥, 7,) — (X5, 7J5). The logic
morphism P(o): P(X,,T,) — P(X,, T;) may be defined as follows:

o Plo)™ : Sig;}- — Siggf is defined on objects using the pushout construction: P(c)™(
Y= X)) = (191 Xy = X)) where

T

is a pushout in Sig"™” .

This extends to morphisms using the co-universal property of pushouts.

o For any ¢ @ ¥ — E;, o Z; — 2/2 in the construction above induces the translation ((r')ﬁ :
Rngzi(jl) — Rngzé(jg). (This uses the fact that o is a logic presentation morphism.) This is
a CR morphism (O")ﬁ PN T (e Xy — Z;) — P(ZQ,jQ)(P(G)Sig(//l) DYy — 2/2) which is
natural in 1y. This defines P(J)OR s Py, Th) '—>77(0)57‘g; P(X,, Ts).

We propose to use colimits in the category of logic presentations to build logics in the same way
as colimits were used in Section 3 to build theories. Although the category of logic presentations is
not finitely co-complete, it may be shown that a diagram in LogPres has a colimit iff its projection
to Sigm: has a colimit. The most pertinent case is that of pushouts along inclusions:

Definition 8.4 A logic presentation morphism ¢ : (X, J) — (X', J') is an inclusion if ¢ : ¥ — ¥ is
an inclusion and J C J'.
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Proposition 8.5 LogPres has pushouts along inclusions.
Proof The pushout of o : (X,J) — (X1, 71) and ¢ = (X,T) — (X5, T,) is given by the object
o (2,,7,) = (67,,0%T,), where 0%, is the pushout object in Sig™” and

o Ty = plo, 22)u(j2) U,
and the morphism p(o, (X4, 7,)) = p(o,X,) is given by the pushout construction in Sig™”.

A LogPres inclusion can be seen as a parameterized logic presentation where the pushout of
this morphism with a “fitting” morphism amounts to instantiation, by analogy with parameterized
structured theory presentations.

Example 8.6
YBASE® = o . Type
true : o — Type
JBASE® = {true}
YPROP = YBASE,
- c0—o0
A 00— 0—0
Vv 00— 0—0
D) 00— 0—0
DI ¢ Tlgio. Mip:o. (true(d) — true(h)) — true(D ¢ 1))
JPROP = {true}

BASE® = (XBASE’, TBASE?) presents a trivial logic containing only the type of formulae (o) and
the judgement form true. PROP = (YXPROP, JPROP) presents propositional logic; only one of the
standard inference rules is given above. There is an obvious inclusion ¢ : BASE® — PROP, which
may be seen as propositional logic parameterized by the type of atomic propositions.

Instantiation of this parameterized logic presentation to the presentation of single-sorted ground
equational logic (XGEQ], JGEQ)) (see Example 6.15), via the inclusion of BASE”, yields a present-

ation PROP(GEQ]) of a propositional logic where atomic formulae are ground equations.

Example 8.7
YBASE = . Type
0 : Type
true : o— Type
JBASE™” = {true}
YUNTIYV = ZBASE™.
N : (t—o0)—o
VI Ilgu — o, (Haw. true(opa)) — true(V o)
VE : Il¢uw — o. Mz true(V o) — true(px)
JUNTYV = {true}
BASE” = (YBASE™, JBASE") presents a logic containing only the type of individuals () and

formulae (o) and the judgement form t¢rue. The logic presentation UNTV = (SUNIV, TUNTIYV)
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presents a logic of universal quantification. There is an obvious inclusion ¢ : BASE"” — UNTV, which
may be seen as a pure logic of universal quantification parameterized by the types of individuals and
formulae.

The result of instantiating this parameterized logic presentation to (XG& Qi JGE Q?) via the inclu-
sion of BASE" is the logic presentation (XEQ;, JEQ;) from Example 6.15. The result of instantiating
it to PROP(GEQY) yields a presentation UNIV(PROP(GEQ])) of a version of first-order logic with
an equality predicate. Existential quantifiers are absent although they are expressible since the logic
includes universal quantification and negation. It would be easy to add them explicitly by extending
UNTYV or by forming a parameterized presentation EXZST of the logic of existential quantification

and applying this to UNIV(PROP(GEQ))).

In the above examples we used pushouts in the category of logic presentations as a mechanism for
instantiating parameterized logic presentations. The functor P allows us to view this as a combination
of the corresponding logical systems. A more straightforward method would be to combine logical
systems directly, using pushouts in Log.® In general, the result would be different (P is not finitely
co-continuous). The reason for the difference is that in Log the internal structure of sentences is not
visible and so the combination is done in a coarse, superficial way. For example, consider two extensions
of £Q;, one which adds negation (giving equations, negations of equations, negations of negations of
equations, etc.) and another which adds conjunction (giving equations, conjunctions of equations,
conjunctions of conjunctions of equations, etc.). The pushout of these in Log is a logical system
with the union of the two sets of sentences but not including (for instance) conjunctions of negations
of equations. This is in contrast to the result of taking the pushout of the obvious presentations of
these logics in LogPres, in which the fine detail of the structure of sentences is visible. The resulting
presentation has negation and conjunction built in as operations on the type o of formulae and hence
the logical system it presents contains sentences with arbitrarily deep interleaving of conjunction and
negation, as expected. The same phenomenon may be illustrated using Examples 8.6 and 8.7. As we
have mentioned, UNIV(PROP(GEQ])) is a presentation of a version of first-order logic. Performing
the analogous construction at the level of logics, a much smaller set of sentences would be obtained;
for example, the existential quantifer would not be expressible. Summing up, this suggests that the
proper way to combine logics is at the level of logic presentations rather than at the level of the logics
themselves.

The same problems of sharing mentioned in Section 3 with reference to building large theories
arise when building complex logics (such as seem to be appropriate for reasoning about Standard ML
programs [ST91]). More complicated colimits are again applicable here, and as before the relevant
diagrams arise in a natural way from the way that logics are combined using the notation of a language
such as CLEAR [BG80]. A difference is that some diagrams in LogPres have no colimit, so it is useful
to consider a subcategory (with inclusions) of LogPres in which all colimits exist. By proceeding in
this way we obtain a CLEAR-like or ML-like language for defining logics in a structured way.

9 Related Work

Our notion of a logical system is inspired by Goguen and Burstall’s work on institutions [GB84a)]
and by Fiadeiro and Sernadas’s w-institutions [FS87]. Roughly speaking, institutions are a model-
theoretic view of logical systems based on signature-indexed families of satisfaction relations that are
well-behaved under variation in signature. w-institutions are a theory-based view of logical systems

Although for foundational reasons, Log is not finitely co-complete, it may be shown that it has pushouts involving
logical systems with small categories of signatures [TBG92]. This is a reasonable assumption since it holds for example
if all the “names” in signatures come from an infinite but fixed vocabulary.

31



based on closure operations on sets of sentences, and are equivalent to our logical systems. We
prefer to take consequence as basic both as a matter of taste and because this framework admits
generalizations that are not available in 7-institutions (e.g., multi-conclusioned CR’s, CR’s based on
multisets or sequences, rather than sets, and CR’s that are not closed under weakening.)

Institutions were first used to parameterize the semantics of CLEAR [BG80] by the logical system
used to write specifications, an idea which has been pursued for other specification languages [ST86],
[ST88a] and in connection with the foundations of formal program development [BV85, ST88b], since
then. The ideas in Sections 3 and 8 concerning building theories and logics in a structured fashion have
their roots in CLEAR and are related to Goguen’s earlier work on general systems theory [Gog71].

[ST88a] considers a language of structured specifications which is similar to but richer than the
language of structured presentations introduced in Section 3. As discussed in [ST92], there is an
essential difference between the view of structured presentations purely as theory presentations, which
we take here, and the view of them as specifications as in [ST88a]. The main role of specifications
is to describe the class of their admissible realizations (models), and hence the primary semantics of
the specification language in [ST88a] is given in terms of model classes. One way to construe the
work in Sections 3 and 4 is as providing a sound proof-theoretic counterpart to this model-theoretic
semantics. The proof search procedure presented in Section 4 is not complete for this semantics, at
least in the case of logical systems such as £Q and FOEQ. But its advantage is that it strictly follows
the structure of the presentation written by the user of the formalism, with benefits such as those
sketched in Section 4. Completeness seems to be the price we have to pay for this: the complete proof
systems given in [Far92] and [Wir91] require the structure of the presentation to be altered in the
course of proof.

In [GB84a] a notion of institution morphism is presented, and used to investigate (among other
things) the question of when a theorem prover for one logic can be used to prove theorems on theories
from another. A morphism of logics in our sense corresponds roughly to a sound institution morphism
in the framework of [GB84a]. However, since the two kinds of morphisms are motivated by different
concerns (an institution morphism indicates how one institution can be viewed as having been built
over the other, while a logic morphism indicates how one logic can be encoded in the other), this
comparison is not very accurate. Further work on providing a notion of morphism between institutions
which adequately captures preservation of a proof-theoretic entailment relation associated with the
model-theoretic satisfaction relation of an institution is presented in [Mes89] and [AC92].

In [Tar86] it is shown that the category of institutions has limits and the idea of using limits
to combine institutions is briefly discussed. Translating this to the present setting, these limits are
related to colimits in the category Log of logical systems. In [GB86] the concepts of charter and
parchment are presented; these are progressively more primitive in that charters are used as tools for
constructing institutions while parchments are in turn used to construct charters. A parchment for
a logical system seems to correspond very roughly with an encoding of that logical system in LF,
except that dependent types are not available in parchments.  All such comparisons can only be
vague since institutions, charters and parchments are fundamentally model-theoretic notions while
our logical systems (and 7-institutions) are proof theoretic.

Like this paper, [Gar92] attempts a careful explication of the concept of logic representation in
LF which was not made fully formal in [HHP93]. The main idea of the version of LF studied there is
to refine the type theory in such a way that it is possible to extract the logic defined by a signature
given only the signature. This is accomplished by distinguishing judgements from other types in the
representing type theory, rather than using the “extra-logical” methods (the type family component
of uniform encodings) that we have considered here. Our notion of uniform encoding corresponds
roughly to the notion of adequate encoding in [Gar92], although variation of signatures is not taken
into account there.

Drawing on some of the ideas considered in this paper and on [SW92], [HP92] proposes a modules
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system for Elf, a logic programming language based on LF [Pfe89], [Pfe91]. This system provides
structuring operations on LF signatures with which one may give structured presentations of logical
systems and theories within a given logical system. An analogue of our presentation morphisms is
provided via the notion of a realizor, which is essentially an interpretation of one signature in another
given by a sequence of terms of the LF A-calculus. The structuring operations considered in [HP92]
do not, by design, include an analogue of our derive operation. Proof search is provided by the
solve primitive which not only attempts to determine if a given type is inhabited (i.e., whether the
judgement it encodes is provable), but also computes an inhabiting term. The search procedure is
conditioned by the using primitive with which the relevant portions of a structured logic presentation
are marshalled for use by the solver. The absence of derive ensures that the problems with the behavior
of the structured search procedure under representation (discussed in Section 5) are avoided.

10 Directions for Future Research

The definition of logical system, and especially the definition of uniform encoding, reflects the intention
that sentences be “closed.” The definition of logical system and uniform encoding could be generalized
to admit “open” sentences, but it is important to realize that there are (at least) two different ways
to construe consequence in this situation [Avr91]. Under the “truth” interpretation, free variables
behave essentially as constants, and hence could be handled within our notion of logical system (the
situation is more complicated in free logics such as PX [HN88]). Under the “validity” interpretation,
free variables are implicitly universally quantified at each formula. Hilbert-type presentations of first-
order logic usually take the validity interpretation, whereas natural deduction presentations take the
truth interpretation. Some ideas on how the notion of logical system may be extended to accommodate
free variables are in [HST89b].

The definition of basic theory presentation admits the possibility of an infinite set of axioms. In
practice such sets are presented schematically since theories of interest are recursively presentable.
The notion of logical system can be extended to treat axiom schemes explicitly, and the definition of
uniform encoding can be correspondingly generalized to encode schemes using Il-types. This extension
becomes important in the case of certain truth-type logical systems lacking a universal quantifier, for
there it is not possible to think of an axiom scheme as standing for all of its instances. It would be
interesting to work out a treatment of schematization for both truth-type and validity-type logical
systems.

The emphasis in this paper has been on provability, rather than on finding proofs. This is reflected
in our decision to view logical systems as consequence relations, and in the concomitant definition
of search in structured presentations. It would be interesting to develop a general notion of logical
system that includes an explicit representation of proofs. With this in mind, we have considered a
categorical generalization of the notion of consequence relation whereby proofs become morphisms in
a consequence category satisfying some weak closure properties (as in linear categories [GL87]). It
seems difficult, however, to develop the notions of structured presentation and structured search in
such a way that a witness to the fact that a sentence is a consequence of a structured presentation
may be extracted. The difficulty seems to lie in the fact that structured presentations rely on working
simultaneously with a family of consequence relations, rather than just one. When generalized to
admit proofs. this means that we must consider a hybrid notion of proof that spans a family of
consequence categories.

The CLEAR-style parameterization methods outlined in Section 3 require that a signature morph-
ism be a presentation morphism. This is, in general, an infinitary proof obligation, and so cannot be
considered as an instance of proof within the (encoding of) the logical system at hand. However, in
many commonly-arising situations (in particular, in typical applications of parameterization), it must
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be shown that o : P — P’ is a presentation morphism where P = (¥, A) is a finite basic presentation.
This reduces to showing that P’ IF ¢ A, and hence is an instance of structured search, as explored in
[HP92] for presentations without the derive operation. But for general P the proof obligations are
not “internalizable” in this way. Finding a fully satisfactory answer to this question is the subject of
ongoing research; see [Wir91], [Far92] for proposed solutions and relevant discussion.

It is useful to consider a notion of uniform encoding that is not based on treating LF as a logical
system. The idea is to regard basic theory presentations as contexts (more or less as now), and
to “internalize” the presentation-structuring operations in an extension of the LF type theory. In
particular, the derive operation seems closely related to existential types [MP85]. Part of this
program, for the fragment of the language without derive, is carried out in [HP92].

A related idea is to view the presentation-structuring operations as “internal” logical operations,
and to explore the analogy with (higher-order) categorical logic. In this way we hope to obtain a
better proof theory for both deriving consequences of structured presentations and deriving entailments
between such presentations [HT92]. This would provide a simple way to represent proofs in structured
presentations (since these would just be proofs in this richer logic) and to prove that a signature
morphism is a presentation morphism (since this would reduce to an entailment between structured
presentations). As mentioned earlier, such a proof system would necessarily involve altering the
structure of presentations in the course of proof; this would be captured by rules allowing commutation
of translate with derive (corresponding to the Beck condition) and of union with derive (Frobenius
reciprocity), much in the style of the proof systems in [Wir91] and [Far92].

Finally, the language of structured presentations may be generalized to admit translation and
inverse image along logic morphisms. This would allow for the combination of theories from several
different logical systems, giving rise to an “inter-logic” search space similar to the “intra-logic” search
space given by structured theory presentations. It would be interesting to develop these ideas further,
and to consider their application to formal program development where there is some indication that
such hybrid logics and inter-logic search will be of some use [ST88b].
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