
Structured theory presentations and logic representations�Robert Harpery Donald Sannellaz Andrzej TarleckixDraft: 10th December 1992AbstractThe purpose of a logical framework such as LF is to provide a language for de�ning logicalsystems suitable for use in a logic-independent proof development environment. All inferentialactivity in an object logic (in particular, proof search) is to be conducted in the logical frameworkvia the representation of that logic in the framework. An important tool for controlling searchin an object logic, the need for which is motivated by the di�culty of reasoning about large andcomplex systems, is the use of structured theory presentations. In this paper a rudimentary lan-guage of structured theory presentations is presented, and the use of this structure in proof searchfor an arbitrary object logic is explored. The behaviour of structured theory presentations underrepresentation in a logical framework is studied, focusing on the problem of \lifting" presentationsfrom the object logic to the metalogic of the framework. The topic of imposing structure on logicpresentations, so that logical systems may themselves be de�ned in a modular fashion, is alsobriey considered.1 IntroductionIn logic, the traditional way to present a theory is by giving a set of axioms. This is su�cient for dealingwith the simplest examples like groups or monoids. However, in Computer Science applications, sucha presentation of a theory describing the behaviour of a complex real-life software system wouldinvolve a huge list of axioms, and the scale of such presentations makes them e�ectively useless. Acommonly-accepted way to cope with this problem is to impose structure on theory presentations[BG77] and to build complex theories by combining smaller components. One advantage of such\modular" or \structured" theory presentations is that they provide a basis for guiding proof searchin large theories. This was �rst considered in [SB83] in the context of Edinburgh LCF [GMW79].An LCF theory is presented by declaring base types, constants, and function symbols (i.e., by givingan LCF signature), and by giving a set of axioms over the language induced by these declarations.The fundamental idea in [SB83] is to exploit the invariance of consequence under changes of signaturedescribed by \signature morphisms." The language of structured presentations considered there (andin this paper) uses signature morphisms to mediate the combination of theories and to provide a formof \information hiding." The primitives of the presentation language are su�cient for the de�nabilityof a variety of interesting constructions such as instantiation of parametric presentations. All this�This is an expanded and revised version of the paper \Structure and Representation in LF" which appeared inProc. 4th IEEE Symp. on Logic in Computer Science, Asilomar, California, June 1989, pp. 226{237.ySchool of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.zLaboratory for Foundations of Computer Science, Department of Computer Science, Edinburgh University, Edin-burgh, Scotland.xInstitute of Informatics, Warsaw University, and Institute of Computer Science, Polish Academy of Sciences,Warsaw, Poland. 1



can be generalized to the context of logical systems other than LCF; the main purpose of this paperis to make this explicit and to consider the rami�cations of these ideas in the context of a \universalmetalogic" such as LF.The Logical Framework (LF) [HHP93] is a meta-language for de�ning formal systems. It is a three-level typed �-calculus with �-types, closely related to the AUTOMATH type theories [dB80, vD80]. Aformal system is speci�ed by giving an LF signature, a �nite list of constant declarations that speci�esthe syntax, judgement forms, and inference rules of the system. All of the syntactic apparatus of theformal system, including proofs, are represented as LF terms. The LF type system is su�cientlyexpressive to capture the uniformities of a large class of logical systems of interest to ComputerScience, including notions of schematic rules and proofs, derived rules of inference, and higher-orderjudgement forms expressing consequence and generality.According to the methodology of [HHP93, AHMP87], a necessary condition for the correctness ofan encoding of an object logic L in LF is that the consequence relation `L of L be fully and faithfullyembedded in the consequence relation `LF of LF by an encoding of the syntax of L as LF terms.(The consequence relation of LF is given by considering type inhabitation assertions, as in NuPRL[Con86].) By focusing on the embedding of consequence relations, LF may be viewed as a universalmetalogic in which all inferential activity is to be conducted: object logics \exist" (for the purposesof implementation) only insofar as they are encodable in LF.One important form of inferential activity in a logical system L is proof search: given a set ofaxioms or assumptions � and a conjecture �, determine whether or not � `L �. In keeping withthe view of LF as a universal metalogic, proof in L is to be reduced to proof in LF via the encodingof L in LF. Numerous interesting questions arise in the process of carrying out this program. Pym[Pym90] considers a variety of issues related to proof search, in particular the de�nition of a uni�cationalgorithm and methods for conducting proof search in the context of an arbitrary LF signature. Elliott[Ell89] has also developed a uni�cation algorithm for LF, and Pfenning [Pfe89], [Pfe91] bases a logicprogramming language on it.In this paper, we consider proof search in structured theory presentations. We focus on \lifting"structured presentations from the level of the object logic to the level of the metalogic, in particular,on the conditions under which proofs in the metalogic for lifted structured presentations soundlyrepresent proofs for structured presentations in the object logic.Another important aspect of LF is that it opens up the possibility of using several logical systems atonce. For example, one may view the encoding of S4 modal logic given in [AHMP87] as a combinationof the truth and validity consequence relations of S4. In this paper we suggest some basic machinery ofa language of structured logic presentations that allows for \putting together logics," just as structuredtheory presentations provide the machinery for \putting together theories." This machinery may beused to formalize examples such as adding a connective to a logic, or the parameterization of Hoarelogic by the logic of assertions.This paper is organized as follows. In Section 2 we introduce a general de�nition of a logical systemas a family of consequence relations indexed by signatures that satis�es a certain uniformity conditionwith respect to change of signature. This resembles the formalization of a logical system as an institu-tion from [GB84a]; the crucial di�erence is that institutions present a model-theoretic view of logicalsystems while the formulation in this paper is centered directly around the notion of a consequencerelation. (See also [FS87].) The sorts of consequence relations that we consider are motivated by thestrictures of encoding in LF, and thus are limited to one-sided consequence relations that are closedunder weakening, permutation, contraction, and cut, and which satisfy compactness. In Section 3we consider structured presentations in an arbitrary logical system. Structured presentations denotetheories (sets of sentences closed under consequence), and the structure of the presentations induces anatural proof search procedure guided by this structure, which we discuss in Section 4. Generalizingthe methodology of [HHP93], in Section 5 we introduce the notion of a representation of one logical2



system in another, taking account of variability in signatures, and then consider the problem of \lift-ing" a structured presentation along a representation of one logical system in another. Structuredpresentations may not be simply translated via the representation and used in the target logic. In-stead, we de�ne a notion of proof that is conditioned by the representation, and give restrictions underwhich we may achieve the goal of working entirely within the metalogic. In Section 6 we introduce themetalogic of interest, LF, as a logical system, and de�ne the notion of a logic presentation. A logicpresentation is essentially an LF signature (with an indication of which terms encode the judgementsof the object logic), together with a representation of the object logic in the logical system given bythe presentation. In Section 7 we return to the problem of proof in structured theory presentationsin the speci�c setting of logics encoded in LF. In Section 8 we explore the colimit construction as atool for building logics in a structured way; these ideas are more tentative than those in the rest ofthe paper. Finally, in Sections 9 and 10 we discuss related work and suggest directions for futureresearch.2 Consequence Relations and Logical SystemsOur treatment of logical systems centers on consequence relations (see [Avr91] for a survey). Wetake a consequence relation to be a binary relation between �nite subsets and elements of a set of\sentences" satisfying three conditions to be given below. We use � and  to range over sentences, �to range over arbitrary sets of sentences, and � to range over �nite sets of sentences. We write �;�0for union, and �;� for f�g;�. If s : �1 ! �2 is a function, then the extension of s to subsets of �1is denoted by s as well. Function application will often be denoted by concatenation, e.g., s� standsfor s(�).De�nition 2.1 A consequence relation (CR) is a pair (S;`) where S is a set of sentences and ` �Fin(S)� S is a binary relation such that1. (Reexivity) � ` �.2. (Transitivity) If � ` � and �;�0 `  , then �;�0 `  .3. (Weakening) If � `  , then �;� `  .The choice of conditions on consequence relations is motivated by our intention to consider encodingsof logical systems in LF (in a sense to be made precise below.) By considering only �nite sets ofsentences, we implicitly restrict attention to compact consequence relations. Although the technicaldevelopment does not depend in any way on this choice, only compact consequence relations areamenable to machine implementation.The following apparently more general properties are easily seen to hold of any consequence rela-tion:Proposition 2.21. If � 2 �, then � ` �.2. If � ` � and �; �;�0 `  , then �;�0 `  .3. If � ` �, then �;�0 ` �.De�nition 2.3 Let (S;`) be a consequence relation and let S 0 � S. The restriction of (S;`) to S 0,written (S;`) � S 0, is the consequence relation (S 0; ` \ (Fin(S 0)� S 0)).3



Proposition 2.4 If (S;`) is a consequence relation and S 0 � S, then (S;`) � S 0 is indeed a con-sequence relation.De�nition 2.5 A consequence relation (S;`) induces a closure operation on sets of sentences � � Sde�ned by Cl`(�) = f� j � ` � for some �nite set � � � g:We usually write � for Cl`(�) when ` is clear from context.Proposition 2.6 The function Cl` : Pow (S) ! Pow (S) is indeed a closure operation:1. If �1 � �2, then Cl`(�1) � Cl`(�2);2. � � Cl`(�);3. Cl`(�) = Cl`(Cl`(�)).De�nition 2.7 A set � is sentences is closed under ` i� Cl`(�) = �. A theory (wrt `) is a set ofsentences closed under `.De�nition 2.8 A morphism of consequence relations (CR morphism) s : (S1;`1) ! (S2;`2) is afunction s : S1 ! S2 (the translation of sentences) such that if � `1 �, then s� `2 s�. The CRmorphism s is an inclusion if it is an inclusion as a function in the category of sets, and is conservativeif � `1 � whenever s� `2 s�. CR is the category whose objects are consequence relations and whosemorphisms are CR morphisms, with identities and composition inherited from the category of sets.Proposition 2.9 If s : (S1;`1) ! (S2;`2) is a CR morphism and �1 � S1, thens(�1) � s(�1):The containment is, in general, proper since the image of a theory under a CR morphism need not bea theory. However, it follows from the above proposition (by Proposition 2.6) that s(�1) = s(�1).Techniques for structuring theory presentations are based on the idea of keeping explicit track ofthe language of a theory. Building large theories from smaller ones generally involves expansion of thislanguage and/or change of the type/constant/function symbols used. Sometimes it is appropriate to\hide" some of the symbols in the language, restricting the vocabulary in order to abstract away fromdetails of secondary interest. Consequently, a logical system is not viewed as being de�ned over anarbitrary but �xed language, but is instead considered to be a family of consequence relations indexedby a collection of signatures which determine the set of sentences considered. Variation in signature(for example, renaming constants or replacing constants by terms over another signature) gives riseto a natural translation of sentences over the signatures involved. Moreover, it is important thatconsequence be preserved under this translation. This partly captures the idea that the consequencerelations in the family are de�ned uniformly with respect to their signatures, and leads to the followingde�nition:De�nition 2.10 A logical system, or logic, is a functor L : SigL ! CR.11Of course this de�nition captures only some aspects of what is usually meant by the informal notion of \logicalsystem." 4



The category SigL is called the category of signatures of L, with objects denoted by � and morphismsby � : �1 ! �2. A signature morphism � : �1 ! �2 is to be thought of as specifying a \relativeinterpretation" of the language de�ned by �1 into the language de�ned by �2. Writing L(�) =(jLj�;`L�), the de�nition of logical system implies that if � : �1 ! �2 and � `L�1 �, then L(�)(�) `L�2L(�)(�): The function L(�) underlying the CR morphism is called the translation function inducedby �. To simplify notation, we write �(�) for L(�)(�) and �(�) for L(�)(�) when no confusion islikely.A logical system L has inclusions2 i� the objects of SigL are pre-ordered by a distinguishedsubcategory of morphisms, which will be referred to as inclusions, and L maps signature inclusions toinclusions of consequence relations. Inclusions are designated by � : �1 ,! �2. In the particular casesthat we study, signature morphisms are functions of some kind; we will normally assume withoutexplicit mention that the signature inclusions are inclusions in the usual sense. The requirement thatL preserve inclusions means that if � : �1 ,! �2 and � `L�1 �, then � `L�2 �. If C is a category with adistinguished pre-order subcategory of inclusions, then we say that C has pushouts along inclusions i�whenever f : A! A0 and � : A ,! A00 are morphisms of C, the pushout of f and � exists, and, moreover,the morphism opposite the inclusion in the pushout diagram may be chosen to be an inclusion:A A0A00 f?A00�����f@@@@R� @@@@R�?�����p(f;A00)We require a canonical choice of p(f;A00) (and f?A00) which is functorial in f , i.e., p(f ; f 0; A00) =p(f;A00); p(f 0; f?A00) (dually to contextual categories, cf. [Car86]). This will be needed for Prop. 8.3only.As an example, we de�ne the logical system associated with many-sorted equational logic.De�nition 2.11 Let SigEQ be the category of many-sorted algebraic signatures having:Objects: Pairs � = (S;
) consisting of a set S of type symbols and a family of sets 
 = h
w;siw2S?;s2Sof function symbols.Morphisms: � : (S;
) ! (S 0;
0) consists of a function t : S ! S 0 together with a family offunctions hfw;s : 
w;s ! 
0t?(w);t(s)iw2S?;s2S. The composition of morphisms is the compositionof their corresponding components as functions. Inclusions are pairs consisting of an inclusionand a family of inclusions.Let � = (S;
) be an algebraic signature. De�ne the set Eq(�) of �-equations to be the set oftriples (X; t1; t2), where X is a �nite sequence of mutually distinct variables decorated with elementsof S and t1; t2 are �-terms of the same sort with variables from X. The equation (X; t1; t2) will bewritten 8X: t1 = t2, or t1 = t2 if X is the empty sequence. Equations with no variables will be calledground equations. The consequence relation (Eq(�);`EQ� ) is de�ned in the standard model-theoreticway via a notion of satisfaction of a �-equation by a �-algebra, or equivalently by appropriate rulesof equational deduction (reexivity, symmetry, etc. [GM81]).2This is a much weaker concept than that of an inclusion system as introduced in [DGS92]. The requirements statedhere are su�cient for our purposes. 5



De�nition 2.12 The functor EQ : SigEQ ! CR is de�ned byEQ(�) = (Eq(�);`EQ� )EQ(� : � ! �0) = the usual extension of � to a function Eq(�) ! Eq(�0)GEQ(�) is the restriction of EQ(�) to ground �-equations, and GEQ(�) is the corresponding restric-tion of EQ(�).Proposition 2.131. EQ and GEQ are logical systems with inclusions.2. SigEQ has pushouts along inclusions (in fact, is co-complete).Proof EQ(� : � ! �0) is a CR morphism because of the Satisfaction Lemma [BG80]. Similarly forGEQ. Pushouts in SigEQ are de�ned as in [GB84b].In a similar manner we can present �rst-order logic with equality. The logical system FOEQhas the same signatures as EQ (we take equality to be the only predicate) and for any many-sortedalgebraic signature �, FOEQ(�) is the set of closed �rst-order logical formulae with equalities asatomic formulae, with the consequence relation induced by the usual inference rules (or equivalentlyby the usual satisfaction relation). For any signature morphism � : � ! �0, FOEQ(�) translatesclosed �-formulae to closed �0-formulae in the obvious way. Then FOEQ is a logical system withinclusions.Note that CR morphisms induced by signature morphisms in a logical system need not be conser-vative. Non-conservativity arises in EQ and FOEQ (due to the infamous empty carrier phenomenon| see [GM81]) but not in GEQ.3 Theory PresentationsLet L be an arbitrary logical system. As formulated above, L comprises a family of consequencerelations satisfying some additional conditions. Thus, concepts introduced for consequence relationslift to L. Of particular importance is the concept of theory:De�nition 3.1 An L-theory with signature � is a set T � jLj� of sentences closed under `L�.Notice that in any given logical system, theories are classi�ed by their signatures. Thus, forexample, the equational theory of monoids and the equational theory of Abelian groups have di�erentsignatures although both are EQ-theories.As mentioned in the introduction, the complexity of real-life software systems means that theoriesdescribing their behavior must be built in a modular or structured fashion. Only the simplest theoriesare presented in the traditional way by giving (a signature � and) a set � � jLj� of axioms, denotingthe theory �. We de�ne below a rudimentary language of structured theory presentations for buildingmore complex theories by combining and enriching such simple ones. The presentation language thatwe choose is adapted from [SB83] for use in an arbitrary logical system.De�nition 3.2 A structured theory presentation in L (L-presentation) is an expression in the lan-guage generated by the following grammar:P :: = (�;�)j P1 [ P2j translate P along �j derive P via �6



(Here � is a SigL-signature, � is a SigL-morphism and � is a set of L-sentences.) Structuredpresentations of the form (�;�) are called basic presentations. A structured presentation is �nite ifall the basic presentations it contains involve only �nite sets of sentences.In the above grammar we do not specify how signatures, signature morphisms, or sets of sentencesare presented. For logics with �nite signatures, it is unproblematic to de�ne a presentation languagefor signatures and signature morphisms (e.g., [Wir86]). In practice in�nite presentations are givenusing some form of schematization. For the sake of simplicity we do not make this explicit here.De�nition 3.3 The signature SgL(P ) of an L-presentation P is de�ned by induction on the structureof P as follows: SgL(P ) = � i�� P = (�;�), or� P = P1 [ P2 and SgL(P1) = SgL(P2) = �, or� P = translate P1 along �, � : �1 ! �, and SgL(P1) = �1, or� P = derive P1 via �, � : � ! �1, and SgL(P1) = �1.P is well-formed i� SgL(P ) is de�ned.De�nition 3.4 Let P be a well-formed L-presentation. The theory determined by P is de�ned asfollows: ThL((�;�)) = �ThL(P1 [ P2) = ThL(P1) [ThL(P2)ThL(translate P1 along �) = L(�)(ThL(P1))ThL(derive P1 via �) = L(�)�1(ThL(P1))Proposition 3.5 For any well-formed L-presentation P , ThL(P ) is an L-theory with signatureSgL(P ).Proof The non-trivial case is that of derive, where one has to notice that the co-image of a theoryunder a signature morphism is a theory.The language of structured presentations allows large theories to be built in a exible and well-structured fashion. Union is used to combine separate theories over the same signature. Theories overdi�erent signatures may be combined using union together with translate. If a signature in SigL isthought of as a vocabulary of type, constant and function symbols, where a morphism is a renaming ofthe symbols in one signature to those in another, then the translate operation is useful for applying sucha renaming to a theory while the derive operation is used to \abstract" from a theory by hiding somesymbols (for example, auxiliary function symbols needed to �nitely axiomatize some other function)and perhaps renaming the rest. The operations used are almost the same as those in [SB83] (union isinessentially di�erent). The theory-building operations of the speci�cation language CLEAR [BG80]may be de�ned in terms of these primitives.A few concrete examples should help to clarify the motivation behind structured theory present-ations. See [BG81], [SB83] and Section 4 for further examples. We will consider structured theorypresentations over the logic EQ de�ned in Section 2.Example 3.6 Let �Group = type Gconstant � : Gfunctions � : G�G! Ginv : G! G7



and EqGroup = f8g:G: � � g = g;8g:G: g � � = g;8g; g0; g00:G: g � (g0 � g00) = (g � g0) � g00;8g:G: g � inv (g) = �;8g:G: inv (g) � g = �g(using � as an in�x function). We use a self-explanatory notation to introduce types and functions(and constants, which are 0-ary functions). Then Group = (�Group;EqGroup) is an EQ-presentation.Let �Abelian = type Tfunction op : T � T ! Tand EqAbelian = f8t; t0:T: op(t; t0) = op(t0; t)gThen Abelian = (�Abelian ;EqAbelian) is an EQ-presentation, and so is AbelianGroup = Group [(translate Abelian along �AG) where �AG : �Abelian ! �Group is de�ned by �AG(T ) = G and�AG(op) = �. This shows how union may be used to combine separate theories, and how translate isused for adjusting signatures (in this case, to make union applicable). Let�Monoid = type Mconstant � : Mfunction � : M �M !MThen Monoid = derive Group via �MG and AbelianMonoid = derive AbelianGroup via �MG are EQ-presentations, where �MG : �Monoid ! �Group is de�ned by �MG(M) = G, �MG(�) = � and�MG(�) = �. This shows how derive may be used to hide functions, in this case inv. Note thatthis only hides inv; its existence is not totally forgotten. It happens to be the case here that thisdoes not have any consequences which are expressible as �Monoid -equations. If this example wereformulated in �rst-order logic with equality, then the resulting theory would include sentences like8x:M: 9y:M: x � y = �.Another example of the use of derive would be de�ning a function sort by specifying auxiliaryboolean-valued functions permutation and ordered, with the equations8l:list: ordered(sort(l)) = true8l:list: permutation(l; sort(l)) = trueto de�ne sort, and then using derive to hide permutation and ordered. In general, it is possible togive �nite EQ-presentations using derive for theories which have no �nite EQ-presentations withoutderive [TWW82]. This is in contrast with the other theory-building operations; it is easy to see thatany �nite L-presentation built using only basic presentations, union and translate has the same theoryas a �nite basic presentation.In general, we will say that two well-formed L-presentations with the same signature are equi-valent if they determine the same theory. A more general situation is when we want to compareL-presentations with di�erent signatures. This comparison is mediated by a morphism between thetwo signatures involved.De�nition 3.7 An L-presentation morphism � : P ! P 0 is a SigL-morphism � : SgL(P ) ! SgL(P 0)such that �(ThL(P )) � ThL(P 0)ThPresL is the category of L-presentations and morphisms between them, with identities, composition,and inclusions inherited from SigL. 8



Pushouts in the category of presentations may be used to de�ne CLEAR-style instantiation ofparameterized theories [BG80], [Ehr 82]. A presentation P is \parametric" in a presentation R ifthere is a ThPresL-inclusion � : R ,! P . The idea is that R is a \requirement" speci�cation for thetheory P which may be regarded as taking any theory \matching" R as a parameter. The parametricpresentation P may be instantiated by any presentation A provided that there is a \�tting morphism"� : R ! A specifying how A is to be regarded as satisfying the requirements of R. The instance of Pby A via �, written P (A[�]), is obtained by taking the pushout of � and � in ThPresL. The conditionsunder which this works are expressed by the following proposition:Proposition 3.8 If SigL has pushouts along inclusions, then so does ThPresL. More speci�cally,suppose that � : R ,! P and � : R ! A are ThPresL morphisms, and let � = SgL(P ). The pushoutof � and � is given by the object�?P = (translate P along p(�;�)) [ (translate A along �?)and morphisms p(�; P ) = p(�;�) : P ! �?P and �? : A ! �?P given by the pushout construction inSigL.Thus the instance P (A[�]) of P by A is explicitly de�nable in the language of structured presentations.It is important for the sequel that complex presentations involving parameterization, etc., may bereduced to structured theory presentations involving only the primitives given above.Example 3.9 Suppose Monoid is as de�ned in Example 3.6. Let�Alphabet = type A�InjAlph = types A;Mfunction in : A!MLet Alphabet = (�Alphabet ; ;), InjAlph = (�InjAlph; ;) andMonoidWithAlphabet = (translate Monoid along �mon) [ (translate InjAlph along �inj )where �mon : �Monoid ,! �Monoid [ �InjAlph and �inj : �InjAlph ,! �Monoid [ �InjAlph arethe inclusions into the union of the two signatures. There is an obvious ThPresEQ-inclusion � :Alphabet ,! MonoidWithAlphabet ; thus the EQ-presentation MonoidWithAlphabet is parametric inAlphabet.In the rest of the example we construct a simple instance of MonoidWithAlphabet. Let�Nat = type Nconstant 0 : Nfunctions succ : N ! N+ : N �N ! N� : N �N ! Nand EqNat = f8n:N: n+ 0 = n;8n; n0:N: n+ succ(n0) = succ(n+ n0);8n:N: n� 0 = 0;8n; n0:N: n� succ(n0) = (n� n0) + ng(using + and � as in�x). Let Nat = (�Nat ;EqNat) and let � : Alphabet ! Nat be the presentationmorphism de�ned by �(A) = N . 9



Then MonoidWithAlphabet(Nat [�]) is the pushout of �, �. This is (a rough approximation of3)the theory of sequences of natural numbers with types M and N, constants � and 0 and functions �,in, succ, + and �. If type names such as sequence and nat and/or di�erent constant and functionnames are required, these may be obtained using translate.Example 3.10 Repeat example 3.9, but add the following to Alphabet:constant neutral : Afunction op : A�A! Aaxioms 8a:A: op(neutral ; a) = a;8a:A: op(a;neutral) = a;8a; a0; a00:A: op(a; op(a0; a00)) = op(op(a; a0); a00)Add the above to InjAlph (and so to MonoidWithAlphabet) along with:function accum : M ! Aaxioms accum(�) = neutral8a:A: accum(in(a)) = a8m;m0:M: accum(m �m0) = op(accum(m); accum(m0))We still have the inclusion � : Alphabet ,! MonoidWithAlphabet , and thus MonoidWithAlphabet isstill parametric in Alphabet. To construct an instance of it, we now have to ensure that the parameterpresentation matches Alphabet, which requires that it satis�es the new requirements in Alphabet.Add the following axioms to EqNat:8n:N: 0 + n = n8n; n0; n00:N: n+ (n0 + n00) = (n+ n0) + n00(these may be proved from the axioms already in EqNat if an appropriate induction principle isavailable). Then let � : Alphabet ! Nat be de�ned by �(A) = N , �(neutral) = 0 and �(op) = +(this is a presentation morphism).Then MonoidWithAlphabet(Nat [�]) is the pushout of �, �. This is the theory of sequences ofnatural numbers with a summation function (accum). In this example we have included the monoidaxioms in the requirement theory Alphabet since these characterize the intended actual parameters.The axioms for accum may force elements of the type matching A to be identi�ed if the functionmatching op is not associative or the constant matching neutral is not an identity for this function.Requiring the �tting morphism to be a presentation morphism protects against such undesirableinstantiations.A variety of other constructions are de�nable in ThPresL. For example,ThPresL has coproductswhenever SigL does, and the theory of the coproduct is the disjoint union of the theories of thecomponents. Colimits of more complex diagrams in ThPresL may be used to express sharing; suchcolimits exist if they exist in SigL. In particular, diagrams in SigL consisting only of inclusions arisein a natural way from the hierarchical construction of theories by extension. In many interesting casesall such diagrams have colimits, and we may therefore use colimits as the basis for a CLEAR-like orML-like syntax for managing sharing [ST85, ST86].3It is well-known that the �rst-order equational theory of the standard model of the natural numbers is not r.e. andhence cannot be e�ectively presented in EQ. By enriching the logical system (e.g., by introducing induction schemes orby adding non-�rst-order notions such as the \data constraints" of [BG80, MS85]), better approximations to the theorymay be given. 10



A parametric presentation amounts to a function which maps a presentation and a �tting morphismto another presentation, with the result determined by the pushout construction. Another obviousmechanism for de�ning such functions is �-abstraction, and it would have been possible to use thishere instead of pushout-style parameterization as above. In fact, one advantage of this alternativeis that higher-order parameterization may be achieved without additional complications; see [SW83],[Wir86] and [SST92].4 Proof Search in Structured PresentationsFor a basic L-presentation (�;�), the consequence relation `L� can be used directly to deduce con-sequences of �, that is, sentences in ThL((�;�)). More generally, for an arbitrary presentation P ,we would like to deduce sentences in ThL(P ) from consequences of the component presentation(s) ofP . To capture this, we will introduce judgements of the form P L �, where � is a SgL(P )-sentence,and show how they can be proved.De�nition 4.1 We de�ne a family of relations P L� � between well-formed L-presentations P withsignature � and sentences � 2 jLj� by induction on the structure of P as follows:1. (�;�) L� � i� there exists � � � such that � `L� �.2. P1[P2 L� � i� there exists �1 � jLj� and �2 � jLj� such that P1 L� �1, P2 L� �2,and �1;�2 `L� �.3. translate P1 along � L� � (where � : �1 ! �) i� there exists �1 � jLj�1 such thatP1 L�1 �1 and L(�)(�1) `L� �.4. derive P1 via � L� � (where � : � ! �1) i� P1 L�1 L(�)(�).Here, P L� � stands for P L� � for all � 2 �.Proposition 4.2 The relation P LSgL(P ) �, where P is a well-formed L-presentation and � is aSgL(P )-sentence, holds i� � 2 ThL(P ).Proof By structural induction on P , directly from De�nition 4.1 and 3.4.It should be obvious that De�nition 4.1 embodies a proof system for entailment P L� � with ruleslike: P1 L� �1 P2 L� �2 �1;�2 `L� �P1 [ P2 L� �We can use this proof system as the basis for a proof procedure based on structured presentations.To illustrate how such a proof procedure may take advantage of the structure of a presentation,consider a logical system L with inclusions. Let P1 be an L-presentation with signature �1, and let� : �1 ,! � be an inclusion. If � 2 jLj�1, then a useful heuristic for testing translate P1 along � L� � isto take �1 in the above proposition to be f� g, and to test P1 L�1 �. According to De�nition 4.1(3)this is su�cient (but not necessary, in general), for since L preserves inclusions, ��1 = f� g, and hencethe requirement ��1 `L� � is trivial. A generalization of this heuristic is embodied in the followingrule: P1 L�1 �translate P1 along � L� L(�)(�) (Translate)11



Analogous rules arise from the other parts of De�nition 4.1:� 2 �(�;�) L� � (Basic)P1 L� �P1 [ P2 L� � (Union-left)P2 L� �P1 [ P2 L� � (Union-right)P1 L�1 L(�)(�)derive P1 via � L� � (Derive)Proof in the context of a structured theory presentation is fundamentally di�erent from proof inan ordinary (unstructured) theory presentation. Both kinds of presentations contain axioms whichform the basic constituents of proofs. In the case of an ordinary theory presentation, we have a singleset of axioms, and use of an axiom in a proof involves the application of the rule:� 2 �� `L� � (Axiom)In contrast, the axioms of a structured theory presentation tend to be scattered throughout thestructure. An axiom must be extracted from the basic presentation in which it resides when it isneeded in a proof, using rules such as Translate. Proof in a structured theory can thus involvefrequent changes of context, where proof fragments in the context of \small" theories correspond tothe proofs of lemmas which are then brought to bear on the main proof via translation to the contextof an appropriate \larger" theory. An analogy may perhaps be drawn with the use and discharge ofassumptions in natural deduction proofs, where di�erent parts of the proof of a theorem take place inthe context of di�erent sets of assumptions.Given the goal of �nding a proof for a theorem � in a structured theory presentation P , wherethe proof may potentially involve axioms from a number of di�erent subpresentations of P , there aretwo basic strategies which may be applied. Probably the most obvious of these involves reductionto the familiar case of proof in an unstructured presentation, using a technique referred to in [SB83]as dredging. One proceeds by extracting (\dredging up") all of the possibly relevant axioms fromsubpresentations and translating these to theorems in P using inference rules such as Translate.These theorems may then be used in the proof of �. This is the strategy which is (implicitly) used insystems with facilities for building new theories by combining and extending existing theories, suchas Edinburgh LCF [GMW79] (also Cambridge LCF [Pau87] and Isabelle [Pau92]), in which the newtheory automatically contains all the axioms and theorems of its component theories. An alternative,called diving in [SB83], is to translate � to the context of an appropriate subpresentation P 0 of P ,using rules such as Translate \backwards". If a proof for the translation of � can be found in P 0,then applying the same translation rules in the forward direction gives a proof of � in P .There are at least two problems with dredging. First, if P is large then dredging up all theaxioms in P yields a large and unstructured set of axioms, many of which will (probably) make nocontribution to the proof of �. Second, dredging axioms from a structured presentation of the formderive P 0 via � tends to lead to loss of information. For example, consider the following structuredtheory presentation based on the basic presentation Nat (over EQ) from Example 3.9:Nat� = derive Nat via � : �Nat n f+g ,! �Nat12



The only axiom of Nat which can be directly translated to the context of Nat� is 8n:N: n�0 = 0, sincethe remaining axioms of Nat involve the function + which is not available in SgEQ(Nat�). Theoremsof Nat� such as succ(0) � succ(0) = succ(0) are expressible in SgEQ(Nat�), but there are in�nitelymany such consequences (and in EQ there is no �nite way to present them all).Likewise, diving by itself is not an appropriate strategy. For example, a proof of � in a structuredtheory presentation of the form P1 [ P2 may involve the use of axioms from both P1 and P2. Asuccessful attempt to prove � will involve either dredging up axioms from both P1 and P2, or theformation of lemmas �1 and �2 such that P1 L �1, P2 L �2 (establishing these may involve furtherdiving) and �1; �2 `L �, or some combination of these. Similar problems can arise in structuredpresentations of the form translate P 0 along �.The most promising strategy for proving � in P involves a mixture of diving and dredging. First,diving is used to focus on the smallest subpresentation P 0 of P containing all the information relevantto �. This is the most appropriate context in which to attempt the proof; if P is a large structuredpresentation, such as the speci�cation of a compiler, then in many cases P 0 will be very much smallerthan P . Dredging may be used to extract axioms from P 0, and the proof is then carried out usingthese axioms by employing the following rule:P L� �1 � � � P L� �n �1; : : : ; �n `L� �P L� � (Cut)Alternatively, a small set of lemmas may be formulated from which (the translated version of) �can be proved (again using Cut to lift this proof to the level of structured presentations); each ofthese lemmas may then be proved in P 0 separately, perhaps by means of further diving and dredging.Lemma formation may be unavoidable if P 0 involves union or translate with nested subpresentationsinvolving derive.The �rst step of this strategy is to �nd a subpresentation P 0 of P containing information relev-ant to the goal �. The search for an appropriate P 0 is helped by the fact that translate forms ane�ective barrier to diving \too deeply": given a presentation translate P1 along � : �1 ! � and a�-sentence �, diving down to the level of P1 will be impossible if � is not expressible in the vocabu-lary which �1 provides, i.e. if there is no �1 2 jLj�1 such that L(�)(�1) = �. A common pattern is(translate P1 along �1) [ (translate P2 along �2), where the two uses of translate \guard" the branchesof the union against inappropriate diving. Because translate has this e�ect, in a well-structured theorypresentation it is often possible to �nd an approximately correct subpresentation P 0 by simple depth-�rst search. See [SB83] for concrete details of the above strategies in the context of the EdinburghLCF system.Example 4.3 The following structured theory presentation over EQ speci�es symbol tables for anAlgol-like programming language with nested blocks. See [GHM78] and [BG77] for variations on thiswell-known example. For convenience we make use of a presentation-structuring operation enrichwhich is de�ned in terms of union and translate as follows:enrich P by types T constants C functions F axioms A = (translate P along �) [ (�; A)where � = SgEQ(P ) [ (T;C [ F ) and � : SgEQ(P ) ! � is the inclusion.13



Item = type itemStack = enrich Item bytype stackconstant nilstack : stackfunctions push : item � stack ! stackpop : stack ! stacktop : stack ! itemaxioms 8x:item; s:stack : pop(push(x; s)) = s8x:item; s:stack : top(push(x; s)) = xBoolean = type boolconstants true : boolfalse : boolfunctions not : bool ! boolaxioms not(true) = falsenot(false) = trueIndex = enrich Boolean bytype indexfunction eq : index � index ! boolCond = enrich Boolean bytype valuefunction cond : bool � value � value ! valueaxioms 8v; v0:value : cond(true; v; v0) = v8v; v0:value : cond(false ; v; v0) = v0Array = enrich (translate Index along �) [ (translate Cond along �0) bytype arrayconstant nilarray : arrayfunctions put : index � value � array ! arrayget : index � array ! valuepresent : index � array ! boolaxioms 8i:index ; v:value ; a:array: get (i; put(i; v; a)) = v8i; j:index ; v:value ; a:array: not(eq(i; j)) ) get (i; put(j; v; a)) = get(i; a)8i:index : present (i;nilarray) = false8i:index ; v:value ; a:array: present(i; put(i; v; a)) = true8i; j:index ; v:value ; a:array: not(eq(i; j)) ) present(i; put(j; v; a)) = present(i; a)Here, � and �0 are the inclusions of SgEQ(Index ) and SgEQ(Cond ) respectively into SgEQ(Index ) [SgEQ(Cond), and b) t = t0 is an abbreviation for cond(b; t; t0) = t0.14



There is a ThPresEQ inclusion Item ,! Stack , and a ThPresEQ morphism � : Item ! Arraygiven by �(item) = array. Thus Stack is parametric in Item and Stack can be applied to Array.ArrayStack = Stack (Array[�])SymTab1 = enrich ArrayStack byfunctions add : index � value � stack ! stackretrieve : index � stack ! valueenterblock : stack ! stackleaveblock : stack ! stackaxioms 8i:index ; v:value ; s:stack : add(i; v; s) = push(put(i; v; top(s)); pop(s))8i:index ; a:array; s:stack : present(i; a) ) retrieve(i; push(a; s)) = get(i; a)8i:index ; a:array; s:stack :not(present(i; a)) ) retrieve(i; push(a; s)) = retrieve(i; s)8s:stack : enterblock (s) = push(nilarray; s)8s:stack : leaveblock (s) = pop(s)SymTab = derive SymTab1 via �0where �0 : � ! SgEQ(SymTab1 ) is de�ned by �0(symtab) = stack , �0(niltable ) = nilstack , and�0(x) = x for all other symbols x in �, where:� = types symtab; index ; value ; boolconstants true : boolfalse : boolniltable : symtabfunctions eq : index � index ! booladd : index � value � symtab ! symtabretrieve : index � symtab ! valueenterblock : symtab ! symtableaveblock : symtab ! symtabExpanding all the uses of enrich and the single use of application, we obtain a structured theorypresentation containing eight basic presentations, seven uses of union, nine uses of translate and oneuse of derive. All of the signature morphisms involved are inclusions except for �0 (used in the �nalderive step) and one which arises from the application of Stack to Array.SymTab is expressible as a basic presentation so it is possible in principle to dredge up all theinformation it contains. In practice this would be di�cult: most of the axioms in the subpresenta-tions of SymTab are not directly expressible in the signature SgEQ(SymTab), so dredging would loseinformation unless appropriate theorems which are expressible in that signature are �rst formulatedand proved in these subpresentations.Now, suppose that we wish to prove thatSymTab EQSgEQ(SymTab) 8i:index ; s:symtab: retrieve(i; leaveblock (enterblock (s))) = retrieve(i; s)According to Derive, it is su�cient to prove thatSymTab1 EQSgEQ(SymTab1 ) 8i:index ; s:stack : retrieve(i; leaveblock (enterblock (s))) = retrieve(i; s)(This reduction can be viewed as diving to the level of SymTab1.) One way to proceed is to prove thefollowing lemma, from which the desired result follows by substitutivity:SymTab1 EQSgEQ(SymTab1 ) 8s:stack : leaveblock (enterblock (s)) = s15



The last two axioms in the enrichment used to build SymTab1 can be dredged up to the level ofSymTab1 (by Union-right) and used to reduce the goal to:SymTab1 EQSgEQ(SymTab1 ) 8s:stack : pop(push(nilarray; s)) = sWe can dive down to the level of ArrayStack with this goal (using Union-left followed by Trans-late) to obtain the goal:ArrayStack EQSgEQ(ArrayStack ) 8s:stack : pop(push(nilarray; s)) = sIt is not possible to dive down to the level of Stack with this goal: the use of translate (alongp(�;SgEQ(Stack )), implicit in the application of Stack to Array) acts as a barrier, since there isno constant corresponding to nilarray in Stack. But it is su�cient to prove:ArrayStack EQSgEQ(ArrayStack ) 8x:array; s:stack : pop(push(x; s)) = sand it is possible to dive down to the level of Stack with this goal (using Union-left, Translate,Union-right), where this is found to be an axiom in the enrichment used to build Stack.The above procedure represents a successful LCF-style top-down goal-directed search for a proofof the original theorem; such a proof may now be obtained by applying the corresponding inferencerules, proceeding bottom-up.5 Logic RepresentationsThe next issue to address is the sense in which one logical system can be represented or encoded interms of another logical system. The essence of such a representation is a mapping from the sentencesof the �rst system to those of the second, in such a way that consequence is accurately preserved.De�nition 5.1 A morphism of logics  : L ! L0 is a pair (Sig ; CR) where Sig : SigL ! SigL0 isa functor and CR : L .! Sig ;L0 : SigL ! CR is a natural transformation. The identity is the pairconsisting of the identity functor on SigL and the identity natural transformation on L. Compositionis de�ned by4 (Sig1 ; CR1 ); (Sig2 ; CR2 ) = (Sig1 ; Sig2 ; CR1 ; (Sig1 ; CR2 )):Log is the category of logics and logic morphisms.A morphism of logics is to be thought of as an \encoding" of one logical system in another in sucha way that consequence is preserved. Let  : L ! L0 be a morphism of logics. The requirement thatCR be a natural transformation may be expressed by the equationCR(�(�)) = Sig(�)(CR(�)):In words: it doesn't matter whether we encode the translation �(�) of �, or translate the encodingCR(�) of � along the encoding Sig (�) of �. To simplify notation, we write (�) for Sig(�), and(�) for CR� (�) (for appropriate choice of �.)Proposition 5.2 If  : L ! L0 is a logic morphism, � is an L-signature, and � � jLj�, then(�) � (�):4We use \;" to denote not only composition in a category (e.g., the usual composition of functions and functors)written in diagrammatic order, but also both vertical composition of natural transformations and the composition of anatural transformation with a functor so that (CR1 ; (Sig1 ; CR2 ))� = (CR1 )�; (CR2 )Sig1 (�).16



Similarly as in Proposition 2.9, the containment is in general proper since the image of a theoryunder a logic morphism need not be a theory. However, it follows from the above proposition that(�) = (�).Further requirements on a logic morphism  : L ! L0 must be imposed to ensure that consequencein L0 for translated sentences is sound with respect to consequence in L.De�nition 5.3 A logic morphism  : L ! L0 is a representation i� Sig is an embedding and eachCR� is conservative. A representation is surjective i� each CR� is surjective as a function on theunderlying sets. A logic L is representable in a logic L0 i� there is a representation � : L ! L0.Let � range over representations. It is easy to see that identities are representations and that thecomposition of two representations is again a representation. Thus representations form a subcategoryof Log. The requirement that �Sig be an embedding implies that the category of signatures of thesource logic is faithfully encoded in the target logic, and the requirement of conservativity impliesthat each consequence relation of the source is fully and faithfully encoded in the target. Thus if� : L ! L0 is a logic representation then � `L� � i� �� `L0�� ��. Note that surjectivity of � does notentail that �Sig be full, only that �CR be onto.Example 5.4 For any algebraic signature �, there is an inclusion �� of the set jEQ(�)j of �-equationsinto the set jFOEQ(�)j of �rst-order �-sentences. These inclusions preserve consequence: if a set of�-equations � entails a �-equation � in EQ then ��(�) entails ��(�) in FOEQ, and so �� : EQ(�) !FOEQ(�) is a CR morphism. The opposite implication holds as well, i.e. �� is conservative. Moreover,� is compatible with the translation of �-equations under signature morphisms � : � ! �0. Thus wehave a logic representation � : EQ ! FOEQ where �Sig is the identity functor and for each signature�, �CR� = �� as de�ned above. Notice that � is (obviously) not surjective.Proposition 5.2 of course holds for representations as well, but they also satisfy a stronger property:Proposition 5.5 If � : L ! L0 is a representation, � is an L-signature, and � � jLj�, then� = ��1(�(�))where ��1(	) is the co-image of 	 under �.If � is a representation of L in L0, then we may use L0 as an \inference engine" for L. We would liketo consider how this interacts with the ideas in the previous section concerning proofs in structuredtheory presentations in L. The �rst step is to use the proof system introduced in De�nition 4.1,replacing all uses of � `L� � by �(�) `L0�(�) �(�). Then, the proof methodology discussed in theprevious section need not make any use of L for elementary inference. The proof process is still,however, driven by an L-presentation P , and so involves the sentences, signatures and translationsinduced by signature morphisms of L. But if our goal is to reduce all inferential activity in L toinferential activity in L0, then we would like to \lift" P to an L0-presentation, and perform structuredproof in L0 guided by the lifted presentation. To make this precise, we �rst de�ne a natural lifting ofpresentations.De�nition 5.6 Suppose that � : L ! L0 is a representation, and let P be an L-presentation withsignature �. The representation of P in L0 wrt � is given by the following function de�ned by inductionon the structure of P : ~�((�;�)) = (�Sig(�); �CR� (�))~�(P1 [ P2) = ~�(P1) [ ~�(P2)~�(translate P1 along �) = translate ~�(P1) along �Sig (�)~�(derive P1 via �) = derive ~�(P1) via �Sig (�)17



Proposition 5.7 If P is an L-presentation, then ~�(P ) is an L0-presentation with SgL0(~�(P )) =�Sig (SgL(P )). Moreover, �(ThL(P )) � ThL0(~�(P )).Proof By straightforward induction on the structure of P .The above discussion suggests that in order to test P L� �, one should encode P and � in L0,and test ~�(P ) L0�(�) �(�). We would hope that this strategy is sound and complete, that is, that thefollowing conjecture holds.Conjecture 5.8 Suppose that � : L ! L0 is a representation, and let P be an L-presentation withsignature � and � 2 jLj�. Then P L� � i� ~�(P ) L0�(�) �(�).Joining Proposition 5.7 with Proposition 4.2, we immediately obtain the implication from left to right(i.e. completeness). Unfortunately, the converse implication (i.e. soundness) fails, as the followingcounterexample illustrates.Counterexample 5.9 Consider the following presentations in EQ. Let �0 be the signaturetypes s; s0constants a : sb; c : s0Let � be the same signature with a removed, and let � : � ,! �0 be the corresponding signatureinclusion. Let P0 = (�0; ;), P1 = derive P0 via � and P = P1 [ (�; f8x:s: b = cg).Then, ThEQ(P ) does not include b = c since, in the context of the signature �, 8x:s: b = c doesnot entail b = c.Recall that we have a logic representation � : EQ ! FOEQ. Then, ThFOEQ(~�(P0)) contains thesentence 9x:s: true. Consequently, 9x:s: true 2 ThFOEQ(~�(P1)), and b = c 2 ThFOEQ(~�(P )), since9x:s: true;8x:s: b = c `FOEQ� b = c.In terms of entailment relations, we have that ~�(P ) FOEQ� b = c even though P EQ� b = c doesnot hold.A simpler but even more contrived counterexample may be found in [HST89a] (Counterexample 4.6).The source of this failure of equivalence is a discrepancy between ThL(P ) and ThL0(~�(P )). Theuse of the derive operation may cause the following crucial property to be lost:ThL0(~�(P )) � �(ThL(P )):(The reverse inclusion follows directly from Proposition 5.7.) In the counterexample, the sentence9x:s: true is a witness to the failure of this containment, but is not, by itself, su�cient to refute theconjecture, for it lies outside of the image of �. The union operation used in the counterexample toconstruct P \exploits" this discrepancy to produce a sentence in the \lifted" theory that lies withinthe image of �, and hence refutes the conjecture. The translate operation may be used instead ofunion to exploit the discrepancy created by derive in a similar manner. But neither union nor translateare able to create such a discrepancy. In fact, if an L-presentation P does not involve derive, thenThL0(~�(P )) = �(ThL(P )).Proposition 5.10 Consider an arbitrary representation � : L ! L0.1. Suppose (�;�) is a well-formed basic L-presentation. ThenThL0(~�((�;�))) = �(ThL((�;�))):18



2. Suppose P;P 0 are well-formed L-presentations with the same signature satisfying ThL0(~�(P )) =�(ThL(P )) and ThL0(~�(P 0)) = �(ThL(P 0)). ThenThL0(~�(P [ P 0)) = �(ThL(P [ P 0)):3. Suppose P is a well-formed L-presentation satisfying ThL0(~�(P )) = �(ThL(P )) and � : SgL(P ) !�. Then ThL0(~�(translate P along �)) = �(ThL(translate P along �)):4. Suppose P is a well-formed L-presentation satisfying ThL0(~�(P )) = �(ThL(P )) and � : � !SgL(P ). Then ThL0(~�(derive P via �)) � �(ThL(derive P via �)):The inclusion may be proper. However, we have:��1(ThL0(~�(derive P via �))) = ��1 ��(ThL(derive P via �))� (= ThL(derive P via �)):Since the most obvious approach fails as explained above, is there a sense in which we can liftstructured presentations from L to L0? The answer is given by considering an alternative de�nitionof the theory of an L-presentation that is conditioned by the representation �.De�nition 5.11 Let � : L ! L0 be a representation. For any well-formed L-presentation with signa-ture �, the L0-theory of P wrt �, written5 Th�(P ), is de�ned as follows:Th�((�;�)) = �(�)Th�(P1 [ P2) = Th�(P1) [Th�(P2)Th�(translate P1 along �) = �(�)(Th�(P1))Th�(derive P1 via �) = �(jLj�) \ �(�)�1(Th�(P1))Note that we are de�ning the L0-theory of an L-presentation, conditioned by the representation� of L in L0. This is because in the case of derive, the restriction to the range of � makes referenceto the L-signature � of the L-presentation P . Although this restriction ensures that only L-sentenceimages are taken from P , the closure of the result under `L0 admits non- L-sentence images into theresult. In e�ect, in the case of derive, only L-sentence images are admitted as intermediate lemmas,whereas arbitrary L0-sentences are admitted as consequences of these lemmas. This will be reectedin the proof search procedure associated with this de�nition.Theorem 5.12 If P is a well-formed L-presentation, then Th�(P ) is an L0-theory with signature�(SgL(P )) such that Th�(P ) = �(ThL(P )).Proof By a straightforward induction on the structure of P . The only interesting case is that ofderive; the others follow from Proposition 5.10. Suppose that P1 is a well-formed L-presentationand � : � ! SgL(P1). Using the inductive hypothesis Th�(P1) = �(ThL(P1)), we have to prove�(jLj�) \ �(�)�1(Th�(P1)) = �(��1(ThL(P1))).�: Take �0 2 �(jLj�)\�(�)�1(Th�(P1)). Then �0 = �(�), for some � 2 jLj�, and �(�)(�0) 2 Th�(P1).By naturality of � and by the inductive assumption, we have �(�(�)) 2 �(ThL(P1)), that is forsome � � ThL(P1), �(�) `L0�(�) �(�(�)). Since representations are conservative, this impliesthat � `L� �(�) and so �(�) 2 ThL(P1). Thus, �0 = �(�) 2 �(��1(ThL(P1))).5Since L and L0 are implicit in �, this notation carries all the data involved.19



�: Take �0 2 �(��1(Th�(P1))). Then �0 = �(�), for some � 2 ��1(ThL(P1)), that is �(�) 2 ThL(P1).By the inductive assumption, �(�(�)) 2 Th�(P1) and since by naturality of �, �(�)(�(�)) =�(�(�)), we conclude that �0 = �(�) 2 (�(�))�1(Th�(P1)), which completes the proof in this casesince clearly �0 2 �(jLj�).As in the previous section, De�nition 5.11 induces a corresponding entailment relation, betweenL-presentations P and L0-sentences �0 with signature �(SgL(P )).De�nition 5.13 We de�ne a family of relations P �� � between well-formed L-presentations P withsignature � and sentences �0 2 jL0j�(�) by induction on the structure of P as follows:1. (�;�) �� �0 i� there exists � � � such that �(�) `L0�(�) �0.2. P1 [ P2 �� �0 i� there exists �01;�02 � jL0j�(�) such that P1 �� �01, P2 �� �02, and�01;�02 `L0�(�) �0.3. translate P1 along � �� �0 (where � : �1 ! �) i� there exists �01 � jL0j�(�) such thatP1 ��1 �01 and �(�)(�01) `L0�(�) �0.4. derive P1 via � �� �0 (where � : � ! �1) i� there exists �0 � �(jLj�) such thatP1 ��1 �(�)(�0) and �0 `L0�(�) �0.Here, P �� �0 stands for P �� �0 for all �0 2 �0.Proposition 5.14 The relation P �� �0, where P is a well-formed L-presentation with signature �and �0 2 jL0j�(�), holds i� �0 2 Th�(P ).Proof By structural induction on P , directly from De�nition 5.13 and 5.11.Theorem 5.12 may be restated in terms of the entailment relations we have introduced.Corollary 5.15 For any L-presentation P with signature � and � 2 jLj�, P L� � i� P �� �(�).De�nition 5.13 provides the basis for a proof procedure for L0 sentences relative to an L-presentation.As we remarked above, we would like to achieve a complete reduction to L0 by working with the rep-resentation ~�(P ) of P . The conditions under which we can achieve this may be derived by comparingthe proof system determined by De�nition 5.13 for P �� �(�) with that determined by De�nition 4.1for the case of ~�(P ) L0�(�) �(�).First, if we restrict attention to L0-sentences �0 in the image of � (i.e., such that there exists anL-sentence � with �0 = �(�)), then case (4) of De�nition 5.13 may be simpli�ed toderive P1 via � �� �0 i� P1 ��1 �(�)(�0);since �(�)(�0) = �(�)(�(�)) = �(�(�)) (the last step by naturality), and so we can take �0 = f �(�) g,for which the condition �0 `L0�(�) �(�) is trivial. Thus if � were surjective, then the proof proceduregiven by De�nition 5.13 would be essentially identical to the ordinary proof procedure, except that itis guided by an L-presentation:Corollary 5.16 Let � : L ! L0 be a surjective representation. Then for any well-formed L-presentationP with signature � and L-sentence � 2 jLj�, P L� � i� ~�(P ) L0�(�) �(�).20



Note, however, that requiring surjectivity is a rather strong restriction. As we shall see below, inpractical situations it is necessary to admit the use of L0-sentences lying outside of the range of � asintermediate lemmas in the process of proving sentences lying within the range of �. It is thereforeimportant to admit arbitrary L0 sentences as goals of the \lifted" proof procedure.Second, although the proof procedure induced by De�nition 5.13 is guided by an L-presentation P ,it does not make direct use of any of the components of P , but rather only of their representations inL0. For example, in the case of translate, the procedure applies �(�), not � (i.e., L0(�(�)), not L(�)).In a sense the proof procedure forms ~�(P ) \on the y," taking the representations of each componentof P in order to carry out the proof. The essential di�erence between an L0 proof guided by ~�(P ) andthe above P -guided proof procedure lies in the restriction on �0 in the case of derive. To enforce thisrestriction, the proof procedure must be able to decide, given � and �0 2 jL0j�(�), whether �0 = �(�)for some � 2 jLj�. Such a test requires only the signature � of derive P via � and the representation�. But since � is a representation, the component �Sig is an embedding, and hence � is determined by�(�). Therefore no L-entities are needed; it is enough to have the image �(�) of �. We may thereforeuse ~�(P ) to guide the proof, provided that � is a representation and we can test membership in therange of �. To make this explicit, let us introduce yet another entailment relation.De�nition 5.17 Let L be a logical system, and let S be a family of sets S� � jLj� for � 2 SigL.We de�ne a family of relations P L;S� � between well-formed L-presentations P with signature � andsentences � 2 jLj� by induction on the structure of P as follows:1. (�;�) L;S� � i� there exists � � � such that � `L� �.2. P1 [ P2 L;S� � i� there exists �1 � jLj� and �2 � jLj� such that P1 L;S� �1,P2 L;S� �2, and �1;�2 `L� �.3. translate P1 along � L;S� � (where � : �1 ! �) i� there exists �1 � jLj�1 such thatP1 L;S�1 �1 and L(�)(�1) `L� �.4. derive P1 via � L;S� � (where � : � ! �1) i� there exists � � S� such that P1 L;S�1�(�) and � `L �.Here, P L;S� � stands for P L;S� � for all � 2 �.Corollary 5.18 Let � : L ! L0 be a representation and let S 0 be a family of sets of L0-sentencesindexed by SigL0 such that S 0�(�) = �(jLj�) for � 2 SigL. Then for any well-formed L-presentation Pwith signature � and L-sentence � 2 jLj�, P L� � i� ~�(P ) L0;S0�(�) �(�).Proof By Corollary 5.16 and De�nition 5.17.Example 5.19 Recall Counterexample 5.9. In the context of the de�nitions given there, we donot have that ~�(P ) FOEQ;S0� b = c where S 0� = �(EQ�). The reason for this is that the proof of~�(P ) FOEQ� b = c cannot be repeated here: the necessary mediating formula 9x:s: true is �lteredout since it is not a representation of an equation (9x:s: true 62 S 0�). This illustrates the di�erencebetween FOEQ� (used in Counterexample 5.9) and FOEQ;S0� .To assess the practical implications of the requirement to keep track of the image of � and to check (inthe case of derive) whether a sentence is in this image, we turn in the next section to the representationof logics in LF. 21



6 Logical Systems and LFWe refer to [HHP93] for a complete de�nition of LF. A complete understanding of the detailed technic-alities below requires a reasonable acquaintance with the intricacies of the LF type theory. However,we hope that the general ideas are intelligible even without such background.In order to discuss representations of logical systems in LF, we �rst de�ne the logical systemassociated with the LF type theory. The basic form of assertion in this logic is that a closed typeis inhabited. The restriction to closed types is a simpli�cation that su�ces for the purposes of thispaper, but would have to be relaxed in practice. (See Section 10 and [HST89b] for further discussion.)An LF signature consists of a sequence of declarations of constants and types (and type families).The former are written as c:A where A is the type of c, and the latter as c:Type (or for type familiesindexed by elements of types A1; : : : ; An, c : �x1:A1: : : : :�xn:An:Type). See [HHP93] for examples.De�nition 6.1 An LF signature morphism � : �1 ! �2 is a function � mapping constants to closedterms such that if c:A (c:K) occurs in �1, then `�2 �(c) : �]A ( `�2 �(c) : �]K). (The function �]is the natural extension of � to LF terms.) The identity morphism on � is the identity map, andcomposition is de�ned by �1;�2 = �1;�]2. Inclusions are the inclusion functions on the underlying setsof constants. SigLF is the category of LF signatures and LF signature morphisms.Note that if � is an inclusion between LF signatures, then �] is an inclusion, and hence is usuallyomitted.The following proposition expresses the stability of the assertions of the LF type theory underchange of signature, which is the crucial fact used to justify the well-formedness of the de�nitionsgiven throughout the rest of this section; detailed proofs are omitted.Proposition 6.2 If � : �1 ! �2, and `�1 �, then `�2 �]� for each assertion � of the LF typesystem.De�nition 6.3 Let � be an LF signature. LF(�) is the consequence relation (Types�;`LF� ) whereTypes� = fA j `� A : Type g andA1; : : : ; An `LF� A i� x1:A1; : : : ; xn:An `� M : Afor some M and any pairwise distinct variables x1, : : : , xn. That is, LF(�) is the set of closed LFtypes over the signature �, with the consequence relation induced by type inhabitation.This consequence relation has a straightforward Gentzen-style axiomatization similar to that used inNuPRL [Con86] that may be used as the basis for interactive proof search.This construction extends to a functor in a straightforward way.De�nition 6.4 The functor LF : SigLF ! CR is de�ned by taking:� LF(�), for � 2 SigLF , to be the consequence relation of De�nition 6.3.� LF(�), for � : �1 ! �2, to be �] � Types�1 , the restriction of �] to closed �1-types.Proposition 6.5 LF is a logical system with inclusions.For the purposes of encoding a logical system L, we are interested in \specializations" of LFobtained by �xing a \base" signature �L specifying the syntax, assertions, and rules of L [HHP93],[AHMP87]. The signatures of L are then represented as extensions to �L, and signature morphismsare represented as LF signature morphisms on these extensions leaving �L �xed. Inferential activityfor L is then reduced to inferential activity in the specialization of LF to �L. To make this precise,some additional machinery is needed. 22



De�nition 6.6 Let � be an LF signature. The category of extensions of �, written SigLF� , is the fullsubcategory of the slice category � # SigLF determined by the inclusions � : � ,! �0. More explicitly,SigLF� has as objects pairs consisting of a signature �0 2 jSigLF j together with an inclusion � : � ,! �0.In the following we will simply write � : � ,! �0 for objects of SigLF� . A morphism from �1 : � ,! �1to �2 : � ,! �2 in SigLF� is a signature morphism � : �1 ! �2 in SigLF such that �1;� = �2. Theidentities and composition are inherited from SigLF .Every LF signature induces a logical system based on that signature as follows:De�nition 6.7 Let � be an LF signature. The functor LF� : SigLF� ! CR is de�ned on objects byLF�(� : � ,! �0) = LF(�0)and on morphisms � : �0 ! �00 (in the category of extensions of �) byLF�(�) = LF(�):Proposition 6.8 LF� is a logical system with inclusions.An encoding of a logical system L in LF comprises not only an LF signature �L, but also an\internal type family" distinguishing the basic judgements of L in the encoding. For example, in theencoding of �rst-order logic given in [HHP93], the constant true of kind o ! Type represents thebasic judgement form of �rst-order logic. The signi�cance of true for the encoding becomes apparentin the statement of the adequacy theorem: terms of type true( b�) in a context with variables xi oftype true( b�i) represent proofs of � from the �i's (where b� is the syntactic coding of � in LF). Thismethodology is formalized in our setting as follows.De�nition 6.9 An internal type family of � is a term F such that `� F : K for some kind K. (Notethat if `� K, then K has normal form �x1:A1: : : : :�xk:Ak:Type for some x1; : : : ; xk and A1; : : : ; Ak.)The range of an internal type family F of � is de�ned to be the setRng�(F ) = f lnf(F M1 : : : Mk) j `� F M1 : : : Mk : Type g;where lnf(M) is the long ��-normal form of M .If J is a set of internal type families of �, thenRng�(J ) = [F2J Rng�(F ):De�nition 6.10 A logic presentation is a pair (�;J ) where � is an LF signature and J is a �niteset of internal type families of �.De�nition 6.11 Let (�;J ) be a logic presentation. The logical system presented by (�;J ), P(�;J ),is the restriction of LF� to the range of J . Speci�cally, P(�;J ) : SigLF� ! CR is de�ned on objectsby P(�;J )(� : � ,! �0) = LF(�0) � Rng�0(J )and on morphisms � : �0 ! �00 in the slice category byP(�;J )(�) = LF(�) � Rng�0(J )(notice that since � : � ,! �0 is an inclusion, J is also an internal type family of �0).23



Proposition 6.12 P(�;J ) : SigLF� ! CR is indeed a logical system and has inclusions.De�nition 6.13 A logical system is uniformly encodable (in LF) i� there exists a logic presentation(�L;JL) and a surjective representation �L : L ! P(�L;JL). The triple (�L;JL; �L) is called auniform encoding of L.The word \uniform" reects the fact that we require a \natural" encoding of the entire family ofconsequence relations of L in LF, rather than a signature-by-signature encoding as is suggested by theaccount in [HHP93]. The requirement of surjectivity ensures that J accurately describes the imagesof L-sentences in LF. For example, in the encoding of �rst-order logic in [HHP93], all closed longnormal forms of the shape true(M) represent �rst-order sentences.As an example of a uniform encoding, we consider the logical system EQ de�ned in Section 2.The encoding of EQ will be given in Example 6.16 but for the bene�t of readers unfamiliar with LFwe will work our way up to this gradually, beginning with the single-sorted case. Thus single-sortedalgebraic signatures are families of the form h
nin�0 where the type of individuals is left implicit andfor n � 0, 
n is the set of n-ary function symbols. Call this logical system EQ1. We begin with theeven simpler case of single-sorted ground equational logic, GEQ1.Example 6.14 Let �GEQ1 be the LF signature� : Typeeq : �! �! Typere : �x:�: eq xxsym : �x:�: �y:�: eq x y ! eq y xtrans : �x:�: �y:�: �z:�: eq x y ! eq y z ! eq x zcong : �f :�! �: �x:�: �y:�: eq x y ! eq(f x)(f y)and let JGEQ1 = feqg. A uniform encoding of GEQ1 is the triple (�GEQ1;JGEQ1; �) where � :GEQ1 ! P(�GEQ1;JGEQ1) is a surjective representation de�ned as follows:� For each single-sorted algebraic signature 
 = h
nin�0, �Sig(
) is the extension of �GEQ1 bythe constant f : �! � � � ! �!| {z }n times � for each f 2 
n. We assume that 
n does not contain eq, re,etc. for each n � 0. Then �Sig extends to a functor �Sig : SigGEQ1 ! SigLF�GEQ1 in the obviousway.� There is an obvious bijection between the set of ground 
-terms and the set of closed LF termsof type � in �Sig(
) and hence between ground 
-equations and the set of closed LF types ofthe form eq t t0 in �Sig (
). This determines a surjective function �
 : jGEQ1j
 ! Rng�Sig(
)(eq)which is natural in 
 and which is a conservative CR morphism �
 : GEQ1(
) ! LF(�Sig(
)) �Rng�Sig(
)(eq).Let 
 be an algebraic signature with fa; a0; b; b0g � 
0 and ffg � 
2. The following is derivablein LF: ax1 :eq(a; a0); ax2 :eq(b; b0) `�Sig(
)trans (f a b) (f a b0) (f a0 b0)(cong (f a) b b0 ax2 )(cong (�x:�: f x b0) a a0 ax1 ) : eq (f a b) (f a0 b0)This represents a proof of the congruence property for the two-argument function f :a = a0; b = b0 `GEQ1
 f(a; b) = f(a0; b0):24



The generalization of this example to single-sorted non-ground equational logic is not entirelystraightforward. Since sentences of a logic are represented by closed types, it is necessary to introducean explicit quanti�er to bind the free variables and to simulate the implicit universal quanti�cationof sentences in EQ. In order to conform with the type theory of LF, we add an intermediate type oof formulae, where the universal quanti�er takes a term of type �! o and produces a term of type o[HHP93].Example 6.15 Let �GEQo1 be the LF signature� : Typeo : Typetrue : o! Typeeq : �! �! ore : �x:�: true(eq xx)sym : �x:�: �y:�: true(eq x y) ! true(eq y x)trans : �x:�: �y:�: �z:�: true(eq x y) ! true(eq y z) ! true(eq x z)cong : �f :�! �: ��:�! o: �x:�: �y:�:true(eq x y) ! true(�(f x)) ! true(�(f y))and let JGEQo1 = f true g.We have generalized the earlier congruence rule to allow predicates other than eq to be addedwithout additional congruence rules. This is not necessary for the examples below in which we dealwith logics having equality as the only atomic predicate. It may be shown that the rule cong above isequivalent (in the presence of re) to the following two rules:congf : �f :�! �: �x:�: �y:�: true(eq x y) ! true(eq(f x)(f y))cong� : ��:�! o: �x:�: �y:�: true(eq x y) ! true(�x) ! true(� y)The new presentation of single-sorted ground equational logic allows universal quanti�cation to beintroduced in a natural way. Let �EQ1 be the signature�GEQo1;8 : (�! o) ! o8I : ��:�! o: (�x:�: true(�x)) ! true(8�)8E : ��:�! o: �x:�: true(8�) ! true(�x)and let J EQ1 = ftrueg. We can de�ne a surjective representation � : EQ1 ! P(�EQ1;J EQ1)similarly as in Example 6.14. This yields a uniform encoding (�EQ1;J EQ1; �) of EQ1.Let 
 be an algebraic signature with fa; bg � 
0 and ffg � 
1. The following is derivable in LF:ax1 :true(8(�x:�: eq(f x)a)); ax2 :true(8(�x:�: eq(f x)b)) `�Sig(
)(�y:�: trans a (f y) b(sym (f y) a (8E (�x:�: eq(f x)a) y ax1 ))(8E (�x:�: eq(f x)b) y ax2 ) )a : true(eq a b)This represents a proof that 8x: f(x) = a;8x: f(x) = b `EQ1
 a = b:A careful analysis of examples like this one shows how the quanti�er elimination and introductionrules together with LF's substitution mechanism simulate the substitution rule of equational logic,taking correct account of the possibility that the domain of quanti�cation might be empty [GM81].25



The �nal step is to add mechanisms to encode the possibility of having more than one sort ofindividuals to the above encoding of single-sorted equational logic. We add a type of sort names andwe attach to each sort name the type of its values. Then, both the syntactic operations (eq and 8)and the inference rules must be supplied with a sort name as an additional parameter.Example 6.16 Let �EQ be the LF signaturesorts : Typeobj : sorts ! Typeo : Typetrue : o! Typeeq : �s:sorts: obj s! obj s! ore : �s:sorts: �x:obj s: true(eq s xx)sym : �s:sorts: �x:obj s: �y:obj s: true(eq s x y) ! true(eq s y x)trans : �s:sorts: �x:obj s: �y:obj s: �z:obj s:true(eq s x y) ! true(eq s y z) ! true(eq s x z)cong : �s:sorts: �s0:sorts: �f :obj s! obj s0: ��:obj s0 ! o: �x:obj s: �y:obj s:true(eq s x y) ! true(�(f x)) ! true(�(f y))8 : �s:sorts: (obj s! o) ! o8I : �s:sorts: ��:obj s! o: (�x:obj s: true(�x)) ! true(8 s �)8E : �s:sorts: ��:obj s! o: �x:obj s: true(8 s �) ! true(�x)and let J EQ = f true g.A uniform encoding of EQ is the triple (�EQ;J EQ; �) where � : EQ ! P(�EQ;J EQ) is asurjective representation de�ned as follows:� For each many-sorted algebraic signature � = (S;
), �Sig (�) is the extension of �EQ by theconstant s : sorts for each s 2 S and the constant f : obj (s1) ! � � � ! obj (sn) ! obj (s) for eachf : s1 � � � � � sn ! s in �. We assume that eq, re, etc. do not occur in �. Then �Sig extendsto a functor �Sig : SigEQ ! SigLF�EQ in the obvious way.� The surjective mapping �� : jEQj� ! Rng�Sig(�)(true) is determined as in the examples above,e.g. ��(8x:s; y:s0: f(x; y) = b) = 8 s (�x:obj s: 8 s0 (�y:obj s0: true (eq s (f x y) b)))for a signature � with sorts s; s0, constant b : s and a binary operation f : s � s0 ! s. Thisfunction �� is natural in � and is a conservative CR morphism �� : EQ(�) ! LF(�Sig (�)) �Rng�Sig(�)(true).Let � = (S;
) be an algebraic signature with sorts s and s0, constants a:s and b:s, and an operationf : s0 ! s. Then �Sig (�) is the extension of �EQ as described above. The following is derivable inLF: ax1 :true(8 s0 (�x:obj s0: eq s (f x) a)); ax2 :true(8 s0 (�x:obj s0: eq s (f x) b)) `�Sig(�)8I s0 (�x:obj s0: eq s a b)(�y:obj s0: trans s a (f y) b(sym s (f y) a (8E s0 (�x:obj s0: eq s (f x) a) y ax1 ))(8E s0 (�x:obj s0: eq s (f x) b) y ax2 )) : true(8 s0 (�x:obj s0: eq s a b))This represents a proof that8x : s0: f(x) = a;8x : s0: f(x) = b `EQ� 8x : s0: a = b:26



Notice that in EQ we cannot derive8x : s0: f(x) = a;8x : s0: f(x) = b `EQ� a = b:and correspondingly this cannot be derived in the LF encoding either: in the LF signature �Sig (�)and the context ax1 :true(8 s0 (�x:obj s0: eq s (f x) a)); ax2 :true(8 s0 (�x:obj s0: eq s (f x) b)) there is noterm of type true(eq s a b).More complex examples may be built using the various representations of logical systems in LFpresented in [AHMP87].7 Proof Search under Uniform EncodingsLet us now return to the problem of proof in structured theory presentations. Given a uniformencoding of a logical system L, we intend to exploit the proof mechanisms of LF to conduct proofs instructured L-presentations.Since the representation part of a uniform encoding of a logic L is required to be surjective, itmight be thought that we may use the na��ve lifting of L-presentations to LF, relying on Corollary 5.16.But this is not the case, for in practice we work not in P(�L;JL), but in LF(�L), which is to saythat we cannot restrict attention to sentences in the range of JL only. For example, in the encoding ofS4 [AHMP87], sentences are represented by terms of the form true(M). But to prove, say, true(�(M)),we must, in certain cases, prove valid (M). But this type lies outside of the image of � (and cannotbe soundly included in it).Now since P(�;J ) is de�ned to be the restriction of LF� to the range of J , there is an obvious\inclusion" of P(�;J ) into LF which is typically not surjective. However, the set of sentencesconsidered is explicitly determined by J .Consider a uniform encoding (�L;JL; �L) of L. Let R be the family of LF types given byR�0 = Rng�0(JL) for �0 extending �L. By Corollary 5.18, for any well-formed L-presentation Pwith signature � and L-sentence � 2 jLj�, P L� � i� ~�L(P ) LF ;R�L(�) �L(�). It is important to realizethat the right-hand side of this equivalence refers only to LF entities, and the corresponding proofsearch as determined by De�nition 5.17 can be carried out entirely within LF.An essential part of this proof activity is to test whether a type A of LF(�0) is in the image of�L, where �0 = �L(
) for some 
 2 SigL, that is whether or not A 2 Rng�0(JL). This amounts tomatching in the LF type theory: A 2 Rng�0(JL) i� there exists J 2 J and M1; : : : ;Mk (where k isdetermined by J) such that A is convertible to J(M1; : : : ;Mk). This test may be implemented usingthe uni�cation algorithms developed by Pym [Pym90] or Elliot [Ell89]. In practice, J is often a singleconstant, in which case this test is trivial; it is an open problem whether the matching problem is, ingeneral, decidable.Example 7.1 Recall the presentations given in Counterexample 5.9: �0 is the signature with sortss and s0 and constants a:s and b; c:s0, � is the same signature with a removed, � : � ,! �0 is theinclusion, P0 = (�0; ;), P1 = derive P0 via � and P = P1 [ (�; f8x:s: b = cg). Consider the uniformencoding (�EQ;J EQ; �) of EQ in LF given in Example 6.16. We will conduct inference in P via thisencoding.The LF signature �(�0) is the extension of �EQ by constants s; s0:sorts, a:obj s and b; c:obj s0.The following is derivable in LF:t:Type `�(�0) (�f :obj s! t: f a) : (obj s! t) ! t27



Thus, in the inhabitation logic of LF, we have in particular`LF�(�0) (obj s! true (eq s0 b c)) ! true (eq s0 b c)The following is also derivable:ax1 :true (8s (�x:s: eq s0 b c)); ax2 :(obj s! true (eq s0 b c)) ! true (eq s0 b c) `�(�)ax2 (�x:obj s: 8E s (�x:obj s: eq s0 b c)x ax1 ) : true (eq s0 b c)Consequently, in the inhabitation logic of LF, we havetrue (8s (�x:s: eq s0 b c)); (obj s! true (eq s0 b c)) ! true (eq s0 b c) `LF�(�) true (eq s0 b c)The above entailments in the inhabitation logic of LF justify the following (cf. De�nition 4.1):~�(P0) LF�(�0) (obj s! true (eq s0 b c)) ! true (eq s0 b c)~�(P1) LF�(�) (obj s! true (eq s0 b c)) ! true (eq s0 b c)~�(P ) LF�(�) true (eq s0 b c)Note that we have just proved that ~�(P ) LF�(�) �(b = c) even though P EQ� b = c does not hold. Inessence, what is happening here is similar to what was illustrated in Counterexample 5.9, except thata higher-order type is used in place of an existential formula. As in Example 5.19, this shows the needfor keeping track of the image of the encoding. The crucial mediating type, (obj s! true (eq s0 b c)) !true (eq s0 b c) which is inhabited in �(�0), does not encode a sentence of EQ (is not in the range oftrue) and so will be �ltered out in the modi�ed proof procedure determined by De�nition 5.17: wedo not have ~�(P1) LF ;R�(�) (obj s ! true (eq s0 b c)) ! true (eq s0 b c) where R�0 = Rng�0(J EQ) for �0extending �EQ.8 Putting Together LogicsIn this section we consider the adaptation of the idea of presenting theories in a structured way to logicpresentations. As a �rst step in this direction we investigate the use of pushouts to give an accountof parameterization and instantiation of logic presentations. We have in mind such examples as: theparameterization of Peano arithmetic by the underlying predicate calculus, with instantiations likeclassical Peano arithmetic and Heyting arithmetic; the parameterization of Hoare logic by the logicof assertions; the parameterization of the calculus of synchronization trees by the synchronizationalgebra [Win81].Proposition 8.1 SigLF has pushouts along inclusions.Proof If � : � ! �0 and � : � ,! �00, then the pushout is given by�?�00 = �0; p(�;�00)]�000(where �00 = �;�000 | since � is a signature inclusion, it is always possible to present �00 in this way)and p(�;�00)(c) = ( �(c) if c 2 dom(�)c otherwise(This assumes that �000 is disjoint from �0; otherwise, p(�;�00) would have to rename symbols appro-priately.) 28



Note that SigLF is not �nitely co-complete.De�nition 8.2 A logic presentation morphism � : (�;J ) ! (�0;J 0) is a signature morphism � :� ! �0 in SigLF such that for every F 2 J with`� F : �x1:A1: : : : :xk:Ak:Type;there exists F 0 2 J 0 such that�]F =�� �x1:�]A1: : : : :xk:�]Ak:F 0(M1; : : : ;Mn)for some M1, : : : , Mn. Identity and composition are inherited from SigLF . LogPres is the categoryof logic presentations and logic presentation morphisms.Note that xi 62 FV(F 0) (1 � i � k) since F 0 is closed.Proposition 8.3 The assignment (�;J ) 7! P(�;J ) extends to a functor P : LogPres! Log.Sketch of construction Consider a presentation morphism � : (�1;J1) ! (�2;J2). The logicmorphism P(�) : P(�1;J1) ! P(�2;J2) may be de�ned as follows:� P(�)Sig : SigLF�1 ! SigLF�2 is de�ned on objects using the pushout construction: P(�)Sig(�1 :�1 ,! �01) = (�2 : �2 ,! �02) where �1 �01�2 �02������1@@@@R� @@@@R�0������2is a pushout in SigLF .This extends to morphisms using the co-universal property of pushouts.� For any �1 : �1 ,! �01, �0 : �01 ! �02 in the construction above induces the translation (�0)] :Rng�01(J1) ! Rng�02(J2). (This uses the fact that � is a logic presentation morphism.) This isa CR morphism (�0)] : P(�1;J1)(�1 : �1 ,! �01) ! P(�2;J2)(P(�)Sig(�1) : �2 ,! �02) which isnatural in �1. This de�nes P(�)CR : P(�1;J1) .!P(�)Sig ;P(�2;J2).We propose to use colimits in the category of logic presentations to build logics in the same wayas colimits were used in Section 3 to build theories. Although the category of logic presentations isnot �nitely co-complete, it may be shown that a diagram in LogPres has a colimit i� its projectionto SigLF has a colimit. The most pertinent case is that of pushouts along inclusions:De�nition 8.4 A logic presentation morphism � : (�;J ) ,! (�0;J 0) is an inclusion if � : � ,! �0 isan inclusion and J � J 0. 29



Proposition 8.5 LogPres has pushouts along inclusions.Proof The pushout of � : (�;J ) ! (�1;J1) and � : (�;J ) ,! (�2;J2) is given by the object�?(�2;J2) = (�?�2; �?J2), where �?�2 is the pushout object in SigLF and�?J2 = p(�;�2)](J2) [ J1;and the morphism p(�; (�2;J2)) = p(�;�2) is given by the pushout construction in SigLF .A LogPres inclusion can be seen as a parameterized logic presentation where the pushout ofthis morphism with a \�tting" morphism amounts to instantiation, by analogy with parameterizedstructured theory presentations.Example 8.6�BASEo = o : Typetrue : o! TypeJBASEo = ftrueg�PROP = �BASEo;: : o! o^ : o! o! o_ : o! o! o� : o! o! o...�I : ��:o: � :o: (true(�) ! true( )) ! true(�� )...JPROP = ftruegBASEo = (�BASEo;JBASEo) presents a trivial logic containing only the type of formulae (o) andthe judgement form true. PROP = (�PROP ;JPROP) presents propositional logic; only one of thestandard inference rules is given above. There is an obvious inclusion � : BASEo ,! PROP, whichmay be seen as propositional logic parameterized by the type of atomic propositions.Instantiation of this parameterized logic presentation to the presentation of single-sorted groundequational logic (�GEQo1;JGEQo1) (see Example 6.15), via the inclusion of BASEo, yields a present-ation PROP(GEQo1) of a propositional logic where atomic formulae are ground equations.Example 8.7 �BASE�;o = � : Typeo : Typetrue : o! TypeJBASE�;o = ftrueg�UNIV = �BASE�;o;8 : (�! o) ! o8I : ��:�! o: (�x:�: true(�x)) ! true(8�)8E : ��:�! o: �x:�: true(8�) ! true(�x)JUNIV = ftruegBASE�;o = (�BASE�;o;JBASE�;o) presents a logic containing only the type of individuals (�) andformulae (o) and the judgement form true. The logic presentation UNIV = (�UNIV;JUNIV)30



presents a logic of universal quanti�cation. There is an obvious inclusion � : BASE�;o ,! UNIV, whichmay be seen as a pure logic of universal quanti�cation parameterized by the types of individuals andformulae.The result of instantiating this parameterized logic presentation to (�GEQo1;JGEQo1) via the inclu-sion of BASE �;o is the logic presentation (�EQ1;J EQ1) from Example 6.15. The result of instantiatingit to PROP(GEQo1) yields a presentation UNIV(PROP(GEQo1)) of a version of �rst-order logic withan equality predicate. Existential quanti�ers are absent although they are expressible since the logicincludes universal quanti�cation and negation. It would be easy to add them explicitly by extendingUNIV or by forming a parameterized presentation EXIST of the logic of existential quanti�cationand applying this to UNIV(PROP(GEQo1)).In the above examples we used pushouts in the category of logic presentations as a mechanism forinstantiating parameterized logic presentations. The functor P allows us to view this as a combinationof the corresponding logical systems. A more straightforward method would be to combine logicalsystems directly, using pushouts in Log.6 In general, the result would be di�erent (P is not �nitelyco-continuous). The reason for the di�erence is that in Log the internal structure of sentences is notvisible and so the combination is done in a coarse, super�cial way. For example, consider two extensionsof EQ1, one which adds negation (giving equations, negations of equations, negations of negations ofequations, etc.) and another which adds conjunction (giving equations, conjunctions of equations,conjunctions of conjunctions of equations, etc.). The pushout of these in Log is a logical systemwith the union of the two sets of sentences but not including (for instance) conjunctions of negationsof equations. This is in contrast to the result of taking the pushout of the obvious presentations ofthese logics in LogPres, in which the �ne detail of the structure of sentences is visible. The resultingpresentation has negation and conjunction built in as operations on the type o of formulae and hencethe logical system it presents contains sentences with arbitrarily deep interleaving of conjunction andnegation, as expected. The same phenomenon may be illustrated using Examples 8.6 and 8.7. As wehave mentioned, UNIV(PROP(GEQo1)) is a presentation of a version of �rst-order logic. Performingthe analogous construction at the level of logics, a much smaller set of sentences would be obtained;for example, the existential quantifer would not be expressible. Summing up, this suggests that theproper way to combine logics is at the level of logic presentations rather than at the level of the logicsthemselves.The same problems of sharing mentioned in Section 3 with reference to building large theoriesarise when building complex logics (such as seem to be appropriate for reasoning about Standard MLprograms [ST91]). More complicated colimits are again applicable here, and as before the relevantdiagrams arise in a natural way from the way that logics are combined using the notation of a languagesuch as CLEAR [BG80]. A di�erence is that some diagrams in LogPres have no colimit, so it is usefulto consider a subcategory (with inclusions) of LogPres in which all colimits exist. By proceeding inthis way we obtain a CLEAR-like or ML-like language for de�ning logics in a structured way.9 Related WorkOur notion of a logical system is inspired by Goguen and Burstall's work on institutions [GB84a]and by Fiadeiro and Sernadas's �-institutions [FS87]. Roughly speaking, institutions are a model-theoretic view of logical systems based on signature-indexed families of satisfaction relations that arewell-behaved under variation in signature. �-institutions are a theory-based view of logical systems6Although for foundational reasons, Log is not �nitely co-complete, it may be shown that it has pushouts involvinglogical systems with small categories of signatures [TBG92]. This is a reasonable assumption since it holds for exampleif all the \names" in signatures come from an in�nite but �xed vocabulary.31



based on closure operations on sets of sentences, and are equivalent to our logical systems. Weprefer to take consequence as basic both as a matter of taste and because this framework admitsgeneralizations that are not available in �-institutions (e.g., multi-conclusioned CR's, CR's based onmultisets or sequences, rather than sets, and CR's that are not closed under weakening.)Institutions were �rst used to parameterize the semantics of CLEAR [BG80] by the logical systemused to write speci�cations, an idea which has been pursued for other speci�cation languages [ST86],[ST88a] and in connection with the foundations of formal program development [BV85, ST88b], sincethen. The ideas in Sections 3 and 8 concerning building theories and logics in a structured fashion havetheir roots in CLEAR and are related to Goguen's earlier work on general systems theory [Gog71].[ST88a] considers a language of structured speci�cations which is similar to but richer than thelanguage of structured presentations introduced in Section 3. As discussed in [ST92], there is anessential di�erence between the view of structured presentations purely as theory presentations, whichwe take here, and the view of them as speci�cations as in [ST88a]. The main role of speci�cationsis to describe the class of their admissible realizations (models), and hence the primary semantics ofthe speci�cation language in [ST88a] is given in terms of model classes. One way to construe thework in Sections 3 and 4 is as providing a sound proof-theoretic counterpart to this model-theoreticsemantics. The proof search procedure presented in Section 4 is not complete for this semantics, atleast in the case of logical systems such as EQ and FOEQ. But its advantage is that it strictly followsthe structure of the presentation written by the user of the formalism, with bene�ts such as thosesketched in Section 4. Completeness seems to be the price we have to pay for this: the complete proofsystems given in [Far92] and [Wir91] require the structure of the presentation to be altered in thecourse of proof.In [GB84a] a notion of institution morphism is presented, and used to investigate (among otherthings) the question of when a theorem prover for one logic can be used to prove theorems on theoriesfrom another. A morphism of logics in our sense corresponds roughly to a sound institution morphismin the framework of [GB84a]. However, since the two kinds of morphisms are motivated by di�erentconcerns (an institution morphism indicates how one institution can be viewed as having been builtover the other, while a logic morphism indicates how one logic can be encoded in the other), thiscomparison is not very accurate. Further work on providing a notion of morphism between institutionswhich adequately captures preservation of a proof-theoretic entailment relation associated with themodel-theoretic satisfaction relation of an institution is presented in [Mes89] and [AC92].In [Tar86] it is shown that the category of institutions has limits and the idea of using limitsto combine institutions is briey discussed. Translating this to the present setting, these limits arerelated to colimits in the category Log of logical systems. In [GB86] the concepts of charter andparchment are presented; these are progressively more primitive in that charters are used as tools forconstructing institutions while parchments are in turn used to construct charters. A parchment fora logical system seems to correspond very roughly with an encoding of that logical system in LF,except that dependent types are not available in parchments. All such comparisons can only bevague since institutions, charters and parchments are fundamentally model-theoretic notions whileour logical systems (and �-institutions) are proof theoretic.Like this paper, [Gar92] attempts a careful explication of the concept of logic representation inLF which was not made fully formal in [HHP93]. The main idea of the version of LF studied there isto re�ne the type theory in such a way that it is possible to extract the logic de�ned by a signaturegiven only the signature. This is accomplished by distinguishing judgements from other types in therepresenting type theory, rather than using the \extra-logical" methods (the type family componentof uniform encodings) that we have considered here. Our notion of uniform encoding correspondsroughly to the notion of adequate encoding in [Gar92], although variation of signatures is not takeninto account there.Drawing on some of the ideas considered in this paper and on [SW92], [HP92] proposes a modules32



system for Elf, a logic programming language based on LF [Pfe89], [Pfe91]. This system providesstructuring operations on LF signatures with which one may give structured presentations of logicalsystems and theories within a given logical system. An analogue of our presentation morphisms isprovided via the notion of a realizor, which is essentially an interpretation of one signature in anothergiven by a sequence of terms of the LF �-calculus. The structuring operations considered in [HP92]do not, by design, include an analogue of our derive operation. Proof search is provided by thesolve primitive which not only attempts to determine if a given type is inhabited (i.e., whether thejudgement it encodes is provable), but also computes an inhabiting term. The search procedure isconditioned by the using primitive with which the relevant portions of a structured logic presentationare marshalled for use by the solver. The absence of derive ensures that the problems with the behaviorof the structured search procedure under representation (discussed in Section 5) are avoided.10 Directions for Future ResearchThe de�nition of logical system, and especially the de�nition of uniform encoding, reects the intentionthat sentences be \closed." The de�nition of logical system and uniform encoding could be generalizedto admit \open" sentences, but it is important to realize that there are (at least) two di�erent waysto construe consequence in this situation [Avr91]. Under the \truth" interpretation, free variablesbehave essentially as constants, and hence could be handled within our notion of logical system (thesituation is more complicated in free logics such as PX [HN88]). Under the \validity" interpretation,free variables are implicitly universally quanti�ed at each formula. Hilbert-type presentations of �rst-order logic usually take the validity interpretation, whereas natural deduction presentations take thetruth interpretation. Some ideas on how the notion of logical system may be extended to accommodatefree variables are in [HST89b].The de�nition of basic theory presentation admits the possibility of an in�nite set of axioms. Inpractice such sets are presented schematically since theories of interest are recursively presentable.The notion of logical system can be extended to treat axiom schemes explicitly, and the de�nition ofuniform encoding can be correspondingly generalized to encode schemes using �-types. This extensionbecomes important in the case of certain truth-type logical systems lacking a universal quanti�er, forthere it is not possible to think of an axiom scheme as standing for all of its instances. It would beinteresting to work out a treatment of schematization for both truth-type and validity-type logicalsystems.The emphasis in this paper has been on provability, rather than on �nding proofs. This is reectedin our decision to view logical systems as consequence relations, and in the concomitant de�nitionof search in structured presentations. It would be interesting to develop a general notion of logicalsystem that includes an explicit representation of proofs. With this in mind, we have considered acategorical generalization of the notion of consequence relation whereby proofs become morphisms ina consequence category satisfying some weak closure properties (as in linear categories [GL87]). Itseems di�cult, however, to develop the notions of structured presentation and structured search insuch a way that a witness to the fact that a sentence is a consequence of a structured presentationmay be extracted. The di�culty seems to lie in the fact that structured presentations rely on workingsimultaneously with a family of consequence relations, rather than just one. When generalized toadmit proofs, this means that we must consider a hybrid notion of proof that spans a family ofconsequence categories.The CLEAR-style parameterization methods outlined in Section 3 require that a signature morph-ism be a presentation morphism. This is, in general, an in�nitary proof obligation, and so cannot beconsidered as an instance of proof within the (encoding of) the logical system at hand. However, inmany commonly-arising situations (in particular, in typical applications of parameterization), it must33



be shown that � : P ! P 0 is a presentation morphism where P = (�;�) is a �nite basic presentation.This reduces to showing that P 0  ��, and hence is an instance of structured search, as explored in[HP92] for presentations without the derive operation. But for general P the proof obligations arenot \internalizable" in this way. Finding a fully satisfactory answer to this question is the subject ofongoing research; see [Wir91], [Far92] for proposed solutions and relevant discussion.It is useful to consider a notion of uniform encoding that is not based on treating LF as a logicalsystem. The idea is to regard basic theory presentations as contexts (more or less as now), andto \internalize" the presentation-structuring operations in an extension of the LF type theory. Inparticular, the derive operation seems closely related to existential types [MP85]. Part of thisprogram, for the fragment of the language without derive, is carried out in [HP92].A related idea is to view the presentation-structuring operations as \internal" logical operations,and to explore the analogy with (higher-order) categorical logic. In this way we hope to obtain abetter proof theory for both deriving consequences of structured presentations and deriving entailmentsbetween such presentations [HT92]. This would provide a simple way to represent proofs in structuredpresentations (since these would just be proofs in this richer logic) and to prove that a signaturemorphism is a presentation morphism (since this would reduce to an entailment between structuredpresentations). As mentioned earlier, such a proof system would necessarily involve altering thestructure of presentations in the course of proof; this would be captured by rules allowing commutationof translate with derive (corresponding to the Beck condition) and of union with derive (Frobeniusreciprocity), much in the style of the proof systems in [Wir91] and [Far92].Finally, the language of structured presentations may be generalized to admit translation andinverse image along logic morphisms. This would allow for the combination of theories from severaldi�erent logical systems, giving rise to an \inter-logic" search space similar to the \intra-logic" searchspace given by structured theory presentations. It would be interesting to develop these ideas further,and to consider their application to formal program development where there is some indication thatsuch hybrid logics and inter-logic search will be of some use [ST88b].Acknowledgements: Thanks to Rod Burstall (from DS) for earlier collaboration on structuredtheories. This research has been partially supported by the U.K. Science and Engineering ResearchCouncil, the ESPRIT-funded COMPASS basic research working group, and Edinburgh University(RH, DS, AT), Carnegie-Mellon University (RH), the Polish Academy of Sciences and Link�opingUniversity (AT).References[AC92] E. Astesiano and M. Cerioli. Relationships between logical frameworks. In M. Bidoit and C.Choppy, editors, Recent Trends in Data Type Speci�cation, pages 126{143, Springer-Verlag,1992.[AHMP87] A. Avron, F. Honsell, I. Mason and R. Pollack. Using typed lambda calculus to imple-ment formal systems on a machine. Technical Report ECS{LFCS{87{31, Laboratory forFoundations of Computer Science, Edinburgh University, June 1987. To appear, Journalof Automated Reasoning.[Avr91] A. Avron. Simple consequence relations. Information and Computation, 91(1):105{139,1991.[BG77] R. Burstall and J. Goguen. Putting theories together to make speci�cations. Proc. 5th Intl.Joint Conf. on Arti�cial Intelligence, Cambridge, Massachusetts, pages 1045{1058, 1977.34
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