
Architectural specifications in CASL

Michel Bidoit1 Donald Sannella2 Andrzej Tarlecki3

1 Laboratoire Spécification et Vérification, CNRS & ENS de Cachan, France
2 Laboratory for Foundations of Computer Science, University of Edinburgh, UK
3 Institute of Informatics, Warsaw University and Institute of Computer Science,

Polish Academy of Sciences, Warsaw, Poland.

Abstract. One of the novel features of Casl, the Common Algebraic
Specification Language, is the provision of so-called architectural spe-
cifications for describing the modular structure of software systems. A
discussion of refinement of Casl specifications provides the setting for a
presentation of the rationale behind architectural specifications. This is
followed by details of the features provided in Casl for architectural spe-
cifications, hints concerning their semantics, and simple results justifying
their usefulness in the development process.

1 Introduction

A common feature of present-day algebraic specification languages (see e.g.
[SW83], [EM85], [GH93], [CoFI96], [SW98]) is the provision of specification-
building operations [BG77] for building large specifications in a structured fash-
ion from smaller and simpler ones. Less usual are features for describing the
modular structure of software systems under development. This paper is about
the facilities for this that are provided in Casl, the new Common Algebraic
Specification Language [CoFI98b] that has been developed under the auspices of
the Common Framework Initiative [Mos97,CoFI98a] in an attempt to create a
focal point for future joint work on algebraic specifications and a platform for
exploitation of past and present work on methodology, support tools, etc.

Following practical experiences [FJ90] and foundational work [Bid88], [ST89],
[SST92], [BH93], we argue that mechanisms to structure specifications cannot
suffice for describing the modular structure of software under development. Casl

therefore provides a separate kind of specifications, so-called architectural spe-
cifications, for this purpose. An architectural specification consists of a list of
unit declarations, indicating the component modules required with specifications
for each of them, together with a unit term that describes the way in which these
modules are to be combined. Such architectural specifications are aimed at the
“implementation” modular structure of the system rather than at the “inter-
action” relationships between modules in the sense of [AG97] (the latter to be
considered when specifications of “reactive” modules are introduced in a Casl

extension).
The aim of this paper is to present motivation, intuition and technicalities

related to this concept. We provide some information about Casl in Sect. 2, dis-
cuss the development of programs from specifications by stepwise refinement in

Sect. 3 and then introduce architectural specifications in Sect. 4. The semantics
and correctness issues of architectural specifications are discussed in Sects. 5, 6
and 7. The development process in the presence of architectural specifications
is briefly discussed in Sect. 8.

Even though we present architectural specifications in the context of Casl,
the ideas apply in any specification and development framework, as we mention
in Sect. 9. We also briefly mention there the issue of behavioural refinement.

2 CASL preliminaries

Casl is a formalism to describe Casl structures: many-sorted algebras with sub-
sorts, partial operations and predicates. Structures are classified by signatures,
which give sort names (with their subsorting relation), partial/total operation
names, and predicate names, together with profiles of operations and predicates.
For each signature Σ, the class of all Σ-structures is denoted Mod[Σ].

The basic level of Casl includes declarations to introduce components of
signatures and axioms to give properties of structures that are to be considered
as models of a specification. The logic used to write the axioms is essentially
first-order logic built over atomic formulae which include strong and existential
equalities, definedness formulae and predicate applications. A basic Casl spe-
cification SP amounts to a definition of a signature Σ and a set of axioms Φ. It
denotes the class [[SP]] ⊆ Mod[Σ] of its models, which are those Σ-structures
that satisfy all the axioms in Φ: [[SP]] = {A ∈Mod[Σ] | A |= Φ}.

Casl provides ways of building complex specifications out of simpler ones by
means of various structuring constructs. These include translation, hiding, union,
and both free and loose forms of extension. Generic specifications and their
instantiations with pushout-style semantics [EM85] are also provided. Structured
specifications built using these constructs can be given a compositional semantics
where each specification SP determines a signature Sig [SP] and a class [[SP]] ⊆
Mod[Sig[SP]] of models.

2.1 Example

Here is a sequence of definitions of Casl specifications.

spec Num =
sort Num
ops 0 : Num ;

succ : Num → Num
end

spec AddNum = Num then op plus : Num × Num → Num
vars x , y : Num
axiom plus(x , succ(y)) = succ(plus(x , y))

spec OrdNum = Num then pred < : Num × Num
axiom ∀x : Num • 0 < succ(x)

spec CodeNum =
AddNum and OrdNum

then op code : Num → Num
axiom ∀x : Num • 0 < code(x)

We start with a signature for natural numbers, and then extend it in two ways:
by a binary operation with a simple axiom and by a loosely specified binary
predicate. In CodeNum we put both extensions together and then add a unary
operation on Num with another simple axiom.

spec Elem = sort Elem end

spec PartContainer [Elem] =
generated type Cont ::= empty | add(Elem;Cont)?
pred addable : Elem × Cont
vars x , y : Elem; C : Cont
axiom def add(x ,C) ⇔ addable(x ,C)
pred ∈ : Elem × Cont
axioms ¬ (x ∈ empty);

(x ∈ add(y ,C) ⇔ x = y ∨ x ∈ C) if addable(y ,C)
end

This is a generic (in Elem) specification of “partial containers”, which introduces
a datatype Cont generated by a constant empty and a partial constructor add
that adds an element to a container. An element x may be added to a container
C if and only if addable(x, C) is satisfied. But addable is left unspecified at this
stage. The usual membership predicate is provided as well.

spec PartNumCont =
PartContainer[CodeNum fit Elem 7→ Num]

We instantiate PartContainer to CodeNum, with an appropriate fitting of
the parameter. The result contains all the components of CodeNum together
with those added by PartContainer with their profiles adjusted accordingly.

spec UniqueNumCont =
PartNumCont

then vars x : Num; C : Cont
axiom addable(x ,C) ⇔ ¬ (x ∈ C) ∧ ¬ (code(x) ∈ C)

Finally, we constrain the addability condition, requiring that a number is addable
to a container if and only if neither it nor its code are already included there.

3 Program development and refinement

The intended use of Casl is to specify programs. Each Casl specification should
determine a class of programs that realize the specified requirements. It follows

that programs must be written in a language having a semantics which assigns1

to each program its denotation as a Casl structure. Then each program P
determines a signature Sig [P] and a structure [[P]] ∈Mod[Sig[P]]. The denota-
tion [[SP]] of a specification SP is a description of its admissible realizations: a
program P is a (correct) realization of SP if Sig [P] = Sig [SP] and [[P]] ∈ [[SP]].

In an idealized view of program development, we start with an initial loose
requirements specification SP0 and refine it step by step until some easily-
realizable specification SP last is obtained:

SP0 ; SP1 ; · · ·; SP last

Stepwise refinement only makes sense if the above chain of refinements guaran-
tees that any correct realization of SP last is also a correct realization of SP0: for
any P , if [[P]] ∈ [[SP last]] then [[P]] ∈ [[SP0]]. This is ensured by the definition of
refinement: for any SP and SP ′ with the same signature, we define

SP ; SP ′ ⇐⇒ [[SP ′]] ⊆ [[SP]].

The construction of a program to realize SP last is outside the scope of Casl.
Furthermore, there is no construct in Casl to explicitly express refinement
between specifications. All this is a part of the meta-level, though firmly based
on the formal semantics of Casl specifications.

A more satisfactory model of refinement allows for modular decomposition
of a given development task into several tasks by refining a specification to a
sequence of specifications, each to be further refined independently. (Of course,
a development may branch more than once, giving a tree structure.)

SP ; BR


SP1 ; · · ·; SP1,last
...
SPn ; · · ·; SPn,last

Once we have realizations P1, . . . , Pn of the specifications SP1,last , . . . , SPn,last,
we should be able to put them together with no extra effort to obtain a realiz-
ation of SP . So for each such branching point we need an operation to combine
arbitrary realizations of SP1, . . . , SPn into a realization of SP . This may be
thought of as a linking procedure LINK BR attached to the branching point BR,
where for any P1, . . . , Pn realizing SP1, . . . , SPn, LINK BR(P1, . . . , Pn) realizes
SP : if [[P1]] ∈ [[SP1]], . . ., [[Pn]] ∈ [[SPn]] then [[LINKBR(P1, . . . , Pn)]] ∈ [[SP]].

The nature of LINK BR depends on the nature of the programs considered.
Our preferred view is that the programming language in use has reasonably
powerful and flexible modularization facilities, such as those in Standard ML
or Ada. Then P1, . . . , Pn are program modules (structures in Standard ML,
packages in Ada) and LINK BR is a module expression (or a generic module on
its own) with formal parameters for which the actual modules P1, . . . , Pn may be

1 This may be rather indirect, and in general involves a non-trivial abstraction step.
It has not yet been attempted for any real programming language.

substituted. Note that if we later replace a module Pi by another realization P ′i
of SP i, “recompilation” of LINK BR(P1, . . . , P

′
i , . . . , Pn) might be required but

in no case will it be necessary to modify the other modules.
One might expect that BR above is just a specification-building operation

OP (or a specification construct expressible in Casl), and branching could be
viewed as “ordinary” refinement SP ; OP(SP1, . . . , SPn). Further refinement
of OP(SP1, . . . , SPn) might then consist of separate refinements for SP1, . . . , SPn

as above. Then we need at least that OP is “monotonic” w.r.t. inclusion of model
classes.2 This view is indeed possible provided that the specification-building op-
eration OP is constructive: for any realizations P1, . . . , Pn of SP1, . . . , SPn, we
must be able to construct a realization LINK OP(P1, . . . , Pn) of OP(SP1, . . . , SPn).
However, simple examples show that some standard specification-building oper-
ations (like the union of specifications) do not have this property. (See [HN92]
for a different approach to this problem.)

Another problem with the refinement step SP ; OP(SP1, . . . , SPn) is that
it does not explicitly indicate that subsequent refinement is to proceed by in-
dependently refining each of SP1, . . . , SPn, so preserving the structure imposed
by the operation OP . The structure of the specification OP(SP1, . . . , SPn) in
no way prescribes the structure of the final program. And this is necessarily
so: while preserving this structure in the subsequent development is convenient
when it is natural to do so, refinements that break this structure must also be
allowed. Otherwise, at very early stages of the development process we would
have to fix the final structure of the resulting program: any decision about struc-
turing a specification would amount to a decision about the structure of the final
program. This is hardly practical, as the aims of structuring specifications in the
early development phases (and at the requirements engineering phase) are quite
distinct from those of structuring final programs. Simple examples are mentioned
below, cf. [FJ90].

On the other hand, at certain stages of program development we need to
fix the structure of the system under development: the design of the architec-
ture of the system is often among the most important design decisions in the
development process. In Casl, this is the role of architectural specifications, see
Sect. 4.

3.1 Example

Consider the task of realizing UniqueNumCont from Sect. 2.1. Its structure
does not provide useful guidance to the structure of its realization. For instance,
the last extension of PartNumCont by an axiom for addable cannot be a
directive to first realize PartNumCont and then somehow miraculously ensure

2 The specification-building operations we use here, hence all derived specification con-
structs, are monotonic, as are most of the constructs of Casl and other specification
languages. The few exceptions — like imposing the requirement of freeness — can
be viewed as operations which add “constraints” to specifications rather than as
fully-fledged specification-building operations.

that the predicate addable does indeed satisfy the axiom. One might change this
specification, so that a realization of PartNumCont would be required for any
choice of addable — but this would be quite a different specification with quite
a different structure. Moreover, it would not enable the implementor to take
advantage of the fact that the axiom for addable ensures that an element need
never be added to a container more than once.

We might re-structure the above specification instead by introducing some
new “constructive” compositions or exposing some existing ones. For instance:

spec UniqueContainer [CodeNum] =
PartContainer[CodeNum fit Elem 7→ Num]
then vars x : Num; C : Cont

axiom addable(x ,C) ⇔ ¬ (x ∈ C) ∧ ¬ (code(x) ∈ C)

spec UniqueNumCont’ = UniqueContainer[CodeNum]

Then we have that UniqueNumCont ; UniqueNumCont’ (in fact, the two
specifications are equivalent) and the instantiation in the latter specification
is “constructive”, which indicates a possible split of further development to a
part where a realization of CodeNum is developed and another part where
UniqueContainer is implemented. See Sect. 4.1 below for details.

4 Architectural specifications

The conclusion from Sect. 3 is that there are two different kinds of structuring
mechanisms needed in the specification and development process.

On one hand we need the standard mechanisms to structure specifications
to facilitate their construction, reading, understanding and re-use. These are
provided by the specification-building operations of Casl, disregarding whether
these operations are “constructive” or not. On the other hand, at a certain stage
of program development we need to design the structure of the final program,
and consider these decisions binding in the subsequent development process.
Such a design is given by refining a specification to a “constructive” combin-
ation of specified components. The essence here is not so much the use of a
constructive specification-building operation, as rather some specific construc-
tion (linking procedure) that builds a realization of the original specification
once given realizations of the component specifications.

The latter structuring facility, although quite standard in modular program-
ming languages, is rarely explicitly provided in specification formalisms. In many
approaches, the structure of the specification is regarded as determining the
structure of the final program, examples like those in Sect. 3.1 notwithstanding,
see e.g. [GB80,MA91]. Or else ad hoc informal mechanisms are used to indicate
that a certain part of the structure of a specification (given by a constructive
specification-building operation) is to remain fixed throughout the rest of the
development. We consider this unsatisfactory and likely to be confusing. There-
fore Casl provides an explicit notation whereby one specifies the components

required together with a way to combine them to build the resulting program.
Such architectural specifications can be used to refine ordinary specifications,
whether structured or not, explicitly introducing branching into the develop-
ment process and structure into the final program:

SP ; BR


SP1
...
SPn

The corresponding architectural specification is written as follows:

units U1 : SP1 ;
. . .
Un : SPn

result LINK BR(U1, . . . , Un)

Notice that we provide names for program units to be implemented according to
the component specifications given, and we give a “linking procedure” LINK BR
to combine these units rather than an operation to combine their specifications.
The component specifications SP1, . . . , SPn are ordinary Casl specifications.
The “linking procedure” LINK BR(U1, ..., Un) is just a unit term that might
involve the units named U1, . . . , Un. It builds a new unit when given actual
units U1, . . . , Un correctly realizing the specifications SP1, . . . , SPn. Typically
SP1, . . . , SPn (and so, units that realize them) will contain shared parts, or
some of them will rely on others. For instance, we might start by implementing
some simple specification SP1. Then, given an implementation U1 of SP1, build
an implementation U2 of some “larger” specification SP2 using U1, etc. The last
stage is to build an implementation Un of SPn using Un−1, and the final result
is Un. The corresponding architectural specification is:

units U1 : SP1 ;
U2 : SP2 given U1 ;
. . .
Un : SPn given Un−1

result Un

Of course, this is just the simplest case. In particular, it does not cover multiple
dependencies (where a unit might use several other units), sharing between vari-
ous units in a more flexible way than just having each unit use the previous one,
or reusability (whereby a unit may be used more than once). Still, it illustrates
the idea of splitting a development task into subtasks, clearly indicating their
interfaces and the flow of information between them. In the extreme, such a split
may be done step by step, each time splitting the work into just two parts:

SP ;

units U1 : SP1 ;
U2 : SP given U1

result U2

The task of providing a realization U1 for SP1 is independent from the task of
providing a realization U2 for SP using U1. It follows that no properties of U1
may be exploited in the development of U2 other than those explicitly ensured
by the specification SP1. This requires a realization of SP for any realization
of SP1, which is tantamount to requiring a generic realization F of SP which
takes the particular realization of SP1 as parameter. Then we obtain U2 by
simply feeding U1 to F .

Genericity here arises from the independence of the developments of U1 and
U2, rather than from the desire to build multiple realizations of SP using different
realizations of SP1. This is reflected in the fact that F is not named in the
architectural specification above. If it is desired to indicate the potential for re-
use explicitly, we may give F “first-class” status as a so-called generic unit with
a specification SP1→SP which indicates that it will realize SP when given a
realization of SP1:

units U1 : SP1 ;
F : SP1 → SP ;
U2 = F [U1]

result U2

Here, U2 = F [U1] is a so-called unit definition.
The earlier specification is equivalent to this version except that F is an-

onymous there. This shows how to explain architectural specifications involving
“given” by translation to architectural specifications involving generic units. A
key insight is the use of genericity to control the flow of information between
developments of independent units, as well as for multiple instantiation. Despite
this, it seems useful to retain both notations as they convey different pragmatic
intuitions.

Generic unit specifications correspond to functor headings in Extended ML
[ST89] and to a restricted form of Π-specifications in [SST92], cf. Spectral
[KS91]. Generic unit specifications and generic specifications coincide in ACT ONE
[EM85], which the above discussion argues is inappropriate.

4.1 Example

Recall the specifications built in Sect. 2.1 and the further comments on them in
Sect. 3.1. We ended up there with a specification

spec UniqueNumCont’ = UniqueContainer[CodeNum]

which indicates a way of decomposing the task of implementing UniqueNumCont.
This may be turned into a design decision by refining this specification to an
architectural specification that captures the decomposition meant here:

arch spec UCNum =
units N : CodeNum;

UCN : UniqueNumCont’ given N
result UCN

Then UniqueNumCont ; UCNum.
We might, however, be a bit more clever in our design and require a real-

ization of containers with the specified “uniqueness” property for arbitrary ele-
ments equipped with the operations that allow one to express this property. For
instance:3

spec TransElem =
sort Elem
op transform : Elem → Elem

end

spec AbstractUniqueCont =
PartContainer[TransElem]
then vars x : Elem; C : Cont

axiom addable(x ,C) ⇔ ¬ (x ∈ C) ∧ ¬ (transform(x) ∈ C)

arch spec AbstractUCNum =
units N : CodeNum;

AUC : TransElem → AbstractUniqueCont

result AUC [N fit Elem 7→ Num , transform 7→ code]

We still have UniqueNumCont ; AbstractUCNum.
The required generic unit AUC here is more abstract and more general than

the “anonymous” unit to build UCN as required in UCNum. AUC has to work
for arbitrary structures fitting the abstract TransElem specification; it could
be re-used in the future for arguments other than N .

5 Semantics of unit specifications

Consider a unit specification of the form SP ′→SP . In Casl, SP is implicitly
viewed as an extension of SP ′. We therefore assume that in each specifica-
tion of the form SP ′→SP , SP extends SP ′, that is: Sig[SP ′] ⊆ Sig [SP] and
[[SP]] Sig[SP ′] ⊆ [[SP ′]].

To realize the specification SP ′→SP , we should provide a “program frag-
ment” ∆P for SP \ SP ′ that extends any realization P ′ of SP ′ to a realization
∆P (P ′) of SP . For all programs P ′ such that [[P ′]] ∈ [[SP ′]], ∆P (P ′) must be a
program that extends P ′ and realizes SP . Hence, semantically ∆P determines
a function [[∆P]]: [[SP′]]→ [[SP]] that “preserves” its argument. Consequently:

[[SP ′→SP]] = {F : [[SP′]]→ [[SP]] | for all A′ ∈ [[SP ′]], F (A′) Sig[SP ′] = A′}

This view of program fragments as functions naturally leads to further gener-
alisations. The most obvious one is to admit multi-argument functions, provid-
ing for the possibility that the realization of some specification might depend
3 The reader is kindly asked to rely on her/his intuition and the obvious analogy with

the instantiation of generic specifications to grasp the meaning of instantiation of
generic units with non-trivial fitting of arguments.

on realizations of more than one (sub-)specification. Specifications of multiply-
dependent units will have the form SP1 × . . . × SPn→SP . As with singly-
dependent units, we assume that SP extends each of SP1, . . . , SPn (or equi-
valently, their union). We then have:

[[SP1 × . . .× SPn→SP]] = {F : [[SP1 × . . .× SPn]]→ [[SP ′]] |
for all 〈A1, . . . , An〉 ∈ [[SP1 × . . .× SPn]],
F (A1, . . . , An) Sig [SPi] = Ai, for i = 1, . . . , n}

We have not yet defined [[SP1×. . .×SPn]]. In general, not all tuples 〈A1, . . . , An〉
of structures A1 ∈ [[SP1]], . . . , An ∈ [[SPn]] can be extended to structures in [[SP]]:
if a symbol in SP is inherited from one or more of SP1, . . . , SPn, then its inter-
pretation in the resulting structure must be the same as in each corresponding
argument structure. So, if such a symbol occurs in several arguments then it is
impossible to expand a tuple of arguments to a result unless all of the relevant
arguments interpret this symbol in the same way.

A tuple 〈A1, . . . , An〉 of structures A1 ∈ Mod[Σ1], . . . , An ∈ Mod[Σn] is
compatible if any symbol that occurs in both Σi and Σj is interpreted in the
same way in Ai and Aj , for 1 ≤ i, j ≤ n. Then we take Mod[Σ1 × . . .×Σn] to
be the class of all compatible tuples of structures from Mod[Σ1], . . . ,Mod[Σn],
respectively, and define:

[[SP1 × . . .× SPn]] =
{〈A1, . . . , An〉 ∈Mod[Σ1 × . . .×Σn] | A1 ∈ [[SP1]], . . . , An ∈ [[SPn]]}

6 Sharing and well-formedness

The definitions at the end of the previous section convey important methodo-
logical concepts. Namely, we now have a way to require that a number of units
(fed to a unit dependent on them) share some of their parts. Even though they
might be developed independently, certain parts of the argument units must be
identical. In Casl, this requirement is imposed by the use of the same names in
argument signatures for symbols which are to be shared between the argument
units. An application of a generic unit to a tuple of arguments is well-formed
only if the arguments share their commonly-named parts. In a programming lan-
guage like Standard ML, this is a part of the “type discipline” and the required
sharing is (type-)checked statically.

Consider the following simple example:

spec SP0 = sort s end
spec SPa = sort s op a : s end
spec SPb = sort s op a, b : s end
spec SPc = sort s op a, c : s end
spec SPd = sort s op a, b, c, d : s axiom d = b ∨ d = c end

Then the generic unit specification SP b×SP c → SPd imposes a constraint on the
arguments for the generic unit: they are required to share a common realization
of the sort s and constant a. Consequently, given the following unit declarations:

units Ub : SPb ;
Uc : SPc;
Fd : SPb × SPc → SPd

the instantiation Fd[Ub, Uc] cannot be allowed, since we have no way to ensure
that the units Ub and Uc do indeed share s and a. On the other hand, consider
the following unit declarations:

units Ua : SPa ;
Fb : SPa → SPb;
Fc : SPa → SPc ;
Fd : SPb × SPc → SPd

The unit term Fd[Fb[Ua], Fc[Ua]] is well-formed in the context of these declara-
tions. The required sharing between the two arguments for Fd, namely between
Fb[Ua] and Fc[Ua], is ensured. In both Fb[Ua] and Fc[Ua] the sort s and constant
a come from Ua, and so must be the same.

The situation becomes a bit less clear if components of instantiations of
generic units are involved. For instance, consider:

units U0 : SP0 ;
Fa : SP0 → SPa

and declarations of Fb, Fc, Fd as above. Is Fd[Fb[Fa[U0]], Fc[Fa[U0]]] well-formed?
One might expect so: the sort s in the two arguments for Fd can be traced to
U0, and the constant a to the two occurrences of Fa[U0]. But the argument that
the two occurrences of Fa[U0] share the constant a cannot be carried too far. In
general, to decide if two instantiations of Fa, say Fa[U0] and Fa[U ′0], share the
constant a , we would have to check if the two argument units U0 and U ′0 are
identical. Clearly, this is too complicated for static analysis, even if in trivial cases
it can be seen to hold immediately, as above. Moreover, in some programming
languages (Standard ML, Ada) the new items introduced by instantiation of
generic modules are distinct for each such instantiation.

Therefore, for safety, we assume that new symbols introduced by a generic
unit are not shared between its instantiations, even when its arguments are the
same in each case. (For programming languages with “applicative” rather than
“generative” modules, this treatment is sound albeit marginally more awkward
than necessary.) Auxiliary unit definitions may be used in Casl to avoid repe-
tition of unit instantiation. For instance, we can rewrite the previous example:

units U0 : SP0 ;
Fa : SP0 → SPa ;
U ′a = Fa [U0];
Fb : SPa → SPb;

Fc : SPa → SPc ;
Fd : SPb × SPc → SPd

In this context, Fd[Fb[U ′a], Fc[U ′a]] is well-formed and captures the intention be-
hind Fd[Fb[Fa[U0]], Fc[Fa[U0]]].

To sum up: in the context of a sequence of unit declarations and definitions,
symbols in two units share if they can be traced to a common symbol in a
non-generic unit. The “tracing procedure” can be broken down according to the
constructs available for forming unit terms. For applications of generic units to
arguments, symbols in the result are new if they do not occur in the argument
signatures. Otherwise they can be traced to the same symbols in the arguments
(and, transitively, to the symbols those can be traced to). The symbols of a
declared unit can be traced only to themselves. The symbols of a defined unit
may be traced according to the definitional term for the unit.

7 Semantics of unit terms

An architectural specification comprises a sequence of unit declarations and
definitions followed by a unit term which shows how the named units can be
put together to build the result. Obviously, it is not possible to put together
units in completely arbitrary ways; they must fit together properly, as in modu-
lar programming languages. Then given an environment which maps the declared
unit names to particular (possibly generic) structures, the result term denotes a
structure.

The static analysis of unit terms, with sharing analysis etc., is just the begin-
ning of checking their correctness. The most crucial step is to check that when a
unit (or tuple of units) is fed to a generic unit then the interfaces match, making
sure that the requirements imposed on the parameter(s) of the generic unit by
its specification are fulfilled by the argument (tuple). To take a simple example:

units U : SP ;
F : SP ′ → SP ′′

Can we now feed the unit U to the generic unit F ? Or in other words: is the
unit term F [U] correct? In order for it to be well-formed, the signatures of U
and of the argument of F must coincide: Sig [SP] = Sig [SP ′]. And if F were
multiply-dependent with symbols in common between different arguments, then
sharing would also have to be checked. But also, F is required to work only for
arguments that realize SP ′, including the requirements imposed by any axioms
SP ′ may contain. So, for F [U] to be correct, we must make sure that what we
know about U is sufficient to establish what is required of the argument for F .
Clearly, everything we know about U is recorded in SP — no other information is
available. Even later on, when the unit U has been developed, the whole point of
its declaration here — which decomposes the development task into developing
U and F separately — is to limit the knowledge about U at this level to what
is provided by SP . So, what we know about the unit U is that it denotes a

structure in [[SP]]. The argument of F is required to denote a structure in [[SP ′]].
Consequently, the term F [U] is correct provided [[SP]] ⊆ [[SP ′]].

We have used different words to describe different aspects of “good” unit
terms. Well-formedness is a static property, expected to be decidable so that
it can be checked automatically. To check whether a unit term is well-formed
we need information about the signatures of the units available as well as shar-
ing information about them. In such a context, well-formedness of a term is
determined as sketched in Sect. 6. Correctness requires verification: it is not de-
cidable in general. To check whether a unit term is correct we need full semantic
information about the available units, as explained below.

The last example was perhaps misleadingly simple: the argument U of F
came equipped with an explicit specification that provided all the information
that was available about U . In general, the argument may be more complex
than this, and still we have to be able to gather all the information about it
that is available. So, for instance, what do we know about F [U], assuming that
Sig[SP] = Sig[SP ′] and [[SP]] ⊆ [[SP ′]]? Clearly, we know that the result realizes
SP ′′. Is this all? Not quite: we also know that U , and hence the reduct of F [U]
to Sig [SP], realizes SP , which may carry more information than SP ′ does.

Given an environment ρ which maps unit names to particular (possibly gen-
eric) structures, a unit term T denotes a structure [[T]]ρ, defined inductively as
follows:

– If T is a unit name U then [[T]]ρ = ρ(U).
– If T is an instantiation F [T1, . . . , Tn] where F is an n-ary generic unit and
T1, . . . , Tn are unit terms, then [[F [T1, . . . , Tn]]]ρ = ρ(F)([[T1]]ρ, . . . , [[Tn]]ρ).

Some unit terms will not denote. A trivial reason for this might be the application
of a generic unit to the wrong number of arguments, or to arguments with wrong
signatures, or the use of an unbound unit name. Less trivially, there might be an
attempt to apply a generic unit to a non-compatible tuple of structures. These
cannot happen if the term is well-formed in the sense discussed above. Finally,
a term will not denote if it involves application of a generic unit to a structure
outside its domain; this cannot happen if the term is correct.

Correctness is defined in a context γ where unit names are associated with
specifications. We say that an environment ρ matches a context γ if they bind
the same unit names and for each unit name U in their domain, the structure
ρ(U) realizes the specification γ(U): ρ(U) ∈ [[γ(U)]].4 For any unit term T that
is well-formed in the context γ, we write [T]γ for the class of all structures [[T]]ρ
that T denotes in environments ρ that match γ. Intuitively, [T]γ captures the
properties of the unit built by T using unit declarations and definitions that
determine γ.

Correctness of a well-formed unit term is defined inductively as follows:

– A unit name U is correct. (By well-formedness, U is declared in γ.) It follows
that [U]γ = [[γ(U)]].

4 Moreover, the units in ρ share the components indicated by the sharing information
in γ.

– An instantiation F [T1, . . . , Tn] is correct, where γ(F) is SP1×. . .×SPn→SP ,
if T1, . . . , Tn are so and [T1]γ ⊆ [[SP1]], . . . , [Tn]γ ⊆ [[SPn]]. It follows that
[F [T1, . . . , Tn]]γ = {A ∈ [[SP]] | A Sig[SP1] ∈ [T1]γ, . . . , A Sig[SPn] ∈ [Tn]γ}.

This omits the use of defined units in unit terms, treated in the obvious way with
information about these units extracted from their definitional terms and stored
in the context as well. Some further constructs for unit terms (amalgamation,
reduct/renaming, pushout-style instantiation using a fitting morphism, local unit
definitions, λ-notation for generic units) are available in Casl, but these are not
discussed here for lack of space.

The above statements defining the correctness of unit terms also provide a
more direct way to compute [T]γ, without referring to the class of all environ-
ments that match γ. This can be proved by induction on the structure of unit
terms, and can be used to directly calculate the ensured properties of T , and to
validate its correctness.

Theorem 1. Let γ be a context and let T be a unit term that is well-formed
and correct in γ. Then for any environment ρ that matches γ, [[T]]ρ is defined
(and [[T]]ρ ∈ [T]γ).

This means that once we have finished the development process and so have
provided realizations of each of the units declared, a correct result term will
successfully combine these realizations to give a structure which satisfies the
properties we can calculate directly from the architectural specification. Cor-
rectness of the result term of an architectural specification can be checked be-
fore realizations of its component units are provided. No a posteriori checking
is necessary!

8 Refinements of architectural specifications

Section 4 indicated how a specification may be refined to an architectural spe-
cification. Architectural specifications themselves can in turn be refined by re-
fining each of the specifications for its declared units separately. One remaining
issue is to define refinements between specifications of generic units:

SP1→SP2 ; SP ′1→SP ′2

To begin with, we need the signatures to agree, that is: Sig [SP1] = Sig [SP ′1]
and Sig [SP2] = Sig [SP ′2]. Furthermore, we need that every generic unit that
realizes SP ′1→SP ′2 must correctly realize SP1→SP2, but allowing for restrictions
of mappings between structures to smaller domains. This amounts to requiring
[[SP1]] ⊆ [[SP′1]] and [[SP ′2 and SP1]] ⊆ [[SP2]]. Notice that the latter condition is
slightly weaker than the most obvious [[SP ′2]] ⊆ [[SP2]] — we can take advantage
of the fact that we are expected to apply the unit to arguments that realize SP1.

This allows for linear development of individual units declared in an architec-
tural specification. To allow further decomposition here, we can refine unit spe-
cifications to architectural specifications. For closed units this is covered above.

Specifications of generic units may be refined to architectural specifications with
generic result units.

The overall effect is that we have a development tree, rather than just a
sequence of refinement steps. This was indeed the target from the very begin-
ning. Each leaf of such a tree may be developed independently from the others,
using the full machinery of further decomposition via architectural design etc.
The development subtree beginning at any given node may be replaced by an-
other development tree without affecting the other parts as long as the new
development subtree is correct with respect to the specification at its root.

9 Further comments

We have discussed the issue of designing the structure of a system to be developed
from a specification. Our conclusion has been that apart from the usual mechan-
isms for structuring requirements specifications, we need a separate mechanism
to describe the modular structure of the system to be developed. Casl provides
this in the form of architectural specifications. We presented the basic ideas be-
hind this concept. The semantics of architectural specifications has been sketched
as well, but see [CoFI98c] for all the details. This was sufficient to state a few ba-
sic facts about the semantics, as well as to argue that properties of architectural
specifications ensure that the basic goals of their design have been achieved.
Namely, architectural specifications make it possible to describe the structure
of the system to be developed by listing the units to be built, providing their
specifications and indicating the way they are to be combined. Once such an ar-
chitectural specification is given then its internal correctness can be checked and
the ensured properties of the resulting module can be calculated (to check if the
original requirements specification has been fulfilled by this design). Moreover,
further developments of the units required may proceed independently from each
other, which brings in all the benefits of modular development.

The above ideas have been presented in the specific context of Casl. However,
both the overall idea and the constructs for architectural specifications are largely
independent from the details of the underlying Casl logical system. In fact,
everything here can be presented in the context of an arbitrary institution [GB92]
equipped with some extra structure — see [Mos98] for details.

One issue which we have omitted above is that of behavioural implementation
[Sch87,ST89,NOS95,ST97,BH9?]. The idea is that when realizing a specification
it is sufficient to provide a structure that is behaviourally equivalent to a model.
Intuitively, two structures are behaviourally equivalent if they cannot be dis-
tinguished by computations involving only the predicates and operations they
provide.

When using a structure that was built to realize a specification up to beha-
vioural equivalence, it is very convenient to pretend that it actually is a true
model of the specification. This is sound provided all the available constructions
on structures (hence all the generic units that can be developed) map behavi-
ourally equivalent arguments to behaviourally equivalent results. More precisely:

a generic unit is stable if for any behaviourally equivalent arguments provided
for it via a fitting morphism, the overall results of instantiations of this unit on
them are behaviourally equivalent as well. If all units are stable, it is sufficient
to check local behavioural correctness of unit terms only: this is defined like cor-
rectness in Sect. 7, but allows the arguments for generic units to fit their formal
requirement specifications only up to behavioural equivalence. Then the ensured
properties [T]γ of any well-formed and locally behaviourally correct unit term
T in a context γ can still be calculated exactly as in Sect. 7, as justified by the
following theorem:

Theorem 2. Let γ be a context and let T be a unit term that is well-formed
and locally behaviourally correct in γ. Then for any environment ρ that matches
γ up to behavioural equivalence, [[T]]ρ is in [T]γ up to behavioural equivalence.

Acknowledgements Our thanks to the whole of CoFI, and in particular to the
Language Design Task Group, for many discussions and opportunities to present and
improve our ideas on architectural specifications. Thanks to Till Mossakowski for com-
ments on a draft. This work has been partially supported by KBN grant 8T11C018 11,
the LoSSeD workpackage of CRIT-2 funded by ESPRIT and INCO (AT), a French-
Polish project within the CNRS-PAS cooperation programme (MB, AT), and by EPSRC
grant GR/K63795, an SOEID/RSE Support Research Fellowship and the FIREworks
working group (DS).

References

[AG97] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology, July 1997.

[Bid88] M. Bidoit. The stratified loose approach: a generalization of initial and loose
semantics. Selected Papers from the 5th Workshop on Specification of Ab-
stract Data Types, Gullane. Springer LNCS 332, 1–22 (1988).

[BH93] M. Bidoit and R. Hennicker. A general framework for modular implementa-
tions of modular systems. Proc. 5th Joint Conf. on Theory and Practice of
Software Development, Orsay. Springer LNCS 668, 199–214 (1993).

[BH9?] M. Bidoit and R. Hennicker. Modular correctness proofs of behavioural im-
plementations. Acta Informatica, to appear (199?).

[BG77] R. Burstall and J. Goguen. Putting theories together to make specifications.
Proc. 5th Intl. Joint Conf. on Artificial Intelligence, Cambridge, 1045–1058
(1977).

[CoFI96] The Common Framework Initiative. Catalogue of existing frameworks.
http://www.brics.dk/Projects/CoFI/Catalogue.html (1996).

[CoFI98a] The Common Framework Initiative. CoFI: The Common Framework
Initiative for algebraic specification and development (WWW pages).
http://www.brics.dk/Projects/CoFI/ (1998).

[CoFI98b] CoFI Task Group on Language Design. Casl – The CoFI algebraic specific-
ation language – Summary (version 1.0). http://www.brics.dk/Projects/
CoFI/Documents/CASL/Summary/ (1998).

[CoFI98c] CoFI Task Group on Semantics. Casl – The CoFI algebraic specification
language – Semantics (version 1.0). To appear (1998).

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I: Equations
and Initial Semantics. Springer (1985).

[FJ90] J. Fitzgerald and C. Jones. Modularizing the formal description of a data-
base system. Proc. VDM’90 Conference, Kiel. Springer LNCS 428, 198–210
(1990).

[GB80] J. Goguen and R. Burstall. CAT, a system for the structured elaboration of
correct programs from structured specifications. Technical report CSL-118,
SRI International (1980).

[GB92] J. Goguen and R. Burstall. Institutions: abstract model theory for specific-
ation and programming. Journal of the Assoc. for Computing Machinery
39:95–146 (1992).

[GH93] J. Guttag and J. Horning. Larch: Languages and Tools for Formal Specific-
ation. Springer (1993).

[HN92] R. Hennicker and F. Nickl. A behavioural algebraic framework for modular
system design and reuse. Recent Trends in Data Type Specifications. Proc.
9th Workshop on Specification of Abstract Data Types ADT’92, Caldes de
Mavella, Springer LNCS 785, 220–234.

[KS91] B. Krieg-Brückner and D. Sannella. Structuring specifications in-the-large
and in-the-small: higher-order functions, dependent types and inheritance
in SPECTRAL. Proc. Colloq. on Combining Paradigms for Software De-
velopment, Joint Conf. on Theory and Practice of Software Development
(TAPSOFT), Brighton. Springer LNCS 494, 313–336 (1991).

[MA91] J. Morris and S. Ahmed. Designing and refining specifications with modules.
Proc. 3rd Refinement Workshop, Hursley Park, 1990. Springer Workshops in
Computing, 73–95 (1991).

[Mos98] T. Mossakowski. Institution-independent semantics for Casl-in-the-large.
CoFI note S-8 (1998).

[Mos97] P. Mosses. CoFI: The Common Framework Initiative for algebraic specific-
ation and development. Proc. 7th Intl. Joint Conf. on Theory and Practice
of Software Development, Lille. Springer LNCS 1214, 115–137 (1997).

[NOS95] M. Navarro, F. Orejas and A. Sanchez. On the correctness of modular sys-
tems. Theoretical Computer Science 140:139–177 (1995).

[SST92] D. Sannella, S. Soko lowski and A. Tarlecki. Toward formal development
of programs from algebraic specifications: parameterisation revisited. Acta
Informatica 29:689–736 (1992).

[ST89] D. Sannella and A. Tarlecki. Toward formal development of ML programs:
foundations and methodology. Proc. 3rd Joint Conf. on Theory and Practice
of Software Development, Barcelona. Springer LNCS 352, 375–389 (1989).

[ST97] D. Sannella and A. Tarlecki. Essential concepts of algebraic specification and
program development. Formal Aspects of Computing 9:229–269 (1997).

[SW83] D. Sannella and M. Wirsing. A kernel language for algebraic specification
and implementation. Proc. 1983 Intl. Conf. on Foundations of Computation
Theory, Borgholm. Springer LNCS 158, 413–427 (1983).

[SW98] D. Sannella and M. Wirsing. Specification languages. Chapter 8 of Algebraic
Foundations of Systems Specification (eds. E. Astesiano, H.-J. Kreowski and
B. Krieg-Brückner). Springer, to appear (1998).

[Sch87] O. Schoett. Data Abstraction and the Correctness of Modular Program-
ming. Ph.D. thesis, report CST-42-87, Dept. of Computer Science, Univ. of
Edinburgh (1987).

