
Testing Modular Systems Against Casl
Architectural Specifications

Patricia D.L. Machado1 and Donald Sannella2

1 Systems and Computing Department, Federal University of Paraiba
patricia@dsc.ufpb.br

2 Laboratory for Foundations of Computer Science, University of Edinburgh
dts@dcs.ed.ac.uk

Abstract. The problem of testing modular systems against algebraic
specifications is discussed. In particular, we focus on systems where the
decomposition into parts is specified by a Casl-style architectural spec-
ification and the parts (units) are developed separately, perhaps by an
independent supplier. One problem in testing from the unit supplier’s
point of view is how to test units independently of the context of use.
This is most acute for generic units where the particular instantiation
cannot be predicted. On the other hand, users of units are concerned
with the particular context of use – dictated by the architectural spec-
ification at hand – where one concern is how to take advantage of the
testing that has already been done by the supplier. Ideas for tackling
these problems are presented.

Keywords: Algebraic specification, specification-based testing, modular
systems

1 Introduction

Improving the quality and reducing the production cost of software systems is
of paramount importance. There is a current focus on developing systems com-
posed of configurable modules with specified interfaces that encapsulate data and
functionality – so-called component-based systems. Progress in this area requires
effective ways of verifying such systems and their individual components.

Formal testing is concerned with deriving test cases from formal specifica-
tions and checking whether programs satisfy these test cases for a selected finite
set of data. This is a practical alternative to formal proof. Much work in this
area has focused on theoretical and practical problems related to test case selec-
tion and (automatic) interpretation of test results [BGM91,DF93,Don97,GJ98].
Testing from algebraic specifications has been investigated, focusing on both
“flat” specifications [Ber89,Gau95,LA96,Mac99] and structured specifications
[LA96,Mac00b,DW00]. Testing is usually planned from concrete low-level speci-
fications rather than from abstract ones, and it is often assumed that the struc-
ture of the specification matches the structure of the program [LeG99,DW00]
although it is possible to take specification structure into account without mak-
ing this strong assumption [Mac00b].

Tests are not interesting unless we can somehow interpret their results in
terms of correctness. Oracles are decision procedures for interpreting the results
of tests. The oracle problem arises whenever a finite executable oracle cannot
be defined; this may stem e.g. from the semantic gap between specification and
program values. Guaranteeing correctness by testing requires tests covering all
possible ways of interacting with the system, usually an infinite and impracti-
cal activity. When only finite sequences of interactions are considered, successful
testing can accept incorrect programs and unsuccessful testing can reject correct
programs. The latter must be avoided since the costs of finding and fixing errors
are too high to waste time and effort on non-errors. The main goal of testing is to
find errors – as many as possible – according to a previously-planned test cover-
age. Based on test results it is then possible to compute the defect error rate and
forecast reliability. Accepting incorrect programs is not a major problem as long
as coverage is adequate, since testing is not expected to guarantee correctness.
Still, it is possible to make explicit the hypotheses that relate successful test-
ing to correctness [Ber91], e.g. the expectation (“uniformity” hypothesis) that
programs will produce similar outputs on similar inputs.

The aim of this paper is to address the problem of testing modular sys-
tems where parts are developed independently from Casl-style architectural
specifications [ABK+,BST], focusing on styles of testing that address the oracle
problem and take advantage of tests already performed for individual units. In
this context, the problem of testing reduces to the problem of testing units inde-
pendently in such a way that their integration can be checked in a cost-effective
way. In Casl, architectural specifications are used for describing the modular
structure of software systems. In contrast, structure in ordinary Casl specifica-
tions is merely for presentation purposes. An architectural specification consists
of a list of unit declarations, naming the units (components) that are required
with specifications for each of them, together with a unit term that describes
the way in which these units are to be combined. In this paper, we focus on
unit terms formed by instantiating generic units. This avoids complications in-
troduced by other ways of forming unit terms while exposing most of the main
issues. (Note that specifications of generic units are quite different from generic
specifications in Casl and other languages: here it is the unit that is generic,
not the specification [SST92].)

When testing modular systems and their parts, different perspectives may
need to be considered. From a supplier’s point of view, units have to be checked
independently of the contexts in which they are going to be used. For formal
testing, this corresponds to checking whether a unit satisfies its specification.
Checking generic units poses special problems since the particular instantiation
is unknown in general, and the set of all possible instantiations is almost al-
ways infinite. In this paper, we present styles of testing non-generic and generic
units that address these problems. On the other hand, users of units are con-
cerned with the particular context in which these units are used, dictated by the
architectural specification at hand. They may assume units have already been
verified. But, when one unit is replaced by another, what tests need to be per-
formed? Under what circumstances is it possible to avoid full re-testing? These

are the kinds of questions regarding integration testing that are addressed in this
paper. Even though we focus on testing from algebraic specifications, problems
discussed in this paper arise in other formal frameworks and solutions proposed
here can possibly be adapted to them.

The paper is structured as follows. Preliminary definitions are presented in
Section 2. We assume some familiarity with concepts of algebraic specification.
Section 3 introduces formal testing from algebraic specifications through an ex-
ample. Section 4 reviews previous results on testing non-generic units from struc-
tured specifications. These results are not new but they have not previously been
considered in the context of architectural specifications. Section 5 presents the
main results of this paper which concern testing of generic units. Then, based
on results of Sections 4 and 5, Section 6 addresses testing modular systems
from architectural specifications focusing on integration of components devel-
oped independently. Finally, we present some concluding remarks and pointers
for further work.

2 Preliminary definitions

Algebraic Specifications. As a usual assumption, programs are modelled as al-
gebras. A specification declares a set of symbols – the signature – and contains
axioms giving required properties of these symbols. Structured specifications
are formed from “flat” specifications using structuring operations like union, re-
naming, extension and export, see Section 4. Let Σ = (S, F) be a signature1

with sorts(Σ) = S and opns(Σ) = F and let TΣ(X) be the Σ-term algebra
(values are terms built from Σ and X), where X is an S-indexed set of count-
ably infinite sets of variables. For any two Σ-terms t and t′ of the same sort,
t = t′ is a Σ-equation; first-order Σ-formulas are built from Σ-equations, logical
connectives (¬,∧,∨,⇒,⇔) and quantifiers (∀,∃). Axioms in specifications are Σ-
formulas without free variables, called Σ-sentences; the set of all Σ-sentences is
written Sen(Σ). A Σ-algebra A consists of an S-sorted set |A|, the carrier sets,
and for each f : s1× . . .×sn → s ∈ Σ, a function fA : |A|s1 × . . .×|A|sn → |A|s.
We restrict to algebras with non-empty carriers; the class of all such Σ-algebras
is written Alg(Σ). For any Σ-algebra A and valuation α : X → |A|, there is
a unique Σ-homomorphism α# : TΣ(X) → A which extends α. The value of
t ∈ |TΣ(X)|s in A under α is then α#(t) ∈ |A|s. If t ∈ TΣ , i.e., t is a ground Σ-
term, the value of t in A is #(t), where # : TΣ → A is the unique homomorphism.
Let σ : Σ′ → Σ be a signature morphism. This extends to translate Σ′-terms to
Σ-terms and Σ′-formulas to Σ-formulas. The σ-reduct of a Σ-algebra A is the
evident Σ′-algebra written A|σ, or A|Σ′ if σ is an inclusion.

Behavioural Equality. The equality problem – an instance of the oracle prob-
lem – is the question of how equality on non-observable sorts is defined, where
a non-observable sort is one that is not identified with any particular concrete
representation or standard data type. Therefore, it is not appropriate to simply
1 Some specification languages, including Casl, permit signatures to include predi-

cates. W.l.o.g. we will regard these as operations yielding a boolean result.

assume that equality on values of this sort is the usual set-theoretical one. Equal-
ity on values of a Σ-algebra A can be interpreted by an appropriate behavioural
equality. This is a partial Σ-congruence ≈A = (≈A,s)s∈S (one relation for each
sort s ∈ S) of partial equivalence relations – symmetric and transitive relations
– which are compatible with Σ, i.e., ∀f : s1 . . . sn −→ s ∈ F , ∀ai, bi ∈ Asi , if
ai ≈A,si bi for all 1 ≤ i ≤ n, then fA(a1, . . . , an) ≈A,s fA(b1, . . . , bn). The domain
of definition of ≈A is Dom(≈A) = {a | a ≈A a}. Let Obs ⊆ S be a distinguished
set of observable sorts. The partial observational equality ≈Obs,A= (≈Obs,A,s)s∈S

is one example of a behavioural equality, where related elements are those that
cannot be distinguished by observable computations.2 A Σ-behavioural equality
is defined as ≈Σ = (≈Σ,A)A∈Alg(Σ), one behavioural equality for each Σ-algebra
A. Whenever Σ is obvious, ≈ is used without subscript to denote ≈Σ . When A
is also obvious, ≈ and ≈Σ are used to denote ≈Σ,A.

Approximate Equality. Behavioural equality can be difficult to test. Consider e.g.
observational equality on non-observable sorts which is defined in terms of a set
of contexts that is usually infinite. One approach involves the use of approximate
equalities [Mac99,Mac00c] which are binary relations on values of the algebra.
When compared to a behavioural equality, an approximate equality is sound
if all values that it identifies are indeed equal, or complete if all equal values
are identified (sound ⊆ behavioural ⊆ complete). A contextual equality ∼C,A is
defined from a subset C of the observable computations.3 Any contextual equality
is complete with respect to observational equality, although it is not necessarily
a partial congruence. The set-theoretical equality is sound – in programming
terms, this is equality on the underlying data representation.

Families of Equalities. The signature of different parts of a structured specifi-
cation may be different, and the interpretation of equality (for example obser-
vational equality) may depend on the signature. Therefore, if we aim to deal
with structured specifications, we need to consider families of equalities indexed
by signatures. In the sequel, let ≈ = (≈Σ)Σ∈Sign be a family of behavioural
equalities, one for each signature Σ, where Sign is the category of signatures.
Likewise, let ∼ = (∼Σ)Σ∈Sign and l = (lΣ)Σ∈Sign denote families of approx-
imate equalities. The family ∼ is complete (sound) w.r.t. ≈ iff ∀Σ ∈ Sign, ∼Σ

is complete (sound) w.r.t. ≈Σ . The reduct of a Σ-approximate equality ∼Σ by
the morphism σ : Σ′ → Σ considers only the relations of sorts mapped from
Σ′, i.e., (∼Σ)|σ = ((∼Σ,A)|σ)A∈Alg(Σ) where (∼Σ,A)|σ = ((∼Σ,A)σ(s))s∈S′ . The
family ∼ is compatible with signature morphisms if for all σ : Σ′ → Σ and all
Σ-algebras A, ∼Σ′,A|σ = (∼Σ,A)|σ. For the results below that have compatibility

2 Let CObs be the set of all Σ-contexts TΣ(X ∪ {zs}) of observable sorts with context
variable zs of sort s. Then values a and b sort s are observationally equal, a ≈Obs,A,s b,
iff a, b ∈ #(TΣ) and ∀C ∈ CObs· ∀α : X → #(TΣ) · α#

a (C) = α#
b (C), where #(TΣ) is

the reachable subalgebra of A and αa, αb : X ∪ {zs} → #(TΣ) are the extensions of
α defined by αa(zs) = a and αb(zs) = b.

3 Let C ⊆ CObs be an arbitrary set of observable contexts. Values a and b are contex-
tually equal w.r.t C iff a, b ∈ #(TΣ) and ∀C ∈ C · ∀α : X → #(TΣ) ·α#

a (C) = α#
b (C).

Obviously, if C = CObs, then ∼C,A = ≈Obs,A.

as a condition, it is sufficient if equality on a given sort coincides for all signa-
tures arising in the structure of a given specification. Compatibility may fail if
these signatures have different sets of observers for the same sort. The family of
literal set-theoretical equalities = on values of an algebra is always compatible.
However, it is easy to check that the family of observational equalities is not
compatible. Suppose σ : Σ′ ↪→ Σ is an inclusion. In this case, Σ may have more
observers than Σ′. Thus, (≈Σ,σ(Obs′))|σ may be finer than ≈Σ′,Obs′ . One may
restrict the introduction of new observers to avoid this problem, see e.g. [BH99].

3 Formal Testing from Algebraic Specifications

This section presents formal testing from algebraic specifications through an
example and based on a generic model of the testing process. For simplicity, we
assume programs to be tested are written in SML, viewing structures as algebras
and using boolean-valued functions to model predicates. As mentioned before,
we focus on test oracles.

Testing from algebraic specifications boils down to checking whether spec-
ification axioms are satisfied by programs [Gau95]. Thus, oracles are usually
active procedures which drive the necessary tests and interpret the results ac-
cording to a given axiom which needs to be checked. The generic testing model
to be followed consists of the following activities: test case selection, test data
selection, test oracle design, test execution and interpretation of results. Test
cases are extracted from specifications together with test sets which are defined
at specification level and associated with axioms. Then, oracles are defined for
each test case or group of test cases. Oracles are predicates to evaluate test cases
according to test results incorporating procedures to compute equality on non-
observable sorts. A test obligation corresponds to the combination of a test case,
test data, a test oracle and a program to be tested. Whenever there is no chance
of confusion, this is referred to simply as a test. In the sequel, a simple example
is used to illustrate these ideas.

Example 3.1 (The Invoice Specification). Throughout this paper we use the
specification of “invoice orders” by Baumeister and Bert [BB01]. For the sake
of space, we focus on a simplified version of the Invoice specification. The
main data involved in the problem domain are orders, stocks and products.
The Order specification below defines orders. This specification imports the
Casl basic specification of natural numbers, Nat. The sort Nat, its subsort
Pos (the positive natural numbers) and the booleans (used when predicates are
represented as operations) will be the observable sorts.

spec Order = Nat then
sorts Order ,Product ;
ops ref : Order → Product ;

ordered qty : Order → Pos;
mk order : Product ∗ Pos → Order ;

preds is pending , is invoiced : Order ;
var o : Order • ¬is pending(o) ⇔ is invoiced(o) (1)

end

Each order references a single product given by the ref operation and the quantity
of the ordered product, given by ordered qty, is greater than zero. The state of
an order is either “pending” or “invoiced” (Axiom 1). Note that axioms are
implicitly universally quantified by all the declared variables. The specification
also introduces the Product sort. The Stock specification below defines stocks.

spec Stock = Nat then
sorts Stock ,Product ;
ops qty : Product × Stock →? Nat ;

add , remove : Product × Pos × Stock →? Stock ;
pred isIn : Product × Stock ;
vars p, k : Product ; n : Pos; s : Stock
• (def qty(p, s) ⇔ p isIn s) ∧ (def add(p,n, s) ⇔ p isIn s) (2)
• def remove(p,n, s) ⇔ p isIn s ∧ qty(p, s) ≥ n (3)
• qty(p, add(p,n, s)) = qty(p, s) + n if p isIn s (4)
• qty(k , add(p,n, s)) = qty(k , s) if p isIn s ∧ k isIn s ∧ k 6= p (5)
• qty(p, remove(p,n, s)) = qty(p, s)− n if p isIn s ∧ qty(p, s) ≥ n (6)
• qty(k , remove(p,n, s)) = qty(k , s) if p isIn s ∧ k isIn s ∧ k 6= p (7)

end

Here, qty gives the quantity of a product in stock, add and remove update the
quantity of a product in stock, and isIn returns whether or not a product is in
stock. The qty, add and remove operations are only defined for products that
are in stock. Also, remove can be applied only if there are enough items of
the product (Axiom 3). An observational axiomatisation of add and remove is
given based on their effect on the result of qty (Axioms 4 to 7). The Invoice
specification is given below. This extends the sum of Order and Stock.

spec Invoice = Order and Stock then
free type OrdStk ::= mk(order of : Order ; stock of : Stock);
pred referenced(o : Order ; s : Stock) ⇔ ref (o) isIn s; (8)
pred enough qty(o : Order ; s : Stock) ⇔ ordered qty(o) ≤ qty(ref (o), s); (9)
pred invoice ok(o : Order ; s : Stock) ⇔

is pending(o) ∧ referenced(o, s) ∧ enough qty(o, s); (10)
op invoice order : Order × Stock → OrdStk ;
vars o : Order ; s : Stock
• is invoiced(order of (invoice order(o, s))) if invoice ok(o, s) (11)
• stock of (invoice order(o, s)) = remove(ref (o), ordered qty(o), s)

if invoice ok(o, s) (12)
• order of (invoice order(o, s)) = o if ¬invoice ok(o, s) (13)
• stock of (invoice order(o, s)) = s if ¬invoice ok(o, s) (14)
• ref (order of (invoice order(o, s))) = ref (o) (15)
• ordered qty(order of (invoice order(o, s))) = ordered qty(o) (16)

hide referenced , enough qty
end

The invoice order operation gets an order and a stock and returns a new order
and stock where the state of the order is changed to invoiced (Axiom 11) and
the quantity of the ordered product in stock is reduced by the ordered quantity
(Axiom 12). The conditions required to invoice an order (invoice ok) are: (1)

the state of the order is “pending” (is pending), (2) the ordered product is in
stock (referenced), (3) the ordered quantity is less than or equal to the quantity
in stock (enough qty). When these conditions are not fulfilled, the order and the
stock are not modified (Axioms 13 and 14). The other attributes of the order
are not changed by the invoice order operation (Axioms 15 and 16). ut

Test Case Selection. For simplicity, each axiom is regarded as a separate test
case. Obviously, techniques can always be applied to simplify test cases or make
them more practical [Don97]. But this out of the scope of this paper. In the se-
quel, we consider Axiom 14 as a test case. Given an implementation of Invoice,
named ImpInvoice, we define test data and an oracle for checking whether this
implementation satisfies the axiom.

Test Data Selection. Test data sets are usually defined from specifications rather
than from programs. The reason is that the ultimate goal is to verify properties
stated in the specification. Moreover, this makes it possible to design tests as
specifications are created. Test sets are defined here as sets of ground terms
[Gau95,Mac99] which correspond to sets of values in the program under test.

Example 3.2 (Test Data Set). In order to check Axiom 14, two test sets are
required: a set of orders and a set of stocks. These sets can be defined as follows:
T14,Order = {mk order(p1, 4), mk order(p1, 1),mk order(p2, 8)} and T14,Stock =
{add(p1, 5, s1), add(p1, 2, add(p2, 10, s1))} where p1, p2 are products and s1 is a
stock so that p1 isIn s1 and p2 isIn s1. ut

It is crucial to apply an appropriate test set selection technique when defining
test sets. Test sets shown above are used for illustrative purposes only. Auto-
matic test set selection can be based on deterministic selection [Mar91] and/or
probabilistic selection [BBL97].

Test Oracle Design The oracle problem for flat specifications often reduces to
the problem of comparing two values of a non-observable sort for equality; when
equality is to be interpreted as behavioural equality, for instance observational
equality, it may be difficult or impossible to decide. Also, the use of universal and
existential quantifiers ranging over infinite domains can make the oracle problem
more difficult. An approach to defining oracles that addresses these problems is
presented in [Mac99], where equality on non-observable sorts is computed using
two approximate equalities – one sound and one complete. These equalities are
applied according to the context in which equations occur – positive or negative4.
To handle the quantifier problem, restrictions are placed on the syntactic con-
texts in which they can occur. An approximate oracle is then a procedure that
decides whether certain specification axioms are satisfied by a program or not.
Such an oracle computes a “testing satisfaction” relation (given below) which
differs from the standard one in the way equality is computed and also because
4 A context is positive if it is formed by an even number of applications of negation

(e.g. φ is positive in both φ ∧ ψ and ¬¬φ). Otherwise, the context is negative. Note
that φ is negative and ψ is positive in φ ⇒ ψ since it is equivalent to ¬φ ∨ ψ. A
formula or symbol occurs positively (resp. negatively) in φ if it occurs in a positive
(resp. negative) context within φ.

quantifiers range only over given test sets. Note that, in this paper, oracles are
also test drivers, i.e., they are also responsible for conducting the necessary tests.

Definition 3.3 (Testing Satisfaction). Let Σ be a signature, T ⊆ TΣ be a
Σ-test set and ∼,l be two Σ-approximate equalities. Let A be a Σ-algebra and
α : X → Dom(≈A) be a valuation. The testing satisfaction relation denoted by
|=T
∼,l is defined as follows.

1. A, α |=T
∼,l t = t′ iff α#(t) ∼A α#(t′);

2. A,α |=T
∼,l ¬ψ iff A,α |=T

l,∼ ψ does not hold;
3. A,α |=T

∼,l ψ1 ∧ ψ2 iff both A,α |=T
∼,l ψ1 and A,α |=T

∼,l ψ2 hold;
4. A,α |=T

∼,l ∀x:s · ψ iff A,α[x 7→ v] |=T
∼,l ψ holds for all v ∈ #(T)s;

where α[x 7→ v] denotes the valuation α superseded at x by v. Satisfaction of
formulae involving ∨, ⇒, ⇔, ∃ is defined using the usual definitions of these in
terms of ¬, ∧, ∀. In this relation, ∼ is always applied in positive contexts and l
is always applied in negative contexts. Note that the approximate equalities are
reversed when negation is encountered.

The following theorem relates testing satisfaction to usual behavioural satis-
faction (|=≈), where equality is interpreted as behavioural equality (≈) and
quantification is over all of Dom(≈).

Theorem 3.4 ([Mac99]). If ∼ is complete, l is sound, and ψ has only pos-
itive occurrences of ∀ and negative occurrences of ∃, then A, α |=≈ ψ implies
A,α |=T

∼,l ψ. ut

The restriction to positive ∀ and negative ∃ here and in later results is not a
problem in practice, since it is satisfied by most common specification idioms.

Example 3.5 (Approximate Oracle). An oracle for checking axiom 14 can be
defined in SML as a boolean function that evaluates the axiom according to a
test set and an implementation of Invoice.

fun oracle_14 (lo,ls) = forall lo (fn o => forall ls (fn s =>
stock_of(invoice_order(o,s)) == s if not invoice_ok(o,s)))

where lo, ls are test sets of Order and Stock defined as in Example 3.2 and
forall : ’a list -> (’a -> bool) -> bool is an implementation of the ∀
quantifier. Note that an implementation of == : Stock * Stock -> bool is
required in order to make the oracle function executable. According to Theorem
3.4, == must be complete because it occurs in a positive context. (If we were
checking axiom 5 or 7, we would instead need a sound implementation of equality
on Product since there it occurs in a negative context.) The following is an
implementation of == as a contextual equality:

fun s==s’ (lp) =
forall lp (fn p => (p isIn s) = (p isIn s’) andalso qty(p,s) = qty(p,s’)

where lp is a list of products. If lp is appropriately chosen, this equality will be
a good approximation to the real one. ut

Test Execution and Interpretation of Results. Given the ImpInvoice imple-
mentation, the oracle 14 function can be run to execute the necessary tests:
oracle 14(T14,Order, T14,Stock) exercises the operations of ImpInvoice to check
satisfaction of Axiom 14. According to Theorem 3.4, if the result is false (i.e.
ImpInvoice 6|=T14

==,l axiom 14 for any l), then one of the exercised functions has
a bug (i.e. ImpInvoice 6|=≈ axiom 14). If the result is true, we cannot conclude
that ImpInvoice is correctly implemented. However, depending on the test set
selection technique used, it may be possible to compute the degree of confidence
that the program is correct – see [Mar91,BBL97] for details.

4 Testing from Non-Generic Unit Specifications

This section is concerned with testing non-generic program units against speci-
fications without considering any internal modular structure the units may pos-
sess. In other words, units are viewed as monolithic modules. The styles of testing
presented can be used to test the individual units of a modular system.

Good practice requires units to be checked independently of the contexts
in which they are going to be used. For formal (functional) testing, this corre-
sponds to checking whether the unit satisfies its specification. Testing from flat
specifications can follow directly the approach presented in Section 3 for each
test case. However, once structured specifications are considered, there are ad-
ditional complications. First, the structure has to be taken into account when
interpreting test results w.r.t. specification axioms. Also, in order to check ax-
ioms that involve hidden symbols such as referenced and enough qty in Invoice,
it is necessary to provide an additional implementation for these symbols as the
program under test is not required to implement them.

Structured specifications are built using structuring primitives like renaming,
union, exporting and extension. These provide a powerful mechanism for reusing
and adapting specification as requirements evolve. In structured specifications
with testing interface [Mac00b], test sets are incorporated into specifications.

Definition 4.1 (Structured Specifications with Testing Interface). The
syntax and semantics of structured specifications are inductively defined as fol-
lows. Each specification SP is assigned a signature Sig(SP) and two classes
of Sig(SP)-algebras. Mod≈(SP) is the class of “real” (correct) models of SP
w.r.t. the family of Σ-behavioural equalities ≈ = (≈Σ)Σ∈Sign, and ChMod∼,l(SP)
is the class of “checkable” models of SP determined by testing w.r.t. the families
of approximate equalities ∼ = (∼Σ)Σ∈Sign and l = (lΣ)Σ∈Sign and the test
sets associated with each axiom.

1. (Basic) SP = 〈Σ,Ψ〉 with Ψ ⊆ {(ψ, T) | ψ ∈ Sen(Σ) and T ⊆ TΣ}.
– Sig(SP) = Σ
– Mod≈(SP) = {A ∈ Alg(Σ) |

∧

(ψ,T)∈Ψ A |=≈ ψ}
– ChMod∼,l(SP) = {A ∈ Alg(Σ) |

∧

(ψ,T)∈Ψ A |=T
∼,l ψ}

2. (Union) SP = SP1∪SP2, where SP1 and SP2 are structured specifications,
with Sig(SP1) = Sig(SP2).

– Sig(SP) = Sig(SP1) [= Sig(SP2)]
– Mod≈(SP) = Mod≈(SP1) ∩Mod≈(SP2)
– ChMod∼,l(SP) = ChMod∼,l(SP1) ∩ ChMod∼,l(SP2)

3. (Renaming) SP = translate SP ′ with σ, where σ : Sig(SP ′) → Σ.
– Sig(SP) = Σ
– Mod≈(SP) = {A ∈ Alg(Σ) | A|σ ∈ Mod≈(SP ′)}
– ChMod∼,l(SP) = {A ∈ Alg(Σ) | A|σ ∈ ChMod∼,l(SP ′)}

4. (Exporting) SP = SP ′|Σ, where Σ is a subsignature of Sig(SP ′).
– Sig(SP) = Σ
– Mod≈(SP) = {A′|Σ | A′ ∈ Mod≈(SP ′)}
– ChMod∼,l(SP) = {A′|Σ | A′ ∈ ChMod∼,l(SP ′)}

Operations presented in Definition 4.1 are primitive ones and, in practice,
more complex operations, defined from their combination, are found in Casl and
other languages. Extension – “then” in Casl – can be defined in terms of renam-
ing and union: SP ′ then sorts S opns F axioms Ψ

def
= 〈Σ, Ψ〉 ∪ translate SP ′ with σ,

where SP ′ is a structured specification, S is a set of sorts, F is a set of function
declarations, Σ = Sig(SP ′) ∪ (S, F), σ : Sig(SP ′) ↪→ Σ is the inclusion, and Ψ
is a set of axioms over Σ with their associated test sets. The union of specifi-
cations over possibly different signatures – “and” in Casl – can be expressed
as: SP1 and SP2

def
= translate SP1 with σ1 ∪ translate SP2 with σ2, where

Σ = Sig(SP1) ∪ Sig(SP2) and σ1 : Sig(SP1) ↪→ Σ, σ2 : Sig(SP2) ↪→ Σ.

Example 4.2 (Structured Specifications). In Example 3.1, augmenting Invoice
by attaching a test set to each axiom would give a structured specification with
testing interface that extends the sum of Order and Stock. Note that ref-
erenced and enough qty are auxiliary symbols, introduced to help express the
properties of the remaining symbols, that are not exported by Invoice. There-
fore, they are not necessarily implemented in models of this specification. ut

To handle the oracle problem for structured specifications, two styles of test-
ing are suggested in [Mac00b]: structured and flat testing. Structured testing of
a Σ-algebra A against a structured specification SP corresponds to member-
ship in the class of checkable models of SP , i.e., A ∈ ChMod∼,l(SP), whereas
flat testing corresponds to testing satisfaction of axioms extracted from SP , i.e.,
∧

(ψ,T)∈TAx(SP) A |=T
∼Σ ,lΣ

ψ where Σ = Sig(SP) and TAx (SP) are the visible
axioms of SP , defined as follows.

Definition 4.3 (Visible Axioms). The set of visible axioms together with
corresponding test sets of a specification SP can be defined as follows.

1. TAx (〈Σ, Ψ〉) = Ψ
2. TAx (SP1 ∪ SP2) = TAx (SP1) ∪ TAx (SP2)
3. TAx (translate SP ′ with σ) = σ(TAx (SP ′))
4. TAx (SP ′|Σ) = {(φ, T ∩ TΣ) | (φ, T) ∈ TAx (SP ′) and φ ∈ Sen(Σ)}

The visible axioms of a specification SP exclude those that refer to non-exported
symbols, translating the rest to the signature of SP .

Example 4.4 (Visible axioms). TAx (Invoice) consists of all the axioms of In-
voice (including those inherited from Order and Stock) except for axioms 8,
9 and 10 as referenced and enough qty are not exported. Any terms in the test
sets associated with other axioms that refer to either of these two operations
will not be included in the result. ut

Structured testing is based on the structure of SP ; it may consist of more
than one set of test obligations (see Definition 4.1) and may demand additional
implementation of symbols not in A (not exported by SP). Flat testing is a
monolithic experiment based on an unstructured view of the specification with-
out considering non-exported symbols and using a single pair of approximate
equalities on the overall signature of SP .

Example 4.5 (Structured and Flat Testing). Structured testing of ImpInvoice
against Invoice incurs the following test obligations (after some simplifications).
Let Invoice-H be the Invoice specification without hide and let IH be an
implementation of referenced and enough qty.

∧

(ψ,T)∈ ΨI
ImpInvoice + IH |=T

∼ΣI ,lΣI
ψ

∧

(ψ,T)∈ ΨS
ImpInvoice|ΣS |=T

∼ΣS ,lΣS
ψ

∧

(ψ,T)∈ ΨO
ImpInvoice|ΣO |=T

∼ΣO,lΣO
ψ

where ΨI , ΨS , ΨO are the sets of axioms in Invoice-H, Stock and Order; ΣI,
ΣS, ΣO are the signatures of Invoice-H, Stock and Order; and ∼, l are
families of approximate equalities. Note that different equalities on the same sort
may be used for testing axioms in different specifications. On the other hand,
flat testing incurs the following single obligation:

∧

(ψ,T)∈ TAx(Invoice) ImpInvoice |=
T
∼Σ ,lΣ

ψ

where Σ is the signature of Invoice. ut

Whether structured or flat testing is performed, the following must be consid-
ered: under which conditions are correct models not rejected by testing? Results
presented in [Mac00b,Mac00c] show that under certain assumptions, structured
testing and flat testing do not reject correct models, even though incorrect ones
can be accepted. These results are a generalization of Theorem 3.4.

Theorem 4.6 ([Mac00b]). If ∼ is complete, l is sound, and the axioms
of SP have only positive occurrences of ∀ and negative occurrences of ∃, then
A ∈ Mod≈(SP) implies A ∈ ChMod∼,l(SP). ut

Theorem 4.7 ([Mac00b]). If ∼ is complete and compatible and l is sound and
compatible and the axioms of SP have only positive occurrences of ∀ and negative
occurrences of ∃, then A ∈ Mod≈(SP) implies

∧

(ψ,T)∈TAx(SP) A |=T
∼,l ψ. ut

(These results have fewer assumptions than those in [Mac00b], owing to the
association of test sets with individual axioms rather than with specifications
there.)

Example 4.8 (Structured and Flat Testing, continued). The specifications in Ex-
ample 4.5 fit the requirements of Theorems 4.6 and 4.7, but ∼ΣI , ∼ΣS and ∼ΣO

must be complete and lΣI , lΣS and lΣO must be sound. We can define ∼ΣO

on Order as a contextual equality, with a related definition of ∼ΣI :

o ∼ΣO,A,Order o′ iff ordered qtyA(o) = ordered qtyA(o′) ∧
is pendingA(o) = is pendingA(o′) ∧
is invoicedA(o) = is invoicedA(o′)

o ∼ΣI,A,Order o′ iff o ∼ΣO,A,Order o′ ∧
∀s ∈ |A|Stock · invoice OKA(o, s) = invoice OKA(o′, s)

and l can be defined based on comparing values of the concrete representation.
For flat testing, both families ∼ and l must also be compatible, requiring ∼ΣI ,
∼ΣS , ∼ΣO and ∼Σ to coincide on the sorts they have in common. But this
does not hold: ∼ΣI,A,Order will in general be finer than ∼ΣO,A|ΣO,Order. Neither
distinguishes between orders of different products, but due to the definition of
invoice OK (axiom 10), ∼ΣI,A,Order can discriminate between orders of products
that are in stock and not in stock. Therefore, a definition of ∼ΣI,A,Order that
avoids use of invoice OK should be used if compatibility is required. ut

Clearly structured testing is more flexible than flat testing in the sense that
fewer assumptions are made. As mentioned in Section 2, the family of observa-
tional equalities is not compatible, so the additional assumption is a strong one.
On the other hand, flat testing is simpler. Both theorems cover a prevalent use of
quantifiers. Their duals also hold, but are less interesting. There are also varia-
tions of these theorems that substitute assumptions on test sets for assumptions
on quantifiers.

Structured testing and flat testing are two extremes. In practice, we may
take advantage of their combination. One way to do this is via normalization,
where a structured specification SP is transformed into an equivalent specifi-
cation nf (SP) of the form 〈Σ′, Ψ ′〉|Σ [BCH99]. The intention is to handle the
complexity of structured specifications by grouping axioms, taking hidden sym-
bols into account, so that the result is a flat specification which exports visible
symbols. The usual normalization procedure is easily extended to structured
specifications with testing interface (see the appendix for the details) and then
we obtain the following result:

Theorem 4.9 ([Mac00a]). If ∼ and l are compatible, then ChMod∼,l(SP) =
ChMod∼,l(nf(SP)). ut

The main advantage of normal form is to allow a combination of compo-
sitional and non-compositional testing, namely semi-structured testing, where
normal forms are used to replace parts of a specification, especially when these
parts are combined by union. The result is to group definitions and, consequently,
to reduce the number of different experiments that need to be performed. Then,
the resulting specification can be checked by structured testing and a result
analogous to Theorems 4.6 and 4.7 can be obtained:

Theorem 4.10 ([Mac00a]). If ∼ is complete, l is sound, ≈ is compatible and
the axioms of SP have only positive occurrences of ∀ and negative occurrences
of ∃, then A ∈ Mod≈(SP) implies A ∈ ChMod∼,l(nf(SP)). ut

Example 4.11 (Semi-Structured Testing). In Example 4.5, Invoice can be re-
placed by its normal form,5 and then structured testing gives the following test
obligation:

∧

(ψ,T)∈ ΨO∪ΨS∪ΨI
ImpInvoice + IH |=T

∼ΣI ,lΣI
ψ

Here, the same axioms are tested as in structured testing against the original
specification, but as a single combined obligation. The approximate equality
∼ΣI can be more accurate than ∼ΣS and ∼ΣO since it can be based on all the
observers in Invoice-H, giving more accurate test results. Note that ≈ is not
compatible – see Example 4.8. But if the sort Product is regarded as observable
then ≈ is compatible for the signatures arising in Invoice, and so in that case
the assumptions on Theorem 4.10 are met. ut

Even though we have shown theoretical results regarding structured, flat and
semi-structured testing, these styles of testing can be infeasible in practice when
the structure of the program is not taken into account, since it may be necessary
to decompose the program to reflect certain signatures in the structure of the
specification (ImpInvoice|ΣOS) and/or re-test the whole program every time a
single modification is introduced. Clearly, a good approach to testing modular
programs should take the benefits of structured testing and normalisation into
account without requiring unnatural decomposition of programs and allow for
independent development and verification of parts of the program. Architectural
specifications play a role here, and this is further discussed in Section 6. But
before that, we need to look into how a generic unit can be tested independently
of actual units used to instantiate it. This is the subject of the following section.

5 Testing from Generic Unit Specifications

This section is concerned with testing generic units independent of particular
instantiations. This is a difficult task for testing since we have to anticipate
the behaviour of a generic unit when instantiated by specific units, but the set
of all possible instantiations is almost always infinite. Not all units having the
right signature are correct implementations of the argument specification, and
correctness cannot generally be determined by testing. However, testing a generic
unit using an incorrect implementation of the argument specification may lead
to rejection of correct generic units.

The syntax and semantics of generic unit specifications are as follows. First,
let Alg(Σ′ → Σ) = {F : Alg(Σ′) ⇀ Alg(Σ) | ∀A′ ∈ Dom(F), F [A′]|Σ′ = A′} be
the class of persistent functions taking Σ′-algebras to Σ-algebras, where Σ′ ⊆ Σ.

Definition 5.1 (Generic Unit Specifications). Let Sig(SP) = Σ and
Sig(SP ′) = Σ′, such that SP extends SP ′, i.e. Σ′ ⊆ Σ and for all A ∈
Mod≈(SP), A|Σ′ ∈ Mod≈(SP ′).
5 This gives the same overall result as replacing just Invoice-H by its normal form,

which justifies the title of the example.

– Sig(SP ′ → SP) = Σ′ → Σ
– Mod≈(SP ′ → SP) = {F ∈ Alg(Σ′ → Σ) | ∀A ∈ Mod≈(SP ′), F [A] is defined

and F [A] ∈ Mod≈(SP)}
– ChMod∼,l(SP ′ → SP) = {F ∈ Alg(Σ′ → Σ) | ∀A ∈ ChMod∼,l(SP ′),

F [A] is defined and F [A] ∈ ChMod∼,l(SP)}

Example 5.2 (Generic Unit Specification). A generic unit OrderFun : Nat →
Order can be defined to give a realisation of Order when given a realisation
of Nat. Genericity arises here to allow independent development of OrderFun
and the chosen implementation of Nat. Of course, an implementation of Nat
can be imported from a library rather than being developed from scratch. ut

Let SP ′ → SP be a generic unit specification and let F be a generic unit that
is claimed to correctly implement this specification. In contrast to testing from
non-generic unit specifications, membership in the class of checkable models does
not give rise to a feasible style of testing from generic unit specifications. First,
the class of models of SP ′ may be infinite. Moreover, the class of checkable mod-
els of SP ′ → SP cannot be directly compared to its class of “real” models. Sup-
pose F ∈ Mod≈(SP ′ → SP) and A ∈ ChMod∼,l(SP ′), but A /∈ Mod≈(SP ′)
and F [A] /∈ ChMod∼,l(SP). Then, F /∈ ChMod∼,l(SP ′ → SP) – a correct F
is rejected due to bugs in A.

As explained earlier, a testing method should ensure that correct models are
not rejected. This requires that incorrect models of the parameter specification
are not used in testing. Suppose another class of models, named strong models,
is defined as an alternative to the class of checkable models.

Definition 5.3 (Strong Models). The class of strong models of SP ′ → SP
is defined as SMod∼,l(SP ′ → SP) = {F ∈ Alg(Σ′ → Σ) | ∀A ∈ Mod≈(SP ′),
F [A] is defined and F [A] ∈ ChMod∼,l(SP)}.

This represents the class of models which are successfully tested when only
correct implementations of SP ′ are considered. We then have:

Theorem 5.4. If ∼ is complete, l is sound, and the axioms of SP have only
positive occurrences of ∀ and negative occurrences of ∃, then F ∈ Mod≈(SP ′ →
SP) implies F ∈ SMod∼,l(SP ′ → SP).

Proof. Suppose F ∈ Mod≈(SP ′ → SP). Then, ∀A ∈ Mod≈(SP ′), F [A] is
defined and F [A] ∈ Mod≈(SP). By Theorem 4.6, F [A] ∈ ChMod∼,l(SP).
Hence, F ∈ SMod∼,l(SP ′ → SP). ut

This means that if we can test for membership in the class of strong models,
then correct models of generic unit specifications are not rejected. Obviously,
incorrect models can be accepted. As with Theorem 4.6, the dual also holds, but
is less interesting.

In practice, testing membership in SMod∼,l(SP ′ → SP) (this also applies
to ChMod∼,l(SP ′ → SP)) is not possible, since as already noted the class
Mod≈(SP ′) is almost always infinite and in any case membership in this class
is not testable in general. A feasible approach to test whether generic units are

models of SP ′ → SP should only rely on a finite subset of Mod≈(SP ′). So let
C be a set of units (“stubs”) chosen according to some coverage criteria. Then
we define a “weak” class of models of SP ′ → SP as follows.

Definition 5.5 (Weak Models). Let C ⊆ Mod≈(SP ′). The class of weak
models of SP ′ → SP is defined as WMod∼,l,C(SP ′ → SP) = {F ∈ Alg(Σ′ →
Σ) | ∀A ∈ C, F [A] is defined and F [A] ∈ ChMod∼,l(SP)}.

The intention here is to select a class C which is finite and has a reasonable
size such that F can be tested with this class and useful information gained. The
following theorem shows that under certain assumptions, correct generic units
are not rejected by testing w.r.t. the class of weak models.

Theorem 5.6. If ∼ is complete, l is sound, and the axioms of SP have only
positive occurrences of ∀ and negative occurrences of ∃, then F ∈ Mod≈(SP ′ →
SP) implies F ∈ WMod∼,l,C(SP ′ → SP) for any C ⊆ Mod≈(SP ′).

Proof. Suppose F ∈ Mod≈(SP ′ → SP). Then, ∀A ∈ C ⊆ Mod≈(SP ′), F [A]
is defined and F [A] ∈ Mod≈(SP). By Theorem 4.6, F [A] ∈ ChMod∼,l(SP).
Hence, F ∈ WMod∼,l,C(SP ′ → SP). ut

Example 5.7 (Weak Models). Suppose we want to test whether OrderFun from
Example 5.2 is a weak model of Nat → Order. For this, we need to select
an appropriate class C of implementations of Nat. Then, the following test
obligation, after some simplifications, is incurred:

∀N ∈ C ·
∧

(ψ,T)∈ΨO

OrderFun[N] |=T
∼,l ψ

where ΨO are the axioms in Order. According to Theorem 5.6, if OrderFun is
correct then this will hold. ut

The class of weak models is comparable to the classes of checkable and strong
models, i.e., for any C ⊆ Mod≈(SP ′), F ∈ ChMod∼,l(SP ′ → SP) implies
F ∈ WMod∼,l,C(SP ′ → SP), provided the assumptions of Theorem 4.6 hold
for SP ′, and F ∈ SMod∼,l(SP ′ → SP) implies F ∈ WMod∼,l,C(SP ′ →
SP). Moreover, for any algebra A used to test membership of F in the class of
weak models of SP ′ → SP , we can conclude that F [A] is indeed a checkable
model of SP , i.e., if A ∈ C and F ∈ WMod∼,l,C(SP ′ → SP) then F [A] ∈
ChMod∼,l(SP), by Definition 5.5. However, what if A ∈ Mod≈(SP ′), but
A /∈ C? Is F [A] ∈ ChMod∼,l(SP)? How do we select an appropriate finite set
of Sig(SP ′)-algebras so that an answer to the above question can be given?

Even though, under the assumptions of Theorem 5.6, testing membership in
the class of weak models does not reject correct programs, not all sets C of stubs
are equally interesting. It is desirable that a generic unit F be tested without
regard to the units that are going to be used to instantiate it subsequently.
Then, if we can conclude that F [A] is a checkable model for some A, it may be
possible to avoid re-testing F when A is replaced by a different unit. In other
words, we need to select C as a representative subset of Mod≈(SP ′) so that

given a correct realisation A of SP ′ (A ∈ Mod≈(SP ′)) and a generic unit F in
the class of weak models of SP ′ → SP (F ∈ WMod∼,l,C(SP ′ → SP)), we can
conclude that F [A] is a realisation of SP (F [A] ∈ ChMod∼,l(SP)). Moreover,
even though we are only considering correct realisations to be included in C,
we might want to consider the case where A is a checkable model, but not
necessarily a real model. In other words, can we select a representative subset C
of Mod≈(SP ′) so that A ∈ ChMod∼,l(SP ′) and F ∈ WMod∼,l,C(SP ′ → SP)
implies F [A] ∈ ChMod∼,l(SP)?

One possible answer to the above questions might be to pick one representa-
tive of every equivalence class w.r.t. an equivalence relation ≡ on algebras when
defining C. This might be the observational equivalence on algebras [BHW95]
or an approximation to it. The idea is similar to equivalence partitioning of test
sets and the uniformity hypothesis in black-box testing [Ber91].

Let ≡ be an equivalence relation and define the closure of C under ≡ as
Cl≡(C) = {A ∈ Alg(Σ) | ∃B ∈ C · A ≡ B}. In particular, we might pick C so
that Cl≡(C) coincides with Mod≈(SP) or ChMod∼,l(SP). Following [BHW95],
we focus on equivalence relations that are “factorizable” by partial congruences
of interest. (In fact, we will require only right factorizability.)

Definition 5.8 (Factorizability). An equivalence relation ≡ ⊆ Alg(Σ)×Alg(Σ)
is factorizable by a family of partial Σ-congruences ≈ = (≈A)A∈Alg(Σ) if A ≡ B
iff A/≈A ∼= B/≈B; ≡ is right factorizable by ≈ if A ≡ B implies A/≈A ∼=
B/≈B.

It is shown in [BHW95] that various definitions of observational equivalence
are factorizable by corresponding observational equalities. We will be interested
in equivalences that are right factorizable by an approximate equality that is
complete with respect to our chosen notion of behavioural equality. Complete
equalities are coarser than ≈, and equivalences that are factorizable by such
equalities are coarser than observational equivalence. But requiring right factor-
izability permits the equivalence to be finer than the factorizable one, including
observational equivalence and equivalences finer than that.

The following theorem gives a fundamental relationship between behavioural
satisfaction of a sentence and ordinary satisfaction of the same sentence in a
quotient algebra.

Theorem 5.9 ([BHW95]). Let ≈ = (≈A)A∈Alg(Σ) be a family of partial Σ-
congruences. Then A/≈A |= ψ iff A |=≈ ψ. ut

Putting these together:

Corollary 5.10. Let ≡ be right factorizable by ≈. Then A ≡ B implies A |=≈ ψ
iff B |=≈ ψ.

Proof. A |=≈ ψ iff A/≈A |= ψ (Theorem 5.9) iff B/≈B |= ψ (A ≡ B, right
factorizability, preservation of satisfaction by ∼=) iff B |=≈ ψ (Theorem 5.9). ut

Theorem 5.11. Let ≡ be right factorizable by ∼. If the axioms of SP have
equations in positive positions only, then A ≡ B implies A ∈ ChMod∼,l(SP)
iff B ∈ ChMod∼,l(SP).

Proof. By induction on the structure of SP , using Corollary 5.10 for specifica-
tions of the form 〈Σ, Ψ〉. Since equations are in positive positions only and test
sets are finite sets of ground terms, A |=T

∼,l ψ is equivalent to A |=∼ ψ′ where
ψ′ is obtained from ψ by replacing each subformula of the form ∀x : s · ϕ by
∧

t∈Ts
ϕ[t/x] and each subformula of the form ∃x : s · ϕ by

∨

t∈Ts
ϕ[t/x]. ut

A further assumption will be that generic units preserve ≡, i.e. are “stable”:

Definition 5.12 (Stability). A generic unit F ∈ Alg(Σ′ → Σ) is stable with
respect to equivalences ≡Σ′ ⊆ Alg(Σ′)×Alg(Σ′) and ≡Σ ⊆ Alg(Σ)×Alg(Σ) if
for any A ∈ Dom(F), A ≡Σ′ B implies B ∈ Dom(F) and F [A] ≡Σ F [B].

Stability with respect to observational equivalence is a reasonable assumption
for generic units expressed in a programming language, since stability is closely
related to the security of the data encapsulation mechanisms in that language,
see [Sch87] and [ST97]. For an equivalence that is only an approximation to ob-
servational equivalence, stability seems reasonable as a hypothesis in the context
of testing. We then have the main result of this section:

Theorem 5.13. If F ∈ WMod∼,l,C(SP ′ → SP), A ∈ Cl≡Σ′ (C), ≡Σ is right
factorizable by ∼Σ, the axioms of SP have equations in positive positions only
and F is stable with respect to ≡Σ′ and ≡Σ, then F [A] ∈ ChMod∼,l(SP).

Proof. A ∈ Cl≡Σ′ (C) means that A ≡Σ′ B for some B ∈ C, and then F [B] ∈
ChMod∼,l(SP). By stability, F [A] ≡Σ F [B]. Then, by Theorem 5.11, F [A] ∈
ChMod∼,l(SP). ut

Corollary 5.14. If F ∈ WMod∼,l,C(SP ′ → SP), ≡Σ is right factorizable by
∼Σ, the axioms of SP have equations in positive positions only and F is stable
with respect to ≡Σ′ and ≡Σ, then F ∈ WMod∼,l,Cl≡(C)(SP ′ → SP).

Theorem 5.13 and Corollary 5.14 are useful “amplification” results. They
allow information gained from testing particular cases (here, the set of stubs
C) to be extrapolated to give information about cases that have not actually
been tested. Theorem 5.13 relates to the practice of replacing a module in a
working system (in this case, the parameter of a generic unit) with another
version. If the two versions can be shown to be equivalent (≡), then the overall
system will continue to work provided the assumptions in Theorem 5.13 are
met. In Corollary 5.14, if we choose C so that Cl≡(C) = Mod≈(SP), then the
conclusion is equivalent to membership in the class of strong models of SP ′ →
SP . In most cases, this ideal will not be achievable; nevertheless, we can aim to
include in C representatives of equivalence classes related to the particular class
of applications for which F is intended to be used.

Example 5.15 (Extrapolating Test Results). Let InvoiceFun : Order×Stock →
Invoice be a generic unit. Let CO, CS be sets of models of Order and Stock
respectively. Let SFun ∈ CS represent stocks as functions from product to
quantity, and suppose InvoiceFun is successfully tested as follows:

∀O ∈ CO, S ∈ CS ·
∧

(ψ,T)∈ΨI

InvoiceFun[O,S] + IH |=T
∼ΣI ,lΣI

ψ

where IH, ΨI and ΣI are as in Example 4.5. According to Theorem 5.13 and
Corollary 5.14 this corresponds to testing InvoiceFun using the whole class of
models of Order and Stock that are equivalent to models in CO and CS
respectively. Now, let S′ be a model of Stock that is developed and tested
separately. If we want to check whether InvoiceFun[O,S′] is a model of Invoice
with O ∈ CO but S′ /∈ CS, we need to check whether S′ is equivalent to a model in
CS. Suppose S′ represents stocks as lists of pairs of product and quantity; clearly,
S′ may be equivalent to SFun. If it is, we can conclude that InvoiceFun[O, S′]
is a checkable model of Invoice. ut

6 Testing from architectural specifications

This section is about testing modular systems, taking architectural specifications
into account as structuring mechanisms. We also consider the use of off-the-shelf
units. The framework provided by Casl architectural specifications ensures that
units are independent: the use of a unit, for example in building another unit,
can only take advantage of properties that appear in its specification. Therefore,
styles of testing presented in Sections 4 and 5 can be applied to check individual
units. Ways of integrating test results of individual units when they are used to
form larger systems are addressed in this section.

Example 6.1 (Integrating Test Results). Consider the architectural specification:

arch spec InvoiceSystem =
units

NatAlg : Nat;
OrderFun : Nat → Order;
OrderAlg = OrderFun[NatAlg];
StockFun : Nat → Stock;
StockAlg = StockFun[NatAlg];
InvoiceFun : Order× Stock → Invoice given NatAlg;

result InvoiceFun[OrderAlg,StockAlg]

(The “given” clause requires that both of the arguments of InvoiceFun are built
using the same model of NAT, namely NatAlg.) Development of the modular
system described by this specification can proceed top-down or bottom-up, and
may reuse units that have already been developed and verified. Example 5.15
illustrates how the results of Section 5 can be used to extrapolate test results
to avoid retesting. In a similar vein, suppose that development is strictly top-
down and InvoiceFun is initially developed and tested with stubs StubOrder
and StubStock. When OrderAlg and StockAlg are finally developed and success-
fully tested as models of Order and Stock respectively, then if we can estab-
lish that OrderAlg ≡ StubOrder and StockAlg ≡ StubStock , we can conclude

from Theorem 5.13 without needing to perform any further tests that Invoice-
Fun[OrderAlg,StockAlg] is a model of Invoice (provided we are willing to accept
the stability hypothesis). Now, suppose that development is strictly bottom-up,
and OrderAlg and StockAlg are individually developed and successfully tested
as models of Order and Stock respectively. One might think that it is appro-
priate to use these units to test an implementation of InvoiceFun, since testing
of the combined system InvoiceFun[OrderAlg,StockAlg] will be performed later
anyway. However, if OrderAlg and StockAlg have errors that have not been re-
vealed by testing, then there is a chance that InvoiceFun will be rejected due to
these undetected errors even if it is correct. It is therefore better to develop and
test InvoiceFun, OrderAlg and StockAlg independently and then check again for
errors when they are combined. ut

In this section, we consider architectural specifications of the form:

units A : SP ′′;
F : SP ′ → SP

result F [A]

where A is a unit that is a realization of SP ′′, F is a generic unit that is a real-
ization of SP ′ → SP , and F [A] is the resulting unit term. Restricting attention
to this simple special case allows us to focus on the main issue in integrating
independently-developed modules, namely the interaction between a generic unit
and its parameter. Our conclusions will apply to each of the occurrences of ap-
plication of a generic unit to a parameter in a more complicated architectural
specification such as the one in Example 6.1.

Notice that A is supposed to be a realisation of SP ′′ rather than the possibly
different SP ′ which is the specification of F ’s parameter. This situation would
arise if A is a so-called off-the-shelf unit. Such units may have more function-
ality than needed for their context of use. In particular, they may satisfy more
properties than are actually required.

We have checked A against SP ′′, establishing A ∈ ChMod∼,l(SP ′′). Since
we will be using A in a context where it is required to satisfy SP ′, we are
interested in the question of whether A ∈ ChMod∼,l(SP ′). Therefore, we now
consider conditions under which a checkable model A of SP ′′ is also a checkable
model of SP ′. The signature of SP ′′ is required to coincide with that of SP ′;
this guarantees that F [A] is “statically” well-formed. However, the structure of
the specification SP ′′ may not coincide with the structure of SP ′. Also, the test
sets in SP ′ and SP ′′ may differ even if the specifications otherwise coincide. The
possible structural mismatch suggests that comparing the normal forms of the
two specifications might help. Let nf (SP ′) = 〈Σ′, Ψ ′〉|Sig(SP ′) and nf (SP ′′) =
〈Σ′′, Ψ ′′〉|Sig(SP ′′), where Ψ ′ ⊆ {(ψ, T) | ψ ∈ Sen(Σ′), T ⊆ TΣ′} and Ψ ′′ ⊆
{(ψ, T) | ψ ∈ Sen(Σ′′), T ⊆ TΣ′′}. Then we get the following result.

Theorem 6.2. If ∼ and l are compatible, the axioms of SP ′ have only positive
occurrences of ∀ and negative occurrences of ∃, and ∀(ψ, T ′) ∈ Ψ ′ · ∃(ψ, T ′′) ∈
Ψ ′′ · T ′ ⊆ T ′′, then A ∈ ChMod∼,l(SP ′′) implies A ∈ ChMod∼,l(SP ′).

Proof. As ∼ and l are compatible families of equalities, ChMod∼,l(SP ′) =
ChMod∼,l(nf (SP ′)) by Theorem 4.9. The same applies to SP ′′. Thus, we need
to show that A ∈ ChMod∼,l(nf (SP ′′)) implies A ∈ ChMod∼,l(nf (SP ′)).
This follows from the fact that test sets in SP ′′ are bigger than test sets in SP ′

[Mac00b], using the assumptions on quantifiers, and that any axiom of SP ′ is
also an axiom of SP ′′. ut

Theorem 6.2 relates to results in [Mac00a,Mac00c], regarding testing axioms
with different test sets (Theorem 3.20 of [Mac00c]) and structured testing com-
pared to testing from normal form (Corollary 5.36 there).

When the tester of F is different from the tester of A, then different approx-
imate equalities can be chosen.

Theorem 6.3. Let ∼,∼′, l, l′ be compatible families of equalities. If Ψ ′ = Ψ ′′,
∼′ ⊆ ∼ and l′ ⊇ l, then A ∈ ChMod∼′,l′(SP ′′) implies A ∈ ChMod∼,l(SP ′).

Proof. Again, this reduces to showing that A ∈ ChMod∼′,l′(nf (SP ′′)) implies
A ∈ ChMod∼,l(nf (SP ′)). This follows from the fact that the pair of families
of equalities ∼′,l′ is more accurate than the pair ∼, l. ut

Theorem 6.3 relates to Theorem 3.27 in [Mac00c], although the implication
is considered there for individual formulas only. The theorem illustrates the case
in which A is tested against SP ′′ using more accurate equalities than the ones
used to test F . If ∼ and ∼′ are complete, then the finer ∼′ is, the more accurate
it is. Also, if l and l′ are sound, then the coarser l′ is, the more accurate it is.
The following is a corollary of Theorems 6.2 and 6.3.

Corollary 6.4. Let ∼,∼′,l,l′ be compatible families of equalities such that
∼′ ⊆ ∼ and l′ ⊇ l. If the axioms of SP ′ have only positive occurrences of ∀
and negative occurrences of ∃, and ∀(ψ, T ′) ∈ Ψ ′ · ∃(ψ, T ′′) ∈ Ψ ′′ · T ′ ⊆ T ′′, then
A ∈ ChMod∼′,l′(SP ′′) implies A ∈ ChMod∼,l(SP ′). ut

One might expect a supplier of off-the-shelf units to use higher standards
for testing than a user of such units. Then, larger test sets and more accurate
equalities are indeed realistic expectations.

Example 6.5 (Off-the-shelf units). Consider a version of example 6.1 where StockFun :
Nat → Stock is replaced by StockFun′ : Nat → Stock′, where the signatures
of Stock and Stock′ coincide but the test sets of Stock are a subset of the
test sets of Stock′. Then, by Theorem 6.2, if StockAlg is a checkable model of
Stock′, it is certainly a checkable model of Stock, making it an appropriate
argument for InvoiceFun. Now, suppose instead that the equality == on Stock
defined in Example 3.5 is used to test both StockAlg and InvoiceFun, but the
list of products required as argument by == differs. Then the axioms of StockAlg
and InvoiceFun are tested with different equalities on Stock. However, if the as-
sumptions on Theorem 6.3 are met, then again if StockAlg is a checkable model
of Stock′, it is an appropriate argument for InvoiceFun. ut

7 Concluding remarks

We have presented ideas relating to testing modular systems against Casl-style
architectural specifications. We focus on architectural specifications containing
unit terms formed by instantiating generic units. Our overall objective is to
support independent development and verification of program components.

The problem of testing against architectural specifications reduces to:

1. testing non-generic units against structured specifications;
2. testing generic units against specifications of the form SP ′ → SP ; and
3. “integration testing” for unit terms that avoids re-testing.

Solutions to (1) are presented in Section 4, where previous results for testing
against structured specifications are reviewed and discussed in the context of
architectural specifications. Then, based on previous research on behavioural
implementations, ideas concerning (2) are presented in Section 5. Since the class
of possible parameter units (“stubs”) is almost always infinite, we suggest that a
representative finite class be selected, allowing testing results to be extrapolated
to equivalent units. For this, stability of generic units is assumed. Finally, (3) is
addressed in Section 6, where the aim is to take advantage of tests already per-
formed and allow for independent development. Previous results are generalised
in order to deal with off-the-shelf units, which may have more functionality than
is required.

As further work, we plan to look into circumstances under which the stability
assumption holds, as well as the connection between equivalence on algebras and
testing satisfaction, including the question of how this equivalence can be effec-
tively checked. We also aim to extend the results to specifications of higher-order
generic units and to unit terms built using operations other than instantiation
of generic units. Finally, a general method of applying the ideas presented along
with practical case studies are needed.

References

[ABK+] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. Mosses, D. San-
nella and A. Tarlecki. Casl: The common algebraic specification language.
Theoretical Computer Science. To appear.

[BB01] H. Baumeister and D. Bert. Algebraic specification in Casl. In Software
Specification Methods – An Overview Using a Case Study. Springer, 2001.

[BBL97] G. Bernot, L. Bouaziz, and P. LeGall. A theory of probabilistic functional
testing. Proc. Intl. Conf. on Software Engineering, Boston (1997).

[BCH99] M. Bidoit, M.V. Cengarle and R. Hennicker. Proof systems for structured
specifications and their refinements. Algebraic Foundations of Systems Speci-
fications, chapter 11. Springer (1999).

[Ber89] G. Bernot. A formalism for test with oracle based on algebraic specifications.
Report 89-4, LIENS/DMI, Ecole Normale Supérieure, Paris (1989).

[Ber91] G. Bernot. Testing against formal specifications: a theoretical view. Proc.
TAPSOFT’91, Brighton. Springer LNCS 494, 99–119 (1991).

[BGM91] G. Bernot, M.-C. Gaudel and B. Marre. Software testing based on formal
specifications: a theory and a tool. Software Engineering Journal, 6:387–405
(1991).

[BH99] M. Bidoit and R. Hennicker. Observational logic. Proc. AMAST’98, Manaus.
Springer LNCS 1548, 263–277 (1999).

[BHW95] M. Bidoit, R. Hennicker and M. Wirsing. Behavioural and abstractor im-
plementation. Science of Computer and Programming, 25:149–186 (1995).

[BST] M. Bidoit, D. Sannella and A. Tarlecki. Architectural specifications in Casl.
Formal Aspects of Computing. To appear.

[DF93] J. Dick and A. Faivre. Automating the generation and sequencing of test cases
from model-based specifications. Proc. FME’93. Springer LNCS 670 (1993).

[Don97] M.R. Donat. Automating formal specification-based testing. Proc. TAP-
SOFT’97, Lille. Springer LNCS 1214 (1997).

[DW00] M. Doche and V. Wiels. Extended institutions for testing. Proc. AMAST
2000. Springer LNCS 1816, 514–528 (2000).

[Gau95] M.-C. Gaudel. Testing can be formal, too. Proc. TAPSOFT’95, Aarhus.
Springer LNCS 915 (1995).

[GJ98] M-C. Gaudel and P.R. James. Testing abstract data types and processes: A
unifying theory. Formal Aspects of Computing, 10:436–451 (1998).

[LA96] P. LeGall and A. Arnould. Formal specification and test: Correctness and
oracle. Proc. WADT’95, Oslo. Springer LNCS 1130 (1996).

[LeG99] P. LeGall. Vers une spécialisation des logiques pour spécifier formellement et
pour tester des logiciels. Habilitation thesis, Université d’Evry (1999).

[Mac99] P.D.L. Machado. On oracles for interpreting test results against algebraic
specifications. Proc. AMAST’98, Manaus. Springer LNCS 1548, 502–518
(1999).

[Mac00a] P.D.L. Machado. The rôle of normalisation in testing from structured alge-
braic specifications. Proc. WADT’99, Bonas. Springer LNCS 1827, 459–476
(2000).

[Mac00b] P.D.L. Machado. Testing from structured algebraic specifications. Proc.
AMAST 2000. Springer LNCS 1816, 529–544 (2000).

[Mac00c] P.D.L. Machado. Testing from Structured Algebraic Specifications: The Or-
acle Problem. PhD thesis, LFCS, University of Edinburgh (2000).

[Mar91] B. Marre. Toward automatic test data selection using algebraic specifications
and logic programming. Proc. 8th Intl. Conf. on Logic Programming, Paris.
MIT Press (1991).

[Sch87] O. Schoett. Data Abstraction and the Correctness of Modular Programming.
PhD thesis, LFCS, University of Edinburgh (1987).

[SST92] D. Sannella, S. Soko lowski and A. Tarlecki. Toward formal development of
programs from algebraic specifications: parameterisation revisited. Acta In-
formatica 29:689–736 (1992).

[ST97] D. Sannella and A. Tarlecki. Essential concepts of algebraic specification and
program development. Formal Aspects of Computing, 9:229–269 (1997).

Appendix: Normal form of a structured specification

Dear referee: This appendix will not be included in the published version of
the paper.

The following is the usual procedure for normalizing structured specifications
– see [BCH99] – modified to deal with structured specifications with testing

interface. The aim is to tranform a structured specification with testing interface
SP into a specification nf (SP) of the form 〈Σ′, Ψ ′〉|Σ having the same signature
and the same class of models

The symbols of a specification includes both visible and hidden symbols ap-
propriately renamed to avoid name clashes.

Definition A.1 (Symbols). The symbols of a structured specification SP are
defined as follows.

1. If SP = 〈Σ, Ψ〉, then Sym(SP) = Σ
2. If SP = SP1 ∪ SP2, then Sym(SP) = Sym(SP1) +Sig(SP) Sym(SP2) (see

Figure 1)
3. If SP = translate SP ′ by σ, then Sym(SP) = PO(Sig(SP ′) ↪→ Sym(SP ′), σ),

where σ : Sig(SP ′) → Sig(SP) (see Figure 1)
4. If SP = SP ′|Σ, then Sym(SP) = Sym(SP ′)

where the diagrams in Figure 1 are pushout constructions chosen to rename all
hidden symbols so that Sig(SP) ⊆ Sym(SP).

Sig(SP)
�

_

��

�

�

/ / Sym(SP2)

in2

� �

�

�

�

Sym(SP1)
in1

//___

Sym(SP1)+Sig(SP)

Sym(SP2)

Sig(SP ′)
�

_

� �

σ
// Sig(SP)

�

_

��

�

�

�

Sym(SP ′)
ς

//___

PO(Sig(SP ′) ↪→
Sym(SP ′), σ)

Fig. 1. Sym(SP1 ∪ SP2) and Sym(translate SP ′ by σ) respectively.

The normal form of a specification SP is a basic specification restricted by
the export operator.

Definition A.2 (Normal Form). Let SP be a structured specification. Its nor-
mal form nf(SP) is a specification of the form 〈Sym(SP), Ψ〉|Sig(SP), where
Ψ ⊆ {(ψ, T) | ψ ∈ Sen(Sym(SP)) and T ⊆ TSym(SP)}, defined as follows.

1. If SP = 〈Σ, Ψ〉, then nf(SP) = 〈Σ,Ψ〉|Σ
2. If SP = SP1 ∪ SP2 and nf(SPi) = 〈Sym(SPi), Ψi〉|Sig(SPi) i = 1, 2, then

nf(SP) = 〈Sym(SP), in1(Ψ1) ∪ in2(Ψ2)〉|Sig(SP) (see Figure 1)
3. If SP = translate SP ′ by σ and nf(SP ′) = 〈Sym(SP ′), Ψ ′〉|Sig(SP ′), then

nf(SP) = 〈Sym(SP), ς(Ψ ′)〉|Sig(SP) (see Figure 1)
4. If SP = SP ′|Σ and nf(SP ′) = 〈Sym(SP ′), Ψ ′〉|Sig(SP ′),

then nf(SP) = 〈Sym(SP ′), Ψ ′〉|Sig(SP)

where ς, in1, in2 are extended to translate pairs of formulas and sets of terms.

