
Under consideration for publication in Formal Aspects of Computing

Architectural specifications in CASL

Michel Bidoit 1, Donald Sannella 2 and Andrzej Tarlecki 3

1 Laboratoire Spécification et Vérification, CNRS & ENS de Cachan, France,
2 Laboratory for Foundations of Computer Science, University of Edinburgh, UK,
3 Institute of Informatics, Warsaw University and Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract. One of the most novel features of Casl, the Common Algebraic Specification Language, is the
provision of so-called architectural specifications for describing the modular structure of software systems. A
brief discussion of refinement of Casl specifications provides the setting for a presentation of the rationale
behind architectural specifications. This is followed by some details of the features provided in Casl for
architectural specifications, hints concerning their semantics, and simple results justifying their usefulness
in the development process.

1. Introduction

A common feature of present-day algebraic specification languages (see e.g. [SW83], [EM85], [GH93], [CoFI96],
[SW99]) is the provision of specification-building operations for building large specifications in a structured
fashion from smaller and simpler ones. This was pioneered by Burstall and Goguen in their seminal work
on the Clear specification language [BG77], [BG80]. Less usual in specification languages are features for
describing the modular structure of software systems under development. This paper is about the facilities
for this that are provided in Casl, the new Common Algebraic Specification Language [ABK+01], [CoFI01b]
that has been developed under the auspices of the Common Framework Initiative [Mos97], [CoFI01a] in an
attempt to create a focal point for future joint work on algebraic specifications and a platform for exploitation
of past and present work on methodology, support tools, etc.

Following earlier practical experiences [FJ90], [FAC92] and foundational work [Bid88], [ST89], [SST92],
[BH93], we argue that mechanisms for structuring specifications are not the same as and cannot suffice
for describing the modular structure of software under development. Casl therefore provides a separate
kind of specifications, so-called architectural specifications, for this purpose. An architectural specification
consists of a list of unit declarations, indicating the component modules required with specifications for each
of them, together with a unit term that describes the way in which these modules are to be combined. Such
architectural specifications are aimed at the “implementation” modular structure of the system, much in the
style of the features for programming in the large using generic modules in modern programming languages
like Standard ML [Pau96], cf. Burstall and Lampson’s Pebble [BL88]. This is related to but is not the same as
software architecture in the sense of [AG97] which deals with the organization of software into components
and connectors, focusing on the “interaction” relationships between modules (the latter to be considered
when specifications of “reactive” modules are introduced in a Casl extension, cf. [FL97]).

The aim of this paper is to present motivation, intuition and technicalities related to this concept.

Correspondence and offprint requests to: Michel Bidoit (Michel.Bidoit@lsv.ens-cachan.fr), Donald Sannella (dts@dcs.ed.
ac.uk) or Andrzej Tarlecki (tarlecki@mimuw.edu.pl). This is a revised and expanded version of [BST99].

2 M. Bidoit, D. Sannella and A. Tarlecki

We provide some basic information about Casl in Section 2, discuss the development of programs from
specifications by stepwise refinement in Section 3 and then introduce architectural specifications in Section 4.
We stress there how generic components arise naturally from the desire to allow separate but related modules
to be developed independently. The semantics and correctness aspects of architectural specifications with the
simplest ways of combining modules are discussed in Sections 5, 6 and 7. Further operators for combining
modules are presented in Section 8. The development process in the presence of architectural specifications
is briefly discussed in Section 9.

Architectural specifications are presented in the context of Casl. However, the overall ideas if not all the
technicalities are applicable in any specification and development framework, as we explain in Section 10.
We also venture there briefly into more advanced features of architectural specification and development,
bringing in ideas of behavioural refinement.

2. Casl preliminaries

Casl is a formalism to describe Casl structures: many-sorted algebras with subsorts, partial operations and
predicates. Structures are classified by signatures, which give sort names (with their subsorting relation),
partial/total operation names, and predicate names, together with profiles of operations and predicates. In
Casl structures, subsorts and supersorts are linked by implicit subsort embeddings required to compose with
each other and to be compatible with operations and predicates with the same names. For each signature
Σ, the class of all Σ-structures is denoted Mod[Σ].

The basic level of Casl includes declarations to introduce components of signatures and axioms to give
properties of structures that are to be considered as models of a specification. The logic used to write the
axioms is essentially first-order logic (so, with quantification and the usual logical connectives) built over
atomic formulae which include strong and existential equalities, definedness formulae and predicate appli-
cations, with generation constraints added as special, non-first-order sentences. A basic Casl specification
SP amounts to a definition of a signature Σ and a set of axioms Φ. It denotes the class [[SP]] ⊆ Mod[Σ] of
its models, which are those Σ-structures that satisfy all the axioms in Φ: [[SP]] = {A ∈ Mod[Σ] | A |= Φ}.

Apart from basic specifications as above, Casl provides ways of building complex specifications out
of simpler ones by means of various structuring constructs. These include translation, hiding, union, and
both free and loose forms of extension. Generic specifications and their instantiations with pushout-style
semantics [BG80], [EM85] are also provided. Structured specifications built using these constructs can be
given a compositional semantics where each specification SP determines a signature Sig [SP] and a class
[[SP]] ⊆ Mod[Sig [SP]] of models. We say that SP is consistent if [[SP]] is non-empty.

2.1. Example

Here is a sequence of definitions of Casl specifications. We intersperse them with comments to clarify the
meaning of particular Casl constructs and notations. The example is small but it is not contrived in the
sense that the way in which the specifications build upon one another seems quite natural.

spec Monoid =
sort Thing
ops null : Thing ;

o : Thing × Thing → Thing , assoc, unit null
end

This is the usual specification of a monoid with a sort of elements, a constant, and a binary operation that
is associative and has the constant as a neutral element.

spec Num =
sort Num
ops 0 : Num;

succ : Num → Num
end

A signature for natural numbers — a starting point for further specifications.

Architectural specifications in Casl 3

spec AddNum =
{ Num then op plus : Num × Num → Num

vars x , y : Num
axiom plus(x , succ(y)) = succ(plus(x , y)) }

and
{ Monoid with Thing 7→ Num, null 7→ 0 , o 7→ plus }

This enriches Num by a binary operation and then further requires that Num with 0 and plus form a
monoid. The union of specifications is employed here to re-use a specification (Monoid) introduced earlier.
Since everything is extremely simple we could as well incorporate the requirements from Monoid directly
into the axioms for plus, but in more complex cases this could be a lot of work and moreover, some of the
conceptual structure of the specification would be lost.

spec OrdNum = Num then pred < : Num × Num
axiom ∀x : Num • 0 < succ(x)

Another extension of Num by a loosely specified binary predicate.

spec CodeNum =
AddNum and OrdNum
then op code : Num → Num

axiom ∀x : Num • 0 < code(x)

In CodeNum we put both previous extensions of Num together and then add a unary operation on Num
with another simple axiom.

spec Elem = sort Elem end

spec PartContainer [Elem] =
generated type Cont ::= empty | add(Elem;Cont)?
pred addable : Elem × Cont
vars x , y : Elem; C : Cont
axiom def add(x ,C) ⇔ addable(x ,C)
pred ∈ : Elem × Cont
axioms ¬ (x ∈ empty);

(x ∈ add(y ,C) ⇔ x = y ∨ x ∈ C) if addable(y ,C)
end

This is a generic (in Elem) specification of “partial containers”, which introduces a datatype Cont generated
by a constant empty and a partial constructor add that adds an element to a container. An element x may
be added to a container C if and only if addable(x,C) is satisfied. But addable is left unspecified at this
stage. The usual membership predicate is provided as well.

spec PartNumCont =
PartContainer[CodeNum fit Elem 7→ Num]

We instantiate the above generic specification to CodeNum, with an appropriate fitting of the parameter.
The result contains all the operations and predicates of CodeNum together with those added by PartCon-
tainer with the profiles of the latter adjusted accordingly.

spec UniqueNumCont =
PartNumCont
then vars x : Num; C : Cont

axiom addable(x ,C) ⇔ ¬ (x ∈ C) ∧ ¬ (code(x) ∈ C)

Finally, we constrain the addability condition, requiring that a number is addable to a container if and only
if neither it nor its code are already included there.

4 M. Bidoit, D. Sannella and A. Tarlecki

3. Program development and refinement

The intended use of Casl, as of any such specification formalism, is to specify programs. Each Casl
specification should determine a class of programs that correctly realize the specified requirements. To
fit this into the formal view of Casl specifications, programs must be written in a programming language
having a semantics which assigns1 to each program its denotation as a Casl structure. Then each program P
determines a signature Sig [P] and a structure [[P]] ∈ Mod[Sig [P]]. The denotation [[SP]] of a specification SP
is a description of its admissible realizations: a program P is a (correct) realization of SP if Sig [P] = Sig [SP]
and [[P]] ∈ [[SP]].

In an idealized view of program development, we start with an initial loose requirements specification
SP0 and refine it step by step until some easily-realizable specification SP last is obtained:

SP0 ; SP1 ; · · · ; SP last

Stepwise refinement only makes sense if the above chain of refinements guarantees that any correct realization
of SP last is also a correct realization of SP0: for any P , if [[P]] ∈ [[SP last]] then [[P]] ∈ [[SP0]]. This is ensured
by the definition of refinement: for any SP and SP ′ with the same signature, we define

SP ; SP ′ ⇐⇒ [[SP ′]] ⊆ [[SP]].

The construction of a program to realize SP last is outside the scope of Casl. Casl provides means for
building specifications only; in this sense it is not a “wide-spectrum” language [BW82]. Furthermore, there
is no construct in Casl to explicitly express refinement between specifications. All this is a part of the
meta-level, though firmly based on the formal semantics of Casl specifications.

A more satisfactory model of refinement allows for modular decomposition of a given development task
into several tasks by refining a specification to a sequence of specifications, each to be further refined inde-
pendently. (Of course, a development may branch more than once, giving a tree structure.)

SP ; BR











SP1 ; · · · ; SP1,last
...
SPn ; · · · ; SPn,last

Once we have realizations P1, . . . , Pn of the specifications SP1,last , . . . ,SPn,last , we should be able to put
them together with no extra effort to obtain a realization of SP . So for each such branching point we need an
operation to combine arbitrary realizations of SP1, . . . ,SPn into a realization of SP . This may be thought
of as a linking procedure LINKBR attached to the branching point BR, where for any P1, . . . , Pn realizing
SP1, . . . ,SPn, LINKBR(P1, . . . , Pn) realizes SP :

if [[P1]] ∈ [[SP1]], . . . , [[Pn]] ∈ [[SPn]] then [[LINKBR(P1, . . . , Pn)]] ∈ [[SP]].

Crucially, this means that whenever we want to replace a realization Pi of a component specification
SP i with a new realization P ′i (still of SP i), all we need to do is to “re-link” it with realizations of the
other component specifications, with no need to modify them in any way. LINKBR(P1, . . . , P ′i , . . . , Pn) is
guaranteed to be a correct realization of SP , just as LINKBR(P1, . . . , Pi, . . . , Pn) was. In other words, the
only interaction between the components happens via LINKBR, so the components may be developed entirely
independently from each other.

The nature of LINKBR depends on the nature of the programs considered. They could be for instance just
“program texts” in some programming language like Pascal (in which case LINKBR may be a simple textual
operation, say, re-grouping the declarations and definitions provided by the component programs) or actual
pieces of compiled code (in which case LINKBR would really be linking in the usual sense of the word). Our
preferred view is that the programming language in use has reasonably powerful and flexible modularization
facilities, such as those in Standard ML [Pau96] or Ada [Ada94]. Then P1, . . . , Pn are program modules
(structures in Standard ML, packages in Ada) and LINKBR is a module expression or a generic module with
formal parameters for which the actual modules P1, . . . , Pn may be substituted. Note that if we later replace
a module Pi by P ′i as above, “recompilation” of LINKBR(P1, . . . , P ′i , . . . , Pn) might be required but in no
case will it be necessary to modify the other modules.

1 This may be rather indirect, and in general involves a non-trivial abstraction step. It has not yet been attempted for any real
programming language.

Architectural specifications in Casl 5

One might expect that BR above is just a specification-building operation OP (or a specification construct
expressible in Casl), and branching could be viewed as “ordinary” refinement SP ; OP(SP1, . . . ,SPn).
Further refinement of OP(SP1, . . . ,SPn) might then consist of separate refinements for SP1, . . . ,SPn as
above. This requires at least that OP is “monotonic” with respect to inclusion of model classes.2 Then the
following “refinement rule” is sound:

SP1 ; SP ′n · · · SPn ; SP ′n
OP(SP1, . . . ,SPn) ; OP(SP ′1, . . . ,SP ′n)

This view is indeed possible provided that the specification-building operation OP is constructive in the
following sense: for any realizations P1, . . . , Pn of SP1, . . . ,SPn, we must be able to construct a realization
LINKOP (P1, . . . , Pn) of OP(SP1, . . . ,SPn). In that case, OP(SP1, . . . ,SPn) will be consistent whenever
SP1, . . . ,SPn are. However, simple examples show that some standard specification-building operations
(like the union of specifications) do not have this property. It follows that refining SP to OP(SP1, . . . ,SPn),
where OP is an arbitrary specification-building operation, does not ensure that we can provide a realization
of SP even when given realizations of SP1, . . . ,SPn. (See [HN94] for a different approach to this problem.)

Another problem with the refinement step SP ; OP(SP1, . . . ,SPn) is that it does not explicitly indicate
that subsequent refinement is to proceed by independently refining each of SP1, . . . ,SPn, so preserving the
structure imposed by the operation OP . The structure of the specification OP(SP1, . . . ,SPn) in no way
prescribes the structure of the final program. And this is necessarily so: while preserving this structure in
the subsequent development is convenient when it is natural to do so, refinements that break this structure
must also be allowed. Otherwise, at very early stages of the development process we would have to fix the
final structure of the resulting program: any decision about structuring a specification would amount to
a decision about the structure of the final program. This is hardly practical, as the aims of structuring
specifications in the early development phases (and at the requirements engineering phase) are quite distinct
from those of structuring final programs. Simple examples are mentioned below, cf. [FJ90].

On the other hand, at certain stages of program development we need to fix the structure of the system
under development: the design of the modular structure of the system is often among the most important
design decisions in the development process. In Casl, this is the role of architectural specifications, see
Section 4.

3.1. Example

Consider the task of realizing UniqueNumCont from Section 2.1. Its structure does not provide useful
guidance to the structure of its realization. For instance, there would be obvious trouble with the use of union
in AddNum: an attempt to implement AddNum “structurally”, by providing independent realizations for
Num (with an appropriate extension by plus) and for Monoid (with appropriate renaming), would succeed
only by pure chance!

Furthermore, the last extension of PartNumCont by an axiom for addable cannot be a directive to
first realize PartNumCont and then somehow miraculously ensure that the predicate addable does indeed
satisfy the axiom. After all, realizing PartNumCont means, among other things, choosing a realization for
addable. One might change this specification, so that a realization of PartNumCont would be required for
any choice of addable — but this would be quite a different specification with quite a different structure.
Moreover, it would not enable the implementor to take advantage of the fact that the axiom for addable
ensures that an element need never be added to a container more than once.

We might re-structure the above specification instead by introducing some new “constructive” composi-
tions or exposing some existing ones. For instance:

2 The specification-building operations we use here, hence all derived specification constructs, are monotonic, as are most of the
constructs of Casl and other specification languages. The few exceptions — like imposing the requirement of freeness — can
be viewed as operations which add “constraints” to specifications rather than as fully-fledged specification-building operations,
cf. data constraints in Clear [BG80].

6 M. Bidoit, D. Sannella and A. Tarlecki

spec UniqueContainer [CodeNum] =
PartContainer[CodeNum fit Elem 7→ Num]
then vars x : Num; C : Cont

axiom addable(x ,C) ⇔ ¬ (x ∈ C) ∧ ¬ (code(x) ∈ C)

spec UniqueNumCont′ = UniqueContainer[CodeNum]

Then we have that UniqueNumCont ; UniqueNumCont′ (in fact, the two specifications are equivalent)
and the instantiation in the latter specification is “constructive”, which indicates a possible split of further
development to a part where a realization of CodeNum is developed and another part where UniqueCon-
tainer is implemented. See Section 4.1 below for details.

4. Architectural specifications

The conclusion from Section 3 is that we need to distinguish carefully between two kinds of structuring
mechanisms needed in the specification and development process.

On one hand we need the standard mechanisms to structure specifications to facilitate their construction,
reading, understanding and re-use. These are provided by the specification-building operations of Casl,
disregarding whether these operations are “constructive” or not. In general, their use should not be viewed
as fixing the shape of the development tree or as determining the modular structure of the final program.
On the other hand, at a certain stage of program development we need to design the structure of the final
program, and consider these decisions binding in the subsequent development process. Such a design is given
by refining a specification to a “constructive” combination of specified components. The essence here is not so
much the use of a constructive specification-building operation, as rather some specific construction (linking
procedure) that builds a realization of the original specification once given realizations of the component
specifications.

The latter structuring facility, although quite standard in modular programming languages, is rarely
explicitly provided in specification formalisms. In many approaches, the structure of the specification is
regarded as determining the structure of the final program, examples like those in Section 3.1 notwithstand-
ing, see e.g. [GB80], [MA91]. Or else ad hoc informal mechanisms are used to indicate that a certain part of
the structure of a specification (given by a constructive specification-building operation) is to remain fixed
throughout the rest of the development. We consider this unsatisfactory and likely to be confusing. Therefore
Casl provides an explicit notation whereby one specifies the components required together with a way to
combine them to build the resulting program. Such architectural specifications (an alternative terminology
is organizational specifications [GHW82]) can be used to refine ordinary specifications, whether structured
or not, explicitly introducing branching into the development process and structure into the final program:

SP ; BR











SP1
...
SPn

The corresponding architectural specification is written as follows:

units U1 : SP1 ;
. . .
Un : SPn

result LINKBR(U1, . . . , Un)

Notice that we provide names for program units to be implemented according to the component specifica-
tions given, and we give a “linking procedure” LINKBR to combine these units rather than an operation
to combine their specifications. The component specifications SP1, . . . ,SPn are ordinary Casl specifica-
tions. The “linking procedure” LINKBR(U1, ..., Un) is just a unit term that might involve the units named
U1, . . . , Un. It builds a new unit when given actual units U1, . . . , Un that correctly realize the specifications
SP1, . . . ,SPn.

Typically SP1, . . . ,SPn (and so, units that realize them) will contain shared parts, or some of them will
rely on others. For instance, we might start by implementing some simple specification SP1. Then, given an

Architectural specifications in Casl 7

implementation U1 of SP1, build an implementation U2 of some “larger” specification SP2 using U1, etc. The
last stage is to build an implementation Un of SPn using Un−1, and the final result is Un. The corresponding
architectural specification is:

units U1 : SP1 ;
U2 : SP2 given U1 ;
. . .
Un : SPn given Un−1

result Un

Here, the “linking procedure” Un is trivial since all of the linking was done when we used Uj−1 to build Uj
for 1 < j ≤ n. Of course, this is just the simplest case. In particular, it does not cover multiple dependencies
(where a unit might use several other units), sharing between various units in a more flexible way than just
having each unit use the previous one, or reusability (whereby a unit may be used more than once). Still, it
illustrates the idea of splitting a development task into subtasks, clearly indicating their interfaces and the
flow of information between them. In the extreme, such a split may be done step by step, each time splitting
the work into just two parts:

SP ;
units U1 : SP1 ;

U2 : SP given U1
result U2

The task of providing a realization U1 for SP1 is independent from the task of providing a realization U2
for SP using U1. It follows that no properties of U1 may be exploited in the development of U2 other than
those explicitly ensured by the specification SP1. This requires a realization of SP for any realization of
SP1, which is tantamount to requiring a generic realization F of SP which takes the particular realization
of SP1 as parameter. Then we obtain U2 by simply feeding U1 to F .

Genericity here arises from the independence of the developments of U1 and U2, rather than from the
desire to build multiple realizations of SP using different realizations of SP1. This is reflected in the fact that
F is not named in the architectural specification above. If it is desired to indicate the potential for re-use
explicitly, we may give F “first-class” status as a so-called generic unit with a specification SP1→SP which
indicates that it will realize SP when given a realization of SP1:

units U1 : SP1 ;
F : SP1 → SP ;
U2 = F [U1]

result U2

Here, U2 = F [U1] is a so-called unit definition.
The earlier specification is equivalent to this version with the sole exception that F is anonymous there.

This shows how to explain architectural specifications involving “given” by translation to architectural
specifications involving explicit generic units. A key insight is the use of genericity to control the flow of
information between developments of independent units, as well as for multiple instantiation. Despite this,
it seems useful to retain both notations as they convey different pragmatic intuitions.

In this specification (and in all those arising from translation of specifications involving “given”) the
generic unit F is instantiated only once, but in general it may be applied to more than one argument, as
demonstrated in Section 8.3.

In programming languages with sufficiently powerful modularisation facilities, generic units correspond to
some form of generic modules (functors in Standard ML, generic packages in Ada, etc.). This is in contrast
to units (or simply: programs) like U1, realizing ordinary structured specifications, which correspond to
“closed” modules (structures in Standard ML, non-generic packages in Ada, etc.). The components of such
a closed unit are available for use in any program that imports it. The only way to use generic units is to
first instantiate them, otherwise their components are not ready for use.

Generic unit specifications correspond to functor headings in Extended ML [ST89] and to a restricted
form of Π-specifications in [SST92], cf. Spectral [KS91]. On the other hand, generic unit specifications and
generic specifications coincide in ACT ONE [EM85], which the above discussion argues is inappropriate.

8 M. Bidoit, D. Sannella and A. Tarlecki

4.1. Example

Recall the specifications built in Section 2.1 and the further comments on them in Section 3.1. We ended up
there with a specification

spec UniqueNumCont′ = UniqueContainer[CodeNum]

which suggests a way of decomposing the task of implementing UniqueNumCont. This may be turned into a
design decision by refining this specification to an architectural specification that captures the decomposition
meant here:

arch spec UCNum =
units N : CodeNum;

UCN : UniqueNumCont′ given N
result UCN

Then UniqueNumCont ; UCNum (this becomes fully formal only when the semantics of architectural
specifications is given more precisely below).

We might, however, be a bit more clever in our design and require a realization of containers with the
specified “uniqueness” property for arbitrary elements equipped with the operations that allow one to express
this property. For instance:3

spec TransElem =
sort Elem
op transform : Elem → Elem

end

spec AbstractUniqueCont =
PartContainer[TransElem]
then vars x : Elem; C : Cont

axiom addable(x ,C) ⇔ ¬ (x ∈ C) ∧ ¬ (transform(x) ∈ C)

arch spec AbstractUCNum =
units N : CodeNum;

AUC : TransElem → AbstractUniqueCont
result AUC [N fit Elem 7→ Num, transform 7→ code]

We still have UniqueNumCont ; AbstractUCNum.
The required generic unit AUC here is more abstract and more general than the “anonymous” unit to

build UCN as required in UCNum. AUC has to work for arbitrary structures fitting the abstract Trans-
Elem specification; it could be re-used in the future for arguments other than N .

The anonymous generic unit in UCNum is required to work only for structures fitting the considerably
richer specification CodeNum. This might make life easier for its implementor (the extra structure can be
used in the implementation) but also makes the unit less general.

It is up to the system designer to choose whether to follow the “more general” or “more specific” line of
design and so choose between AbstractUCNum and UCNum (or some yet different architectural specifica-
tion) as a refinement for UniqueNumCont. The key point is that the choice of an architectural specification
prescribes a modular structure for the system.

5. Semantics of unit specifications

To provide a formal framework covering the above ideas as well as more advanced aspects of architectural
specifications, we will now take a closer look at the underlying semantics of generic units and their specifi-
cations.

Consider a unit specification of the form SP ′→SP , and let Σ′ and Σ be the respective signatures of SP ′

3 The reader is kindly asked to rely on her/his intuition and the obvious analogy with the instantiation of generic specifications
to grasp the meaning of instantiation of generic units with non-trivial fitting of arguments. Details will be given in Section 8.3.

Architectural specifications in Casl 9

and SP . In Casl, SP is implicitly viewed as an extension of SP ′. Therefore, without loss of generality, we
assume that in each specification of the form SP ′→SP , SP extends SP ′, that is: Σ′ ⊆ Σ and [[SP]] Σ′ ⊆ [[SP ′]].

As indicated above, to realize the specification SP ′→SP , we should provide a “program fragment” ∆P for
SP\SP ′ that extends any realization P ′ of SP ′ to a realization P of SP , which we will write as ∆P (P ′). The
basic semantic property required is that for all programs P ′ such that [[P ′]] ∈ [[SP ′]], ∆P (P ′) is a program
that extends P ′ and realizes SP (semantically: [[∆P (P ′)]] Σ′ = [[P ′]] and [[∆P (P ′)]] ∈ [[SP]]). This amounts to
requiring ∆P to determine a partial function4 [[∆P]]:Mod[Σ′] →? Mod[Σ] that “preserves” its argument
whenever it is defined, is defined on (at least) all structures in [[SP ′]],5 and yields a result in [[SP]] when
applied to a structure in [[SP ′]]. Consequently:

[[SP ′→SP]] = {F :Mod[Σ′] →? Mod[Σ] | for all A′ ∈ Dom(F), F (A′) Σ′ = A′,
for all A′ ∈ [[SP ′]], F (A′) is defined and F (A′) ∈ [[SP]]}

This definition can easily be restated in a form closer to the definition of the semantics of specifications in
Section 2. First, we can generalize the notion of Casl structures to generic structures as follows:

Mod[Σ′ → Σ] = {F :Mod[Σ′] →? Mod[Σ] | for all A′ ∈ Dom(F), F (A′) Σ′ = A′}

Then [[SP ′→SP]] can equivalently be defined by:

[[SP ′→SP]] = {F ∈ Mod[Σ′ → Σ] | for all A′ ∈ [[SP ′]], F (A′) is defined and F (A′) ∈ [[SP]]}

Note that this set will be empty if there is some model of SP ′ that cannot be extended to a model of SP ;
then we say that SP ′→SP is inconsistent.

This semantic view of program fragments as partial functions naturally leads to further generalisations.
The most obvious one is to admit multi-argument functions, providing for the possibility that the realization
of some specification might depend on realizations of more than one (sub-)specification. Specifications of
multiply-dependent units will have the form SP1 × . . . × SPn→SP . As with singly-dependent units, we
assume that SP extends each of SP1, . . . ,SPn (or equivalently, their union). Let Σ1, . . . , Σn and Σ be the
respective signatures of SP1, . . . ,SPn and SP . We then have:

[[SP1 × . . .× SPn→SP]] =
{F ∈ Mod[Σ1 × . . .× Σn → Σ] | for all 〈A1, . . . , An〉 ∈ [[SP1 × . . .× SPn]],

F (A1, . . . , An) is defined and F (A1, . . . , An) ∈ [[SP]]}

where Mod[Σ1 × . . .× Σn → Σ] and [[SP1 × . . .× SPn]] are defined as explained below.
In general, not all tuples 〈A1, . . . , An〉 of structures A1 ∈ [[SP1]], . . . , An ∈ [[SPn]] can be extended to

structures in [[SP]]: if a symbol in SP is inherited from one or more of SP1, . . . , SPn, then its interpretation
in the resulting structure must be the same as in each corresponding argument structure. So, if such a symbol
occurs in several arguments then it is impossible to expand a tuple of arguments to a result unless all of the
relevant arguments interpret this symbol in the same way.

A tuple 〈A1, . . . , An〉 of structures A1 ∈ Mod[Σ1], . . . , An ∈ Mod[Σn] is compatible if there is some struc-
ture A ∈ Mod[Σ1 ∪ . . . ∪ Σn] over the union of the signatures Σ1, . . . , Σn such that A1 = A Σ1 , . . . , An =
A Σn . It is easy to see that if such a structure A exists, it is unique — we will call it the amalgama-
tion of 〈A1, . . . , An〉, and write it as A1 ⊕ . . . ⊕ An. A necessary condition for compatibility of A1 ∈
Mod[Σ1], . . . , An ∈ Mod[Σn] is that any symbol that occurs in both Σi and Σj is interpreted in the same
way in Ai and Aj , for 1 ≤ i, j ≤ n. This turns out to be also sufficient for structures over signatures without
subsorts (i.e., with a discrete subsort ordering). In the presence of non-trivial subsorts, however, compati-
bility of implicit subsort embeddings and their compositions must be ensured, and the precise condition for
compatibility of a tuple of structures is considerably more involved, see [SMT+01].

4 As in Casl, X →? Y denotes the set of partial functions from X to Y .
5 Intuitively, ∆P (P ′) is “statically” well-formed as soon as P ′ has the right signature, but needs to be defined only for arguments
that realize SP ′.

10 M. Bidoit, D. Sannella and A. Tarlecki

We take Mod[Σ1 × . . . × Σn] to be the class of all compatible tuples of structures from Mod[Σ1], . . . ,
Mod[Σn], respectively, and use this to define the semantics of tuples of specifications:

Mod[Σ1 × . . .× Σn] = {〈A Σ1 , . . . , A Σn〉 | A ∈ Mod[Σ1 ∪ . . . ∪ Σn]}
[[SP1 × . . .× SPn]] =

{〈A1, . . . , An〉 ∈ Mod[Σ1 × . . .× Σn] | A1 ∈ [[SP1]], . . . , An ∈ [[SPn]]}

Given this, Mod[Σ1 × . . .× Σn → Σ] is defined as follows:

Mod[Σ1 × . . .× Σn → Σ] =
{F :Mod[Σ1 × . . .× Σn] →? Mod[Σ] | for all 〈A1, . . . , An〉 ∈ Dom(F),

F (A1, . . . , An) Σi = Ai, for i = 1, . . . , n}

6. Sharing and well-formedness

In spite of their somewhat technical motivation, the definitions at the end of the previous section convey
important methodological concepts. Namely, we now have a way to require that a number of units (fed to
a unit dependent on them) share some of their parts. Even though they might be developed independently,
certain parts of the argument units must be identical. In Casl, this requirement is imposed by the use of
the same names in argument signatures for symbols which are to be shared between the argument units.
An application of a generic unit to a tuple of arguments is well-formed only if the arguments do indeed
share their commonly-named parts. In a programming language like Standard ML, this is a part of the “type
discipline” and the required sharing is (type-)checked statically. The same principle applies to Casl, but the
technicalities are more involved. Therefore, various compatibility conditions in Casl are stated as (non-static)
semantic requirements on structures and classes of structures. In addition, however, a recommended static
sharing analysis is given, which is sufficient to ensure the required compatibility properties (and hence, for
instance, well-formedness of unit applications). The sharing analysis is computable for specifications without
non-trivial subsorts. For arbitrary Casl specifications with subsorts, the compatibility properties become
undecidable in general. These undecidable properties are clearly identified, with some practically useful
approximate decision procedures proposed — see [CoFI01c], [KHT+01] and [SMT+01] for full details.

Consider the following simple example:

spec SP0 = sort s end
spec SPa = sort s op a : s end
spec SPb = sort s op a, b : s end
spec SPc = sort s op a, c : s end
spec SPd = sort s op a, b, c, d : s axiom d = b ∨ d = c end

Then the generic unit specification SPb×SPc → SPd imposes a constraint on the arguments for the generic
unit: they are required to share a common realization of the sort s and constant a. Consequently, given the
following unit declarations:

units Ub : SPb ;
Uc : SPc ;
Fd : SPb × SPc → SPd

the instantiation Fd[Ub, Uc] cannot be allowed, since there is nothing that ensures that the units Ub and Uc
do indeed share s and a. It is easy to provide units Ub and Uc that realize SPb and SPc respectively without
fulfilling this sharing requirement. On the other hand, consider the following unit declarations:

units Ua : SPa ;
Fb : SPa → SPb ;
Fc : SPa → SPc ;
Fd : SPb × SPc → SPd

The unit term Fd[Fb[Ua], Fc[Ua]] is well-formed in the context of these declarations. The required sharing
between the two arguments for Fd, namely between Fb[Ua] and Fc[Ua], is ensured. In both Fb[Ua] and Fc[Ua]
the sort s and constant a come from Ua, and so must be the same. This follows simply from the fact that
generic units expand their arguments, preserving them without any modification in the result.

Architectural specifications in Casl 11

The situation becomes a bit less clear if components of instantiations of generic units are involved. For
instance, consider:

units U0 : SP0 ;
Fa : SP0 → SPa

and declarations of Fb, Fc, Fd as above. Is Fd[Fb[Fa[U0]], Fc[Fa[U0]]] well-formed? One might expect so:
the sort s in the two arguments for Fd can be traced to the same unit U0, and the constant a to the
two occurrences of Fa[U0]. Here, the sharing of s does not raise any objections (it just requires a slightly
longer chain of instantiations to be followed). But the argument that the two occurrences of Fa[U0] share
the constant a cannot be carried too far. In general, to decide if two instantiations of Fa, say Fa[U0] and
Fa[U ′

0], share the constant a, we would have to check if the two argument units U0 and U ′
0 are identical.

Clearly, this is too complicated for static analysis, even if in trivial cases it can be seen to hold immediately,
as above. Moreover, in some programming languages with flexible modularisation facilities the new items
introduced by instantiation of generic modules are distinct for each such instantiation. For instance, functors
(generic modules) in Standard ML have such a “generative” semantics: each time a functor is instantiated
to an argument, the new types it builds are generated anew and are kept distinct from those built by other
instantiations, even if the arguments were the same each time. A similar phenomenon occurs with Ada
generic packages.

Therefore, for safety, the sharing analysis for Casl assumes that new symbols introduced by a generic
unit are not shared between its instantiations, even when its arguments are the same in each case. (For
programming languages with “applicative” rather than generative modules, this treatment is sound albeit
marginally more awkward than necessary.) Auxiliary unit definitions may be used in Casl to avoid repetition
of unit instantiation. For instance, we can rewrite the previous example:

units U0 : SP0 ;
Fa : SP0 → SPa ;
U ′

a = Fa [U0];
Fb : SPa → SPb ;
Fc : SPa → SPc ;
Fd : SPb × SPc → SPd

In the context of the above unit declarations and definitions, Fd[Fb[U ′
a], Fc[U ′

a]] is well-formed and captures
the intention behind Fd[Fb[Fa[U0]], Fc[Fa[U0]]]. An alternative way to present this example is to make the
definition of U ′

a local to the unit instantiation:

local U ′
a = Fa [U0] within Fd [Fb [U ′

a], Fc [U ′
a]]

This is legal in the context of the previous unit declarations.
To sum up: in the context of a sequence of unit declarations and definitions, symbols in two units share if

they can be traced to a common symbol in a non-generic unit. The “tracing procedure” chases the symbols
through a diagram of signatures connected by signature morphisms that capture dependencies between units
in the current context. The construction of this sharing diagram follows the structure of the unit term being
analysed. For applications of generic units to arguments, a new node with the result signature is added
together with parameter signatures linked on one hand to the result signature (via inclusions) and on the
other hand to the argument signatures (via fitting morphisms), so that symbols in the result that do not come
from the parameters are new, while the others can be traced to the corresponding symbols in the arguments
(and, transitively, to the symbols these can be traced to). For newly declared units, their signatures are
added as new nodes to the diagram, so that the symbols of a declared unit can be traced only to themselves.
Unit definitions extend the current context with the diagram built for the definitional term.

So, for instance, using the specifications above, consider:

units U0 : SP0 ;
Fa : SP0 → SPa ;
U ′

a = Fa [U0];
G : SP0 × SPa → SPb

The term G [U0 ,U ′
a] is well-formed since the sort s that the two arguments are required to share can in both

cases be traced to the sort s in U0 .

12 M. Bidoit, D. Sannella and A. Tarlecki

7. Semantics of unit terms

As indicated above, an architectural specification comprises a sequence of unit declarations and unit defi-
nitions followed by a unit term which shows how the named units can be put together to build the result.
Obviously, it is not possible to put together units in completely arbitrary ways; they must fit together prop-
erly, as in modular programming languages. Then given an environment which maps the declared unit names
to particular (possibly generic) structures, the result term denotes a structure.

The static analysis of unit terms, with sharing analysis etc., is just the beginning of checking their
correctness. The most crucial step is to check that when a unit (or tuple of units) is fed to a generic unit
then the interfaces match, making sure that the requirements imposed on the parameter(s) of the generic
unit by its specification are fulfilled by the argument (tuple). To take a simple example:

units U : SP ;
F : SP ′ → SP ′′

Can we now feed the unit U to the generic unit F? Or in other words: is the unit term F [U] correct? In order
for it to be well-formed, the signatures of U and of the argument of F must coincide: Sig [SP] = Sig [SP ′].
And if F were multiply-dependent with symbols in common between different arguments, then sharing would
also have to be checked. But also, F is required to work only for arguments that realize SP ′, including the
requirements imposed by any axioms SP ′ may contain. So, for F [U] to be correct, we must make sure that
what we know about U is sufficient to establish what is required of the argument for F . Clearly, everything
we know about U is recorded in SP — no other information is available. Even later on, when the unit U
has been developed, the whole point of its declaration here — which decomposes the development task into
developing U and F separately — is to limit the knowledge about U at this level to what is provided by SP .
So, what we know about the unit U is that it denotes a structure in [[SP]]. The argument of F is required to
denote a structure in [[SP ′]]. Consequently, the term F [U] is correct provided [[SP]] ⊆ [[SP ′]].

We have used different words to describe different aspects of “good” unit terms. Well-formedness is a
static property, typically expected to be decidable so that it can be checked automatically (even if this is
sometimes not the case for sharing analysis in Casl). As sketched in Section 6, to check whether a unit term
is well-formed we need information about the signatures of the units available (a reference to a non-available
unit is not well-formed, of course) as well as sharing information about them. In such a static context, the
static semantics and sharing analysis determine well-formedness of a term. Correctness requires verification:
we cannot expect it to be decidable in general. To check whether a unit term is correct we need full semantic
information about the units that make it up, as explained below.

The last example was perhaps misleadingly simple: the argument U of F came equipped with an explicit
specification (SP) that provided all the information that was available about U . In general, the argument
may be more complex than this, and still we have to be able to gather all the information about it that is
available. So, for instance, what do we know about F [U] (in the context of the above unit declarations —
of course assuming that Sig [SP] = Sig [SP ′] and [[SP]] ⊆ [[SP ′]])? Clearly, we know that the result realizes
the specification SP ′′. Is this all? Not quite: we also know that U , and hence the reduct of F [U] to Sig [SP],
realizes SP , which may carry more information than SP ′ does.

Given an environment ρ which maps unit names to particular (possibly generic) structures, a unit term
T denotes a structure [[T]]ρ, defined inductively as follows:

• If T is a unit name U then [[T]]ρ = ρ(U).
• If T is an instantiation F [T1, . . . , Tn] where F is an n-ary generic unit and T1, . . . , Tn are unit terms,

then [[F [T1, . . . , Tn]]]ρ = ρ(F)([[T1]]ρ, . . . , [[Tn]]ρ).

Some unit terms will not denote. A trivial reason for this might be the application of a generic unit to the
wrong number of arguments, or to arguments with wrong signatures, or the use of an unbound unit name.
Less trivially, there might be an attempt to apply a generic unit to a non-compatible tuple of structures.
These cases cannot arise if the term is well-formed in the sense discussed above. Finally, a term will not
denote if it involves application of a generic unit to a structure outside its domain; this cannot happen if the
term is correct.

Correctness is defined in a context γ where unit names are associated with specifications rather than
with particular structures realizing those specifications.6 We say that an environment ρ matches a context γ

6 The context carries all semantic information about available units. It is convenient to think of the information about a unit as

Architectural specifications in Casl 13

if they bind the same unit names and for each unit name U in their domain, the structure ρ(U) realizes the
specification γ(U): ρ(U) ∈ [[γ(U)]].7 For any unit term T that is well-formed in the context γ, we write [T]γ
for the class of all structures [[T]]ρ that T denotes in environments ρ that match γ. Intuitively, [T]γ captures
the properties of the unit built by T using unit declarations and definitions that determine γ.

Correctness of a well-formed unit term is defined by induction on its structure as follows:

• A unit name U is correct. (By well-formedness, U is declared in γ.) It follows that [U]γ = [[γ(U)]].
• An instantiation F [T1, . . . , Tn] is correct, where γ(F) is SP1 × . . . × SPn→SP , if T1, . . . , Tn are so and

[T1]γ ⊆ [[SP1]], . . . , [Tn]γ ⊆ [[SPn]]. It follows that

[F [T1, . . . , Tn]]γ = {A ∈ [[SP]] | A Sig[SP1] ∈ [T1]γ , . . . , A Sig[SPn] ∈ [Tn]γ}.

This omits the use of defined units in unit terms, treated in the obvious way: information about these units
is extracted from their definitional terms and stored in the context as well. Further constructs for unit terms
are discussed in the next section.

The above statements defining the correctness of unit terms also provide a more direct way to compute
[T]γ , without referring to the class of all environments that match γ. This can be proved by induction on the
structure of unit terms, and can be used to directly calculate the ensured properties of T , and to validate
its correctness.

Theorem 1. Let γ be a context and let T be a unit term that is well-formed and correct in γ. Then for
any environment ρ that matches γ, [[T]]ρ is defined (and [[T]]ρ ∈ [T]γ).

This means that once we have finished the development process and so have provided realizations of each
of the units declared, a correct result term will successfully combine these realizations to give a structure.
Moreover, this structure satisfies the properties we can calculate directly from the architectural specification.
Correctness of the result term of an architectural specification can be checked before realizations of its
component units are provided. No a posteriori checking is necessary to ensure that independent successful
developments of the components will fit together to give a correct result.

8. Other operators

Apart from the direct use of declared units and instantiation of generic units with actual arguments, a
number of other constructs to build units are useful and are typically provided in some form in programming
languages with advanced modularisation facilities. In some sense, none of these produces a new unit; they
are used to “customize” what we have already defined, for instance to fit it to a required signature.

Each of these constructs, except for generic unit expressions (Section 8.4), relates directly to one of
the specification-structuring constructs in Casl. For instance, amalgamation of units relates to union of
specifications. To draw attention to this relationship, the syntax is deliberately the same. Nevertheless, it is
crucial not to confuse the two levels, as was explained in Section 3.

8.1. Amalgamation

We need a way of putting together already developed units, to build a larger unit that contains all of their
components. The semantic counterpart of this operation is amalgamation. Given unit terms T1, . . . , Tn, their
amalgamation is denoted by T1 and · · · and Tn. Consider the following example, where Num is as in
Section 2.1.

taking the form of a unit specification, even though the formal semantics of Casl uses slightly more complex semantic objects
here. The specifications of declared units are given directly in the declarations. For defined units, the semantic information
(together with the relevant sharing information) is determined according to the semantics of the unit term in the definition, as
explained below.
7 Moreover, the units in ρ share the components indicated by the sharing information in the context γ: the structures stored
in ρ are mutually compatible w.r.t. the morphisms of the sharing diagram constructed as sketched in Section 6.

14 M. Bidoit, D. Sannella and A. Tarlecki

spec Char =
sort Char
ops a, b, c : Char

end

spec NumAndChar = Num and Char

arch spec Split =
units N : Num;

C : Char
result N and C

In the above, Split describes one natural way to realize the specification NumAndChar, by simply realizing
its two totally independent parts separately, and then putting the two units realizing these two parts together:

NumAndChar ; Split

Just as when feeding a number of required arguments to a generic unit, when amalgamating a number of
units we must make sure that they share components having common names. Here is another trivial example:

spec Num 23 = Num then preds divisible 2 : Num;
divisible 3 : Num

spec Num 2 = Num then pred divisible 2 : Num
spec Num 3 = Num then pred divisible 3 : Num

arch spec Split 23 =
units N : Num;

F2 : Num → Num 2;
F3 : Num → Num 3

result F2 [N] and F3 [N]

Given the above, Num 23 ; Split 23 . However, had we attempted:

arch spec Split? 23 =
units N2 : Num 2;

N3 : Num 3
result N2 and N3

then N2 and N3 would not be a well-formed unit term, since we have not ensured that the realization of
Num is shared between N2 and N3 .

More formally: in a context γ, given well-formed unit terms T1, . . . , Tn, their amalgamation T1 and · · ·
and Tn is a well-formed unit term over the signature that is the union of the signatures of T1, . . . , Tn,
provided that the compatibility condition necessary to ensure that the structures over the signatures of
T1, . . . , Tn amalgamate can be derived from the sharing information available in the current context. For
signatures with no non-trivial subsorts this amounts to requiring that each common symbol in the signatures
of Ti and Tj is shared between Ti and Tj (i.e. can be traced in the sharing diagrams built for both Ti and
Tj to the same symbol in a non-generic unit), for 1 ≤ i < j ≤ n. The corresponding condition for arbitrary
Casl signatures with subsorts additionally requires that the compatibility properties for compositions of
subsort embeddings can be derived, see [CoFI01c], [SMT+01]. If this is the case, then for any environment
ρ matching γ,

[[T1 and · · · and Tn]]ρ = [[T1]]ρ ⊕ · · · ⊕ [[Tn]]ρ

It follows that

[T1 and . . . and Tn]γ = {A1 ⊕ . . .⊕An | A1 ∈ [T1]γ , . . . , An ∈ [Tn]γ , 〈A1, . . . , An〉 is compatible}

A well-formed amalgamation T1 and · · · and Tn is correct whenever each of T1, . . . , Tn is correct.
The sharing requirement ensures compatibility of any structures A1 ∈ [T1]γ , . . . , An ∈ [Tn]γ that result

from the developments of units described in the context γ. In other words: for any environment ρ that
matches γ, [[T1]]ρ,. . . ,[[Tn]]ρ are compatible.

Architectural specifications in Casl 15

For instance, recall the above example Split 23. In the unit term describing the result there, once N ,
F2 and F3 are bound to specific structures resp. generic structures in an environment ρ, then [[F2[N]]]ρ and
[[F3[N]]]ρ are compatible. This holds even though there may be structures in [F2[N]]γ and [F3[N]]γ respec-
tively that are not compatible with each other (where γ is the context determined by the unit declarations
in Split 23). But this is normal: even in [N]γ there are structures that are not compatible with each other,
while clearly once a specific structure is bound to N in ρ, then [[N]]ρ is a structure that is compatible with
itself.

The amalgamation construct is in some sense redundant. Given specifications SP1 and SP2, the specifica-
tion SP1×SP2 → {SP1 and SP2} unambiguously specifies a generic unit which produces the amalgamation
of any two (compatible) arguments. So, instead of adding syntax for amalgamation, we could simply specify
the amalgamation units as needed. However, we feel that this would not be an appropriate simplification: it
might mislead the reader into thinking that such a specification carries non-trivial implementation require-
ments.

8.2. Reduct and renaming

Another construct which seems necessary is that of reduct. It allows the user to design realizations that
contain some auxiliary components not to be exported for use by clients. For example:

spec SP = sort s end
spec SPab = sort s op a, b : s end
spec SPbc = sort s op b, c : s end

arch spec SP ′ =
units S : SP ;

Fab : SP → SPab ;
Fbc : SP → SPbc

result { Fab [S] hide a } and { Fbc [S] reveal s, c }

In the result term of the architectural specification SP ′ we have used two forms of reduct, which we want
to provide here just as in Casl structured specifications. The first, as used in “Fab [S] hide a ”, lists the
symbols to be hidden. The well-formedness conditions simply require that the hidden symbols are actually
there. The semantics is simple as well: the reduct, as defined for Casl structures, is taken. The sharing
information is obvious: the result signature is included in the signature of the unit to which hiding is being
applied, so that the symbols remaining in the reduct are traced as they are in that signature. The second
form of hiding (i.e. reveal) is similar but dual.

Similarly as in Casl structured specifications, we can also rename components of units. The well-
formedness conditions are a little more complicated: not only must the renamed symbols be in the signature
of the unit, but if we rename two different symbols to the same name, they must share in the unit term
to which we apply the renaming.8 Then, the sharing diagram is expanded by adding the target signature
together with the morphism induced by the renaming, so that each new symbol can be traced to its origin in
the obvious way. The renamed unit denotes a structure over the target signature, where the interpretation
of each symbol is given by the interpretation of its original name in the original structure. As in Casl
structured specifications, revealing and renaming may be combined.

Given well-formedness, hiding and renaming do not impose any additional correctness conditions.

8.3. Instantiation with fitting morphisms

Hiding and renaming may be used to adjust the names of unit components to whatever is required. For
instance, consider the following specification:

8 Again, the conditions are more complex in the presence of subsorts, see [CoFI01c], [SMT+01].

16 M. Bidoit, D. Sannella and A. Tarlecki

spec StackNum =
sorts Num, Stack
ops 0 : Num;

succ : Num → Num;
empty : Stack ;
push : Num × Stack → Stack ;
pop : Stack →? Stack ;
top : Stack →? Num

axioms . . .
end

A natural refinement of this is to the following architectural specification:

spec Elem = sort Elem end
spec StackElem =

sorts Elem, Stack
ops empty : Stack ;

push : Elem × Stack → Stack ;
pop : Stack →? Stack ;
top : Stack →? Elem

axioms . . .
end

arch spec StackOfNum =
units N : Num;

ST : Elem → StackElem
result { ST [N reveal Num 7→ Elem] with Elem 7→ Num } and N

Neutral names are used in the parameter for ST to indicate its potential re-usability. It is easy to come up with
situations in which one would instantiate this unit in a number of different ways. But then each application
to a particular unit will involve renaming to make the names match, with another renaming after application
to recover the original names as above. Furthermore, since ST does not depend on anything other than the
sort of elements (Num), the extra operations available in Num are absent in the result of the application.
So if we want to be able to push 0 onto the empty stack (say) in the resulting unit, we need to put back
these additional operations, as above.

Such a pattern — extracting part of a unit (N above), renaming its components appropriately (reveal
Num 7→ Elem above) to feed it as an argument to a generic unit (ST above), and then renaming the
components of the result back (with Elem 7→ Num above) to finally combine them with the original unit
(and N above) — occurs frequently enough that it deserves a special construct. By analogy with instantiation
of generic specifications in Casl, we therefore provide application of a generic unit to its argument via a
fitting morphism. The above example would be written as:

arch spec StackOfNum =
units N : Num;

ST : Elem → StackElem
result ST [N fit Elem 7→ Num]

The symbol map given here expands to a signature morphism in exactly the same way as in the instantiation
of generic specifications. In particular, we allow compound identifiers, which are treated just as they are
there. So we can have:

spec StackElem′ =
sorts Elem, Stack [Elem]
ops empty : Stack [Elem];

push : Elem × Stack [Elem] → Stack [Elem];
pop : Stack [Elem] →? Stack [Elem];
top : Stack [Elem] →? Elem

axioms . . .
end

Architectural specifications in Casl 17

arch spec TwoStacks =
units C : Char;

N : Num;
ST : Elem → StackElem′

result ST [C fit Elem 7→ Char] and ST [N fit Elem 7→ Num]

The result unit term of TwoStacks builds a unit which includes units for Char and Num as well as two
distinct stack sorts Stack [Char] and Stack [Num] together with two separate sets of operations (their names
are overloaded, but their profiles are distinct and this is used to distinguish them).

Instantiation via a fitting morphism is just an abbreviation for the expanded form, with an explicit use
of reduction, renaming and amalgamation.9 In particular, such an instantiation will not be well-formed if
component names introduced by the generic unit (that is, those that are not part of the parameter) also
occur in the actual parameter. Since sharing between such two occurrences of a symbol cannot be ensured,10
the amalgamation that is implicit in the instantiation cannot be well-formed. This requirement of separation
between the body of a generic specification and its actual parameters has been imposed as an extra static
condition in the case of structured specifications.

8.4. Generic unit expressions

So far we have not provided any means for building generic units. As usual, we can simply use λ-notation.
We restrict to functions on non-generic units, i.e. higher-order generic units are not available. Here is an
example:

arch spec Decompose =
units F : SP0 → SP1 ;

G : SP1 → SP
result λX : SP0 • G [F [X]]

This builds a unit that realizes the specification SP0 → SP .
A λ-expression λX : SP • T is correct in a context γ when T is correct in the expansion of γ by X 7→ SP

(and similarly for well-formedness). Given an environment ρ that matches γ,

[[λX : SP • T]]ρ = {A 7→ [[T]]ρ[X 7→A] | A ∈ [[SP]]}

To show a simple example of the use of this construct, recall the specifications from Sections 2.1, 3.1
and 4.1. The architectural specification UCNum contained an anonymous generic unit with the specification
CodeNum → UniqueNumCont′. In Section 4.1 we indicated that it may be replaced by a more general
unit AUC : TransElem → AbstractUniqueCont (from the architectural specification AbstractUC-
Num). More formally, this can be captured by forming the following architectural specification:

arch spec UCNbyAUC =
unit AUC : TransElem → AbstractUniqueCont
result λX : CodeNum • AUC [X fit Elem 7→ Num, transform 7→ code]

Now, we have the following refinement (see Section 9 below for a discussion of refinement between specifica-
tions of generic units):

CodeNum → UniqueNumCont′ ; UCNbyAUC

9 When the fitting morphism is not injective, the expansion is a bit more involved than indicated here, but the same principle
applies.
10 Unless the symbol in the generic unit originates from an import of a unit that shares with the actual parameter.

18 M. Bidoit, D. Sannella and A. Tarlecki

9. Refinements of architectural specifications

Section 4 indicated how a specification may be refined to an architectural specification. With the semantic
notation introduced in subsequent sections, the related semantic correctness condition can be expressed as
follows:

SP ;

units U1 : . . .
· · ·
Un : . . .

result T

⇐⇒ [T]γ ⊆ [[SP]]

where γ is the context built by the declarations of the units U1, . . . , Un. This definition views the class [T]γ
(of all result units that T might denote in the context of the unit declarations and definitions given) as the
visible, “external” meaning of the architectural specification.

What next? That is, how can architectural specifications themselves be refined? Simple: by refining each
of the specifications of declared units separately. But what about specifications of generic units? These are
of the form SP1 → SP2 (omitting the possibility of multi-argument generic units). Clearly, refinement will
preserve genericity, so the question is when

SP1→SP2 ; SP ′1→SP ′2

To begin with, we need the signatures to agree, that is: Sig [SP1] = Sig [SP ′1] and Sig [SP2] = Sig [SP ′2].
Furthermore, as with specifications of closed structures, we need that every generic unit that realizes
SP ′1→SP ′2 must correctly realize SP1→SP2. For consistent specifications SP ′1→SP ′2, this amounts to re-
quiring [[SP1]] ⊆ [[SP ′1]] and [[SP ′2 and SP1]] ⊆ [[SP2]]. Notice that the latter condition is slightly weaker than
the more obvious [[SP ′2]] ⊆ [[SP2]] — we can take advantage of the fact that we will only be applying the unit
to arguments that realize SP1. Hence, refinement of specifications of generic units is in fact a special case of
refinement as introduced in Section 3:

SP1→SP2 ; SP ′1→SP ′2 ⇐⇒ [[SP ′1→SP ′2]] ⊆ [[SP1→SP2]]

since we have modeled generic units as partial functions that are required to be defined on the models of the
argument specification, as explained in Section 5.

This allows for “linear” development of individual units declared in an architectural specification. To allow
further decomposition, we can refine unit specifications to architectural specifications. For closed units this is
covered above. Specifications of generic units may be refined to architectural specifications as well. The only
difference is that then architectural specifications with generic result units, as introduced in Section 8.4, must
be used. The semantics of such a generic result unit term defined in the context of some unit declarations
yields a class of functions, which must be included in the class of functions denoted by the generic unit
specification to be refined.

The overall effect is that we have a development tree, rather than just a sequence of refinement steps. This
was indeed the target from the very beginning. Each leaf of such a tree may be developed independently from
the others, using the full machinery of further decomposition via architectural design etc. The development
subtree beginning at any given node may be replaced by another development tree without affecting the
other parts as long as the new development subtree is correct with respect to the specification at its root.

In the discussion above, it is somehow implicit that architectural specifications as such do not need to
be refined. Only the specifications of the declared units within an architectural specification are subject to
further refinement, since the architectural specification itself is merely a prescription for further separate
independent development of these units (and a description of how to combine the resulting individual pieces
into the desired result). This is quite satisfactory from a methodological point of view, and indeed no further
refinement concept seems necessary to achieve our goals.

However, one can also argue that when the specifications of the units of a given architectural specifica-
tion are refined, a refinement of this architectural specification is obtained by textually replacing the unit
specifications by their respective refinements. This is based on the following theorem:

Theorem 2. Let ASN be the following architectural specification:

Architectural specifications in Casl 19

arch spec ASN =
units · · ·

U1 : SP1 ;
· · ·
U2 : SP2 given T2 ;
· · ·
F : SPa → SPr ;
· · ·

result T

Assume that in ASN all the implicit generic specifications involved in unit specifications with imports are
consistent.
Let γ be the context built by the unit declarations in ASN and assume that all the unit terms involved (in
particular, the result unit term T) are well-formed and correct in γ.
Let then ASN′ be the architectural specification obtained from ASN by textually replacing (some) unit
specifications by their refinements. So, given SP1 ; SP ′1, SP2 ; SP ′2 and SPa→SPr ; SP ′a→SP ′r, we
have:

arch spec ASN′ =
units · · ·

U1 : SP ′1 ;
· · ·
U2 : SP ′2 given T2 ;
· · ·
F : SP ′a → SP ′r ;
· · ·

result T

Let γ′ be the context built by the unit declarations in ASN′. Then all the unit terms involved (in particular,
the result unit term T) are well-formed and correct in γ′. Moreover, [T]γ′ ⊆ [T]γ , i.e. ASN ; ASN′.

The above theorem shows that refinements of entire architectural specifications work as expected, pro-
vided all the implicit generic specifications involved in unit specifications with imports are consistent. Indeed
this assumption cannot be dropped, as shown by the following counterexample (where we assume Int to be
the usual specification of integers, equipped with the predicate even specified in the usual way):

arch spec AS =
units U : { Int then op a : Int axiom a = 1 ∨ a = 0 }

V : { op b : Int axiom b = a + 1 ∧ b even } given U
result V

arch spec AS′ =
units U : { Int then op a : Int axiom a = 1 }

V : { op b : Int axiom b = a + 1 ∧ b even } given U
result V

The architectural specification AS is inconsistent (since V cannot be built for a unit U in which a = 0),
while AS′ is consistent. Thus, even though the specification of the unit U in AS′ is a correct refinement of
the specification of U in AS, AS′ is not a semantically correct refinement of AS. It is important to note that
the problem here arises from the inconsistency of the implicit generic specification involved in the declaration
of V in AS. If V were replaced by an explicit generic specification, the consistency condition would not be
required since the only refinement of an inconsistent specification, generic or not, is another inconsistent
specification.

10. Further comments

We have discussed the issue of designing the structure of a system to be developed from a specification. Our
conclusion has been that apart from the usual mechanisms for structuring requirements specifications, we

20 M. Bidoit, D. Sannella and A. Tarlecki

need a separate mechanism to describe the modular structure of the system to be developed. Casl provides
this in the form of architectural specifications. We presented the basic ideas behind this concept, as well as
the full design of architectural specifications in Casl. The semantics of architectural specifications has been
sketched as well, but see [CoFI01c] for all the details. The level of detail in the presentation was sufficient to
state a few basic facts about the semantics, as well as to argue that properties of architectural specifications
ensure that the basic goals of their design have been achieved. Namely, architectural specifications make it
possible to describe the structure of the system to be developed by listing the units to be built, providing
their specifications and indicating the way they are to be combined to form a more complex unit. Units
here correspond to generic or non-generic modules, and possibilities to adequately specify the former are
provided. Once such an architectural specification is given then its internal correctness can be checked and
the ensured properties of the resulting module can be calculated (to check that the original requirements
specification has been fulfilled by this design). Moreover, further developments of the units required may
proceed independently from each without any need to check that the results are compatible, which brings
in all the benefits of modular development.

The above ideas have been presented in the specific context of Casl. However, both the overall idea and
the constructs for architectural specifications are largely independent from the details of the underlying Casl
logical system. In fact, everything here can be presented in the context of an arbitrary institution [GB92]
equipped with some extra structure to handle specific presentations of signature morphisms in reducts and
renamings and to deal with the issues of sharing between structures when they are amalgamated. Details of
a notion of an institution appropriate for the full semantics of institution-independent Casl (or rather, its
structured specification and architectural specification mechanisms) are in [Mos00], [CoFI01c].

One issue which we have omitted above is that of behavioural implementation [Sch87], [ST89], [NOS95],
[ST97], [BH98]. The idea is that when realizing a specification it is not really necessary to provide a model;
it is sufficient to provide a structure that is behaviourally equivalent to a model. Intuitively, two structures
are behaviourally equivalent if they cannot be distinguished by computations involving only the predicates
and operations they provide. For Casl structures this can be formally captured by requiring that the
two structures satisfy exactly the same definedness sentences and predicate applications — a more general
form where equations between terms of some distinguished observable sorts are taken into account may
be reduced to this by introducing some extra predicate symbols (this more general form is needed only in
the local analysis of specifications of generic units, where all parameter sorts will be taken as potentially
observable). Generic units are behaviourally equivalent if they yield behaviourally equivalent structures for
each argument.

When using a structure that was built to realize a specification up to behavioural equivalence, it is
very convenient to pretend that it actually is a true model of the specification. For instance, for a generic
unit to behaviourally satisfy its specification we require that when it is applied to arguments that model
its parameter specifications, the result of the application models the result specification up to behavioural
equivalence. So, we pretend that whatever is given (here: the arguments) truly satisfies its specification,
but we only ensure that whatever is built (here: the result) satisfies its specification up to behavioural
equivalence. This is sound provided all the available constructions on structures (hence all the generic units
that can be developed) map behaviourally equivalent arguments to behaviourally equivalent results. More
precisely: a generic unit is stable if for any behaviourally equivalent arguments provided for it via a fitting
morphism, the overall results of instantiations of this unit on them are behaviourally equivalent as well. It is
important in this formulation that the arguments considered may be built over a larger signature than just
the argument signature of the unit — this models the fact that the unit may be used in richer contexts. If
all units are stable, it is sufficient to check local behavioural correctness of unit terms only: this is defined
like correctness in Section 7, but allows the arguments for generic units to fit the corresponding parameter
specifications only up to behavioural equivalence. Then the ensured properties [T]γ of any well-formed and
locally behaviourally correct unit term T in a context γ can still be calculated exactly as in Section 7, as
justified by the following theorem:

Theorem 3. Let γ be a context and let T be a unit term that is well-formed and locally behaviourally
correct in γ. Then for any environment ρ that matches γ up to behavioural equivalence such that all generic
units in ρ are stable, [[T]]ρ is in [T]γ up to behavioural equivalence.

Acknowledgements Our thanks to the whole of CoFI, and in particular to the Language Design Task
Group, for many discussions and opportunities to present and improve our ideas on architectural specifi-

Architectural specifications in Casl 21

cations. Thanks to Till Mossakowski for comments on a draft. This work has been partially supported by
the LoSSeD workpackage of CRIT-2 funded by ESPRIT and INCO (AT), a French-Polish project within
the CNRS-PAS cooperation programme (MB, AT), EPSRC grant GR/K63795 (DS) and the CoFI ESPRIT
Working Group 29432 (MB, DS, AT).

♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥

The theme of this paper is structure and modularity. Rod Burstall has made several fundamental contri-
butions to this topic which made a deep impact on our own work. At least three of these are apparent in the
present paper. The issue of modular structure in algebraic specification and development first surfaced in his
work with Joseph Goguen on Clear and CAT. The idea of imposing a modular structure on the design and
semantics of a language by abstracting away from the details of “in the small” language features originated
in their work on institutions. Finally, Rod was influential in the design of innovative modularization facilities
for programming languages through his work on Pebble (with Butler Lampson) and his contribution to the
design of Standard ML. DS and AT are indebted to Rod for many years of inspiring and unconventional
leadership, collaboration, stimulation and friendship.

References

[Ada94] Ada Reference Manual: Language and Standard Libraries, version 6.0. International standard ISO/IEC
8652:1995(E). http://www.adahome.com/rm95/ (1994).

[ABK+01] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P.D. Mosses, D. Sannella, and A. Tarlecki. Casl: The
Common Algebraic Specification Language. To appear in Theoretical Computer Science (2001).

[AG97] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transactions on Software Engineering
and Methodology, July 1997.

[BW82] F. Bauer and H. Wössner. Algorithmic Language and Program Development. Springer (1982).
[Bid88] M. Bidoit. The stratified loose approach: a generalization of initial and loose semantics. Selected Papers from the

5th Workshop on Specification of Abstract Data Types, Gullane. Springer LNCS 332, 1–22 (1988).
[BH93] M. Bidoit and R. Hennicker. A general framework for modular implementations of modular systems. Proc. 5th

Joint Conf. on Theory and Practice of Software Development, Orsay. Springer LNCS 668, 199–214 (1993).
[BH98] M. Bidoit and R. Hennicker. Modular correctness proofs of behavioural implementations. Acta Informatica 35:951–

1005 (1998).
[BST99] M. Bidoit, D. Sannella and A. Tarlecki. Architectural specifications in Casl. Proc. 7th Intl. Conf. on Algebraic

Methodology and Software Technology AMAST’98, Manaus, Brasil. Springer LNCS 1548, 341–357 (1999).
[BG77] R. Burstall and J. Goguen. Putting theories together to make specifications. Proc. 5th Intl. Joint Conf. on Artificial

Intelligence, Cambridge, 1045–1058 (1977).
[BG80] R. Burstall and J. Goguen. The semantics of Clear, a specification language. Proc. Advanced Course on Abstract

Software Specifications, Copenhagen. Springer LNCS 86, 292–332 (1980).
[BL88] R. Burstall and B. Lampson. A kernel language for abstract data types and modules. Information and Computation

76:278–346 (1988).
[CoFI96] The Common Framework Initiative. Catalogue of existing frameworks. http://www.brics.dk/Projects/CoFI/

Catalogue/1/ (1996).
[CoFI01a] The Common Framework Initiative. CoFI: The Common Framework Initiative for algebraic specification and

development (WWW pages). http://www.brics.dk/Projects/CoFI/ (2001).
[CoFI01b] CoFI Task Group on Language Design. Casl – The Common Algebraic Specification Language – Summary (version

1.0.1). http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary/ (2001).
[CoFI01c] CoFI Task Group on Semantics. Casl – The Common Algebraic Specification Language – Semantics. To appear

(2001).
[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I: Equations and Initial Semantics. Springer (1985).
[FAC92] Formal Aspects of Computing 4(1) (1992). Special issue on module facilities in specification languages.
[FL97] J. Fiadeiro and A. Lopes. Semantics of architectural connectors. Proc. Colloq. on Formal Approaches in Software

Engineering, Joint Conf. on Theory and Practice of Software Development (TAPSOFT), Lille. Springer LNCS 1214,
505–519 (1997).

[FJ90] J. Fitzgerald and C. Jones. Modularizing the formal description of a database system. Proc. VDM’90 Conference,
Kiel. Springer LNCS 428, 198–210 (1990).

[GB80] J. Goguen and R. Burstall. CAT, a system for the structured elaboration of correct programs from structured
specifications. Technical report CSL-118, SRI International (1980).

[GB92] J. Goguen and R. Burstall. Institutions: abstract model theory for specification and programming. Journal of the
Assoc. for Computing Machinery 39:95–146 (1992).

[GH93] J. Guttag and J. Horning. Larch: Languages and Tools for Formal Specification. Springer (1993).
[GHW82] J. Guttag, J. Horning and J. Wing. Some notes on putting formal specifications to productive use. Science of

Computer Programming 2:53–68 (1982).

22 M. Bidoit, D. Sannella and A. Tarlecki

[HN94] R. Hennicker and F. Nickl. A behavioural algebraic framework for modular system design and reuse. Selected
Papers from the 9th Workshop on Specification of Abstract Data Types, Caldes de Malavella. Springer LNCS 785,
220–234 (1994).

[KHT+01] B. Klin, P. Hoffman, A. Tarlecki, L. Schröder and T. Mossakowski. Checking amalgamability conditions for Casl
architectural specifications. Proc. International Symposium on Mathematical Foundations of Computer Science
(MFCS 2001), Marianske Lazne. Springer LNCS 2136, 451–463 (2001).

[KS91] B. Krieg-Brückner and D. Sannella. Structuring specifications in-the-large and in-the-small: higher-order functions,
dependent types and inheritance in SPECTRAL. Proc. Colloq. on Combining Paradigms for Software Develop-
ment, Joint Conf. on Theory and Practice of Software Development (TAPSOFT), Brighton. Springer LNCS 494,
313–336 (1991).

[MA91] J. Morris and S. Ahmed. Designing and refining specifications with modules. Proc. 3rd Refinement Workshop,
Hursley Park, 1990. Springer Workshops in Computing, 73–95 (1991).

[Mos97] P. Mosses. CoFI: The Common Framework Initiative for algebraic specification and development. Proc. 7th Intl.
Joint Conf. on Theory and Practice of Software Development, Lille. Springer LNCS 1214, 115–137 (1997).

[Mos00] Till Mossakowski. Specifications in an arbitrary institution with symbols. Recent Developments in Algebraic De-
velopment Techniques, 14th International Workshop, WADT’99, Chateau de Bonas, France. Springer LNCS 1827,
252–270 (2000).

[NOS95] M. Navarro, F. Orejas and A. Sanchez. On the correctness of modular systems. Theoretical Computer Science
140:139–177 (1995).

[Pau96] L. Paulson. ML for the Working Programmer, 2nd edition. Cambridge Univ. Press (1996).
[SMT+01] L. Schröder, T. Mossakowski, A. Tarlecki, P. Hoffman and B. Klin. Semantics of architectural specifications in

Casl. Proc. Fundamental Approaches to Software Engineering (FASE 2001), Genova. Springer LNCS 2029, 253–
268 (2001).

[SST92] D. Sannella, S. Soko lowski and A. Tarlecki. Toward formal development of programs from algebraic specifications:
parameterisation revisited. Acta Informatica 29:689–736 (1992).

[ST89] D. Sannella and A. Tarlecki. Toward formal development of ML programs: foundations and methodology. Proc.
3rd Joint Conf. on Theory and Practice of Software Development, Barcelona. Springer LNCS 352, 375–389 (1989).

[ST97] D. Sannella and A. Tarlecki. Essential concepts of algebraic specification and program development. Formal Aspects
of Computing 9:229–269 (1997).

[SW83] D. Sannella and M. Wirsing. A kernel language for algebraic specification and implementation. Proc. 1983 Intl.
Conf. on Foundations of Computation Theory, Borgholm. Springer LNCS 158, 413–427 (1983).

[SW99] D. Sannella and M. Wirsing. Specification languages. Chapter 8 of Algebraic Foundations of Systems Specification
(eds. E. Astesiano, H.-J. Kreowski and B. Krieg-Brückner). Springer (1999).

[Sch87] O. Schoett. Data Abstraction and the Correctness of Modular Programming. Ph.D. thesis, report CST-42-87, Dept.
of Computer Science, Univ. of Edinburgh (1987).

