Formal program development in Extended ML
for the working programmer’

Donald Sannellal

Abstract

Extended ML is a framework for the formal development of programs in the Standard ML
programming language from high-level specifications of their required input/output behaviour.
It strongly supports the development of modular programs consisting of an interconnected col-
lection of generic and reusable units. The Extended ML framework includes a methodology for
formal program development which establishes a number of ways of proceeding from a given
specification of a programming task towards a program. FEach such step gives rise to one or
more proof obligations which must be proved in order to establish the correctness of that step.
This paper is intended as a user-oriented summary of the Extended ML language and method-
ology. Theoretical technicalities are avoided whenever possible, with emphasis placed on the
practical aspects of formal program development. An extended example of a complete program
development in Extended ML is included.

1 Introduction

The ultimate goal of work on program specification is to establish a practical framework for the sys-
tematic production of correct programs from requirements specifications via a sequence of verified-
correct development steps. Such a framework should ideally have a number of desirable characteris-
tics. Among other important issues are the following:

Formality: The outcome of the program development process is guaranteed to be correct with
respect to the original requirements specification if development steps are proved correct in
some formal logical calculus which is sound with respect to a complete mathematical semantics
of the specification and programming languages involved. Any hedge on this strictly formal
point of view invalidates all guarantees.

Methodology: Given a specification of a programming task, it is helpful if the framework provides
some form of direction in working towards a solution. One possibility is if the framework
sets forth a certain number of kinds of development steps which apply to specifications of
a given form, together with the conditions which must be established in order to guarantee
correctness. Coming up with development steps is a difficult creative task and standardized
methods of making progress are very important in reducing this difficulty to a manageable
level.

Modularity: Large programs should be built in a modular fashion from small and relatively in-
dependent program units, and the framework should support such an approach. Apart from
the advantages which this gives in allowing large programming tasks to be broken into a num-
ber of smaller and more manageable separate tasks, this allows previously-developed programs
and components of such programs to be reused in other programs. One may imagine formal
program development becoming almost practically feasible in spite of its great unitary cost
because of the potential of spreading this cost over many different projects.

*Appeared in Proc. 3rd BCS/FACS Workshop on Refinement, Hursley Park, 1990. Springer Workshops in Com-
puting, 99-130 (1991).
tLaboratory for Foundations of Computer Science, Department of Computer Science, Edinburgh University.

Machine support: The eventual practical feasibility of systematic program development by step-
wise refinement hinges on the availability of computer-aided tools to support various develop-
ment activities. This is necessary both because of the sheer amount of (mostly clerical) work
involved and because of the need to avoid the possibility of human error.

This leaves aside many questions, including: How may the original requirements specification be
formulated so as to ensure that it accurately expresses the needs of the customer? How should
choices between some number of possible development paths be made? Such issues are no less
important than those mentioned above, but they will not be addressed here.

Extended ML is a framework for the formal development of programs in the Standard ML pro-
gramming language from high-level specifications of their required input/output behaviour. Ex-
tended ML is a completely formal framework with a very extensively-developed mathematical basis
in the theory of algebraic specifications. It strongly supports the development of modular programs
consisting of an interconnected collection of generic and reusable units. The Extended ML frame-
work includes a methodology for formal program development which establishes a number of ways
of proceeding from a given specification of a programming task towards a program. Each such step
(modular decomposition, etc.) gives rise to one or more proof obligations which must be proved
in order to establish the correctness of that step. On the minus side, at present Extended ML can
only be used to develop programs written in a small purely functional subset of Standard ML, and
a computer-aided system to support program development is still in the design stage.

The Extended ML language is a wide-spectrum language which encompasses both specifications
and executable programs in a single unified framework. It is a simple extension of the Standard ML
programming language in which axioms are permitted in module interfaces and in place of code in
module bodies. This allows all stages in the development of a program to be expressed in the Ex-
tended ML language, from the initial high-level specification to the final program itself and including
intermediate stages in which specification and program are intermingled.

Formally developing a program in Extended ML means writing a high-level specification of a
generic Standard ML module and then refining this specification top-down by means of a sequence
(actually, a tree) of development steps until an executable Standard ML program is obtained. The
development has a tree-like structure since one of the ways to proceed from a specification is to
decompose it into a number of smaller specifications which can then be independently refined further.
In programming terms, this corresponds to implementing a program module by decomposition into
a number of independent sub-modules.

This paper is intended as a user-oriented summary of the Extended ML language and methodol-
ogy. Theoretical technicalities are avoided whenever possible, with emphasis placed on the practical
aspects of formal program development. Some of the details (mainly those concerned with behavioural
equivalence) are glossed over in the interests of simplicity. Section 3 provides an overview of the Ex-
tended ML language, preceded by a brief review of the Standard ML programming language on
which it is based in Section 2. Section 4 presents a methodology for developing Standard ML pro-
grams from Extended ML specifications by stepwise refinement. An extended example of a complete
program development in Extended ML is included in Section 5; this is the most important section
of the paper for the reader who merely wishes to get a taste of what formal program development is
like. Finally, Section 6 concludes with some remarks about some potential areas of future progress.
Readers who are interested in the theory which underlies Extended ML should consult [ST 89];
among other things, this explains in detail why the formal program development process outlined
here is guaranteed to yield a program which is correct with respect to the original specification of
requirements.

2 An overview of Standard ML

The aim of this section is to briefly review the main features of the Standard ML programming
language which are relevant to Extended ML, in an attempt to make this paper self-contained. A
complete description of the language appears in [HMM 86], and a complete formal semantics is in

[AMT 89] which also includes historical comments on the development of the language. The features
of Standard ML are introduced at a more tutorial level in [Wik 87] (core language only), [Tofte 89]
(mainly module language), [Har 89], and [Reade 89].

Standard ML consists of two sub-languages: the Standard ML “core language” and the Stan-
dard ML “module language”. The core language provides constructs for programming “in the small”
by defining a collection of types and values of those types. Programs written in the core language
look very similar to programs in Hope [BMS 80], Miranda [BW 88] or Haskell [HW 89]. The module
language provides constructs for programming “in the large” by defining and combining a number
of self-contained program units. These sub-languages can be viewed as more or less independent
since there are relatively few points of contact between the sub-languages. A similar modulariza-
tion mechanism could be added to other programming languages; see [SW 87] for the design of an
ML-style module system for Prolog.

2.1 The Standard ML core language

Standard ML is a strongly typed language. Every expression has a type which is inferred automati-
cally by the Standard ML compiler. Expressions are required to obey the typing rules before being
evaluated, and a well-typed expression is guaranteed to produce no run-time type errors. A new type
is defined by giving its name and listing the ways in which values of that type may be constructed
from values of other types. For example, the type of integer sequences may be defined as follows:

datatype sequence =
nil
| cons of int * sequence

(int is the type of integers, which is built-in). A typical value of type sequence is then:
cons(3,cons(4,cons(0,cons(3,nil))))

Conceptually, every value in Standard ML is represented as a term consisting of a constructor applied
to a number of sub-terms, each of which in turn represents another value. In the above definition, nil
is a nullary constructor and cons is a binary constructor (of type int * sequence -> sequence).
Constructor functions are uninterpreted; they just construct. There is no need to define a lower-
level representation of sequences in terms of arrays or pointers. Note that type definitions may be
recursive, as in the above example. The type of integers may be viewed as if it were defined as
follows:

datatype int = ... | "3 | "2 | "1 [o | 1] 2| 3|

Other built-in types include booleans (bool) and character strings (string), and there are a few
built-in functions such as <= : int # int -> bool (less than or equal), size : string -> int,
and not : bool -> bool. The function = : ¢ * ¢ => bool (and its negation, <>) is automatically
provided for any user-defined type ¢.' It is possible to give new names to existing types and type
expressions:

type age = int

This creates an additional name age for the existing type int.

Functions are defined by a sequence of one of more equations, each of which specifies the value
of the function over some subset of the set of possible argument values. This subset is described
by a pattern (a term containing constructors and variables only, without repeated variables) on the
left-hand side of the equation. The pattern is thereby used for case selection and variable binding.
For example:

fun length(nil) = 0
| length(cons(a,s)) = 1 + length(s)

I This is the case for the subset of the Standard ML core language used here, but not in general.

This defines a function length : sequence -> int (this type is inferred automatically by the Stan-
dard ML compiler). One way of viewing such a definition is as a set of rewrite rules:

length(cons(3,cons(4,cons(0,cons(3,nil)))))
1+length(cons(4,cons(0,cons(3,nil))))
1+(1+length(cons(0,cons(3,nil))))
1+(1+(1+length(cons(3,nil))))
1+(1+(1+(1+length(nil))))
1+(1+(1+(140)))

4

tdLe il

Function definitions are often recursive, as in this example; of course, this defines a terminating
function only if the recursion is well-founded in the usual sense. The patterns on the left-hand side
of equations should normally be disjoint and should exhaust the possibilities given in the definition
of the argument type(s). Constants may also be defined:

val three_ones = cons(1,cons(1,cons(1,nil)))

Such definitions may not be recursive. Constants and functions are referred to collectively as values.

Values may be defined in terms of other values, of course. In the following example, a function to
sort a sequence into ascending order is defined using an auxiliary function which inserts an integer
into a ordered list:

fun insert(a,nil) = cons(a,nil)
| insert(a,cons(b,s)) = if a<=b then cons(a,cons(b,s))
else cons(b,insert(a,s))

fun sort nil = nil
| sort(cons(a,s)) = insert(a,sort s)

This defines insert : int * sequence -> sequence and sort : sequence -> sequence. Eval-
uating the expression:

sort(cons(11,cons(5,cons(8,nil))))
will yield the result:

cons(5,cons(8,cons(11,nil))) : sequence

The Standard ML core language includes an assortment of other features, but we will only be
concerned with simple type definitions and value definitions such as those in the examples above.
Features which we will not use include: polymorphic types (it is possible to define sequences of
values of type «, for arbitrary «, and define functions over such types which work for any «); higher-
order functions and functions as first-class citizens (which means that values can have types like
(int -> int) -> (sequence -> sequence) and functions can be embedded in data structures);
and imperative features (references and exceptions). We restrict ourselves to this simple “pure”
subset of the Standard ML core language because adequate (algebraic-style) formal foundations for
the additional features are not yet available. To keep things simple we will make the additional
assumption throughout this paper that all functions we deal with are total.

2.2 The Standard ML module language

The Standard ML module language provides mechanisms which allow large Standard ML programs
to be structured into self-contained program units with explicitly-specified interfaces. Under this
scheme, interfaces (called signatures) and their implementations (called structures) are defined sepa-
rately. Every structure has a signature which gives the names of the types and values defined in the
structure. Structures may be built on top of existing structures, so each one is actually a hierarchy

of structures, and this is reflected in its signature. Components of structures are accessed using
qualified names such as A.B.n (referring to the component n of the structure component B of the
structure A). Functors are “parameterized” structures; the application of a functor to a structure
yields a structure. A functor has an input signature describing structures to which it may be applied,
and an output signature describing the structure which results from such an application. It is pos-
sible, and sometimes necessary to allow interaction between different parts of a program, to declare
that certain substructures (or just certain types) in the hierarchy are identical or shared. This issue
will be discussed later in this section.

An example of a simple modular program in Standard ML is given below. This generalizes the
program above for sorting a sequence of integers, by allowing a sequence of values of arbitrary type
to be sorted provided an order relation is supplied.

signature PO =
sig
type elem
val le : elem * elem —-> bool
end

signature SORT =
sig
structure Elements : PO
datatype sequence =
nil
| cons of Elements.elem * sequence
val sort : sequence —-> sequence
end

functor Sort(X : PO) : SORT =
struct
structure Elements = X
datatype sequence =
nil
| cons of Elements.elem * sequence
fun insert(a,nil) = cons(a,nil)
| insert(a,cons(b,s)) = if Elements.le(a,b) then cons(a,cons(b,s))
else cons(b,insert(a,s))
fun sort nil = nil
| sort(cons(a,s)) = insert(a,sort s)
end

This defines a functor called Sort which may be applied to any structure matching the signature

PO, whereupon it will yield a structure matching the signature SORT. In order for the definition of

Sort to be correctly typed, the body of Sort must define a structure which contains: a substructure

called Elements which matches PO; a type called sequence having constructors called nil and cons

with the types given, and no other constructors; and a function called sort with the type given. The

definition of Sort is indeed correctly typed, and this is determined automatically at compile time.
We can define a structure of signature PO and apply Sort to this structure as follows:

structure IntPO : PO =
struct
type elem = int
val le = op <=
end

structure SortInt = Sort(IntP0)

Now, SortInt.sort may be applied to the sequence
SortInt.cons(11,SortInt.cons(5,SortInt.cons(8,SortInt.nil)))

to yield
SortInt.cons(5,SortInt.cons(8,SortInt.cons(11,SortInt.nil))) : SortInt.sequence

Since the function insert is not mentioned in the output signature SORT, it is considered local to the
body of Sort and does not appear in the structure SortInt. The body of Sort makes no reference
to other functors but of course 1t is possible to define new functors by building on top of existing
functors. For example, it would be possible to isolate the definition of sequences and functions on
sequences in a functor, and then refer to this functor in the body of Sort.

The datatype declaration in SORT constrains the type sequence defined in the body of Sort
to have constructors called nil and cons, and no other constructors. We can use this information
outside the body of the functor to define functions over this type by case analysis, and to test values
of this type for equality. The following defines a function sum of type SortInt.sequence -> int:

fun sum(SortInt.nil) = O
| sum(SortInt.cons(a,s)) = a + sum(s)

Although this is a very convenient notation, it relies on the fact that SortInt.sequence is defined
as a datatype with a known set of constructors. It is sometimes desirable to hide such information
about the representation of a type, keeping it local to the body of the functor which defines the type;
this permits the representation to be changed for reasons such as time or space efficiency without
changing other code which makes use of the type. The following version of SORT mentions the values
cons and nil, but does not require them to be constructors:

signature SORT’ =

sig
structure Elements : PO
type sequence
val nil : sequence
val cons : Elements.elem * sequence —> sequence
val sort : sequence —-> sequence
end

If the definition of Sort were changed to use this as output signature, then the above definition of
sum would not be well-formed, even if the type sequence were defined as a datatype as above. In
fact, without some additional discriminator and destructor functions (such as null, hd and t1) it
would be impossible to define sum outside the body of Sort. A variation on the above would be to
replace the declaration of sequence in SORT’ with the line:

eqtype sequence

This exports the equality function = : sequence * sequence -> bool (which would be hidden in
the case of SORT?) but not the constructors.

Multi-argument functors are treated as single-argument functors in which the input signature
requires a structure with multiple substructures. For example, here is a functor which takes two
structures matching PO and produces another structure matching PO (the lexicographic ordering on
pairs):

functor Lexicographic(structure X : PO
structure Y : PO) : PO =
struct
type elem = X.elem * Y.elem
fun le((x,y),(x’,y’)) = if X.le(x,x’)
then if X.le(x’,x) then Y.le(y,y’) else true
else false
end

If IntPO 1s defined as above and BoolPO is defined as follows:

structure BoolPO : PO =
struct
type elem = bool
fun le(true,true) = true
| le(true,false) = false
| le(false,b) = true
end

then the functor Lexicographic may be applied to these two structures to define an order relation
on {(int X bool)-pairs as follows:

structure Lex = Lexicographic(structure X = IntPO
structure Y = BoolPO)

Then Lex.le((2,true), (2,false)) gives the value false

When multi-argument functors are defined, it is sometimes necessary to declare that certain
components of the argument structures are common to both structures. A contrived example is the
following:

functor Wrong(structure X : PO
structure Y : PO) : PO =

struct

type elem = X.elem

fun le(a,b) = X.le(a,b) andalso Y.le(a,b)
end

(andalso is logical conjunction). The definition of Wrong is ill-typed: in the definition of the function
le, the variables a and b are required to be of type X. elem (because of the first conjunct) and of type
Y.elem (because of the second conjunct). Some applications of Wrong (for example, to a structure
in which X is IntP0O and Y is like IntPO but with the opposite ordering) will be well-typed since
X.elem and Y.elem are the same type, but other applications (for example, to a structure in which
X is IntP0O and Y is BoolPO) will be ill-typed. The input signature of the following functor includes
a sharing constraint which restricts application to appropriate structures:

functor Right(structure X : PO
structure Y : PO
sharing type X.elem = Y.elem) : PO =

struct

type elem = X.elem

fun le(a,b) = X.le(a,b) andalso Y.le(a,b)
end

In this example, it was only necessary to require that X.elem and Y.elem are the same types. It is
sometimes necessary to require that whole (sub)structures are the same. For example:

: PO
: PO
Y) : PO =

functor Strange(structure
structure
sharing X

o= <

struct
type elem =
fun le(a,b)
end

X.elem
= X.le(a,b) andalso Y.le(a,b)

This functor can only be applied to structures having two identical substructures X and Y.

It is possible to use sharing constraints to make explicit the fact that parts of the argument
structure of a functor are inherited by the result structure. This information can be added to the
output signature of the Sort functor above as follows:

functor Sort’(X : PO) : sig include SORT
sharing Elements = X
end =
struct
structure Elements = X
datatype sequence =
nil
| cons of Elements.elem * sequence
fun insert(a,nil) = cons(a,nil)
| insert(a,cons(b,s)) = if Elements.le(a,b) then cons(a,cons(b,s))
else cons(b,insert(a,s))
fun sort nil = nil
| sort(cons(a,s)) = insert(a,sort s)
end

The declaration include SORT has the same effect as repeating the declarations in the signature
SORT above. The sharing constraint sharing Elements = X asserts that the substructure Elements
of the result structure is identical to the argument structure.

This example exposes a subtle but important difference between the Standard ML module lan-
guage and modules as used in Extended ML. In Standard ML and Extended ML, signatures serve
both to impose constraints on the bodies of structures/functors and to restrict the information which
is made available externally about the types and functions which are defined in structure/functor
bodies. In the examples above this was used to hide local functions (such as insert in Sort) and to
hide the fact that certain values are constructors (such as nil and cons in SORT?). In Standard ML,
the information passed to the outside world about a structure/functor is taken to be that in its signa-
ture(s) augmented by any information about type and structure sharing which can be inferred from
the body (sharing by construction in [MacQ 86]). Extended ML is more strict: only the information
which is explicitly recorded in the signature(s) of a structure/functor is available externally. Thus,
any program which is well-typed in Extended ML will be well-typed in Standard ML but not vice
versa. This additional strictness is vital to allow parts of a large software system to be developed
and maintained independently. The main effect of this is that it is often necessary to include explicit
inheritance constraints like the one in Sort’ above. Without this constraint, the information that
the type Elements.elemin the structure Sort’ (IntP0) is the type int would be unavailable. (This
means that structures in Extended ML are actually abstractions in the sense of [MacQ 86], and
functors are parameterized abstractions.)

3 The Extended ML wide-spectrum language
This section reviews the main features of the Extended ML specification/programming language.

A more complete introduction to the Extended ML language appears in [ST 85]. The version of
Extended ML used in this paper is different in certain details from the one presented in [ST 85]

but the general motivation and ideas and the overall appearance of specifications remains the same.
[SS 89] defines the syntax and some aspects of the semantics of Extended ML, and a complete formal
semantics will be forthcoming.

Extended ML is intended as a vehicle for the systematic formal development of programs from
specifications by means of individually-verified steps. Extended ML is called a “wide-spectrum”
language since it allows all stages in the formal development process to be expressed in a single
unified framework, from the initial high-level specification to the final program itself and including
intermediate stages in which specification and program are intermingled. The eventual product of
the formal development process is a modular program in Standard ML, and thus Standard ML
(that is, the “pure” subset of Standard ML described in Section 2) is the executable sub-language of
Extended ML. Earlier stages in the development of such a program are incomplete modular programs
in which some parts are only specified by means of axioms rather than defined in an executable fashion
by means of ML code. This allows more information to be provided in signatures (in the form of
axioms specifying properties which are required to hold of any structure matching that signature),
and less information to be provided in structure and functor bodies (since axioms are permitted in
place of ML code).

In Section 4, a methodology is described for gradually refining such specifications to obtain
programs. During the development process it is possible (and indeed normal) to use ML’s module
facilities to decompose a given programming task into a number of independent subtasks. This is
perhaps the most novel aspect of the Extended ML methodology — its main strength lies in the
support it provides for program development “in the large”. Program development “in the small” is
supported as well but the mechanisms provided are not very different from those of other approaches.

In the Standard ML module language, a signature acts as an interface to a program unit (structure
or functor) which serves to mediate its interactions with the outside world. The signature of a
structure describes the types and values which that structure makes available to the outside world.
The output signature of a functor has much the same purpose, while the input signature describes
what that functor requires from the outside world in order to function as required. Only those
internal details of the structure/functor which are mentioned in its signature are visible to the outside
world.? The remaining internal details may be modified at any time as long as this externally visible
behaviour is maintained.

The information in a signature is sufficient for the use of Standard ML as a programming lan-
guage, but when viewed as an interface specification a signature does not generally provide enough
information to permit proving program correctness (for example). To make signatures more useful as
interfaces of structures in program specification and development, we allow them to include axioms
which put constraints on the permitted behaviour of the components of the structure. An example
of such a signature is the following more informative version of the signature PO from the last section:

signature PO =
sig
type elem
val le : elem * elem -> bool
axiom le(x,x)
axiom le(x,y) andalso le(y,x) => x=y
axiom le(x,y) andalso le(y,z) => le(x,z)
end

This includes the previously-unexpressible precondition which IntP0 must satisfy if Sort (IntP0) is
to behave as expected, namely that IntP0.1le is a partial order on IntPO.elem.

Axioms are expressions of type bool. Using such an expression as an axiom amounts to an
assertion that the value of the expression is true for all values of its free variables. Axioms may
be built using connectives such as not, andalso, orelse and => and quantifiers such as exists
and forall, and the function = may be used to compare values of any type. This is equivalent to

2 As mentioned at the end of the last section, this is not quite true in Standard ML but it is true in Extended ML.

10

using first-order equational logic. Of course, the Standard ML code which is obtained at the end of
the program development process will not contain quantifiers or use = except on types which admit
equality according to Standard ML. The declaration of a type as a datatype amounts in logical terms
to a principle of structural induction for that type, together with axioms stating that the values of
two constructor terms are equal iff the terms are i1dentical.

Formal specifications can be viewed as abstract programs. Some specifications are so completely
abstract that they give no hint of an algorithm (e.g. the specification of the inverse of a matrix A
as that matrix A™" such that A x A7 = I) and often it is not clear if an algorithm exists at all,
while other specifications are so concrete that they amount to programs (e.g. Standard ML programs,
which are just equations of a certain form which happen to be executable). In order to allow different
stages in the evolution of a program to be expressed in a single framework, we allow structures to
contain a mixture of ML code and non-executable axioms. Functors can include axioms as well since
they are simply parameterized structures. For example, a stage in the development of the functor
Sort in the last section might be the following:

functor Sort(X : PO) : sig include SORT
sharing Elements = X
end =
struct
structure Elements : PO = X
datatype sequence =
nil
| cons of Elements.elem * sequence
fun append(nil,s) = s
| append(cons(a,sl),s2) = cons(a,append(si,s2))
fun member(a:Elements.elem,s:sequence) = ? : bool
axiom member(a,nil) = false
axiom member(a,cons(a,s)) = true
axiom a<>b => member(a,cons(b,s)) = member(a,s)
fun insert(a:Elements.elem,s:sequence) = ? : sequence
axiom member(a,insert(a,s))
axiom insert(a,s) = append(sl,cons(a,s2))
=> append(si,s2) = s
andalso (member(al,s1) => Elements.le(al,a))
andalso (member(a2,s2) => Elements.le(a,a2))
fun sort nil = nil
| sort(cons(a,s)) = insert(a,sort s)
end

In this functor declaration, the function sort has been defined in an executable fashion in terms of
insert which is so far only constrained by axioms (these axioms refer to other functions which will
not be required in the final version). Functions and constants which are not defined in an executable
fashion are declared using the special place-holder expression ? as in the example above. This is
necessary in order to declare the type of the function or constant which would normally be inferred
from an executable definition by the ML system. The same construct can be used to declare a type
when 1ts representation in terms of other types has not yet been selected. It is also useful at the
earliest stage in the development of a functor or structure when no body has been supplied:

functor Sort(X : PO) : sig include SORT
sharing Elements = X
end = 7

The Extended ML language is the result obtained by extending Standard ML as indicated above.
That is, axioms are allowed in signatures and in structures, and the place-holder ? is allowed in
place of the expression (type expression, value expression, or structure expression) on the right-hand

11

side of declarations. Explicit signatures are required in structure declarations and explicit output
signatures are required in functor declarations (in Standard ML these are optional) and the use of
these signatures in typechecking is somewhat stricter than in Standard ML as discussed at the end
of Section 2.2.

The examples above and those in the sequel use the notation of first-order equational logic to
write axioms. This choice is rather arbitrary since the formal underpinnings of Extended ML are
actually entirely independent of the choice of logic (see [ST 86] for the details; a logic suitable for
use is called an institution [GB 84]). Tt is natural to choose a logic which has the Standard ML core
language as a subset; this way, the development process comes to an end when all the axioms in
structure and functor bodies are expressed in this executable subset.

The role of signatures as interfaces suggests that they should be regarded as descriptions of the
externally observable behaviour of structures. Consider the following example:

signature 0BJ =
sig
type object
end

signature STACK =

sig
structure 0bj : 0BJ
type stack
val empty : stack
val push : Obj.object * stack -> stack
val pop : stack -> stack
val top : stack —> Obj.object
axiom pop(push(a,s)) = s
axiom top(push(a,s)) = a
end

functor Stack(0 : OBJ) : sig include STACK
sharing Obj = O
end = 7

structure IntStack : STACK = Stack(struct
type object = int
end)

The purpose of the axioms in the signature STACK is to specify the behaviour of the functions defined
by the functor Stack. Any implementation of these functions which satisfies the axioms in STACK
will be valid. This definition of validity seems reasonable, but it turns out to be too restrictive:
for instance, the usual representation of stacks using an array with a pointer to the top element
of the stack will be invalid since it does not satisfy the first axiom of STACK. The reason why this
representation causes no difficulties in practice is that there is no way for an external observer to
detect the difference between the stacks pop(push(a,s)) and s, since equality on stacks is not
provided. This implies that this axiom is not to be taken too seriously. In contrast, in IntStack
(and other instantiations of Stack) it is possible to directly observe the value of top(push(a,s)) and
compare i1t with the value of a, so the second axiom of STACK must be satisfied by any implementation
of Stack. In fact, the first axiom cannot be disregarded either since it is possible in IntStack to

12

directly observe whether or not the following equations hold (for any values of a and s):

top(pop(push(a, s))) = top(s)
top(pop(pop(push(a,s)))) = top(pop(5))

top(pop(pop(pop(push(a,s))))) = top(pop(pop(s)))

All of these are consequences of the first axiom and so one would expect them to hold. So the first
axiom is important at least insofar as it gives rise to a large number (in fact, an infinite number) of
observable properties.

Because of examples like the one above, validity of implementations is defined in Extended ML in
terms of satisfaction of axioms “up to behavioural equivalence” with respect to an appropriate set of
“observable types”. The details of this may be found in [ST 89]. The proper treatment of this issue
is one of the most important facets of the design of Extended ML. However, this complication will be
disregarded in this paper in the interests of simplicity of presentation; we will pretend that axioms
are to be satisfied “literally”, rather than only up to behavioural equivalence. Many examples,
including the one in Section 5, do not require the extra generality provided by Extended ML’s use of
behavioural equivalence and so the language and methodology are still quite useful even when this
issue is ignored.

4 The formal program development methodology

The starting point of formal development i1s a high-level requirements specification of a software
system. The concept of a Standard ML functor corresponds to the informal notion of a self-contained
software system. A functor may be built by composing other functors and so the scale of such a
system may vary from small (like the examples in previous sections) to very large. In Extended ML,
a specification of a software system is a functor with specified interfaces. The initial high-level
specification will be a functor of the form:

functor F(X : SIG) : SIG’ = 7

where SIG and SIG’ are Extended ML signatures containing axioms. At later stages of development,
a functor specification may include a body which is not yet composed of executable code. This is still
a specification of a software system, but one in which some details of the intended implementation
have been supplied.

We will not be concerned here with the difficult problem of how the initial requirements speci-
fication is obtained, or how to check that it accurately reflects the needs of the customer for whom
the system is being developed. This is definitely a vital issue which needs a great deal more inves-
tigation. We assume here that a formal requirements specification in the form indicated above is
provided somehow as a starting point, and ignore the step from the informal requirements of the
customer to this formal specification. It is clear, however, that the formal requirements specification
is the result of negotiation with the customer, and that re-negotiation will be required if it becomes
necessary to change that specification in the course of the program development process.

Any non-executable Extended ML functor specification, i.e. a functor specification having a body
consisting only of the placeholder ? or having a non-trivial body which is however not yet composed
entirely of executable code, is regarded as a specification of a programming task. The task which is
specified is (in the case of ?) to fill in a body which satisfies the functor interfaces, or (in the case of
a body containing axioms) to fill in a body which satisfies the axioms in the current body.

Given a specification of a programming task, there are three ways to proceed towards a program
which satisfies the specification:

Decomposition step: Decompose the functor into a composition of “smaller” functors, which are
then regarded as separate programming tasks in their own right.

13

Coding step: Provide a functor body in the form of an abstract program containing type and value
declarations and a mixture of axioms and code to define them.

Refinement step: Further refine an abstract program by providing a more concrete (but possibly
still non-executable) version which fills in some of the decisions left open by the more abstract
version.

Decomposition and coding steps are applicable to functor specifications like the one shown above in
which the body consists only of the placeholder ?, while refinement steps are applicable to functor
specifications which already have a body of some kind. Decomposition steps may be seen as pro-
gramming (or program design) “in the large”, while coding and refinement steps are programming
“in the small”.

Each of the three kinds of step gives rise to one or more proof obligations which can be generated
mechanically from the “before” and “after” versions of the functor. Each proof obligation is a
condition of the form:

expy U---Uexp, = SIG

where expy,...,exp, are Extended ML signatures or structure expressions and SIG is an Ex-
tended ML signature. Discharging such a proof obligation requires showing that the axioms in
the signature SIG logically follow from the axioms and definitions in ezpq, ..., exp,. A step is cor-
rect if all the proof obligations it incurs can be shown to hold. An executable Standard ML program
which is obtained via a sequence of correct steps from an Extended ML specification of requirements
is guaranteed to satisfy that specification. Of course, there is no need to actually do the proofs
when the steps are performed; for example, they may be deferred until it is clear that a particular
development path is likely to yield a satisfactory result, or until the entire development process is
complete.

The details of each kind of step are given below. The example in Section 5 shows how each kind
of step is used in practice to make progress during the process of developing a software system from
a specification.

4.1 Decomposing functors

Decomposition step Given an Extended ML functor of the form:
functor F(X0 : SIGO) : SIGO’ = 7
we may proceed by introducing a number of additional functors:

functor G1(X1 : SIG1) : SIG1’ = ?

functor Gn(Xn : SIGn) : SIGn’ = 7
and replacing the definition of F with the definition:
functor F(X0 : SIGO) : SIGO’ = sirexp

where strezp is a structure expression which refers to the functors Gi,...,Gn. The developments of
G1,...,Gn may then proceed separately.

The new definition of F is required to be a well-formed Extended ML functor definition. A number
of proof obligations are incurred, one for each point in the expression strezp where two modules come
into contact. This includes the point where the result delivered by strexp is returned as the result of
F. In particular:

1. If the parameter structure X0 is used in strerp in a context which demands a structure of
signature STG, then it is necessary to prove that SIGO = SIG.

2. If the result of an application of Gj is used in a context which demands a structure of signature
SIG, then it is necessary to prove that SIGj’ | SIG.

14

3. If any other structure STR (explicit structure definition or structure identifier) is used in strezp
in a context which demands a structure of signature SIG, then it is necessary to prove that

STR | SIG.

O

The best way to understand the above is to consider a simple and very typical schematic example.

Let F be an Extended ML functor of the form:
functor F(X0 : SIGO) : SIGO’ = 7
We may proceed by introducing two new functors:

functor G1(X1 : SIG1) : SIG1’
functor G2(X2 : SIG2) : SIG2’

and replacing the definition of F with the definition
functor F(X0 : SIGO) : SIGO’ = G2(G1(X0))
This incurs three proof obligations:
1. Any parameter of F is a suitable parameter for G1: SIGO = SIG1
2. Any structure delivered by G1 is a suitable parameter for G2: SIG1’ |= SIG2

3. Any structure delivered by G2 is a suitable result for F: SIG2’ |= SIGO’

Proving that SIGO = SIG1 is a matter of showing that the axioms in SIG1 logically follow from the

axioms in SIGO, and likewise for the other two proof obligations.

In practice, most of the proof obligations incurred by decomposition steps are trivial to discharge

by syntactic means since interfaces will almost always match exactly (i.e., in the above schematic
example we will nearly always have SIGO = SIG1, SIG1’ = SIG2 and SIG2’ = SIGO’). In the
example in Section b, there are four decomposition steps which give rise to a total of nineteen proof
obligations. Seventeen of these are trivial because the signatures involved match syntactically, and
one is trivial because there are no axioms to prove in the consequent signature. The remaining one

is also trivial since all the axioms in the consequent signature appear explicitly in the antecedent

signature.

4.2 Coding functor bodies

Coding step Given an Extended ML functor of the form:
functor F(X : SIG) : SIG’ = 7
we may proceed by replacing the definition of F with the definition:

functor F(X : SIG) : SIG’ = strexp

where strezp 1s a well-formed Extended ML functor body. This incurs a single proof obligation:

SIGU strexp = SIG’

in addition to any proof obligations arising from the use of structures within strezp.

15

4.3 Refining abstract code

Refinement step Given an Extended ML functor of the form:
functor F(X : SIG) : SIG’ = strexp

we may proceed by replacing the definition of F with the definition:
functor F(X : SIG) : SIG’ = strexp’

where strexp’ is a well-formed Extended ML functor body. This incurs a single proof obligation:
SIGU strexp’ |= strexp

in addition to any proof obligations arising from the use of structures within strezp’. a

The above subsections have set forth three ways to proceed from a specification of a programming
task towards a program which satisfies the specification, and the proof obligations which are thereby
incurred. Of course, one would not expect the formal development of realistic programs to proceed
in practice without backtracking, mistakes and iteration, and the Extended ML methodology does
not remove the possibility of unwise design decisions. One problem is that it is often very difficult
to get interface specifications right the first time. For example, when implementing a functor by
decomposition into simpler functors it may well be necessary to adjust the interfaces both in order
to obtain a decomposition which gives rise to “true” (i.e. provable) proof obligations and to resolve
problems which arise later while implementing the simpler functors. If a decomposition has been
proved correct then some changes to the interfaces may be made without affecting correctness: for
example, in any of the simpler functors the output interface may be strengthened or the input
interface weakened without problems. It is also possible to modify the interfaces of the functor
being decomposed by weakening its output signature or strengthening its input signature. This will
preserve the correctness of the decomposition, but since it changes the specification of the functor
such changes must be cleared with the functor’s clients (higher-level functors which use it and/or
the customer). Once we have made such a change to an interface we can also change interfaces it
is required to match in order to take advantage of the modification. Then, provided we are able to
discharge the proof obligations referring to these interfaces, overall correctness is preserved.

The proof obligations listed above for each kind of development step are actually more strict than
necessary. It is possible to loosen them by taking proper account of the ideas concerning behavioural
equivalence mentioned at the end of Section 3. This allows each proof obligation above to be replaced
by a condition of the form:

expy U---Uerp, Fops SIG

where Epps denotes “behavioural consequence” with respect to a certain set OBS of observable
types. In principle, this makes the condition easier to satisfy since it only requires the observable
consequences of the axioms in SIG to follow from the axioms and definitions in ezpq,..., exp, (see
[ST 89] for full details). In practice, convenient methods for proving such conditions have not yet
been established and so the proof itself is rather difficult. Since the examples at hand do not require
this extra flexibility, we will use the simple but strict form of the conditions listed above.

Standard ML’s module language does not permit functors to take other functors as arguments.
An extension to permit this is under consideration at the present time, but some of the implications
of such an extension on Extended ML have already been considered. From a methodological point
of view, this extension adds considerable power; one intriguing point i1s that it seems to introduce
a bottom-up element into Extended ML’s top-down program development methodology. A more
detailed discussion of this issue may be found in [SST 89].

16

5 An example

In this section the formal development process presented in the previous section is demonstrated by
means of an example. Two different developments are given which begin from the same high-level
Extended ML requirements specification and yield different Standard ML programs.

Informal specification A symbol table in a compiler stores identifiers together with attributes of
those identifiers which are determined at various stages during compilation. The following functions
on symbol tables are required:

e Check whether or not an identifier 1s present in the symbol table.
e Add a new identifier to the symbol table and set its attributes.

e Look up the attributes of an identifier which is present. If the identifier is not present then
return a default value.

e Change the attributes of an identifier which is already present. If the identifier is not present
then nothing is changed.

Possible additional functions which would be useful in a compiler for a programming language
with nested block structure are the following:

e Enter a new block. All of the identifiers in the symbol table are visible within the new block
until replaced by local identifiers with the same name.

e Leave a block. All identifiers which were declared locally within the current block are removed
from the symbol table.

These extra functions will not be considered here for the sake of simplicity, although the reader is
invited to consider how their inclusion would alter the developments below.

Step 0

The initial formal specification of the required system is given by the following Extended ML
functor specification:

functor Symtab
(structure X : ID
structure Y : ATTRIB
) : sig include SYMTAB
sharing Id = X and Attrib = Y

end
=7

where ID, ATTRIB and SYMTAB are Extended ML signatures as follows:

signature ID =
sig
eqtype id
end

signature ATTRIB =
sig
type attrib
val null_attrib : attrib
end

17

signature SYMTAB =
sig
structure Id : ID
structure Attrib : ATTRIB
type symtab
val empty : symtab
val add : Id.id * Attrib.attrib * symtab -> symtab
val change_attrib : Id.id * Attrib.attrib * symtab —-> symtab

val present : Id.id * symtab —> bool

axiom present(i,empty) = false

axiom present(i,add(i’,a’,s)) = (i=i’) orelse present(i,s)
axiom present(i,change_attrib(i’,a’,s)) = present(i,s)

val lookup : Id.id * symtab —-> Attrib.attrib

axiom lookup(i,empty) = Attrib.null_attrib

axiom lookup(i,add(i,a,s)) = a

axiom i<>i’ => lookup(i,add(i’,a’,s)) = lookup(i,s)

axiom present(i,s) => lookup(i,change_attrib(i,a,s)) = a

axiom i<>i’ => lookup(i,change_attrib(i’,a’,s)) = lookup(i,s)
end

Our target language i1s the executable subset of Extended ML, namely the purely functional
subset of Standard ML described in Section 2. A natural consequence of this is that the functions on
symbol tables will explicitly take a symbol table as argument rather than working on a single fixed
symbol table which is destructively updated by adding identifiers and changing attributes. Those
functions which change the symbol table will return the modified symbol table as a result. Thus,
values of type symtab represent states of the symbol table. The empty symbol table is represented
by empty, and the functions add and change_attrib update the state of the symbol table by adding
a new identifier (and setting its attributes) and resetting the attributes of an existing identifier,
respectively. The functions present and lookup may be used for querying the current state of the
symbol table. These functions check whether or not an identifier is present in the symbol table and
look up the attributes of an identifier, respectively.

The parameters to the system are the type of identifiers (which is required to admit equality), the
type of attributes, and a default attribute value called null_attrib. This means that the system
will cater for any choice of these types and this value. Making the type of identifiers a parameter
allows identifiers to be character strings (as usual) or something more elaborate. The informal
specification does not say anything about the internal structure of attributes except that there must
be some default attribute value, so it 1s natural to provide these as parameters to the system. The
function change_attrib sets all the attributes of an identifier regardless of their present values;
more complicated interpretations of the informal requirements are possible, but this will do for our
purposes.

Step 1

Design decision (decomposition) We implement change_attrib in terms of add. Exactly how
this is done is left open for now. (Another possibility, which we will not consider, is to implement
add using a function insert which adds a symbol without setting its attributes.)

We need two new functors:

18

functor Symtab’
(structure X : ID
structure Y : ATTRIB
) : sig include SYMTAB’
sharing Id = X and Attrib = Y
end

functor ChangeAttrib
(X : SYMTAB’
) : sig include SYMTAB
sharing Id = X.Id and Attrib = X.Attrib
end

where SYMTAB is exactly like SYMTAB except that the function change_attrib and the axioms which
mention it are absent.
Then we can implement Symtab in terms of these functors as follows:

functor Symtab
(structure X : ID
structure Y : ATTRIB
) : sig include SYMTAB
sharing Id = X and Attrib = Y
end
= ChangeAttrib(Symtab’ (structure X = X
structure Y = Y))

Verification Typechecks okay. All interfaces match exactly so there is nothing to check. a

Step 2

Design decision (coding) Implement the functor ChangeAttrib by coding change_attrib in
terms of add in the obvious way.

functor ChangeAttrib

(X : SYMTAB’

) : sig include SYMTAB
sharing Id = X.Id and Attrib = X.Attrib
end

= struct
open X
fun change_attrib(i:Id.id,a:Attrib.attrib,s:symtab) = ? : symtab
axiom present(i,s) => change_attrib(i,a,s) = add(i,a,s)
axiom not present(i,s) => change_attrib(i,a,s) = s

end

The declaration open X includes the substructures, types and values of X in the result of ChangeAttrib.
Thus, it abbreviates the following sequence of declarations:

19

structure Id : ID = X.Id

structure Attrib : ATTRIB = X.Attrib
type symtab = X.symtab

val empty = X.empty

val add = X.add

val present = X.present

val lookup = X.lookup

Verification Typechecks okay. We have to show that
SYMTAB' U body |= SYMTAB

where body is the body of ChangeAttrib. The only non-trivial part of this involves the axioms of
SYMTAB which are not in SYMTAB’, namely those which mention the function change_attrib:

present(i,change_attrib(i’,a’,s)) = present(i,s)
present(i,s) => lookup(i,change_attrib(i,a,s)) = a
i<>i’ => lookup(i,change_attrib(i’,a’,s)) = lookup(i,s)

The second of these follows directly from an axiom in the body of ChangeAttrib and an axiom in
SYMTAB’ while the first and third require simple case analyses. a

Step 3

Design decision (refinement) Convert the axioms for change_attrib into ML code. The only
change required is to make the case analysis in the axioms explicit using if _ then _ else _

functor ChangeAttrib
(X : SYMTAB’
) : sig include SYMTAB
sharing Id = X.Id and Attrib = X.Attrib
end
= struct
open X
fun change_attrib(i,a,s) = if present(i,s) then add(i,a,s) else s
end

Verification Typechecks okay. The axioms for change_attribin the previous version of the body
follow directly from the function definition in the current version of the body. a

Pause for breath

At this point it is necessary to choose an representation of symbol tables as specified in Symtab’
in terms of simpler data types. There are many possibilities, including at least the following (see
[Sed 88] and similar texts for details):

1. Terms built from the constant empty using the constructor function add.
2. Sequences with identifiers kept in the order in which they are added.
3. Like (2), but with duplicates removed.

The following five choices require an additional order relation on identifiers to be supplied. Since
this involves changing the original specification, it would be necessary to negotiate with the customer
to see if this change is acceptable. Alternatively, if the customer is satisfied with a non-generic
implementation of symbol tables in which the type of identifiers is fixed as strings of characters, the
order relation need not be supplied since there is an appropriate one available.

20

Sequences with identifiers kept in ascending or descending order, with or without duplicates.
Like (4), but using an array in place of a sequence, with sequential search.
Like (5), but with binary search.

Ordered binary trees, with or without duplicates.

e N A

Balanced trees (e.g. 2-3-4 trees, AVL trees, 2-3 trees etc.).

The following two choices require an additional hash function to be supplied which takes identifiers
to some given range of natural numbers. Since this involves changing the original specification, prior
consultation with the customer is again required. And again, such a function need not be supplied
by the customer if the type of identifiers is fixed as strings of characters.

9. Hash tables with separate chains of collisions kept in the order in which they are added, with
or without duplicates.

10. Hash tables with linear probing, with rehashing into a larger table when the table becomes
nearly full.

Other possibilities (again requiring modification to the original specification) are: a variation on
(9) in which chains of collisions are kept in ascending or descending order; and, a variation on (10)
with double hashing. Note that a variation on (10) in which the size of the table is fixed is not an
option (assuming that the number of possible identifiers is infinite) since SYMTAB’ requires symbol
tables to be capable of storing an arbitarily large number of different identifiers.

In this paper we will look at just two of these possibilities: (1) and (3). The development process
therefore splits at this point into two alternative development paths, which will be treated in two
separate subsections.

5.1 Symbol tables represented as terms

The simplest way to represent symbol tables in ML is as terms built from the constant empty using
the constructor function add. A similar method is applicable whenever there are no non-trivial
equations inferrable between constructor terms of the type being represented. If this method is
chosen then the implementation follows almost immediately from the specification of Symtab’ in
Step 1 above.

Step 4

Design decision (coding) Implement the functor Symtab’ by representing symbol tables directly
as terms.

functor Symtab’
(structure X : ID
structure Y : ATTRIB
) : sig include SYMTAB’
sharing Id = X and Attrib = Y
end
= struct
structure Id : ID = X
structure Attrib : ATTRIB = Y
datatype symtab =
empty
| add of Id.id * Attrib.attrib * symtab

21

fun present(i:Id.id,s:symtab) = ? : bool
axiom present(i,empty) = false
axiom present(i,add(i’,a’,s)) = (i=1i’) orelse present(i,s)

fun lookup(i:Id.id,s:symtab) = ? : Attrib.attrib

axiom lookup(i,empty) = Attrib.null_attrib

axiom lookup(i,add(i,a,s)) = a

axiom i<>i’ => lookup(i,add(i’,a’,s)) = lookup(i,s)
end

Verification Typechecks okay. All the axioms in SYMTAB’ appear in the body of the functor, so
there 1s nothing to prove. ad

Step 5

Design decision (refinement) Convert the axioms for present and lookup into ML code. No
change is required to the axioms for present; the only change required to the axioms for lookup is
to make the case analysis explicit using if _ then _ else

functor Symtab’
(structure X : ID
structure Y : ATTRIB
) : sig include SYMTAB’
sharing Id = X and Attrib = Y
end
= struct
structure Id : ID = X
structure Attrib : ATTRIB = Y
datatype symtab =
empty
| add of Id.id * Attrib.attrib * symtab

fun present(i,empty) = false
| present(i,add(i’,a’,s)) = (i=1i’) orelse present(i,s)

fun lookup(i,empty) = Attrib.null_attrib
| lookup(i,add(i’,a,s)) = if i=i’ then a else lookup(i,s)
end

Verification Typechecks okay. The axioms for present and lookup in the previous version of the
body follow directly from the function definitions in the current version of the body. a

All functor bodies are now expressed entirely in Standard ML, so we are finished with this
development path. The functors appearing in the final program are given above under steps 1, 3 and
5. The following tree shows the dependencies between the development steps:

22

Step 0
Initial specification
of Symtab

Step 1
Decompose Symtab into
ChangeAttrib and Symtab’

N

Step 2 Step 4
Abstract code Abstract code
for ChangeAttrib for Symtab’
Step 3 Step b
Refine ChangeAttrib Refine Symtab’

5.2 Symbol tables represented as sequences

An alternative to the above is to represent symbol tables using sequences of (identifier x attribute)-
pairs. Having selected this representation, there are several choices to be made concerning the
details:

1. What dictates the order of the entries in the sequence?

(a) Adding an entry puts it at the front of the sequence.

(b) Adding an entry only puts it at the front of the sequence if the identifier is not already
present.

(¢) The entries are kept in order of their identifiers (with respect to some order on identifiers).
2. Are duplicates removed?

(a) Duplicates are not removed: each add puts an additional entry in the sequence.

(b) Duplicates are removed.

We will choose the combination of 1(a) and 2(b) here. Recall that Steps 0-3 from the beginning of
this section are still relevant to this development path.

Step 4

Design decision (decomposition) We implement Symtab’ in terms of sequences of (identifier x
attribute)-pairs. Exactly how the functions of Symtab’ are expressed in terms of the functions
provided on sequences is left open for now.

We need two new functors:

23

functor SeqPairs
(structure X : ID
structure Y : ATTRIB
) : sig include SEQPAIRS
sharing Id = X and Attrib = Y
end

functor Symtab’’
(S : SEQPAIRS
) : sig include SYMTAB’
sharing Id = S.Id and Attrib = S.Attrib

end
=7

where SEQPAIRS is as follows:

signature SEQPAIRS =
sig
structure Id : ID
structure Attrib : ATTRIB
datatype sequence =
nil
| cons of (Id.id * Attrib.attrib) * sequence

val null : sequence -> bool
axiom null nil = true
axiom null(cons((i,a),s)) = false

val hd : sequence -> Id.id * Attrib.attrib
axiom hd(cons((i,a),s)) = (i,a)

val t1 : sequence —> sequence
axiom tl(cons((i,a),s)) = s
end

Then we can implement Symtab’ in terms of these functors as follows:

functor Symtab’
(structure X : ID
structure Y : ATTRIB
) : sig include SYMTAB’
sharing Id = X and Attrib = Y

end
= Symtab’’(SeqPairs(structure X = X
structure Y = Y))
Verification Typechecks okay. All interfaces match exactly so there is nothing to check. a

Step 5

Design decision (decomposition) We implement Symtab’’ in terms of sequences of (identifier x
attribute)-pairs where no more than one pair in a sequence has the same identifier. Exactly how
the functions of Symtab’’ are expressed in terms of the functions provided on such sequences is left
open for now.

24

We need two new functors:

functor SeqDup
(S : SEQPAIRS
) : sig include SEQDUP
sharing Seq = S
end

functor Symtab’’’
(s : SEQDUP
) : sig include SYMTAB’
sharing Id = S.Seq.Id and Attrib = S.Seq.Attrib

end
=7

where SEQDUP is as follows:

signature SEQDUP =

sig
structure Seq : SEQPAIRS
val add : (Seq.Id.id * Seq.Attrib.attrib) * Seq.sequence -> Seq.sequence
val ismatch : Seq.Id.id * Seq.sequence —> bool
val remove : Seq.Id.id * Seq.sequence —> Seq.sequence
(* axioms for add *)
axiom ismatch(i,s) => add((i,a),s) = Seq.cons((i,a),remove(i,s))
axiom not ismatch(i,s) => add((i,a),s) = Seq.cons((i,a),s)
(* axioms for ismatch *)
axiom ismatch(i,Seq.nil) = false
axiom ismatch(i,Seq.cons((i’,a’),s)) = (i=1i’) orelse ismatch(i,s)
(* axioms for remove *)
axiom not ismatch(i,remove(i,s))
local
val member : (Seq.Id.id * Seq.Attrib.attrib) * Seq.sequence -> bool
axiom member(e,Seq.nil) = false
axiom member(e,Seq.cons(e’,s)) = (e=e’) orelse member(e,s)
in
axiom i<>i’ => member((i’,a’),remove(i,s)) = member((i’,a’),s)
end
end

The axioms for add ensure that sequences built from empty and add contain no pairs with duplicate
identifiers. The function member is an auxiliary function which is introduced in order to simplify the
specification of remove. Since it is declared as local, it need not be implemented in structures which
match SEQDUP.

We can now implement Symtab’’ in terms of SeqDup and Symtab’’’ as follows:

functor Symtab’’
(S : SEQPAIRS
) : sig include SYMTAB’
sharing Id = S.Id and Attrib = S.Attrib
end
= Symtab’’’ (SeqDup(S))

25

Verification Typechecks okay. All interfaces match exactly so there is nothing to check. a
Step 6
Design decision (coding) Implement the functor Symtab’’’ by representing symtab using se-

quences, with add on symbol tables implemented by add (without duplicates) on sequences.

functor Symtab’’’
(s : SEQDUP
) : sig include SYMTAB’
sharing Id = S.Seq.Id and Attrib = S.Seq.Attrib
end
= struct
structure Id : ID = S.Seq.Id
structure Attrib : ATTRIB = S.Seq.Attrib
type symtab = S.Seq.sequence
val empty = S.Seq.nil
fun add(i,a,s) = S.add((i,a),s)
val present = S.ismatch

fun lookup(i:Id.id,s:symtab) = ? : Attrib.attrib

axiom lookup(i,empty) = Attrib.null_attrib

axiom lookup(i,add(i,a,s)) = a

axiom i<>i’ => lookup(i,add(i’,a’,s)) = lookup(i,s)
end

Verification Typechecks okay. We have to show that
SEQDUP U body = SYMTAB'

where body is the body of Symtab’’’. The only non-trivial part of this involves the axioms for the
function present in SYMTAB’:

present(i,empty) = false
present(i,add(i’,a’,s)) = (i=i’) orelse present(i,s)

The first of these follows directly from the definition of present in the body of Symtab’’’ and an
axiom in SEQDUP. To prove the second we must first prove the following:

Lemma The formula
i<>i’ => S.ismatch(i,S.remove(i’,s)) = S.ismatch(i,s)

follows from SEQDUP U body.

Proof By structural induction on the type S.Seq.sequence. Structural induction is valid since

this type is declared (in SEQPAIRS, which is part of SEQDUP) as a datatype. O(of Lemma)
The required result then follows by a simple case analysis. a
Step 7

Design decision (refinement) Convert the axioms for lookup into ML code. The only change
required is to make the case analysis in the axioms explicit using if _ then _ else

26

functor Symtab’’’
(s : SEQDUP
) : sig include SYMTAB’
sharing Id = S.Seq.Id and Attrib = S.Seq.Attrib
end
= struct
structure Id : ID = S.Seq.Id
structure Attrib : ATTRIB = S.Seq.Attrib
type symtab = S.Seq.sequence
val empty = S.Seq.nil
fun add(i,a,s) = S.add((i,a),s)
val present = S.ismatch
fun lookup(i,s) = if S.Seq.null s then Attrib.null_attrib
else let val (i’,a’) = S.Seq.hd s in
if i=i’ then a’
else lookup(i,S.Seq.tl s) end
end

Verification Typechecks okay. We have to prove that the axioms for lookup in the previous
version of the body of Symtab’’’ follow from the function definition in the current version of the
body and the axioms in SEQDUP (this contains SEQPAIRS, so the axioms there may be used as well).
The relevant axioms from the previous version of Symtab’’’ are:

lookup(i,empty) = Attrib.null_attrib
lookup(i,add(i,a,s)) = a
i<>i’ => lookup(i,add(i’,a’,s)) = lookup(i,s)

The first of these follows directly from the definition of lookup above and an axiom in SEQPAIRS.
The other two require a simple case analysis. a

Step 8

Design decision (coding) Implement the functor SeqDup. At this stage we convert the axioms
for add and ismatch to ML code, but leave remove defined by axioms. (An alternative would be to
implement SeqDup using a more general functor for duplicate-free sequences of arbitrary elements
which is parameterized by the type of elements, the type of keys and the function which produces the
key of an element, and use this functor for the case where elements are {identifier x attribute)-pairs,
keys are identifiers, and the left projection produces the key of an element. But this would require
some restructuring since we have already decided to use sequences as specified in SEQPAIRS as symbol

tables.)

functor SeqDup
(S : SEQPAIRS
) : sig include SEQDUP
sharing Seq = S
end
= struct
structure Seq : SEQPAIRS = S
fun ismatch(i,Seq.nil) = false
| ismatch(i,Seq.cons((i’,a’),s)) = (i=1i’) orelse ismatch(i,s)

27

fun remove(i:Seq.Id.id,s:Seq.sequence) = 7 : Seq.sequence
axiom not ismatch(i,remove(i,s))
local
fun member((i:Seq.Id.id,a:Seq.Attrib.attrib),s:Seq.sequence)
= 7?7 : bool
axiom member(e,Seq.nil) = false
axiom member(e,Seq.cons(e’,s)) = (e=e’) orelse member(e,s)
in
axiom i<>i’ => member((i’,a’),remove(i,s)) = member((i’,a’),s)
end

fun add((i,a),s) = if ismatch(i,s) then Seq.cons((i,a),remove(i,s))
else Seq.cons((i,a),s)
end

Verification Typechecks okay. The axioms for add and ismatch in SEQDUP follow directly from
the function definitions in the body of SeqDup, and the axioms for remove are unchanged. ad

Step 9

Design decision (refinement) Supply ML code for the function remove. The local declaration
of member becomes superfluous (and need not be converted to ML code) since the code for remove
does not refer to member.

functor SeqDup
(S : SEQPAIRS
) : sig include SEQDUP
sharing Seq = S
end
= struct
structure Seq : SEQPAIRS = S
fun ismatch(i,Seq.nil) = false
| ismatch(i,Seq.cons((i’,a’),s)) = (i=1i’) orelse ismatch(i,s)
fun remove(i,Seq.nil) = Seq.nil
| remove(i,Seq.cons((i’,a’),s)) = if i=i’ then remove(i,s)
else Seq.cons((i’,a’),remove(i,s))
fun add((i,a),s) = if ismatch(i,s) then Seq.cons((i,a),remove(i,s))
else Seq.cons((i,a),s)
end

Verification Typechecks okay. We have to show that
SEQPAIRS U body of SeqDup |= previous version of body of SeqDup

The only axioms in the previous version of the body of SeqDup which do not appear in the present
version are those for remove:

not ismatch(i,remove(i,s))
i<>i’ => member((i’,a’),remove(i,s)) = member((i’,a’),s)

Both proofs proceed by structural induction on s and case analysis. For the second proof we are
allowed to make use of the axioms for the function member in the previous version of the body of
SeqDup. O

28

Step 10

Design decision (decomposition) We implement SeqPairs using a more general functor Seq
which 1s parameterized by the type of elements. We will use this for the case where elements are
(identifier x attribute)-pairs.

We need one new functor:

functor Seq
(E : ELEM
) : sig include SEQ
sharing Elem = E

end
=7

where ELEM and SEQ are as follows:

signature ELEM =
sig
type elem
end

signature SEQ =
sig
structure Elem : ELEM
datatype sequence =
nil
| cons of Elem.elem * sequence

val null : sequence -> bool
axiom null nil = true
axiom null(cons(e,s)) = false

val hd : sequence —-> Elem.elem
axiom hd(cons(e,s)) = e

val t1 : sequence —> sequence
axiom tl(cons(e,s)) = s
end

Then we can implement SeqPairs in terms of this functor as follows:

functor SeqPairs
(structure X : ID
structure Y : ATTRIB
) : sig include SEQPAIRS
sharing Id = X and Attrib = Y
end
= struct
structure Id : ID = X
structure Attrib : ATTRIB = Y
structure Elem : ELEM =
struct
type elem = Id.id * Attrib.attrib
end

29

structure Seq : SEQ = Seq(Elem)
open Seq
end

Verification Typechecks okay. All of the structure declarations in the body of SeqPairs are
trivially well-formed (in the case of Elem, this is because ELEM contains no axioms). We therefore
have only to show that

structure Id : ID
structure Attrib : ATTRIB

structure Elem : ELEM = SEQPAIRS
structure Seq : SEQ
open Seq
All the axioms in SEQPAIRS follow immediately. a

Step 11

Design decision (coding) One would normally expect the functor Seq to be available in the
library. In case it is not available, the axioms can be converted directly into ML code using an
implementation of sequences as terms.

functor Seq
(E : ELEM
) : sig include SEQ
sharing Elem = E
end
= struct
structure Elem : ELEM = E
datatype sequence =
nil
| cons of Elem.elem * sequence
fun null nil = true
| null(cons(e,s))
fun hd(cons(e,s)) = e
fun t1 nil = nil
| t1(cons(e,s))

false

1]
o]

end

Verification Typechecks okay. All the axioms in SEQ follow immediately from the function
definitions in the body of Seq. Strictly speaking, this code is invalid since the function hd is not
totally defined, but any choice of value for hd nil will do (the same is true for t1 nil, which we
have arbitrarily given the value nil). The values of hd nil and t1 nil are unimportant since the
specified interface of Seq does not make any promises concerning them. However, we are operating
under the global assumption that all functions are total, which means that we should ensure that
some value is returned. ad

All functor bodies are now expressed entirely in Standard ML, so we are finished with this
development path. The functors appearing in the final program are given above under steps 1, 3, 4,
5,7,9,10 and 11. The following tree shows the dependencies between the development steps:

30

Step 0
Initial specification
of Symtab

Step 1
Decompose Symtab into
ChangeAttrib and Symtab’

— N

Step 2 Step 4
Abstract code Decompose Symtab’ into
for ChangeAttrib Symtab’’ and SeqPairs
Step 3 . Step b Step 10
Refine ChangeAttrib Decompose Symtab’’ .
. Decompose SeqPairs
mto Symtab’’’ usine Se
and SeqDup & ~ed
Step 6 Step 8
Abstract code Abstract code Coitee?orllse
for Symtab’’’ for SeqDup 4
Step 7 Step 9
Refine Symtab’’’ Refine SeqDup

6 Concluding remarks

This paper has presented the Extended ML approach to formal program development in a way which
is intended to emphasize the practical aspects of formal program development while avoiding theo-
retical issues as much as possible. The importance of sound mathematical foundations to support
the enterprise of formal program development cannot be over-emphasized, and this is one of Ex-
tended ML’s strengths, but a formal program development framework should be designed in such a
way that the user of the framework is not forced to be aware of these foundations.

One important feature of Extended ML which has not been stressed in this paper is the fact
that the Extended ML language and methodology are practically independent of the logic used to
write axioms, as well as of the form of signatures and structures (see [ST 86] for details). The
notation of first-order equational logic has been used here to write axioms and signatures/structures
contain types and values as in ML, but we could have used order-sorted equational logic [GM 87]
and imposed a sub-type relation on types as in OBJ3 [GW 88] (although this would have been a
awkward choice for producing programs in Standard ML since it is unable to cope with sub-types
and coercions). The semantics of Extended ML regards executable code as a special case of axioms;
e.g., Standard ML function definitions can be viewed as axioms of first-order equational logic which
have the special form:

J(pr) = expry A~ A f(pn) = expr,

where p1, ..., p, are patterns (terms containing constructors and variables only) and all the variables

31

in ezpr; appear in p;, for all j < n. As a practical consequence, Extended ML can be used to develop
programs in other target programming languages. For example, if we switch to untyped first-order
predicate logic and regard Horn clauses as the executable subset of this logic, the result is a language
and methodology for developing modular Prolog programs (see [SW 87]) from specifications. Another
consequence is that the present restriction to a small subset of Standard ML (excluding higher-order
functions, polymorphism, references, exceptions etc.) is only necessary until a logic is developed
which is able to cope with all these features adequately. Developing such a logic will not be an easy
job by any means, but it is one which can be tackled separately.

The aims of Extended ML are broadly similar to those of work on rigorous program development
by the VDM school (see e.g. [Jones 80]). VDM is a method for software specification and development,
based on the use of explicitly-defined models of software systems, which has been widely applied in
practice. However, it is rigorous rather than fully formal, and lacks formal mathematical foundations
and explicit structuring mechanisms (the RAISE project [BDMP 85] is attempting to fill these gaps).
In contrast, work on Extended ML builds on formal mathematical foundations with a strong emphasis
on modularity and programming/design in the large; problems of practical usability are addressed,
but such concerns are never allowed to take precedence over the need to maintain the soundness of
the foundations. At a technical level, two advantages of the Extended ML approach (neither of which
have been properly discussed here) are the use of behavioural equivalence which handles the transition
between data specification and representation in a more general way than VDM’s retrieve functions,
and the independence from the underlying logical framework and target programming language
mentioned above. Extended ML is primarily designed to support the development of programs from
property-oriented (axiomatic) specifications rather than model-oriented specifications, but it is able
to cope with model-oriented specifications as well via the use of behavioural equivalence.

Much work remains to be done. One of the most glaring omissions at present is the lack of
machine-based tools to support formal program development in Extended ML. This is one of the
main goals of a SERC-funded project in Edinburgh which began in May 1989. The first step will be
a parser/typechecker for Extended ML specifications which will allow specifications to be checked for
silly mistakes and produce abstract syntax trees in a form suitable for processing by other tools; this
will be available soon. A number of theorem provers are available which are able to cope with the
proofs involved in program development examples like the one in Section 5, but once one is adopted it
will have to be enriched to cope with the modular structure of specifications along the lines described
in [SB 83]. A component is also needed to generate proof obligations from development steps and
to keep track of these and of the programming tasks which remain to be tackled. Other plans are
sketched in [ST 88]. The support system will be written in Standard ML, which will allow us to
experiment with the use of the techniques we advocate in developing the components of the system
itself.

Acknowledgements

Much of this paper is a rehash of ideas from [ST 89]. T gratefully acknowledge the work of
Andrzej Tarlecki of the Polish Academy of Sciences in our continuing collaboration on Extended ML
and on topics in the foundations of algebraic specification and formal program development on which
this work is based. Thanks to Edmund Kazmierczak for comments on a draft of this paper. The
research reported here has been partially supported by grants from the U.K. Science and Engineering
Research Council and the Polish Academy of Sciences.

7 References

[Note: LNCS n = Springer Lecture Notes in Computer Science, Volume n |

[BW 88] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice-Hall (1988).

[BDMP 85] D. Bjgrner, T. Denvir, E. Meiling and J. Pedersen. The RAISE project: fundamental
issues and requirements. Report RAISE/DDC/EM/1/V6, Dansk Datamatic Center (1985).

32

[BMS 80] R. Burstall, D. MacQueen and D. Sannella. Hope: an experimental applicative language.
Proc. 1980 LISP Conference, Stanford, California, pp. 136-143 (1980).

[GB 84] J. Goguen and R. Burstall. Introducing institutions. Proc. Logics of Programming Work-
shop, Carnegie-Mellon. LNCS 164, pp. 221-256 (1984).

[GM 87] J. Goguen and J. Meseguer. Order-sorted algebra solves the constructor-selector, multiple
representation and coercion problems. Proc. 2nd IEEE Symp. on Logic in Computer Science,

Tthaca, New York, pp. 18-29 (1987).

[GW 88] J. Goguen and T. Winkler. Introducing OBJ3. Report SRI-CSL-88-9, Computer Science
Laboratory, SRI International (1988).

[Har 89] R. Harper. Introduction to Standard ML. Report ECS-LFCS-86-14, Univ. of Edinburgh.
Revised edition (1989).

[HMM 86] R. Harper, D. MacQueen and R. Milner. Standard ML. Report ECS-LFCS-86-2, Univ.
of Edinburgh (1986).

[AMT 89] R. Harper, R. Milner and M. Tofte. The definition of Standard ML (version 3). Report
ECS-LFCS-89-81, Univ. of Edinburgh (1989).

[HW 89] P. Hudak and P. Wadler et al. Report on the functional programming language Haskell.
Report CSC/89/R5, Univ. of Glasgow (1989).

Jones 80] C. Jones. Software Development: A Rigorous Approach. Prentice-Hall (1980).

MacQ 86] D. MacQueen. Modules for Standard ML. In: [HMM 86] (1986).

Reade 89] C. Reade. Elements of Functional Programming. Addison-Wesley (1989).

SB 83] D. Sannella and R. Burstall. Structured theories in LCF. Proc. 8th Collog. on Trees in
Algebra and Programming, I’ Aquila, Ttaly. LNCS 159, pp. 377-391 (1983).

[SS 89] D. Sannella and F. da Silva. Syntax, typechecking and dynamic semantics for Extended ML.
Report ECS-LFCS-89-101, Univ. of Edinburgh (1989).

[SST 89] D. Sannella, S. Sokotowski and A. Tarlecki. Toward formal development of programs
from algebraic specifications: parameterisation revisited. Technical Report, Laboratory for
Foundations of Computer Science, Dept. of Computer Science, Univ. of Edinburgh (to appear).

[ST 85] D. Sannella and A. Tarlecki. Program specification and development in Standard ML.
Proc. 12th ACM Symp. on Principles of Programming Languages, New Orleans, pp. 67-77
(1985).

[ST 86] D. Sannella and A. Tarlecki. Extended ML: an institution-independent framework for for-
mal program development. Proc. Workshop on Category Theory and Computer Programming,

Guildford. LNCS 240, pp. 364-389 (1986).

[ST 88] D. Sannella and A. Tarlecki. Tools for formal program development: some fantasies. LFCS
Newsletter, No. 1, pp. 10-15 (1988).

[ST 89] D. Sannella and A. Tarlecki. Toward formal development of ML programs: foundations
and methodology. Report ECS-LFCS-89-71, Laboratory for Foundations of Computer Science,
Dept. of Computer Science, Univ. of Edinburgh (1989); extended abstract in Proc. Collog. on
Current Issues in Programming Languages, Joint Conf. on Theory and Practice of Software

Development (TAPSOFT), Barcelona. LNCS 352, pp. 375-389 (1989).

[SW 87] D. Sannella and L. Wallen. A calculus for the construction of modular Prolog programs.
Proc. 1987 IEEE Symp. on Logic Programming, San Francisco, pp. 368-378 (1987). To appear
in Journal of Logic Programming.

[Sed 88] R. Sedgewick. Algorithms, 2nd edition. Addison-Wesley (1988).

[Tofte 89] M. Tofte. Four lectures on Standard ML. Report ECS-LFCS-89-73, Univ. of Edinburgh
(1989).

[Wik 87] A. Wikstrém. FPunctional Programming Using Standard ML. Prentice-Hall (1987).

[
[
[
[

