
1Formal program development in Extended MLfor the working programmer�Donald SannellayAbstractExtended ML is a framework for the formal development of programs in the Standard MLprogramming language from high-level speci�cations of their required input/output behaviour.It strongly supports the development of modular programs consisting of an interconnected col-lection of generic and reusable units. The Extended ML framework includes a methodology forformal program development which establishes a number of ways of proceeding from a givenspeci�cation of a programming task towards a program. Each such step gives rise to one ormore proof obligations which must be proved in order to establish the correctness of that step.This paper is intended as a user-oriented summary of the Extended ML language and method-ology. Theoretical technicalities are avoided whenever possible, with emphasis placed on thepractical aspects of formal program development. An extended example of a complete programdevelopment in Extended ML is included.1 IntroductionThe ultimate goal of work on program speci�cation is to establish a practical framework for the sys-tematic production of correct programs from requirements speci�cations via a sequence of veri�ed-correct development steps. Such a framework should ideally have a number of desirable characteris-tics. Among other important issues are the following:Formality: The outcome of the program development process is guaranteed to be correct withrespect to the original requirements speci�cation if development steps are proved correct insome formal logical calculus which is sound with respect to a complete mathematical semanticsof the speci�cation and programming languages involved. Any hedge on this strictly formalpoint of view invalidates all guarantees.Methodology: Given a speci�cation of a programming task, it is helpful if the framework providessome form of direction in working towards a solution. One possibility is if the frameworksets forth a certain number of kinds of development steps which apply to speci�cations ofa given form, together with the conditions which must be established in order to guaranteecorrectness. Coming up with development steps is a di�cult creative task and standardizedmethods of making progress are very important in reducing this di�culty to a manageablelevel.Modularity: Large programs should be built in a modular fashion from small and relatively in-dependent program units, and the framework should support such an approach. Apart fromthe advantages which this gives in allowing large programming tasks to be broken into a num-ber of smaller and more manageable separate tasks, this allows previously-developed programsand components of such programs to be reused in other programs. One may imagine formalprogram development becoming almost practically feasible in spite of its great unitary costbecause of the potential of spreading this cost over many di�erent projects.�Appeared in Proc. 3rd BCS/FACS Workshop on Re�nement, Hursley Park, 1990. Springer Workshops in Com-puting, 99{130 (1991).yLaboratory for Foundations of Computer Science, Department of Computer Science, Edinburgh University.



2Machine support: The eventual practical feasibility of systematic program development by step-wise re�nement hinges on the availability of computer-aided tools to support various develop-ment activities. This is necessary both because of the sheer amount of (mostly clerical) workinvolved and because of the need to avoid the possibility of human error.This leaves aside many questions, including: How may the original requirements speci�cation beformulated so as to ensure that it accurately expresses the needs of the customer? How shouldchoices between some number of possible development paths be made? Such issues are no lessimportant than those mentioned above, but they will not be addressed here.Extended ML is a framework for the formal development of programs in the Standard ML pro-gramming language from high-level speci�cations of their required input/output behaviour. Ex-tended ML is a completely formal framework with a very extensively-developed mathematical basisin the theory of algebraic speci�cations. It strongly supports the development of modular programsconsisting of an interconnected collection of generic and reusable units. The Extended ML frame-work includes a methodology for formal program development which establishes a number of waysof proceeding from a given speci�cation of a programming task towards a program. Each such step(modular decomposition, etc.) gives rise to one or more proof obligations which must be provedin order to establish the correctness of that step. On the minus side, at present Extended ML canonly be used to develop programs written in a small purely functional subset of Standard ML, anda computer-aided system to support program development is still in the design stage.The Extended ML language is a wide-spectrum language which encompasses both speci�cationsand executable programs in a single uni�ed framework. It is a simple extension of the Standard MLprogramming language in which axioms are permitted in module interfaces and in place of code inmodule bodies. This allows all stages in the development of a program to be expressed in the Ex-tended ML language, from the initial high-level speci�cation to the �nal program itself and includingintermediate stages in which speci�cation and program are intermingled.Formally developing a program in Extended ML means writing a high-level speci�cation of ageneric Standard ML module and then re�ning this speci�cation top-down by means of a sequence(actually, a tree) of development steps until an executable Standard ML program is obtained. Thedevelopment has a tree-like structure since one of the ways to proceed from a speci�cation is todecompose it into a number of smaller speci�cations which can then be independently re�ned further.In programming terms, this corresponds to implementing a program module by decomposition intoa number of independent sub-modules.This paper is intended as a user-oriented summary of the Extended ML language and methodol-ogy. Theoretical technicalities are avoided whenever possible, with emphasis placed on the practicalaspects of formal program development. Some of the details (mainly those concerned with behaviouralequivalence) are glossed over in the interests of simplicity. Section 3 provides an overview of the Ex-tended ML language, preceded by a brief review of the Standard ML programming language onwhich it is based in Section 2. Section 4 presents a methodology for developing Standard ML pro-grams from Extended ML speci�cations by stepwise re�nement. An extended example of a completeprogram development in Extended ML is included in Section 5; this is the most important sectionof the paper for the reader who merely wishes to get a taste of what formal program development islike. Finally, Section 6 concludes with some remarks about some potential areas of future progress.Readers who are interested in the theory which underlies Extended ML should consult [ST 89];among other things, this explains in detail why the formal program development process outlinedhere is guaranteed to yield a program which is correct with respect to the original speci�cation ofrequirements.2 An overview of Standard MLThe aim of this section is to briey review the main features of the Standard ML programminglanguage which are relevant to Extended ML, in an attempt to make this paper self-contained. Acomplete description of the language appears in [HMM 86], and a complete formal semantics is in



3[HMT 89] which also includes historical comments on the development of the language. The featuresof Standard ML are introduced at a more tutorial level in [Wik 87] (core language only), [Tofte 89](mainly module language), [Har 89], and [Reade 89].Standard ML consists of two sub-languages: the Standard ML \core language" and the Stan-dard ML \module language". The core language provides constructs for programming \in the small"by de�ning a collection of types and values of those types. Programs written in the core languagelook very similar to programs in Hope [BMS 80], Miranda [BW 88] or Haskell [HW 89]. The modulelanguage provides constructs for programming \in the large" by de�ning and combining a numberof self-contained program units. These sub-languages can be viewed as more or less independentsince there are relatively few points of contact between the sub-languages. A similar modulariza-tion mechanism could be added to other programming languages; see [SW 87] for the design of anML-style module system for Prolog.2.1 The Standard ML core languageStandard ML is a strongly typed language. Every expression has a type which is inferred automati-cally by the Standard ML compiler. Expressions are required to obey the typing rules before beingevaluated, and a well-typed expression is guaranteed to produce no run-time type errors. A new typeis de�ned by giving its name and listing the ways in which values of that type may be constructedfrom values of other types. For example, the type of integer sequences may be de�ned as follows:datatype sequence =nil| cons of int * sequence(int is the type of integers, which is built-in). A typical value of type sequence is then:cons(3,cons(4,cons(0,cons(3,nil))))Conceptually, every value in Standard ML is represented as a term consisting of a constructor appliedto a number of sub-terms, each of which in turn represents another value. In the above de�nition, nilis a nullary constructor and cons is a binary constructor (of type int * sequence -> sequence).Constructor functions are uninterpreted; they just construct. There is no need to de�ne a lower-level representation of sequences in terms of arrays or pointers. Note that type de�nitions may berecursive, as in the above example. The type of integers may be viewed as if it were de�ned asfollows:datatype int = : : : | ~3 | ~2 | ~1 | 0 | 1 | 2 | 3 | : : :Other built-in types include booleans (bool) and character strings (string), and there are a fewbuilt-in functions such as <= : int * int -> bool (less than or equal), size : string -> int,and not : bool -> bool. The function = : t * t -> bool (and its negation, <>) is automaticallyprovided for any user-de�ned type t.1 It is possible to give new names to existing types and typeexpressions:type age = intThis creates an additional name age for the existing type int.Functions are de�ned by a sequence of one of more equations, each of which speci�es the valueof the function over some subset of the set of possible argument values. This subset is describedby a pattern (a term containing constructors and variables only, without repeated variables) on theleft-hand side of the equation. The pattern is thereby used for case selection and variable binding.For example:fun length(nil) = 0| length(cons(a,s)) = 1 + length(s)1This is the case for the subset of the Standard ML core language used here, but not in general.



4This de�nes a function length : sequence -> int (this type is inferred automatically by the Stan-dard ML compiler). One way of viewing such a de�nition is as a set of rewrite rules:length(cons(3,cons(4,cons(0,cons(3,nil)))))) 1+length(cons(4,cons(0,cons(3,nil))))) 1+(1+length(cons(0,cons(3,nil))))) 1+(1+(1+length(cons(3,nil))))) 1+(1+(1+(1+length(nil))))) 1+(1+(1+(1+0)))) 4Function de�nitions are often recursive, as in this example; of course, this de�nes a terminatingfunction only if the recursion is well-founded in the usual sense. The patterns on the left-hand sideof equations should normally be disjoint and should exhaust the possibilities given in the de�nitionof the argument type(s). Constants may also be de�ned:val three_ones = cons(1,cons(1,cons(1,nil)))Such de�nitions may not be recursive. Constants and functions are referred to collectively as values.Values may be de�ned in terms of other values, of course. In the following example, a function tosort a sequence into ascending order is de�ned using an auxiliary function which inserts an integerinto a ordered list:fun insert(a,nil) = cons(a,nil)| insert(a,cons(b,s)) = if a<=b then cons(a,cons(b,s))else cons(b,insert(a,s))fun sort nil = nil| sort(cons(a,s)) = insert(a,sort s)This de�nes insert : int * sequence -> sequence and sort : sequence -> sequence. Eval-uating the expression:sort(cons(11,cons(5,cons(8,nil))))will yield the result:cons(5,cons(8,cons(11,nil))) : sequenceThe Standard ML core language includes an assortment of other features, but we will only beconcerned with simple type de�nitions and value de�nitions such as those in the examples above.Features which we will not use include: polymorphic types (it is possible to de�ne sequences ofvalues of type �, for arbitrary �, and de�ne functions over such types which work for any �); higher-order functions and functions as �rst-class citizens (which means that values can have types like(int -> int) -> (sequence -> sequence) and functions can be embedded in data structures);and imperative features (references and exceptions). We restrict ourselves to this simple \pure"subset of the Standard ML core language because adequate (algebraic-style) formal foundations forthe additional features are not yet available. To keep things simple we will make the additionalassumption throughout this paper that all functions we deal with are total.2.2 The Standard ML module languageThe Standard ML module language provides mechanisms which allow large Standard ML programsto be structured into self-contained program units with explicitly-speci�ed interfaces. Under thisscheme, interfaces (called signatures) and their implementations (called structures) are de�ned sepa-rately. Every structure has a signature which gives the names of the types and values de�ned in thestructure. Structures may be built on top of existing structures, so each one is actually a hierarchy



5of structures, and this is reected in its signature. Components of structures are accessed usingquali�ed names such as A.B.n (referring to the component n of the structure component B of thestructure A). Functors are \parameterized" structures; the application of a functor to a structureyields a structure. A functor has an input signature describing structures to which it may be applied,and an output signature describing the structure which results from such an application. It is pos-sible, and sometimes necessary to allow interaction between di�erent parts of a program, to declarethat certain substructures (or just certain types) in the hierarchy are identical or shared. This issuewill be discussed later in this section.An example of a simple modular program in Standard ML is given below. This generalizes theprogram above for sorting a sequence of integers, by allowing a sequence of values of arbitrary typeto be sorted provided an order relation is supplied.signature PO =sig type elemval le : elem * elem -> boolendsignature SORT =sig structure Elements : POdatatype sequence =nil| cons of Elements.elem * sequenceval sort : sequence -> sequenceendfunctor Sort(X : PO) : SORT =structstructure Elements = Xdatatype sequence =nil| cons of Elements.elem * sequencefun insert(a,nil) = cons(a,nil)| insert(a,cons(b,s)) = if Elements.le(a,b) then cons(a,cons(b,s))else cons(b,insert(a,s))fun sort nil = nil| sort(cons(a,s)) = insert(a,sort s)endThis de�nes a functor called Sort which may be applied to any structure matching the signaturePO, whereupon it will yield a structure matching the signature SORT. In order for the de�nition ofSort to be correctly typed, the body of Sort must de�ne a structure which contains: a substructurecalled Elements which matches PO; a type called sequence having constructors called nil and conswith the types given, and no other constructors; and a function called sort with the type given. Thede�nition of Sort is indeed correctly typed, and this is determined automatically at compile time.We can de�ne a structure of signature PO and apply Sort to this structure as follows:



6structure IntPO : PO =structtype elem = intval le = op <=endstructure SortInt = Sort(IntPO)Now, SortInt.sort may be applied to the sequenceSortInt.cons(11,SortInt.cons(5,SortInt.cons(8,SortInt.nil)))to yieldSortInt.cons(5,SortInt.cons(8,SortInt.cons(11,SortInt.nil))) : SortInt.sequenceSince the function insert is not mentioned in the output signature SORT, it is considered local to thebody of Sort and does not appear in the structure SortInt. The body of Sort makes no referenceto other functors but of course it is possible to de�ne new functors by building on top of existingfunctors. For example, it would be possible to isolate the de�nition of sequences and functions onsequences in a functor, and then refer to this functor in the body of Sort.The datatype declaration in SORT constrains the type sequence de�ned in the body of Sortto have constructors called nil and cons, and no other constructors. We can use this informationoutside the body of the functor to de�ne functions over this type by case analysis, and to test valuesof this type for equality. The following de�nes a function sum of type SortInt.sequence -> int:fun sum(SortInt.nil) = 0| sum(SortInt.cons(a,s)) = a + sum(s)Although this is a very convenient notation, it relies on the fact that SortInt.sequence is de�nedas a datatype with a known set of constructors. It is sometimes desirable to hide such informationabout the representation of a type, keeping it local to the body of the functor which de�nes the type;this permits the representation to be changed for reasons such as time or space e�ciency withoutchanging other code which makes use of the type. The following version of SORT mentions the valuescons and nil, but does not require them to be constructors:signature SORT' =sig structure Elements : POtype sequenceval nil : sequenceval cons : Elements.elem * sequence -> sequenceval sort : sequence -> sequenceendIf the de�nition of Sort were changed to use this as output signature, then the above de�nition ofsum would not be well-formed, even if the type sequence were de�ned as a datatype as above. Infact, without some additional discriminator and destructor functions (such as null, hd and tl) itwould be impossible to de�ne sum outside the body of Sort. A variation on the above would be toreplace the declaration of sequence in SORT' with the line:eqtype sequenceThis exports the equality function = : sequence * sequence -> bool (which would be hidden inthe case of SORT') but not the constructors.Multi-argument functors are treated as single-argument functors in which the input signaturerequires a structure with multiple substructures. For example, here is a functor which takes twostructures matching PO and produces another structure matching PO (the lexicographic ordering onpairs):



7functor Lexicographic(structure X : POstructure Y : PO) : PO =structtype elem = X.elem * Y.elemfun le((x,y),(x',y')) = if X.le(x,x')then if X.le(x',x) then Y.le(y,y') else trueelse falseendIf IntPO is de�ned as above and BoolPO is de�ned as follows:structure BoolPO : PO =structtype elem = boolfun le(true,true) = true| le(true,false) = false| le(false,b) = trueendthen the functor Lexicographic may be applied to these two structures to de�ne an order relationon hint� booli-pairs as follows:structure Lex = Lexicographic(structure X = IntPOstructure Y = BoolPO)Then Lex.le((2,true),(2,false)) gives the value false.When multi-argument functors are de�ned, it is sometimes necessary to declare that certaincomponents of the argument structures are common to both structures. A contrived example is thefollowing:functor Wrong(structure X : POstructure Y : PO) : PO =structtype elem = X.elemfun le(a,b) = X.le(a,b) andalso Y.le(a,b)end(andalso is logical conjunction). The de�nition of Wrong is ill-typed: in the de�nition of the functionle, the variables a and b are required to be of type X.elem (because of the �rst conjunct) and of typeY.elem (because of the second conjunct). Some applications of Wrong (for example, to a structurein which X is IntPO and Y is like IntPO but with the opposite ordering) will be well-typed sinceX.elem and Y.elem are the same type, but other applications (for example, to a structure in whichX is IntPO and Y is BoolPO) will be ill-typed. The input signature of the following functor includesa sharing constraint which restricts application to appropriate structures:functor Right(structure X : POstructure Y : POsharing type X.elem = Y.elem) : PO =structtype elem = X.elemfun le(a,b) = X.le(a,b) andalso Y.le(a,b)endIn this example, it was only necessary to require that X.elem and Y.elem are the same types. It issometimes necessary to require that whole (sub)structures are the same. For example:



8functor Strange(structure X : POstructure Y : POsharing X = Y) : PO =structtype elem = X.elemfun le(a,b) = X.le(a,b) andalso Y.le(a,b)endThis functor can only be applied to structures having two identical substructures X and Y.It is possible to use sharing constraints to make explicit the fact that parts of the argumentstructure of a functor are inherited by the result structure. This information can be added to theoutput signature of the Sort functor above as follows:functor Sort'(X : PO) : sig include SORTsharing Elements = Xend =structstructure Elements = Xdatatype sequence =nil| cons of Elements.elem * sequencefun insert(a,nil) = cons(a,nil)| insert(a,cons(b,s)) = if Elements.le(a,b) then cons(a,cons(b,s))else cons(b,insert(a,s))fun sort nil = nil| sort(cons(a,s)) = insert(a,sort s)endThe declaration include SORT has the same e�ect as repeating the declarations in the signatureSORT above. The sharing constraint sharing Elements = X asserts that the substructure Elementsof the result structure is identical to the argument structure.This example exposes a subtle but important di�erence between the Standard ML module lan-guage and modules as used in Extended ML. In Standard ML and Extended ML, signatures serveboth to impose constraints on the bodies of structures/functors and to restrict the information whichis made available externally about the types and functions which are de�ned in structure/functorbodies. In the examples above this was used to hide local functions (such as insert in Sort) and tohide the fact that certain values are constructors (such as nil and cons in SORT'). In Standard ML,the information passed to the outside world about a structure/functor is taken to be that in its signa-ture(s) augmented by any information about type and structure sharing which can be inferred fromthe body (sharing by construction in [MacQ 86]). Extended ML is more strict: only the informationwhich is explicitly recorded in the signature(s) of a structure/functor is available externally. Thus,any program which is well-typed in Extended ML will be well-typed in Standard ML but not viceversa. This additional strictness is vital to allow parts of a large software system to be developedand maintained independently. The main e�ect of this is that it is often necessary to include explicitinheritance constraints like the one in Sort' above. Without this constraint, the information thatthe type Elements.elem in the structure Sort'(IntPO) is the type int would be unavailable. (Thismeans that structures in Extended ML are actually abstractions in the sense of [MacQ 86], andfunctors are parameterized abstractions.)3 The Extended ML wide-spectrum languageThis section reviews the main features of the Extended ML speci�cation/programming language.A more complete introduction to the Extended ML language appears in [ST 85]. The version ofExtended ML used in this paper is di�erent in certain details from the one presented in [ST 85]



9but the general motivation and ideas and the overall appearance of speci�cations remains the same.[SS 89] de�nes the syntax and some aspects of the semantics of Extended ML, and a complete formalsemantics will be forthcoming.Extended ML is intended as a vehicle for the systematic formal development of programs fromspeci�cations by means of individually-veri�ed steps. Extended ML is called a \wide-spectrum"language since it allows all stages in the formal development process to be expressed in a singleuni�ed framework, from the initial high-level speci�cation to the �nal program itself and includingintermediate stages in which speci�cation and program are intermingled. The eventual product ofthe formal development process is a modular program in Standard ML, and thus Standard ML(that is, the \pure" subset of Standard ML described in Section 2) is the executable sub-language ofExtended ML. Earlier stages in the development of such a program are incomplete modular programsin which some parts are only speci�ed by means of axioms rather than de�ned in an executable fashionby means of ML code. This allows more information to be provided in signatures (in the form ofaxioms specifying properties which are required to hold of any structure matching that signature),and less information to be provided in structure and functor bodies (since axioms are permitted inplace of ML code).In Section 4, a methodology is described for gradually re�ning such speci�cations to obtainprograms. During the development process it is possible (and indeed normal) to use ML's modulefacilities to decompose a given programming task into a number of independent subtasks. This isperhaps the most novel aspect of the Extended ML methodology | its main strength lies in thesupport it provides for program development \in the large". Program development \in the small" issupported as well but the mechanisms provided are not very di�erent from those of other approaches.In the Standard ML module language, a signature acts as an interface to a program unit (structureor functor) which serves to mediate its interactions with the outside world. The signature of astructure describes the types and values which that structure makes available to the outside world.The output signature of a functor has much the same purpose, while the input signature describeswhat that functor requires from the outside world in order to function as required. Only thoseinternal details of the structure/functor which are mentioned in its signature are visible to the outsideworld.2 The remaining internal details may be modi�ed at any time as long as this externally visiblebehaviour is maintained.The information in a signature is su�cient for the use of Standard ML as a programming lan-guage, but when viewed as an interface speci�cation a signature does not generally provide enoughinformation to permit proving program correctness (for example). To make signatures more useful asinterfaces of structures in program speci�cation and development, we allow them to include axiomswhich put constraints on the permitted behaviour of the components of the structure. An exampleof such a signature is the following more informative version of the signature PO from the last section:signature PO =sig type elemval le : elem * elem -> boolaxiom le(x,x)axiom le(x,y) andalso le(y,x) => x=yaxiom le(x,y) andalso le(y,z) => le(x,z)endThis includes the previously-unexpressible precondition which IntPO must satisfy if Sort(IntPO) isto behave as expected, namely that IntPO.le is a partial order on IntPO.elem.Axioms are expressions of type bool. Using such an expression as an axiom amounts to anassertion that the value of the expression is true for all values of its free variables. Axioms maybe built using connectives such as not, andalso, orelse and => and quanti�ers such as existsand forall, and the function = may be used to compare values of any type. This is equivalent to2As mentioned at the end of the last section, this is not quite true in Standard ML but it is true in Extended ML.



10using �rst-order equational logic. Of course, the Standard ML code which is obtained at the end ofthe program development process will not contain quanti�ers or use = except on types which admitequality according to Standard ML. The declaration of a type as a datatype amounts in logical termsto a principle of structural induction for that type, together with axioms stating that the values oftwo constructor terms are equal i� the terms are identical.Formal speci�cations can be viewed as abstract programs. Some speci�cations are so completelyabstract that they give no hint of an algorithm (e.g. the speci�cation of the inverse of a matrix Aas that matrix A�1 such that A � A�1 = I) and often it is not clear if an algorithm exists at all,while other speci�cations are so concrete that they amount to programs (e.g. Standard ML programs,which are just equations of a certain form which happen to be executable). In order to allow di�erentstages in the evolution of a program to be expressed in a single framework, we allow structures tocontain a mixture of ML code and non-executable axioms. Functors can include axioms as well sincethey are simply parameterized structures. For example, a stage in the development of the functorSort in the last section might be the following:functor Sort(X : PO) : sig include SORTsharing Elements = Xend =structstructure Elements : PO = Xdatatype sequence =nil| cons of Elements.elem * sequencefun append(nil,s) = s| append(cons(a,s1),s2) = cons(a,append(s1,s2))fun member(a:Elements.elem,s:sequence) = ? : boolaxiom member(a,nil) = falseaxiom member(a,cons(a,s)) = trueaxiom a<>b => member(a,cons(b,s)) = member(a,s)fun insert(a:Elements.elem,s:sequence) = ? : sequenceaxiom member(a,insert(a,s))axiom insert(a,s) = append(s1,cons(a,s2))=> append(s1,s2) = sandalso (member(a1,s1) => Elements.le(a1,a))andalso (member(a2,s2) => Elements.le(a,a2))fun sort nil = nil| sort(cons(a,s)) = insert(a,sort s)endIn this functor declaration, the function sort has been de�ned in an executable fashion in terms ofinsert which is so far only constrained by axioms (these axioms refer to other functions which willnot be required in the �nal version). Functions and constants which are not de�ned in an executablefashion are declared using the special place-holder expression ? as in the example above. This isnecessary in order to declare the type of the function or constant which would normally be inferredfrom an executable de�nition by the ML system. The same construct can be used to declare a typewhen its representation in terms of other types has not yet been selected. It is also useful at theearliest stage in the development of a functor or structure when no body has been supplied:functor Sort(X : PO) : sig include SORTsharing Elements = Xend = ?The Extended ML language is the result obtained by extending Standard ML as indicated above.That is, axioms are allowed in signatures and in structures, and the place-holder ? is allowed inplace of the expression (type expression, value expression, or structure expression) on the right-hand



11side of declarations. Explicit signatures are required in structure declarations and explicit outputsignatures are required in functor declarations (in Standard ML these are optional) and the use ofthese signatures in typechecking is somewhat stricter than in Standard ML as discussed at the endof Section 2.2.The examples above and those in the sequel use the notation of �rst-order equational logic towrite axioms. This choice is rather arbitrary since the formal underpinnings of Extended ML areactually entirely independent of the choice of logic (see [ST 86] for the details; a logic suitable foruse is called an institution [GB 84]). It is natural to choose a logic which has the Standard ML corelanguage as a subset; this way, the development process comes to an end when all the axioms instructure and functor bodies are expressed in this executable subset.The role of signatures as interfaces suggests that they should be regarded as descriptions of theexternally observable behaviour of structures. Consider the following example:signature OBJ =sig type objectendsignature STACK =sig structure Obj : OBJtype stackval empty : stackval push : Obj.object * stack -> stackval pop : stack -> stackval top : stack -> Obj.objectaxiom pop(push(a,s)) = saxiom top(push(a,s)) = aendfunctor Stack(O : OBJ) : sig include STACKsharing Obj = Oend = ?structure IntStack : STACK = Stack(structtype object = intend)The purpose of the axioms in the signature STACK is to specify the behaviour of the functions de�nedby the functor Stack. Any implementation of these functions which satis�es the axioms in STACKwill be valid. This de�nition of validity seems reasonable, but it turns out to be too restrictive:for instance, the usual representation of stacks using an array with a pointer to the top elementof the stack will be invalid since it does not satisfy the �rst axiom of STACK. The reason why thisrepresentation causes no di�culties in practice is that there is no way for an external observer todetect the di�erence between the stacks pop(push(a,s)) and s, since equality on stacks is notprovided. This implies that this axiom is not to be taken too seriously. In contrast, in IntStack(and other instantiations of Stack) it is possible to directly observe the value of top(push(a,s)) andcompare it with the value of a, so the second axiom of STACK must be satis�ed by any implementationof Stack. In fact, the �rst axiom cannot be disregarded either since it is possible in IntStack to



12directly observe whether or not the following equations hold (for any values of a and s):top( pop(push(a; s)) ) = top( s )top(pop( pop(push(a; s)) )) = top(pop( s ))top(pop(pop( pop(push(a; s)) ))) = top(pop(pop( s )))...All of these are consequences of the �rst axiom and so one would expect them to hold. So the �rstaxiom is important at least insofar as it gives rise to a large number (in fact, an in�nite number) ofobservable properties.Because of examples like the one above, validity of implementations is de�ned in Extended ML interms of satisfaction of axioms \up to behavioural equivalence" with respect to an appropriate set of\observable types". The details of this may be found in [ST 89]. The proper treatment of this issueis one of the most important facets of the design of Extended ML. However, this complication will bedisregarded in this paper in the interests of simplicity of presentation; we will pretend that axiomsare to be satis�ed \literally", rather than only up to behavioural equivalence. Many examples,including the one in Section 5, do not require the extra generality provided by Extended ML's use ofbehavioural equivalence and so the language and methodology are still quite useful even when thisissue is ignored.4 The formal program development methodologyThe starting point of formal development is a high-level requirements speci�cation of a softwaresystem. The concept of a Standard ML functor corresponds to the informal notion of a self-containedsoftware system. A functor may be built by composing other functors and so the scale of such asystem may vary from small (like the examples in previous sections) to very large. In Extended ML,a speci�cation of a software system is a functor with speci�ed interfaces. The initial high-levelspeci�cation will be a functor of the form:functor F(X : SIG) : SIG' = ?where SIG and SIG' are Extended ML signatures containing axioms. At later stages of development,a functor speci�cation may include a body which is not yet composed of executable code. This is stilla speci�cation of a software system, but one in which some details of the intended implementationhave been supplied.We will not be concerned here with the di�cult problem of how the initial requirements speci-�cation is obtained, or how to check that it accurately reects the needs of the customer for whomthe system is being developed. This is de�nitely a vital issue which needs a great deal more inves-tigation. We assume here that a formal requirements speci�cation in the form indicated above isprovided somehow as a starting point, and ignore the step from the informal requirements of thecustomer to this formal speci�cation. It is clear, however, that the formal requirements speci�cationis the result of negotiation with the customer, and that re-negotiation will be required if it becomesnecessary to change that speci�cation in the course of the program development process.Any non-executable Extended ML functor speci�cation, i.e. a functor speci�cation having a bodyconsisting only of the placeholder ? or having a non-trivial body which is however not yet composedentirely of executable code, is regarded as a speci�cation of a programming task. The task which isspeci�ed is (in the case of ?) to �ll in a body which satis�es the functor interfaces, or (in the case ofa body containing axioms) to �ll in a body which satis�es the axioms in the current body.Given a speci�cation of a programming task, there are three ways to proceed towards a programwhich satis�es the speci�cation:Decomposition step: Decompose the functor into a composition of \smaller" functors, which arethen regarded as separate programming tasks in their own right.



13Coding step: Provide a functor body in the form of an abstract program containing type and valuedeclarations and a mixture of axioms and code to de�ne them.Re�nement step: Further re�ne an abstract program by providing a more concrete (but possiblystill non-executable) version which �lls in some of the decisions left open by the more abstractversion.Decomposition and coding steps are applicable to functor speci�cations like the one shown above inwhich the body consists only of the placeholder ?, while re�nement steps are applicable to functorspeci�cations which already have a body of some kind. Decomposition steps may be seen as pro-gramming (or program design) \in the large", while coding and re�nement steps are programming\in the small".Each of the three kinds of step gives rise to one or more proof obligations which can be generatedmechanically from the \before" and \after" versions of the functor. Each proof obligation is acondition of the form: exp1 [ � � � [ expn j= SIGwhere exp1; : : : ; expn are Extended ML signatures or structure expressions and SIG is an Ex-tended ML signature. Discharging such a proof obligation requires showing that the axioms inthe signature SIG logically follow from the axioms and de�nitions in exp1; : : : ; expn. A step is cor-rect if all the proof obligations it incurs can be shown to hold. An executable Standard ML programwhich is obtained via a sequence of correct steps from an Extended ML speci�cation of requirementsis guaranteed to satisfy that speci�cation. Of course, there is no need to actually do the proofswhen the steps are performed; for example, they may be deferred until it is clear that a particulardevelopment path is likely to yield a satisfactory result, or until the entire development process iscomplete.The details of each kind of step are given below. The example in Section 5 shows how each kindof step is used in practice to make progress during the process of developing a software system froma speci�cation.4.1 Decomposing functorsDecomposition step Given an Extended ML functor of the form:functor F(X0 : SIG0) : SIG0' = ?we may proceed by introducing a number of additional functors:functor G1(X1 : SIG1) : SIG1' = ?...functor Gn(Xn : SIGn) : SIGn' = ?and replacing the de�nition of F with the de�nition:functor F(X0 : SIG0) : SIG0' = strexpwhere strexp is a structure expression which refers to the functors G1; : : : ; Gn. The developments ofG1; : : : ; Gn may then proceed separately.The new de�nition of F is required to be a well-formed Extended ML functor de�nition. A numberof proof obligations are incurred, one for each point in the expression strexp where two modules comeinto contact. This includes the point where the result delivered by strexp is returned as the result ofF. In particular:1. If the parameter structure X0 is used in strexp in a context which demands a structure ofsignature SIG, then it is necessary to prove that SIG0 j= SIG .2. If the result of an application of Gj is used in a context which demands a structure of signatureSIG, then it is necessary to prove that SIGj' j= SIG .



143. If any other structure STR (explicit structure de�nition or structure identi�er) is used in strexpin a context which demands a structure of signature SIG, then it is necessary to prove thatSTR j= SIG . 2The best way to understand the above is to consider a simple and very typical schematic example.Let F be an Extended ML functor of the form:functor F(X0 : SIG0) : SIG0' = ?We may proceed by introducing two new functors:functor G1(X1 : SIG1) : SIG1' = ?functor G2(X2 : SIG2) : SIG2' = ?and replacing the de�nition of F with the de�nitionfunctor F(X0 : SIG0) : SIG0' = G2(G1(X0))This incurs three proof obligations:1. Any parameter of F is a suitable parameter for G1: SIG0 j= SIG12. Any structure delivered by G1 is a suitable parameter for G2: SIG1' j= SIG23. Any structure delivered by G2 is a suitable result for F: SIG2' j= SIG0'Proving that SIG0 j= SIG1 is a matter of showing that the axioms in SIG1 logically follow from theaxioms in SIG0, and likewise for the other two proof obligations.In practice, most of the proof obligations incurred by decomposition steps are trivial to dischargeby syntactic means since interfaces will almost always match exactly (i.e., in the above schematicexample we will nearly always have SIG0 = SIG1, SIG1' = SIG2 and SIG2' = SIG0'). In theexample in Section 5, there are four decomposition steps which give rise to a total of nineteen proofobligations. Seventeen of these are trivial because the signatures involved match syntactically, andone is trivial because there are no axioms to prove in the consequent signature. The remaining oneis also trivial since all the axioms in the consequent signature appear explicitly in the antecedentsignature.4.2 Coding functor bodiesCoding step Given an Extended ML functor of the form:functor F(X : SIG) : SIG' = ?we may proceed by replacing the de�nition of F with the de�nition:functor F(X : SIG) : SIG' = strexpwhere strexp is a well-formed Extended ML functor body. This incurs a single proof obligation:SIG [ strexp j= SIG'in addition to any proof obligations arising from the use of structures within strexp. 2



154.3 Re�ning abstract codeRe�nement step Given an Extended ML functor of the form:functor F(X : SIG) : SIG' = strexpwe may proceed by replacing the de�nition of F with the de�nition:functor F(X : SIG) : SIG' = strexp0where strexp0 is a well-formed Extended ML functor body. This incurs a single proof obligation:SIG[ strexp0 j= strexpin addition to any proof obligations arising from the use of structures within strexp 0. 2The above subsections have set forth three ways to proceed from a speci�cation of a programmingtask towards a program which satis�es the speci�cation, and the proof obligations which are therebyincurred. Of course, one would not expect the formal development of realistic programs to proceedin practice without backtracking, mistakes and iteration, and the Extended ML methodology doesnot remove the possibility of unwise design decisions. One problem is that it is often very di�cultto get interface speci�cations right the �rst time. For example, when implementing a functor bydecomposition into simpler functors it may well be necessary to adjust the interfaces both in orderto obtain a decomposition which gives rise to \true" (i.e. provable) proof obligations and to resolveproblems which arise later while implementing the simpler functors. If a decomposition has beenproved correct then some changes to the interfaces may be made without a�ecting correctness: forexample, in any of the simpler functors the output interface may be strengthened or the inputinterface weakened without problems. It is also possible to modify the interfaces of the functorbeing decomposed by weakening its output signature or strengthening its input signature. This willpreserve the correctness of the decomposition, but since it changes the speci�cation of the functorsuch changes must be cleared with the functor's clients (higher-level functors which use it and/orthe customer). Once we have made such a change to an interface we can also change interfaces itis required to match in order to take advantage of the modi�cation. Then, provided we are able todischarge the proof obligations referring to these interfaces, overall correctness is preserved.The proof obligations listed above for each kind of development step are actually more strict thannecessary. It is possible to loosen them by taking proper account of the ideas concerning behaviouralequivalence mentioned at the end of Section 3. This allows each proof obligation above to be replacedby a condition of the form: exp1 [ � � � [ expn j=OBS SIGwhere j=OBS denotes \behavioural consequence" with respect to a certain set OBS of observabletypes. In principle, this makes the condition easier to satisfy since it only requires the observableconsequences of the axioms in SIG to follow from the axioms and de�nitions in exp1; : : : ; expn (see[ST 89] for full details). In practice, convenient methods for proving such conditions have not yetbeen established and so the proof itself is rather di�cult. Since the examples at hand do not requirethis extra exibility, we will use the simple but strict form of the conditions listed above.Standard ML's module language does not permit functors to take other functors as arguments.An extension to permit this is under consideration at the present time, but some of the implicationsof such an extension on Extended ML have already been considered. From a methodological pointof view, this extension adds considerable power; one intriguing point is that it seems to introducea bottom-up element into Extended ML's top-down program development methodology. A moredetailed discussion of this issue may be found in [SST 89].



165 An exampleIn this section the formal development process presented in the previous section is demonstrated bymeans of an example. Two di�erent developments are given which begin from the same high-levelExtended ML requirements speci�cation and yield di�erent Standard ML programs.Informal speci�cation A symbol table in a compiler stores identi�ers together with attributes ofthose identi�ers which are determined at various stages during compilation. The following functionson symbol tables are required:� Check whether or not an identi�er is present in the symbol table.� Add a new identi�er to the symbol table and set its attributes.� Look up the attributes of an identi�er which is present. If the identi�er is not present thenreturn a default value.� Change the attributes of an identi�er which is already present. If the identi�er is not presentthen nothing is changed.Possible additional functions which would be useful in a compiler for a programming languagewith nested block structure are the following:� Enter a new block. All of the identi�ers in the symbol table are visible within the new blockuntil replaced by local identi�ers with the same name.� Leave a block. All identi�ers which were declared locally within the current block are removedfrom the symbol table.These extra functions will not be considered here for the sake of simplicity, although the reader isinvited to consider how their inclusion would alter the developments below.Step 0The initial formal speci�cation of the required system is given by the following Extended MLfunctor speci�cation:functor Symtab(structure X : IDstructure Y : ATTRIB) : sig include SYMTABsharing Id = X and Attrib = Yend= ?where ID, ATTRIB and SYMTAB are Extended ML signatures as follows:signature ID =sig eqtype idendsignature ATTRIB =sig type attribval null_attrib : attribend



17signature SYMTAB =sig structure Id : IDstructure Attrib : ATTRIBtype symtabval empty : symtabval add : Id.id * Attrib.attrib * symtab -> symtabval change_attrib : Id.id * Attrib.attrib * symtab -> symtabval present : Id.id * symtab -> boolaxiom present(i,empty) = falseaxiom present(i,add(i',a',s)) = (i=i') orelse present(i,s)axiom present(i,change_attrib(i',a',s)) = present(i,s)val lookup : Id.id * symtab -> Attrib.attribaxiom lookup(i,empty) = Attrib.null_attribaxiom lookup(i,add(i,a,s)) = aaxiom i<>i' => lookup(i,add(i',a',s)) = lookup(i,s)axiom present(i,s) => lookup(i,change_attrib(i,a,s)) = aaxiom i<>i' => lookup(i,change_attrib(i',a',s)) = lookup(i,s)endOur target language is the executable subset of Extended ML, namely the purely functionalsubset of Standard ML described in Section 2. A natural consequence of this is that the functions onsymbol tables will explicitly take a symbol table as argument rather than working on a single �xedsymbol table which is destructively updated by adding identi�ers and changing attributes. Thosefunctions which change the symbol table will return the modi�ed symbol table as a result. Thus,values of type symtab represent states of the symbol table. The empty symbol table is representedby empty, and the functions add and change_attrib update the state of the symbol table by addinga new identi�er (and setting its attributes) and resetting the attributes of an existing identi�er,respectively. The functions present and lookup may be used for querying the current state of thesymbol table. These functions check whether or not an identi�er is present in the symbol table andlook up the attributes of an identi�er, respectively.The parameters to the system are the type of identi�ers (which is required to admit equality), thetype of attributes, and a default attribute value called null_attrib. This means that the systemwill cater for any choice of these types and this value. Making the type of identi�ers a parameterallows identi�ers to be character strings (as usual) or something more elaborate. The informalspeci�cation does not say anything about the internal structure of attributes except that there mustbe some default attribute value, so it is natural to provide these as parameters to the system. Thefunction change_attrib sets all the attributes of an identi�er regardless of their present values;more complicated interpretations of the informal requirements are possible, but this will do for ourpurposes.Step 1Design decision (decomposition) We implement change_attrib in terms of add. Exactly howthis is done is left open for now. (Another possibility, which we will not consider, is to implementadd using a function insert which adds a symbol without setting its attributes.)We need two new functors:



18functor Symtab'(structure X : IDstructure Y : ATTRIB) : sig include SYMTAB'sharing Id = X and Attrib = Yend= ?functor ChangeAttrib(X : SYMTAB') : sig include SYMTABsharing Id = X.Id and Attrib = X.Attribend= ?where SYMTAB' is exactly like SYMTAB except that the function change_attrib and the axioms whichmention it are absent.Then we can implement Symtab in terms of these functors as follows:functor Symtab(structure X : IDstructure Y : ATTRIB) : sig include SYMTABsharing Id = X and Attrib = Yend= ChangeAttrib(Symtab'(structure X = Xstructure Y = Y))Veri�cation Typechecks okay. All interfaces match exactly so there is nothing to check. 2Step 2Design decision (coding) Implement the functor ChangeAttrib by coding change_attrib interms of add in the obvious way.functor ChangeAttrib(X : SYMTAB') : sig include SYMTABsharing Id = X.Id and Attrib = X.Attribend= structopen Xfun change_attrib(i:Id.id,a:Attrib.attrib,s:symtab) = ? : symtabaxiom present(i,s) => change_attrib(i,a,s) = add(i,a,s)axiom not present(i,s) => change_attrib(i,a,s) = sendThe declaration open X includes the substructures, types and values of X in the result of ChangeAttrib.Thus, it abbreviates the following sequence of declarations:



19structure Id : ID = X.Idstructure Attrib : ATTRIB = X.Attribtype symtab = X.symtabval empty = X.emptyval add = X.addval present = X.presentval lookup = X.lookupVeri�cation Typechecks okay. We have to show thatSYMTAB0 [ body j= SYMTABwhere body is the body of ChangeAttrib. The only non-trivial part of this involves the axioms ofSYMTAB which are not in SYMTAB', namely those which mention the function change_attrib:present(i,change_attrib(i',a',s)) = present(i,s)present(i,s) => lookup(i,change_attrib(i,a,s)) = ai<>i' => lookup(i,change_attrib(i',a',s)) = lookup(i,s)The second of these follows directly from an axiom in the body of ChangeAttrib and an axiom inSYMTAB' while the �rst and third require simple case analyses. 2Step 3Design decision (re�nement) Convert the axioms for change_attrib into ML code. The onlychange required is to make the case analysis in the axioms explicit using if _ then _ else _.functor ChangeAttrib(X : SYMTAB') : sig include SYMTABsharing Id = X.Id and Attrib = X.Attribend= structopen Xfun change_attrib(i,a,s) = if present(i,s) then add(i,a,s) else sendVeri�cation Typechecks okay. The axioms for change_attrib in the previous version of the bodyfollow directly from the function de�nition in the current version of the body. 2Pause for breathAt this point it is necessary to choose an representation of symbol tables as speci�ed in Symtab'in terms of simpler data types. There are many possibilities, including at least the following (see[Sed 88] and similar texts for details):1. Terms built from the constant empty using the constructor function add.2. Sequences with identi�ers kept in the order in which they are added.3. Like (2), but with duplicates removed.The following �ve choices require an additional order relation on identi�ers to be supplied. Sincethis involves changing the original speci�cation, it would be necessary to negotiate with the customerto see if this change is acceptable. Alternatively, if the customer is satis�ed with a non-genericimplementation of symbol tables in which the type of identi�ers is �xed as strings of characters, theorder relation need not be supplied since there is an appropriate one available.



204. Sequences with identi�ers kept in ascending or descending order, with or without duplicates.5. Like (4), but using an array in place of a sequence, with sequential search.6. Like (5), but with binary search.7. Ordered binary trees, with or without duplicates.8. Balanced trees (e.g. 2{3{4 trees, AVL trees, 2{3 trees etc.).The following two choices require an additional hash function to be supplied which takes identi�ersto some given range of natural numbers. Since this involves changing the original speci�cation, priorconsultation with the customer is again required. And again, such a function need not be suppliedby the customer if the type of identi�ers is �xed as strings of characters.9. Hash tables with separate chains of collisions kept in the order in which they are added, withor without duplicates.10. Hash tables with linear probing, with rehashing into a larger table when the table becomesnearly full.Other possibilities (again requiring modi�cation to the original speci�cation) are: a variation on(9) in which chains of collisions are kept in ascending or descending order; and, a variation on (10)with double hashing. Note that a variation on (10) in which the size of the table is �xed is not anoption (assuming that the number of possible identi�ers is in�nite) since SYMTAB' requires symboltables to be capable of storing an arbitarily large number of di�erent identi�ers.In this paper we will look at just two of these possibilities: (1) and (3). The development processtherefore splits at this point into two alternative development paths, which will be treated in twoseparate subsections.5.1 Symbol tables represented as termsThe simplest way to represent symbol tables in ML is as terms built from the constant empty usingthe constructor function add. A similar method is applicable whenever there are no non-trivialequations inferrable between constructor terms of the type being represented. If this method ischosen then the implementation follows almost immediately from the speci�cation of Symtab' inStep 1 above.Step 4Design decision (coding) Implement the functor Symtab' by representing symbol tables directlyas terms.functor Symtab'(structure X : IDstructure Y : ATTRIB) : sig include SYMTAB'sharing Id = X and Attrib = Yend= structstructure Id : ID = Xstructure Attrib : ATTRIB = Ydatatype symtab =empty| add of Id.id * Attrib.attrib * symtab



21fun present(i:Id.id,s:symtab) = ? : boolaxiom present(i,empty) = falseaxiom present(i,add(i',a',s)) = (i=i') orelse present(i,s)fun lookup(i:Id.id,s:symtab) = ? : Attrib.attribaxiom lookup(i,empty) = Attrib.null_attribaxiom lookup(i,add(i,a,s)) = aaxiom i<>i' => lookup(i,add(i',a',s)) = lookup(i,s)endVeri�cation Typechecks okay. All the axioms in SYMTAB' appear in the body of the functor, sothere is nothing to prove. 2Step 5Design decision (re�nement) Convert the axioms for present and lookup into ML code. Nochange is required to the axioms for present; the only change required to the axioms for lookup isto make the case analysis explicit using if _ then _ else _.functor Symtab'(structure X : IDstructure Y : ATTRIB) : sig include SYMTAB'sharing Id = X and Attrib = Yend= structstructure Id : ID = Xstructure Attrib : ATTRIB = Ydatatype symtab =empty| add of Id.id * Attrib.attrib * symtabfun present(i,empty) = false| present(i,add(i',a',s)) = (i=i') orelse present(i,s)fun lookup(i,empty) = Attrib.null_attrib| lookup(i,add(i',a,s)) = if i=i' then a else lookup(i,s)endVeri�cation Typechecks okay. The axioms for present and lookup in the previous version of thebody follow directly from the function de�nitions in the current version of the body. 2All functor bodies are now expressed entirely in Standard ML, so we are �nished with thisdevelopment path. The functors appearing in the �nal program are given above under steps 1, 3 and5. The following tree shows the dependencies between the development steps:



22Step 0Initial speci�cationof SymtabStep 1Decompose Symtab intoChangeAttrib and Symtab'� � � @ @ @Step 2Abstract codefor ChangeAttrib Step 4Abstract codefor Symtab'Step 3Re�ne ChangeAttrib Step 5Re�ne Symtab'5.2 Symbol tables represented as sequencesAn alternative to the above is to represent symbol tables using sequences of hidenti�er � attributei-pairs. Having selected this representation, there are several choices to be made concerning thedetails:1. What dictates the order of the entries in the sequence?(a) Adding an entry puts it at the front of the sequence.(b) Adding an entry only puts it at the front of the sequence if the identi�er is not alreadypresent.(c) The entries are kept in order of their identi�ers (with respect to some order on identi�ers).2. Are duplicates removed?(a) Duplicates are not removed: each add puts an additional entry in the sequence.(b) Duplicates are removed.We will choose the combination of 1(a) and 2(b) here. Recall that Steps 0{3 from the beginning ofthis section are still relevant to this development path.Step 4Design decision (decomposition) We implement Symtab' in terms of sequences of hidenti�er �attributei-pairs. Exactly how the functions of Symtab' are expressed in terms of the functionsprovided on sequences is left open for now.We need two new functors:



23functor SeqPairs(structure X : IDstructure Y : ATTRIB) : sig include SEQPAIRSsharing Id = X and Attrib = Yend= ?functor Symtab''(S : SEQPAIRS) : sig include SYMTAB'sharing Id = S.Id and Attrib = S.Attribend= ?where SEQPAIRS is as follows:signature SEQPAIRS =sig structure Id : IDstructure Attrib : ATTRIBdatatype sequence =nil| cons of (Id.id * Attrib.attrib) * sequenceval null : sequence -> boolaxiom null nil = trueaxiom null(cons((i,a),s)) = falseval hd : sequence -> Id.id * Attrib.attribaxiom hd(cons((i,a),s)) = (i,a)val tl : sequence -> sequenceaxiom tl(cons((i,a),s)) = sendThen we can implement Symtab' in terms of these functors as follows:functor Symtab'(structure X : IDstructure Y : ATTRIB) : sig include SYMTAB'sharing Id = X and Attrib = Yend= Symtab''(SeqPairs(structure X = Xstructure Y = Y))Veri�cation Typechecks okay. All interfaces match exactly so there is nothing to check. 2Step 5Design decision (decomposition) We implement Symtab'' in terms of sequences of hidenti�er�attributei-pairs where no more than one pair in a sequence has the same identi�er. Exactly howthe functions of Symtab'' are expressed in terms of the functions provided on such sequences is leftopen for now.



24We need two new functors:functor SeqDup(S : SEQPAIRS) : sig include SEQDUPsharing Seq = Send= ?functor Symtab'''(S : SEQDUP) : sig include SYMTAB'sharing Id = S.Seq.Id and Attrib = S.Seq.Attribend= ?where SEQDUP is as follows:signature SEQDUP =sig structure Seq : SEQPAIRSval add : (Seq.Id.id * Seq.Attrib.attrib) * Seq.sequence -> Seq.sequenceval ismatch : Seq.Id.id * Seq.sequence -> boolval remove : Seq.Id.id * Seq.sequence -> Seq.sequence(* axioms for add *)axiom ismatch(i,s) => add((i,a),s) = Seq.cons((i,a),remove(i,s))axiom not ismatch(i,s) => add((i,a),s) = Seq.cons((i,a),s)(* axioms for ismatch *)axiom ismatch(i,Seq.nil) = falseaxiom ismatch(i,Seq.cons((i',a'),s)) = (i=i') orelse ismatch(i,s)(* axioms for remove *)axiom not ismatch(i,remove(i,s))localval member : (Seq.Id.id * Seq.Attrib.attrib) * Seq.sequence -> boolaxiom member(e,Seq.nil) = falseaxiom member(e,Seq.cons(e',s)) = (e=e') orelse member(e,s)in axiom i<>i' => member((i',a'),remove(i,s)) = member((i',a'),s)endendThe axioms for add ensure that sequences built from empty and add contain no pairs with duplicateidenti�ers. The function member is an auxiliary function which is introduced in order to simplify thespeci�cation of remove. Since it is declared as local, it need not be implemented in structures whichmatch SEQDUP.We can now implement Symtab'' in terms of SeqDup and Symtab''' as follows:functor Symtab''(S : SEQPAIRS) : sig include SYMTAB'sharing Id = S.Id and Attrib = S.Attribend= Symtab'''(SeqDup(S))



25Veri�cation Typechecks okay. All interfaces match exactly so there is nothing to check. 2Step 6Design decision (coding) Implement the functor Symtab''' by representing symtab using se-quences, with add on symbol tables implemented by add (without duplicates) on sequences.functor Symtab'''(S : SEQDUP) : sig include SYMTAB'sharing Id = S.Seq.Id and Attrib = S.Seq.Attribend= structstructure Id : ID = S.Seq.Idstructure Attrib : ATTRIB = S.Seq.Attribtype symtab = S.Seq.sequenceval empty = S.Seq.nilfun add(i,a,s) = S.add((i,a),s)val present = S.ismatchfun lookup(i:Id.id,s:symtab) = ? : Attrib.attribaxiom lookup(i,empty) = Attrib.null_attribaxiom lookup(i,add(i,a,s)) = aaxiom i<>i' => lookup(i,add(i',a',s)) = lookup(i,s)endVeri�cation Typechecks okay. We have to show thatSEQDUP[ body j= SYMTAB0where body is the body of Symtab'''. The only non-trivial part of this involves the axioms for thefunction present in SYMTAB':present(i,empty) = falsepresent(i,add(i',a',s)) = (i=i') orelse present(i,s)The �rst of these follows directly from the de�nition of present in the body of Symtab''' and anaxiom in SEQDUP. To prove the second we must �rst prove the following:Lemma The formulai<>i' => S.ismatch(i,S.remove(i',s)) = S.ismatch(i,s)follows from SEQDUP[ body.Proof By structural induction on the type S.Seq.sequence. Structural induction is valid sincethis type is declared (in SEQPAIRS, which is part of SEQDUP) as a datatype. 2(of Lemma)The required result then follows by a simple case analysis. 2Step 7Design decision (re�nement) Convert the axioms for lookup into ML code. The only changerequired is to make the case analysis in the axioms explicit using if _ then _ else _.



26functor Symtab'''(S : SEQDUP) : sig include SYMTAB'sharing Id = S.Seq.Id and Attrib = S.Seq.Attribend= structstructure Id : ID = S.Seq.Idstructure Attrib : ATTRIB = S.Seq.Attribtype symtab = S.Seq.sequenceval empty = S.Seq.nilfun add(i,a,s) = S.add((i,a),s)val present = S.ismatchfun lookup(i,s) = if S.Seq.null s then Attrib.null_attribelse let val (i',a') = S.Seq.hd s inif i=i' then a'else lookup(i,S.Seq.tl s) endendVeri�cation Typechecks okay. We have to prove that the axioms for lookup in the previousversion of the body of Symtab''' follow from the function de�nition in the current version of thebody and the axioms in SEQDUP (this contains SEQPAIRS, so the axioms there may be used as well).The relevant axioms from the previous version of Symtab''' are:lookup(i,empty) = Attrib.null_attriblookup(i,add(i,a,s)) = ai<>i' => lookup(i,add(i',a',s)) = lookup(i,s)The �rst of these follows directly from the de�nition of lookup above and an axiom in SEQPAIRS.The other two require a simple case analysis. 2Step 8Design decision (coding) Implement the functor SeqDup. At this stage we convert the axiomsfor add and ismatch to ML code, but leave remove de�ned by axioms. (An alternative would be toimplement SeqDup using a more general functor for duplicate-free sequences of arbitrary elementswhich is parameterized by the type of elements, the type of keys and the function which produces thekey of an element, and use this functor for the case where elements are hidenti�er� attributei-pairs,keys are identi�ers, and the left projection produces the key of an element. But this would requiresome restructuring since we have already decided to use sequences as speci�ed in SEQPAIRS as symboltables.)functor SeqDup(S : SEQPAIRS) : sig include SEQDUPsharing Seq = Send= structstructure Seq : SEQPAIRS = Sfun ismatch(i,Seq.nil) = false| ismatch(i,Seq.cons((i',a'),s)) = (i=i') orelse ismatch(i,s)



27fun remove(i:Seq.Id.id,s:Seq.sequence) = ? : Seq.sequenceaxiom not ismatch(i,remove(i,s))localfun member((i:Seq.Id.id,a:Seq.Attrib.attrib),s:Seq.sequence)= ? : boolaxiom member(e,Seq.nil) = falseaxiom member(e,Seq.cons(e',s)) = (e=e') orelse member(e,s)in axiom i<>i' => member((i',a'),remove(i,s)) = member((i',a'),s)endfun add((i,a),s) = if ismatch(i,s) then Seq.cons((i,a),remove(i,s))else Seq.cons((i,a),s)endVeri�cation Typechecks okay. The axioms for add and ismatch in SEQDUP follow directly fromthe function de�nitions in the body of SeqDup, and the axioms for remove are unchanged. 2Step 9Design decision (re�nement) Supply ML code for the function remove. The local declarationof member becomes superuous (and need not be converted to ML code) since the code for removedoes not refer to member.functor SeqDup(S : SEQPAIRS) : sig include SEQDUPsharing Seq = Send= structstructure Seq : SEQPAIRS = Sfun ismatch(i,Seq.nil) = false| ismatch(i,Seq.cons((i',a'),s)) = (i=i') orelse ismatch(i,s)fun remove(i,Seq.nil) = Seq.nil| remove(i,Seq.cons((i',a'),s)) = if i=i' then remove(i,s)else Seq.cons((i',a'),remove(i,s))fun add((i,a),s) = if ismatch(i,s) then Seq.cons((i,a),remove(i,s))else Seq.cons((i,a),s)endVeri�cation Typechecks okay. We have to show thatSEQPAIRS[ body of SeqDup j= previous version of body of SeqDupThe only axioms in the previous version of the body of SeqDup which do not appear in the presentversion are those for remove:not ismatch(i,remove(i,s))i<>i' => member((i',a'),remove(i,s)) = member((i',a'),s)Both proofs proceed by structural induction on s and case analysis. For the second proof we areallowed to make use of the axioms for the function member in the previous version of the body ofSeqDup. 2



28Step 10Design decision (decomposition) We implement SeqPairs using a more general functor Seqwhich is parameterized by the type of elements. We will use this for the case where elements arehidenti�er � attributei-pairs.We need one new functor:functor Seq(E : ELEM) : sig include SEQsharing Elem = Eend= ?where ELEM and SEQ are as follows:signature ELEM =sig type elemendsignature SEQ =sig structure Elem : ELEMdatatype sequence =nil| cons of Elem.elem * sequenceval null : sequence -> boolaxiom null nil = trueaxiom null(cons(e,s)) = falseval hd : sequence -> Elem.elemaxiom hd(cons(e,s)) = eval tl : sequence -> sequenceaxiom tl(cons(e,s)) = sendThen we can implement SeqPairs in terms of this functor as follows:functor SeqPairs(structure X : IDstructure Y : ATTRIB) : sig include SEQPAIRSsharing Id = X and Attrib = Yend= structstructure Id : ID = Xstructure Attrib : ATTRIB = Ystructure Elem : ELEM =structtype elem = Id.id * Attrib.attribend



29structure Seq : SEQ = Seq(Elem)open SeqendVeri�cation Typechecks okay. All of the structure declarations in the body of SeqPairs aretrivially well-formed (in the case of Elem, this is because ELEM contains no axioms). We thereforehave only to show that 0BBBB@ structure Id : IDstructure Attrib : ATTRIBstructure Elem : ELEMstructure Seq : SEQopen Seq 1CCCCA j= SEQPAIRSAll the axioms in SEQPAIRS follow immediately. 2Step 11Design decision (coding) One would normally expect the functor Seq to be available in thelibrary. In case it is not available, the axioms can be converted directly into ML code using animplementation of sequences as terms.functor Seq(E : ELEM) : sig include SEQsharing Elem = Eend= structstructure Elem : ELEM = Edatatype sequence =nil| cons of Elem.elem * sequencefun null nil = true| null(cons(e,s)) = falsefun hd(cons(e,s)) = efun tl nil = nil| tl(cons(e,s)) = sendVeri�cation Typechecks okay. All the axioms in SEQ follow immediately from the functionde�nitions in the body of Seq. Strictly speaking, this code is invalid since the function hd is nottotally de�ned, but any choice of value for hd nil will do (the same is true for tl nil, which wehave arbitrarily given the value nil). The values of hd nil and tl nil are unimportant since thespeci�ed interface of Seq does not make any promises concerning them. However, we are operatingunder the global assumption that all functions are total, which means that we should ensure thatsome value is returned. 2All functor bodies are now expressed entirely in Standard ML, so we are �nished with thisdevelopment path. The functors appearing in the �nal program are given above under steps 1, 3, 4,5, 7, 9, 10 and 11. The following tree shows the dependencies between the development steps:



30Step 0Initial speci�cationof SymtabStep 1Decompose Symtab intoChangeAttrib and Symtab'� � � � � � � � � @ @ @Step 2Abstract codefor ChangeAttribStep 3Re�ne ChangeAttrib Step 4Decompose Symtab' intoSymtab'' and SeqPairs� � � @ @ @Step 5Decompose Symtab''into Symtab'''and SeqDup Step 10Decompose SeqPairsusing Seq� � � @ @ @Step 6Abstract codefor Symtab''' Step 8Abstract codefor SeqDupStep 7Re�ne Symtab''' Step 9Re�ne SeqDup Step 11Code for Seq6 Concluding remarksThis paper has presented the Extended ML approach to formal program development in a way whichis intended to emphasize the practical aspects of formal program development while avoiding theo-retical issues as much as possible. The importance of sound mathematical foundations to supportthe enterprise of formal program development cannot be over-emphasized, and this is one of Ex-tended ML's strengths, but a formal program development framework should be designed in such away that the user of the framework is not forced to be aware of these foundations.One important feature of Extended ML which has not been stressed in this paper is the factthat the Extended ML language and methodology are practically independent of the logic used towrite axioms, as well as of the form of signatures and structures (see [ST 86] for details). Thenotation of �rst-order equational logic has been used here to write axioms and signatures/structurescontain types and values as in ML, but we could have used order-sorted equational logic [GM 87]and imposed a sub-type relation on types as in OBJ3 [GW 88] (although this would have been aawkward choice for producing programs in Standard ML since it is unable to cope with sub-typesand coercions). The semantics of Extended ML regards executable code as a special case of axioms;e.g., Standard ML function de�nitions can be viewed as axioms of �rst-order equational logic whichhave the special form: f(p1) = expr1 ^ � � � ^ f(pn) = exprnwhere p1; : : : ; pn are patterns (terms containing constructors and variables only) and all the variables



31in exprj appear in pj , for all j � n. As a practical consequence, Extended ML can be used to developprograms in other target programming languages. For example, if we switch to untyped �rst-orderpredicate logic and regard Horn clauses as the executable subset of this logic, the result is a languageand methodology for developing modular Prolog programs (see [SW 87]) from speci�cations. Anotherconsequence is that the present restriction to a small subset of Standard ML (excluding higher-orderfunctions, polymorphism, references, exceptions etc.) is only necessary until a logic is developedwhich is able to cope with all these features adequately. Developing such a logic will not be an easyjob by any means, but it is one which can be tackled separately.The aims of Extended ML are broadly similar to those of work on rigorous program developmentby the VDM school (see e.g. [Jones 80]). VDM is a method for software speci�cation and development,based on the use of explicitly-de�ned models of software systems, which has been widely applied inpractice. However, it is rigorous rather than fully formal, and lacks formal mathematical foundationsand explicit structuring mechanisms (the RAISE project [BDMP 85] is attempting to �ll these gaps).In contrast, work on Extended ML builds on formal mathematical foundations with a strong emphasison modularity and programming/design in the large; problems of practical usability are addressed,but such concerns are never allowed to take precedence over the need to maintain the soundness ofthe foundations. At a technical level, two advantages of the Extended ML approach (neither of whichhave been properly discussed here) are the use of behavioural equivalence which handles the transitionbetween data speci�cation and representation in a more general way than VDM's retrieve functions,and the independence from the underlying logical framework and target programming languagementioned above. Extended ML is primarily designed to support the development of programs fromproperty-oriented (axiomatic) speci�cations rather than model-oriented speci�cations, but it is ableto cope with model-oriented speci�cations as well via the use of behavioural equivalence.Much work remains to be done. One of the most glaring omissions at present is the lack ofmachine-based tools to support formal program development in Extended ML. This is one of themain goals of a SERC-funded project in Edinburgh which began in May 1989. The �rst step will bea parser/typechecker for Extended ML speci�cations which will allow speci�cations to be checked forsilly mistakes and produce abstract syntax trees in a form suitable for processing by other tools; thiswill be available soon. A number of theorem provers are available which are able to cope with theproofs involved in program development examples like the one in Section 5, but once one is adopted itwill have to be enriched to cope with the modular structure of speci�cations along the lines describedin [SB 83]. A component is also needed to generate proof obligations from development steps andto keep track of these and of the programming tasks which remain to be tackled. Other plans aresketched in [ST 88]. The support system will be written in Standard ML, which will allow us toexperiment with the use of the techniques we advocate in developing the components of the systemitself.AcknowledgementsMuch of this paper is a rehash of ideas from [ST 89]. I gratefully acknowledge the work ofAndrzej Tarlecki of the Polish Academy of Sciences in our continuing collaboration on Extended MLand on topics in the foundations of algebraic speci�cation and formal program development on whichthis work is based. Thanks to Edmund Kazmierczak for comments on a draft of this paper. Theresearch reported here has been partially supported by grants from the U.K. Science and EngineeringResearch Council and the Polish Academy of Sciences.7 References[ Note: LNCS n = Springer Lecture Notes in Computer Science, Volume n ][BW 88] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice-Hall (1988).[BDMP 85] D. Bj�rner, T. Denvir, E. Meiling and J. Pedersen. The RAISE project: fundamentalissues and requirements. Report RAISE/DDC/EM/1/V6, Dansk Datamatic Center (1985).



32[BMS 80] R. Burstall, D. MacQueen and D. Sannella. Hope: an experimental applicative language.Proc. 1980 LISP Conference, Stanford, California, pp. 136{143 (1980).[GB 84] J. Goguen and R. Burstall. Introducing institutions. Proc. Logics of Programming Work-shop, Carnegie-Mellon. LNCS 164, pp. 221{256 (1984).[GM 87] J. Goguen and J. Meseguer. Order-sorted algebra solves the constructor-selector, multiplerepresentation and coercion problems. Proc. 2nd IEEE Symp. on Logic in Computer Science,Ithaca, New York, pp. 18{29 (1987).[GW 88] J. Goguen and T. Winkler. Introducing OBJ3. Report SRI-CSL-88-9, Computer ScienceLaboratory, SRI International (1988).[Har 89] R. Harper. Introduction to Standard ML. Report ECS-LFCS-86-14, Univ. of Edinburgh.Revised edition (1989).[HMM 86] R. Harper, D. MacQueen and R. Milner. Standard ML. Report ECS-LFCS-86-2, Univ.of Edinburgh (1986).[HMT 89] R. Harper, R. Milner and M. Tofte. The de�nition of Standard ML (version 3). ReportECS-LFCS-89-81, Univ. of Edinburgh (1989).[HW 89] P. Hudak and P. Wadler et al. Report on the functional programming language Haskell.Report CSC/89/R5, Univ. of Glasgow (1989).[Jones 80] C. Jones. Software Development: A Rigorous Approach. Prentice-Hall (1980).[MacQ 86] D. MacQueen. Modules for Standard ML. In: [HMM 86] (1986).[Reade 89] C. Reade. Elements of Functional Programming. Addison-Wesley (1989).[SB 83] D. Sannella and R. Burstall. Structured theories in LCF. Proc. 8th Colloq. on Trees inAlgebra and Programming, L'Aquila, Italy. LNCS 159, pp. 377{391 (1983).[SS 89] D. Sannella and F. da Silva. Syntax, typechecking and dynamic semantics for Extended ML.Report ECS-LFCS-89-101, Univ. of Edinburgh (1989).[SST 89] D. Sannella, S. Soko lowski and A. Tarlecki. Toward formal development of programsfrom algebraic speci�cations: parameterisation revisited. Technical Report, Laboratory forFoundations of Computer Science, Dept. of Computer Science, Univ. of Edinburgh (to appear).[ST 85] D. Sannella and A. Tarlecki. Program speci�cation and development in Standard ML.Proc. 12th ACM Symp. on Principles of Programming Languages, New Orleans, pp. 67{77(1985).[ST 86] D. Sannella and A. Tarlecki. Extended ML: an institution-independent framework for for-mal program development. Proc. Workshop on Category Theory and Computer Programming,Guildford. LNCS 240, pp. 364{389 (1986).[ST 88] D. Sannella and A. Tarlecki. Tools for formal program development: some fantasies. LFCSNewsletter, No. 1, pp. 10{15 (1988).[ST 89] D. Sannella and A. Tarlecki. Toward formal development of ML programs: foundationsand methodology. Report ECS-LFCS-89-71, Laboratory for Foundations of Computer Science,Dept. of Computer Science, Univ. of Edinburgh (1989); extended abstract in Proc. Colloq. onCurrent Issues in Programming Languages, Joint Conf. on Theory and Practice of SoftwareDevelopment (TAPSOFT), Barcelona. LNCS 352, pp. 375{389 (1989).[SW 87] D. Sannella and L. Wallen. A calculus for the construction of modular Prolog programs.Proc. 1987 IEEE Symp. on Logic Programming, San Francisco, pp. 368{378 (1987). To appearin Journal of Logic Programming.[Sed 88] R. Sedgewick. Algorithms, 2nd edition. Addison-Wesley (1988).[Tofte 89] M. Tofte. Four lectures on Standard ML. Report ECS-LFCS-89-73, Univ. of Edinburgh(1989).[Wik 87] �A. Wikstr�om. Functional Programming Using Standard ML. Prentice-Hall (1987).


