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Abstract

The behavioural semantics of specifications with higher-order logical formulae as
axioms is analyzed. A characterization of behavioural abstraction via behavioural
satisfaction of formulae in which the equality symbol is interpreted as indistin-
guishability, which is due to Reichel and was recently generalized to the case of
first-order logic by Bidoit et al, is further generalized to this case. The fact that
higher-order logic is powerful enough to express the indistinguishability relation
is used to characterize behavioural satisfaction in terms of ordinary satisfaction,
and to develop new methods for reasoning about specifications under behavioural
semantics.

1 Introduction

An important ingredient in the use of algebraic specifications to describe data
abstractions is the concept of behavioural equivalence between algebras, which
seems to appropriately capture the “black box” character of data abstractions,
see e.g. [GGM76], [GM82], [ST87] and [ST95]. Roughly speaking (since there
are different choices of definition), two algebras A,B over a signature Σ are
behaviourally equivalent with respect to a distinguished set OBS of observable
types if all computations that can be expressed using the functions in Σ and
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that yield a result of a type in OBS produce the same result in both A and B.
(The set OBS is typically taken to include primitive types like Booleans and
natural numbers.) A specification of a data abstraction should characterize a
class of algebras that is closed under behavioural equivalence; otherwise it for-
bids some realizations that are indistinguishable from acceptable ones. Closure
can be ensured by the specification framework (by making all specification-
building operations deliver closed classes, see e.g. [NO88]) or by the specifier
(by applying a specification-building operation, sometimes known as behavi-
oural abstraction, to form the closure, see e.g. [SW83], [ST87]). The term “be-
havioural semantics” is sometimes used to characterize approaches that take
the need for behavioural closure into account. Behavioural abstraction seems
to be an implicit ingredient of model-oriented approaches to specification such
as VDM and Z, where a specification spells out one or more concrete models
but any program that delivers the same results is regarded as an acceptable
realization.

An unfortunate problem with behavioural semantics in general and the beha-
vioural abstraction operation in particular is that it complicates the task of
reasoning about specifications. For example, if a specification SP satisfies a
formula ϕ then the behavioural abstraction of SP need not satisfy ϕ. Reas-
oning methods that are appropriate in the context of behavioural semantics
have been developed, but these are either insufficiently powerful (e.g. [ST87],
cf. Section 5 of [Sch92]) or tend to be too complicated for convenient use in
practice (e.g. [Hen91], [Far92]). One avenue of attack on this problem is to
consider the relationship between the class of algebras produced by applying
the behavioural abstraction operation to a specification 〈Σ,Φ〉, and the class
of algebras obtained by simply interpreting equality in the axioms Φ as indis-
tinguishability rather than as identity. The latter approach, sometimes known
as behavioural satisfaction, was pioneered by Reichel [Rei85] who showed that
these two classes coincide when the axioms involved are conditional equa-
tions, provided that the conditions used are equations between terms of types
in OBS . This yields a reasoning method for specifications involving behavi-
oural abstraction: given a sound proof system for behavioural satisfaction,
any consequence ϕ of a specification 〈Σ,Φ〉 that can be proved in that system
will hold in the behavioural abstraction of 〈Σ,Φ〉, provided Φ and ϕ have the
required form.

The usefulness of this reasoning method is limited by the fact that conditional
equations are not powerful enough for convenient practical use in writing spe-
cifications (see e.g. [SW96]). But in a recent development, Bidoit et al have
generalized Reichel’s result to the case of specifications with infinitary first-
order equational formulae as axioms, and to arbitrary relations of behavioural
equivalence and indistinguishability. In [BHW95] they show that the coincid-
ence of classes described above holds in this context as well, whenever the class
of models of 〈Σ,Φ〉 (under ordinary satisfaction) is closed under quotienting
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with respect to indistinguishability of values, provided that indistinguishabil-
ity is weakly regular and that behavioural equivalence is factorizable by indis-
tinguishability. Subsequently, [BH95] and [BH96] use this characterization as
the basis for reasoning methods.

In this paper we examine these issues for the case of (flat) specifications with
higher-order logical formulae as axioms. Our first main contribution is a gen-
eralization 3 of the framework and results of [BHW95]. Although it is not
made explicit there, the main results in [BHW95] including the characteriza-
tion theorem do not strongly depend on the form of axioms. The same result
holds for any logical system for which behavioural satisfaction of a formula ϕ
in A coincides with ordinary satisfaction of ϕ in the quotient of A w.r.t. indis-
tinguishability and for which isomorphisms preserve and reflect satisfaction.
In Sections 2 and 3 we give syntax and semantics for higher-order formulae
and show that these properties hold for such formulae (Theorem 3.35 and
Corollary 3.14 respectively). In Section 4 we formulate definitions of beha-
vioural equivalence and indistinguishability, and we show that the former is
factorizable by the latter (Theorem 5.21) and that indistinguishability is reg-
ular (Proposition 4.7) and hence weakly regular (Proposition 4.9). This leads
directly to a characterization result analogous to the one in [BHW95] (The-
orem 6.7). Although the generalization to higher-order logic results in certain
complications, it also yields a simplification: since equality may be expressed
directly in higher-order logic, it need not be given specialized treatment, and
the rôle of equality in the context of behavioural semantics is revealed as a
special case of something more general.

Higher-order logic provides sufficient power to express the indistinguishability
relation as a predicate (Theorem 5.4, cf. [Sch94]). A second main contribu-
tion is the application of this fact to develop methods for reasoning about
specifications under behavioural semantics. In Section 5 we characterize beha-
vioural satisfaction in terms of ordinary satisfaction, by giving a translation
that takes any formula ϕ to a “relativized” formula pϕq such that the latter
is satisfied exactly when the former is behaviourally satisfied (Corollary 5.10).
This translation plays an important rôle in the comparison of various alternat-
ive definitions of behavioural equivalence, differing in the set of “experiments”
used to test algebras, which leads to the conclusion that the three definitions
considered yield the same relation (Corollary 5.22). These results, together
with the characterization theorem of Section 6, lead directly to various proof
methods that are summarized in Section 7.

3 [BHW95] uses the infinitary logic Lω1ω, so strictly speaking our framework is not
a generalization. The extension to infinitary logic is easy and raises no interesting
issues, and it also seems gratuitous in the context of higher-order logic, so we omit
it. Also, unlike [BHW95] we do not handle structured specifications, for reasons
explained in Section 8.2.
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2 The language of higher-order logic

The syntax of the typed variant of higher-order logic we will use is described
below. The logic is higher-order because quantification over predicates (i.e.
sets) is allowed in addition to the usual quantification over individuals. For
the sake of simplicity, functions are not “first-class citizens”, so there is no
quantification over function types or use of functions as arguments to predic-
ates or functions, but see Section 8.1 for comments on a possible extension.

Definition 2.1 A signature Σ consists of a set B of base types and a set C
of constants such that each c ∈ C has an arity n ≥ 0, an n-tuple of argument
types b1, . . . , bn ∈ B and a result type b ∈ B, which we abbreviate c : b1× · · ·×
bn → b.

Let Σ = 〈B,C〉 be a signature.

Definition 2.2 The types over Σ are given by the following grammar:

τ ::= b | [τ1, . . . , τn]

where b ∈ B and n ≥ 0. Types(Σ) denotes the set of all types over Σ.

A type of the form [τ1, . . . , τn] may be regarded as the type of n-ary pre-
dicates taking arguments of types τ1, . . . , τn. For example, is-even : [int ],
<: [int, int ], has-property : [int , [int ]], where is-even(3) does not hold but
has-property(2, is-even) does. A more suggestive syntax for a type [τ1, . . . , τn]
might be τ1× · · · × τn → Prop, where Prop is the type of propositions; in par-
ticular, the type [ ] may be thought of as Prop. However, since λ-abstraction
can be used to form predicates but not ordinary functions (see below), we
need to distinguish between the arrow used to write the types of constants
and the arrow in τ1 × · · · × τn → Prop.

Let X be a fixed infinite set of variables, ranged over by x.

Definition 2.3 The terms over Σ are given by the following grammar:

t ::= x | c(t1, . . . , tn) | λ(x1:τ1, . . . , xn:τn).t | t(t1, . . . , tn) | t⇒ t′ | ∀x:τ.t

where c ∈ C and n ≥ 0. Parentheses may be used for grouping as usual;
in the absence of parentheses, ⇒ associates to the right. As usual, we regard
α-convertible terms as equal, where the binding constructs are λ and ∀. We
write c as an abbreviation for c() when c : → b, and ∀x1, . . . , xn:τ.t as an
abbreviation for ∀x1:τ. · · · .∀xn:τ.t.
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Γ ` x : Γ(x)
(var)

Γ, x1 : τ1, . . . , xn : τn ` t : [ ]
Γ ` λ(x1:τ1, . . . , xn:τn).t : [τ1, . . . , τn]

(λ)

c : b1 × · · · × bn → b Γ ` t1 : b1 · · · Γ ` tn : bn
Γ ` c(t1, . . . , tn) : b

(fun)

Γ ` t : [τ1, . . . , τn] Γ ` t1 : τ1 · · · Γ ` tn : τn
Γ ` t(t1, . . . , tn) : [ ]

(pred)

Γ ` t : [ ] Γ ` t′ : [ ]
Γ ` t⇒ t′ : [ ]

(⇒)

Γ, x : τ ` t : [ ]
Γ ` ∀x:τ.t : [ ]

(∀)

Fig. 1. Typing rules

Function application (written c(t1, . . . , tn)) is distinguished from predicate ap-
plication (written t(t1, . . . , tn)) although both notations are similar. λ-abstraction
is for forming predicates; implication (⇒) and universal quantification are for
forming propositions. There is just one syntax class for terms: terms that de-
note individuals (e.g. +(3, 2)) are not distinguished syntactically from terms
denoting predicates (e.g. λ(x:int , y:int ).prime(+(x, y))) or propositions (e.g.
∀P :[int ].(∀x:int .P (x)) ⇒ P (3)). But in order for a term to denote anything
at all, it has to be typable according to the following definitions.

Definition 2.4 A context Γ is a sequence of the form x1 : τ1, . . . , xn : τn
where xi 6= xj for all i 6= j. We write Γ(xj) for τj and Vars(Γ) for {x1, . . . , xn},
and we identify Γ with the Types(Σ)-sorted set of variables such that Γτ = {x ∈
Vars(Γ) | Γ(x) = τ} for all τ ∈ Types(Σ). Concatenation of contexts, written
Γ,Γ′, is required to yield a context, i.e. it is required that Vars(Γ)∩Vars(Γ′) =
∅. Let T ⊆ Types(Σ) be a subset of the set of types over Σ; then Γ is called a
T -context if Γ(x) ∈ T for all x ∈ Vars(Γ).

Definition 2.5 We write Γ ` t : τ if this judgement is derivable using the
rules in Figure 1, and then we call t a term in context Γ. A term t is closed
if it is typable in the empty context, i.e. if ` t : τ . A predicate (in context Γ)
is a term t such that Γ ` t : [τ1, . . . , τn]. A formula (in context Γ) is a term ϕ
such that Γ ` ϕ : [ ].

Proposition 2.6 The following weakening and permutation rules are admiss-
ible in the system of rules given in Figure 1:

Γ ` t : τ
Γ, x : τ ′ ` t : τ

(weak)

Γ,Γ′ ` t : τ
Γ′,Γ ` t : τ

(perm)
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Proof: Obvious. �

There is no need to include equality as a built-in predicate, since it is express-
ible using higher-order quantification. That is, suppose Γ ` t : τ and Γ ` t′ : τ ;
then

t =τ t
′ abbreviates ∀P :[τ ].P (t)⇒ P (t′)

where P is chosen arbitrarily such that P 6∈ Vars(Γ).

Existential quantification and the missing connectives are expressible as usual
in terms of ∀ and ⇒:

true abbreviates ∀P :[ ].P ⇒ P

false abbreviates ∀P :[ ].P

¬ϕ abbreviates ϕ⇒ false

ϕ ∨ ϕ′ abbreviates (¬ϕ)⇒ ϕ′

ϕ ∧ ϕ′ abbreviates ¬(¬ϕ ∨ ¬ϕ′)

∃x:τ.ϕ abbreviates ¬∀x:τ.¬ϕ

Alternatively, the higher-order encodings of ∨, ∧ and ∃ could be used. In con-
trast to those above, these do not presuppose a classical setting, but otherwise
there is no essential difference.

ϕ ∨ ϕ′ abbreviates ∀P :[ ].(ϕ⇒ P )⇒ (ϕ′ ⇒ P )⇒ P

ϕ ∧ ϕ′ abbreviates ∀P :[ ].(ϕ⇒ ϕ′ ⇒ P )⇒ P

∃x:τ.ϕ abbreviates ∀P :[ ].(∀x:τ.ϕ⇒ P )⇒ P

Finally, there is no need to treat reachability constraints as a special case,
since induction principles are expressible — see Example 2.7 below.

The following will be used as a running example to illustrate various definitions
and results below. It is chosen for the sake of simplicity and because it was
employed in [Sch92] to exhibit a weakness in existing methods for reasoning
about specifications involving behavioural abstraction — see Example 7.6.

Example 2.7 We specify a counter which can be set to zero, incremented,
decremented (stopping at zero), and tested to see if it is zero. The signa-
ture Σctr has base types bool and ctr (counter), and constants zero :→ ctr ,
inc : ctr → ctr , dec : ctr → ctr , is-zero : ctr → bool , true :→ bool and
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¬(true =bool false)

∀b:bool .(b =bool true ∨ b =bool false)

dec(zero) =ctr zero

∀c:ctr .dec(inc(c)) =ctr c

is-zero(zero) =bool true

∀c:ctr .is-zero(inc(c)) =bool false

∀P :[ctr ].( P (zero) ∧ ∀c:ctr .(P (c)⇒ P (inc(c))) )⇒ ∀c:ctr .P (c)

(GENCTR)

Fig. 2. The axioms Φctr

false :→ bool (not to be confused with the formulae true : [ ] and false : [ ]!).
These constants are required to satisfy the axioms Φctr given in Figure 2. The
last axiom (labelled GENCTR) expresses a reachability constraint for ctr , re-
quiring that all values of type ctr are generated by zero and inc. The second
axiom expresses reachability for bool.

The only explicit higher-order aspect of this example is in the formula GENCTR
(there is implicit higher-order quantification in each of the equations) but this
will suffice for our purposes. �

The following example gives a better demonstration of the expressive power
of the language.

Example 2.8 Consider the signature with base types sched (schedule) and
proc (process) and constants start :→ sched , step : sched → sched and who :
sched → proc. We would like to require that start is a fair schedule, i.e. that it
schedules each process infinitely often. The following is essentially a translation
of a formula in the modal mu-calculus [Sti92] into higher-order logic.

We begin with the least and greatest fixed point operators, which can be
expressed directly as follows:

µ =def λ(Φ:[[sched ], sched] , s:sched).

∀P :[sched ].(∀s′:sched .Φ(P, s′)⇒ P (s′))⇒ P (s)

ν =def λ(Φ:[[sched ], sched] , s:sched).

∃P :[sched ].(∀s′:sched .P (s′)⇒ Φ(P, s′)) ∧ P (s)
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The predicate always (a given predicate holds at every step in a given schedule)
is expressed as a greatest fixed point, and the predicate eventually is expressed
as a least fixed point:

always =def λ(P :[sched ], s:sched).

ν(λ(always-P:[sched ], s′:sched ).

P (s′) ∧ always-P(step(s′)) , s)

eventually =def λ(P :[sched ], s:sched).

µ(λ(eventually-P:[sched ], s′:sched).

P (s′) ∨ eventually-P(step(s′)) , s)

These are used to code a predicate which checks that a given predicate holds
infinitely often in a given schedule:

infinitely-often =def

λ(P :[sched ], s:sched). always((λ(s′:sched ).eventually (P, s′)) , s)

Then the required fairness property is fair(start), where fair is expressed in
terms of infinitely-often as follows:

fair =def λ(s:sched). ∀p:proc.infinitely-often((λ(s′:sched).who(s′) = p) , s)

Expanding fair(start) gives a single formula expressing the required property.
�

The language defined above is a trimmed version of the “classical theory of
simple types” as introduced by Henkin in [Hen50]. Henkin considers non-
standard models for which a natural Gentzen-style proof system is sound and
complete. A good reference is also Chapter 4 of Schütte’s monograph [Sch77]
where cut-elimination for this system is established.

3 Semantics of higher-order logic

Let Σ = 〈B,C〉 be a signature.

Terms over Σ are interpreted in the context of a Σ-algebra which gives meaning
to the base types and the constants in Σ.

Definition 3.1 A Σ-algebra A consists of a carrier set [[b]]A for every b ∈ B,
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and interpretations of constants [[c]]A∈ ([[b1]]A× · · · × [[bn]]A→ [[b]]A) for every
c : b1 × · · · × bn → b in C. The class of all Σ-algebras is denoted Alg(Σ). Σ-
homomorphisms and Σ-isomorphisms are as usual; we write A ∼= A′ if there
is a Σ-isomorphism h : A→ A′.

Let A be a Σ-algebra.

We define two interpretations for terms. The first is the obvious “standard”
interpretation with respect to an environment mapping free variables to values.
The second interpretation is modulo a partial congruence relation on A. In
the latter interpretation, quantification (and λ-abstraction) is over only those
elements of types that respect the congruence; as a result, equality in formulae
refers to the congruence rather than to identity of values. The particular partial
congruence of interest will be a relation of indistinguishability with respect to
a given set of observable base types, to be defined in Section 4. Theorem 3.35
below demonstrates a relationship between the two interpretations that will
be crucial in the sequel.

Our use of partial congruences in Section 3.2 below stems from the need to
establish an appropriate relationship between indistinguishability and beha-
vioural equivalence, see Theorem 5.21, in order to apply the characterization
theorems in Section 6. If the indistinguishability relation were not defined as a
partial congruence, the desired relationship with the behavioural equivalence
relation would not hold.

3.1 Standard interpretation

Definition 3.2 Types of the form [τ1, . . . , τn] are interpreted as follows:

[[[τ1, . . . , τn]]]A= Pow([[τ1]]A× · · · × [[τn]]A).

Thus, [[[ ]]]A is {{}, {∗}} where ∗ is the empty tuple. Recalling that [ ] means
Prop, {} may be thought of as denoting falsity and {∗} as denoting truth, so
we will use the abbreviation ff for {} and tt for {∗}.

Let Γ be a context.

Definition 3.3 A Γ-environment (on A) is a Types(Σ)-sorted function ρ =
〈ρτ : Γτ → [[τ ]]A〉τ∈Types(Σ). We write [x1 7→ v1, . . . , xn 7→ vn] to denote the
evident environment, and the notation ρ[x1 7→ v1, . . . , xn 7→ vn] denotes the
environment ρ superseded at x1, . . . , xn by v1, . . . , vn respectively. When x ∈
Vars(Γ) we write ρ(x) for ρΓ(x)(x). Let T ⊆ Types(Σ); a Γ-environment ρ is
T -surjective if ρτ : Γτ → [[τ ]]A is surjective for each τ ∈ T .
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Definition 3.4 Let ρ be a Γ-environment. The interpretation of constants is
extended to terms in context Γ as follows:

[[x]]ρ,A = ρ(x)

[[c(t1, . . . , tn)]]ρ,A = [[c]]A([[t1]]ρ,A, . . . , [[tn]]ρ,A)

[[λ(x1:τ1, . . . , xn:τn).t]]ρ,A = {(v1, . . . , vn) | v1 ∈ [[τ1]]A and · · · and vn ∈ [[τn]]A
and [[t]]ρ[x1 7→v1,...,xn 7→vn],A= tt}

[[t(t1, . . . , tn)]]ρ,A = if ([[t1]]ρ,A, . . . , [[tn]]ρ,A) ∈ [[t]]ρ,A then tt else ff

[[t⇒ t′]]ρ,A = if [[t]]ρ,A= tt then [[t′]]ρ,A else tt

[[∀x:τ.t]]ρ,A = if [[t]]ρ[x 7→v],A= tt for all v ∈ [[τ ]]A then tt else ff

It is easy to see that the interpretation [[t]]ρ,A of a term t does not depend on
ρ when t is closed. We may therefore omit ρ and use the notation [[t]]A in this
case.

The following substitution property will be handy in proofs in later sections. As
usual, s[x := t] denotes the result of simultaneously replacing all occurrences
of the variable x in the term s by the term t, with appropriate changes of
bound variable names to avoid variable capture.

Proposition 3.5 For any Γ ` t : τ and Γ, x : τ ` s : τ ′ and any Γ-
environment ρ, [[s]]ρ[x 7→[[t]]ρ,A],A= [[s[x := t]]]ρ,A.

Proof: By induction on the structure of s. �

The following shows that the above interpretation of terms and types is sound
with respect to the typing relation.

Proposition 3.6 If Γ ` t : τ and ρ is a Γ-environment then [[t]]ρ,A∈ [[τ ]]A.

Proof: By induction on the structure of the derivation of Γ ` t : τ . �

The following proposition demonstrates that =τ really is equality (i.e. identity
of values).

Proposition 3.7 Suppose v, v′ ∈ [[τ ]]A for some type τ . Then for any envir-
onment ρ, [[x =τ y]]ρ[x 7→v,y 7→v′ ],A= tt iff v = v′.

Proof:

⇐=: Obvious.
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=⇒: Suppose [[∀P :[τ ].P (x)⇒ P (y)]]ρ[x 7→v,y 7→v′],A= tt and consider the predicate
{v} ∈ [[[τ ]]]A. We have [[P (x)]]ρ[x 7→v,P 7→{v}],A= tt and so [[P (y)]]ρ[y 7→v′ ,P 7→{v}],A=
tt ; thus v′ ∈ {v}, i.e. v = v′. �

This entitles us to use ϕ ⇔ ϕ′ as an abbreviation for ϕ =[ ] ϕ
′ instead of the

equivalent but longer (ϕ⇒ ϕ′) ∧ (ϕ′ ⇒ ϕ).

It is easy to see that the abbreviations defined for the connectives ¬, ∨, ∧
and for ∃ and true have the expected meaning. The following shows that the
abbreviation defined for false is also correct.

Proposition 3.8 For any environment ρ, [[false]]ρ,A= ff .

Proof: Recall that false is ∀P :[ ].P and take P = ff ∈ [[[ ]]]A. �

Definition 3.9 Let ϕ be a formula in context Γ. Suppose ρ is a Γ-environment;
then we write A |=ρ ϕ if [[ϕ]]ρ,A= tt . We write A |= ϕ (A satisfies ϕ) if A |=ρ ϕ

for all Γ-environments ρ. If ϕ′ is also a formula in context Γ, we write ϕ |=| ϕ′
(ϕ is equivalent to ϕ′) if for all A ∈ Alg(Σ) and all Γ-environments ρ, A |=ρ ϕ
iff A |=ρ ϕ

′. Finally, if Φ is a set of formulae in context Γ then we write A |= Φ
if A |= ϕ for all ϕ ∈ Φ.

Example 3.10 A Σctr -algebra Nat is defined by taking [[ctr ]]Nat= ω (the set
of natural numbers) and [[bool]]Nat = {T, F} (not to be confused with tt and
ff !) with the evident interpretation of the constants. This satisfies all of the
axioms in Φctr ; see below for comments concerning GENCTR. Another Σctr -
algebra is the term algebra Term, defined by taking [[ctr ]]Term= {t | ` t :
ctr} and [[bool ]]Term= {T, F} with [[is-zero]]Term (t) = [[is-zero(t)]]Nat for t ∈
[[ctr ]]Term . The only axioms in Φctr that Term satisfies are is-zero(zero) =bool

true, ∀c:ctr .is-zero(inc(c)) =bool false , ¬(true =bool false) and ∀b:bool .(b =bool

true ∨ b =bool false). �

Definition 3.11 Let B′ ⊆ B be a subset of the set of base types in Σ, and let
b ∈ B. A value v ∈ [[b]]A is B′-reachable if there is a B′-context Γ, a term t
with Γ ` t : b, and a Γ-environment ρ, such that [[t]]ρ,A= v.

Intuitively, v is B′-reachable if v can be obtained by application of constants
to values of types in B′.

Example 3.12 Let Σ′ctr be Σctr without the constant dec : ctr → ctr . For any
Σctr -algebra A, A |= GENCTR iff every value of type ctr in A is ∅-reachable
with respect to the reduced signature Σ′ctr . (The “if” direction is obvious;
to see that the “only if” direction holds, simply instantiate GENCTR with
the predicate P = {v ∈ [[ctr ]]A| v is ∅-reachable in Σ′ctr} ∈ [[[ctr ]]]A.) Then
Nat |= GENCTR and Term 6|= GENCTR (since dec(zero) ∈ [[ctr ]]Term is not
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∅-reachable in Σ′ctr ). �

The following proposition is used to show that isomorphisms preserve and
reflect satisfaction, as in almost any conceivable logical system.

Proposition 3.13 Let h : A → A′ be an isomorphism. Extend h to bracket
types by taking h[τ1,...,τn](p) = {(hτ1(v1), . . . , hτn(vn)) | (v1, . . . , vn) ∈ p} ∈
[[[τ1, . . . , τn]]]A′ for p ∈ [[[τ1, . . . , τn]]]A. Let t be a term in context Γ and let ρ be
a Γ-environment; then h([[t]]ρ,A) = [[t]]h◦ρ,A′.

Proof: By induction on the structure of t. �

Corollary 3.14 If A ∼= A′ then A |= ϕ iff A′ |= ϕ.

Proof: By Proposition 3.13, since h[ ] is the identity and since hτ is a bijection
for every type τ . �

3.2 Interpretation w.r.t. a partial congruence

Definition 3.15 A partial congruence ≈ on A is a family of partial equival-
ence relations (i.e., symmetric and transitive relations) 〈≈b ⊆ [[b]]A×[[b]]A〉b∈B
such that for all c : b1 × · · · × bn → b in C and all v1, v

′
1 ∈ [[b1]]A, . . . , vn, v

′
n ∈

[[bn]]A, if v1 ≈b1 v′1 and · · · and vn ≈bn v′n then [[c]]A(v1, . . . , vn) ≈b [[c]]A(v′1, . . . , v
′
n).

A (total) congruence is a reflexive partial congruence.

Example 3.16 Equality is a total congruence on Nat . A total congruence on
Term is given by t ≈ctr t

′ ⇔ [[t]]Nat = [[t′]]Nat for all t, t′ ∈ [[ctr ]]Term (so we have
e.g. dec(inc(zero)) ≈ctr zero) and b ≈bool b

′ ⇔ b = b′. This is a partial congru-
ence on the Σctr -algebra Term∞ defined by taking [[ctr ]]Term∞= [[ctr ]]Term∪{∞}
and [[bool ]]Term∞= [[bool ]]Term , with interpretation of constants as in Term aug-
mented by [[inc]]Term∞(∞) = [[dec]]Term∞(∞) = ∞ and [[is-zero]]Term∞(∞) =
F . Another total congruence on Term, which is again a partial congruence
on Term∞, is obtained by taking t ≈′ctr t

′ ⇔ [[t]]Nat≡ [[t′]]Nat (mod 2) for all
t, t′ ∈ [[ctr ]]Term and b ≈′bool b

′ for all b, b′ ∈ {T, F} (this is forced by the fact
that inc(inc(zero)) ≈′ctr zero). �

Let ≈ be a partial congruence on A. As suggested at the beginning of Section 3,
the partial congruence of interest will be a relation of indistinguishability to
be defined later. The reader may find it helpful to keep this in mind in order to
understand the motivation behind some of the definitions and results below.
We do not restrict attention to this particular partial congruence at this point
because much of the sequel does not depend on the special features of this
relation, and because there are several different indistinguishability relations
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of potential interest (although we will consider only one).

The idea behind the development which follows is to generalize the usual defin-
ition of satisfaction up to a partial congruence in first-order equational logic
to higher-order logic. Whereas in the first-order case it is enough to inter-
pret the primitive equality symbol as the partial congruence and to restrict
all quantifiers to values lying in the domain of the partial congruence, the
situation is more complicated here. We must make sure that the predicate
variables only range over predicates which “respect” the partial congruence.
What this means exactly is not entirely obvious for types with nested brackets.
That the definition we give is indeed the right generalization of the first-order
case is shown by Proposition 3.29 and Theorem 3.35. In the first-order case,
Proposition 3.29 is obvious from the definition of satisfaction.

The following definition explains how to extend the partial congruence ≈,
which relates values of base types only, to a so-called logical relation (see e.g.
[Mit90]) over all types. The resulting relation will be used below to give an
interpretation of bracket types.

Definition 3.17 We extend ≈ to “bracket” types by taking p ≈[τ1,...,τn] p
′ for

p, p′ ∈ [[[τ1, . . . , τn]]]A iff for all v1, v
′
1 ∈ [[τ1]]A, . . . , vn, v

′
n ∈ [[τn]]A, if v1 ≈τ1 v′1

and · · · and vn ≈τn v′n then (v1, . . . , vn) ∈ p iff (v′1, . . . , v
′
n) ∈ p′. We say that

v ∈ [[τ ]]A respects ≈ if v ≈τ v.

A predicate p ∈ [[[τ1, . . . , τn]]]A respects ≈ if it does not differentiate between
values that are related by ≈. Note that trivially ∅ ≈[τ1,...,τn] ∅, and that v ≈[ ] v

′

iff v = v′.

Example 3.18 Consider ≈ on Term and Term∞ given in Example 3.16. Let
P = {t ∈ [[ctr ]]Term | t does not contain dec} and P ′ = {t ∈ [[ctr ]]Term | [[t]]Nat≡
0 (mod 2)}, so P, P ′ ∈ [[[ctr ]]]Term⊂ [[[ctr ]]]Term∞; then P does not respect ≈
(since dec(inc(zero)) ≈ctr zero and zero ∈ P but dec(inc(zero)) 6∈ P ) but P ′

does. Since ≈ is a partial congruence on Term∞, its extension to bracket types
may identify distinct values. For instance, {∞} ≈[ctr ] ∅ since v ≈ctr v implies
that v 6= ∞. This in turn directly implies that {{∞}} 6≈[[ctr]] {{∞}} (note
that {{∞}} ∈ [[[[ctr ]]]]Term∞ is the predicate that holds only for the predicate
{∞} ∈ [[[ctr ]]]Term∞). Finally, for an example of identification of distinct values
at third-order types, consider {P} ≈[[ctr]] ∅. �

Proposition 3.19 ≈τ is a partial equivalence relation for any type τ .

Proof: Obvious. �

Note that extending a (total) congruence to bracket types does not in general
yield a (total) equivalence relation.
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Corollary 3.20 If v ≈τ v′ then v and v′ respect ≈.

Proof: Apply symmetry and transitivity. �

The difference between the standard interpretation of terms and their in-
terpretation with respect to a partial congruence stems from the following
definition.

Definition 3.21 Interpretation of types w.r.t. ≈ is defined as follows:

[[b]]≈A = {v ∈ [[b]]A| v respects ≈}

[[[τ1, . . . , τn]]]≈A = {p ∈ Pow([[τ1]]≈A× · · · × [[τn]]≈A) | p respects ≈}

We have [[[ ]]]≈A= [[[ ]]]A= {ff , tt}. Note that if ≈ is a congruence, then [[b]]≈A=
[[b]]A. The second clause of the above definition is well-formed because of the
following proposition.

Proposition 3.22 [[τ ]]≈A⊆ [[τ ]]A for any type τ .

Proof: By induction on the structure of τ . (Thus the proof that [[[τ1, . . . , τn]]]≈A
is well-defined depends on [[τ1]]≈A, . . . , [[τn]]≈A, which have been shown to be well-
defined at a previous stage.) �

Example 3.23 Consider ≈ on Term∞ given in Example 3.16. We have ∞ 6∈
[[ctr ]]≈Term∞ but v ∈ [[ctr ]]≈Term∞ for all other v ∈ [[ctr ]]Term∞ . From Example 3.18
we have P 6∈ [[[ctr ]]]≈Term∞, P ′ ∈ [[[ctr ]]]≈Term∞ and {{∞}} 6∈ [[[[ctr ]]]]≈Term∞.

�

The following proposition shows that the extension of ≈ to bracket types,
restricted to type interpretations [[[τ1, . . . , τn]]]≈A, is trivial in the sense that it
does not identify distinct values.

Proposition 3.24 For all p, p′ ∈ [[[τ1, . . . , τn]]]≈A, if p ≈[τ1,...,τn] p
′ then p = p′.

Proof: Let v1 ∈ [[τ1]]≈A, . . . , vn ∈ [[τn]]≈A; then v1 ≈τ1 v1 and · · · and vn ≈τn vn.
If p ≈[τ1,...,τn] p

′ then (v1 . . . , vn) ∈ p iff (v1 . . . , vn) ∈ p′, i.e. p = p′. �

Returning to Example 3.18, we see that {∞} 6∈ [[[ctr ]]]≈Term∞ and {P} 6∈
[[[[ctr ]]]]≈Term∞ and thus these do not provide counterexamples to Proposi-
tion 3.24.

Let Γ be a context.

Definition 3.25 A Γ-environment (w.r.t.≈, on A) is a Types(Σ)-sorted func-

14



tion ρ = 〈ρτ : Γτ → [[τ ]]≈A〉τ∈Types(Σ). We adopt the previously-explained nota-
tions for environments.

Definition 3.26 Let ρ be a Γ-environment w.r.t. ≈. The interpretation w.r.t.
≈ of terms that are typable in context Γ is defined as follows:

[[x]]≈ρ,A = ρ(x)

[[c(t1, . . . , tn)]]≈ρ,A = [[c]]A([[t1]]
≈
ρ,A, . . . , [[tn]]≈ρ,A)

[[λ(x1:τ1, . . . , xn:τn).t]]≈ρ,A = {(v1, . . . , vn) | v1 ∈ [[τ1]]≈A and · · · and vn ∈ [[τn]]≈A
and [[t]]≈ρ[x1 7→v1,...,xn 7→vn],A= tt}

[[t(t1, . . . , tn)]]≈ρ,A = if ([[t1]]
≈
ρ,A, . . . , [[tn]]≈ρ,A) ∈ [[t]]≈ρ,A then tt else ff

[[t⇒ t′]]≈ρ,A = if [[t]]≈ρ,A= tt then [[t′]]≈ρ,A else tt

[[∀x:τ.t]]≈ρ,A = if [[t]]≈ρ[x 7→v],A= tt for all v ∈ [[τ ]]≈A then tt else ff

A comparison of the above definition with the corresponding definition for the
standard interpretation (Definition 3.4) reveals that the only difference is the
change to the meaning of λ-abstraction and universal quantification induced
by the different interpretation of types.

The proof of soundness does not go through directly; a stronger induction
hypothesis is required.

Proposition 3.27 Suppose Γ ` t : τ and ρ, ρ′ are Γ-environments w.r.t. ≈
such that ρ(x) ≈Γ(x) ρ

′(x) for each x ∈ Vars(Γ). Then:

(i) If τ is a base type b, then [[t]]≈ρ,A, [[t]]
≈
ρ′,A∈ [[b]]A

(ii) If τ is [τ1, . . . , τn], then [[t]]≈ρ,A, [[t]]
≈
ρ′,A∈ Pow([[τ1]]≈A× · · · × [[τn]]≈A)

and [[t]]≈ρ,A≈τ [[t]]≈ρ′,A.

Proof: By induction on the structure of the derivation of Γ ` t : τ . �

Corollary 3.28 If Γ ` t : τ and ρ is a Γ-environment w.r.t. ≈ then [[t]]≈ρ,A∈
[[τ ]]≈A.

Proof: Apply Proposition 3.27 with ρ′ = ρ. �

The following proposition shows that =τ refers to the partial congruence ≈
under interpretation of terms w.r.t. ≈. This is due to the fact that the quan-
tifier in the formula ∀P :[τ ].P (t) ⇒ P (t′) (which t =τ t

′ abbreviates) ranges
over predicates that respect ≈.
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Proposition 3.29 Suppose v, v′ ∈ [[τ ]]≈A for some type τ . Then for any envir-
onment ρ w.r.t. ≈, [[x =τ y]]≈ρ[x 7→v,y 7→v′],A= tt iff v ≈τ v′.

Proof:

⇐=: Suppose v ≈τ v′. Any predicate p ∈ [[[τ ]]]≈A respects ≈, i.e. v ∈ p iff v′ ∈ p.

=⇒: Suppose that [[∀P :[τ ].P (x) ⇒ P (y)]]≈ρ[x 7→v,y 7→v′],A= tt and consider the
predicate p = {w | w ≈τ v} ∈ [[[τ ]]]≈A. We have [[P (x)]]≈ρ[x 7→v,P 7→p],A= tt so
[[P (y)]]≈ρ[y 7→v′ ,P 7→p],A= tt ; thus v′ ∈ p, i.e. v′ ≈τ v. �

Definition 3.30 Let ϕ be a formula in context Γ. Suppose ρ is a Γ-environment
w.r.t. ≈; then we write A |=≈ρ ϕ if [[ϕ]]≈ρ,A= tt . We write A |=≈ ϕ (A satisfies
ϕ w.r.t. ≈) if A |=≈ρ ϕ for all Γ-environments ρ w.r.t. ≈. If Φ is a set of
formulae in context Γ then we write A |=≈ Φ if A |=≈ ϕ for all ϕ ∈ Φ.

When ≈ is the indistinguishability relation (see Definition 4.1 below), |=≈ is
known as behavioural satisfaction.

Example 3.31 The Σctr -algebra Nat satisfies all of the axioms in Φctr with
respect to equality, since it satisfies them in the standard sense (Example 3.10).
The algebras Term and Term∞ satisfy all of these axioms with respect to
the congruence ≈ given in Example 3.16; see below for comments concerning
GENCTR. They satisfy all of them with respect to ≈′ with the exception of
the axiom ¬(true =bool false).

For any Σctr -algebra A and any partial congruence ≈ on A, A |=≈ GENCTR
iff every value in [[ctr ]]≈A is congruent to a value that is ∅-reachable with re-
spect to the reduced signature Σ′ctr from Example 3.12. (The “if” direction
depends on the requirement that P ∈ [[[ctr ]]]≈A rather than P ∈ [[[ctr ]]]A; to
see that the “only if” direction holds, instantiate GENCTR with P = {v ∈
[[ctr ]]≈A| ∃v

′ ∈ [[ctr ]]≈A.v ≈ctr v
′ and v′ is ∅-reachable in Σ′ctr} ∈ [[[ctr ]]]≈A. Note

that there are A and ≈ for which {v ∈ [[ctr ]]≈A| v is ∅-reachable in Σ′ctr} 6∈
[[[ctr ]]]≈A.) This shows that Term |=≈ GENCTR and Term∞ |=≈ GENCTR for
≈ as given in Example 3.16. �

3.3 Relating |= and |=≈

Let ≈ be a partial congruence on A.

Definition 3.32 Suppose v ∈ [[b]]A for b ∈ B such that v ≈b v; then the
congruence class of v w.r.t. ≈ is defined as [v]≈b = {v′ ∈ [[b]]A| v ≈b v

′}. The
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quotient of A by ≈, written A/≈, is then defined as follows:

[[b]]A/≈= {[v]≈b | v ∈ [[b]]A and v ≈b v} for all b ∈ B

[[c]]A/≈([v1]≈b1 , . . . , [vn]≈bn ) = [[[c]]A(v1, . . . , vn)]≈b

for all c : b1 × · · · × bn → b in C.

Since ≈ is a partial congruence, the choice of representatives v1, . . . , vn in the
definition of [[c]]A/≈ doesn’t matter. Note that if ≈ is a congruence, then A/≈
is the usual quotient algebra, with [[b]]A/≈= [[b]]A/≈b.

Proposition 3.33 A/≈ is a Σ-algebra, that is [[c]]A/≈∈ ([[b1]]A/≈× · · ·×[[bn]]A/≈→
[[b]]A/≈) for every c : b1 × · · · × bn → b in C.

Proof: Easy, since if v1 ∈ [[b1]]A/≈, . . . , vn ∈ [[bn]]A/≈ then v1 ≈b1 v1 and · · ·
and vn ≈bn vn so [[c]]A(v1, . . . , vn) ≈b [[c]]A(v1, . . . , vn). �

Example 3.34 Nat ∼= Term/≈ ∼= Term∞/≈ for ≈ as given in Example 3.16.
�

The following theorem demonstrates a fundamental relationship between the
two interpretations defined above. In the first-order case, it says that stand-
ard satisfaction of a formula ϕ in a quotient algebra A/≈ is equivalent to
satisfaction of ϕ, with the symbol = interpreted as ≈, in A itself.

Theorem 3.35 A/≈ |= ϕ iff A |=≈ ϕ.

Proof: Define two families of functions 〈ψτ : [[τ ]]≈A→ [[τ ]]A/≈〉τ∈Types(Σ) and
〈χτ : [[τ ]]A/≈→ [[τ ]]≈A〉τ∈Types(Σ) by induction on τ as follows:

for all v ∈ [[b]]≈A,

ψb(v) = [v]≈b

for all v ∈ [[b]]A/≈,

χb(v) = some arbitrary element of v

for all p ∈ [[[τ1, . . . , τn]]]≈A,

ψ[τ1,...,τn](p) = {(v1, . . . , vn) ∈ [[τ1]]A/≈× · · · × [[τn]]A/≈| (χτ1(v1), . . . , χτn(vn)) ∈ p}

for all p ∈ [[[τ1, . . . , τn]]]A/≈,

χ[τ1,...,τn](p) = {(v1, . . . , vn) ∈ [[τ1]]≈A× · · · × [[τn]]≈A| (ψτ1(v1), . . . , ψτn(vn)) ∈ p}
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These functions are well-defined. First, ψ and χ[τ1,...,τn] are not affected by the
choice of χb. Second, for all v ∈ [[τ ]]A/≈, χτ(v) respects ≈ (for base types b,
we have v ≈b v for v ∈ [[b]]A/≈; for bracket types, it follows from the fact that
v ≈τ v′ implies ψτ(v) = ψτ(v′)). We have for all v ∈ [[τ ]]A/≈, ψτ(χτ(v)) = v

and for all v ∈ [[τ ]]≈A, χτ(ψτ(v)) ≈τ v, both by induction on the structure of
τ (the latter uses again the fact that v ≈τ v′ implies ψτ(v) = ψτ(v′)). The
former implies that ψτ is onto for all τ . Note that ψ[ ] is the identity.

The remainder of the proof relies on the following:

Lemma For any Γ ` t : τ and Γ-environment ρ w.r.t. ≈, [[t]]ψ◦ρ,A/≈= ψτ([[t]]
≈
ρ,A).

Proof: By induction on the structure of the derivation of Γ ` t : τ . For
function application, we use the fact that for c : b1 × · · · × bn → b in C
we have ψb([[c]]A(v1, . . . , vn)) = [[c]]A/≈(ψb1(v1), . . . , ψbn(vn)). For universal
quantification, we use the fact that ψ is onto. � (lemma)

This gives A/≈ |= ϕ ⇒ A |=≈ ϕ, as follows. Suppose that A/≈ |= ϕ, i.e.
Γ ` ϕ : [ ] and for all Γ-environments ρ on A/≈, A/≈ |=ρ ϕ. Then suppose ρ
is a Γ-environment on A w.r.t. ≈. We need to show that A |=≈ρ ϕ. But ψ ◦ ρ
is a Γ-environment on A/≈, and so [[ϕ]]≈ρ,A= ψ[ ]([[ϕ]]≈ρ,A) = [[ϕ]]ψ◦ρ,A/≈= tt .

For A/≈ |= ϕ ⇐ A |=≈ ϕ, suppose that A |=≈ ϕ, i.e. Γ ` ϕ : [ ] and for all
Γ-environments ρ w.r.t. ≈, A |=≈ρ ϕ. Then suppose ρ is a Γ-environment on
A/≈. We need to show that A/≈ |=ρ ϕ. Since ψ is onto, ρ factors through ψ:
ρ = ψ◦ρ′ for some Γ-environment ρ′ w.r.t. ≈. Thus [[ϕ]]ψ◦ρ′,A/≈= ψ[ ]([[ϕ]]≈ρ′,A) =
ψ[ ](tt) = tt , i.e. A/≈ |=ρ ϕ. �

A trivial consequence of Theorem 3.35 is the fact that when ≈ is equality, |=≈
coincides with |=. Theorem 3.35 for the case of infinitary first-order equational
logic is Theorem 3.11 of [BHW95], where the proof method is analogous.

Example 3.36 From Example 3.10 we know that Nat |= Φctr , and then Co-
rollary 3.14 and the fact (Example 3.34) that Nat ∼= Term∞/≈ for ≈ as given
in Example 3.16 gives Term∞/≈ |= Φctr . Then Theorem 3.35 tells us that
Term∞ |=≈ Φctr , which is what we concluded in Example 3.31. (And vice
versa.) �

We believe that the above development would go through, mutatis mutandis,
for Henkin models [Hen50] as well as in a constructive framework like that of
topos theory [Pho92], see Section 3.9 of [TvD88]. In the absence of the axiom
of choice, e.g. in topos theory, one must replace the function χ in the proof of
Theorem 3.35 by a relation which is functional up to ≈.
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4 Behavioural equivalence and indistinguishability

We now consider specific definitions of indistinguishability and behavioural
equivalence. Let Σ = 〈B,C〉 be a signature, and let OBS , the observable base
types of Σ, be a subset of B. The intention is that OBS includes just those
base types that are directly visible to clients; typically this would include types
like bool and nat . All other types, including all bracket types, are hidden in
the sense that their values may only be inspected indirectly by performing
experiments (i.e. evaluating terms) that yield a result of a type in OBS .

The following defines the indistinguishability relation used in [NO88]. Two
values v, v′ are indistinguishable if no experiment of observable type with
additional observable inputs is able to distinguish between them.

Definition 4.1 Let the family of partial congruences ≈OBS = 〈≈OBS ,A〉A∈Alg (Σ)

be such that for any Σ-algebra A, base type b ∈ B and v, v′ ∈ [[b]]A, v ≈OBS ,A,b v
′

(v and v′ are indistinguishable) iff v and v′ are OBS -reachable, and for any
OBS -context Γ, variable x 6∈ Vars(Γ), term t with Γ, x : b ` t : b′ for b′ ∈ OBS ,
and Γ-environment ρ, [[t]]ρ[x 7→v],A= [[t]]ρ[x 7→v′],A.

Example 4.2 The partial congruence≈{bool},Nat is equality, while≈{bool},Term∞ ,
which is the same as ≈{bool},Term , is ≈ from Example 3.16. Making all base
types observable, as in ≈{bool ,ctr},Term , yields equality. The partial congruence
≈{ctr},Term is equality on ctr but is the total relation on bool since there are
no terms over Σctr of type ctr containing a variable of type bool . Providing no
observable types, as in ≈∅,Term, yields the total relation for similar reasons.

�

Proposition 4.3 For any Σ-algebra A, ≈OBS ,A is a partial congruence on A.

Proof: Symmetry and transitivity are obvious. Suppose c : b1 × · · · × bn → b
in C and v1 ≈OBS ,A,b1 v

′
1 and · · · and vn ≈OBS ,A,bn v

′
n; we have to show that

[[c]]A(v1, . . . , vn) ≈OBS ,A,b [[c]]A(v′1, . . . , v
′
n). Since vi, v

′
i are OBS -reachable for

all 1 ≤ i ≤ n, there is an OBS -context Γ, Γ-environment ρ and terms ti, t′i in
context Γ such that vi = [[ti]]ρ,A and v′i = [[t′i]]ρ,A, for all 1 ≤ i ≤ n. (There is
no loss of generality in taking the same Γ and ρ for all of these terms.) Now,
let Γ′ be an OBS -context, suppose that Γ′, x : b ` s : b′ for b′ ∈ OBS and
x 6∈ Vars(Γ′), and let ρ′ be a Γ′-environment. W.l.o.g. we may assume that
Vars(Γ) and Vars(Γ′) are disjoint and that x 6∈ Vars(Γ). We then calculate
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as follows:

[[s]]ρ′[x 7→[[c]]A(v1,...,vn)],A

= [[s]](ρ′+ρ)[x 7→[[c(t1,...,tn)]]ρ′+ρ,A],A (using disjointness)

= [[s[x := c(t1, . . . , tn)]]]ρ′+ρ,A (by Proposition 3.5)

= [[s[x := c(y, t2, . . . , tn)]]](ρ′+ρ)[y 7→v1],A (using Proposition 3.5)

= [[s[x := c(y, t2, . . . , tn)]]](ρ′+ρ)[y 7→v′1],A (since v1 ≈OBS ,A,b1 v
′
1)

= [[s[x := c(t′1, t2, . . . , tn)]]]ρ′+ρ,A (using Proposition 3.5)

= [[s[x := c(t′1, . . . , t
′
n)]]]ρ′+ρ,A (iterating the above three steps)

= [[s]]ρ′[x 7→[[c]]A(v′1,...,v′n)],A (reversing the first two steps).

Since [[c]]A(v1, . . . , vn) and [[c]]A(v′1, . . . , v
′
n) are clearly OBS -reachable, the claim

follows. �

Note that the above proof makes essential use of the fact that OBS -reachability
of v and v′ is required for v ≈OBS ,A,b v

′ in Definition 4.1. This is no accident,
as the following counterexample shows.

Counterexample 4.4 Let the signature Σ have base types b and bool and
constants f : b→ bool and c : b×b→ b, and take OBS = {bool}. Consider the
Σ-algebra A such that [[b]]A= {0, 1, 2}, [[bool]]A= {T, F}, [[f ]]A(0) = [[f ]]A(1) =
T , [[f ]]A(2) = F , and

[[c]]A(x, y) =

 x if x = y

2 if x 6= y

Now suppose that the requirement of OBS -reachability were removed from
Definition 4.1. Then 0 ≈OBS ,A,b 0 and 0 ≈OBS ,A,b 1 but [[c]]A(0, 0) 6≈OBS ,A,b

[[c]]A(0, 1) since [[f ]]A([[c]]A(0, 0)) 6= [[f ]]A([[c]]A(0, 1)). �

By analogy with the terminology of denotational semantics (see e.g. [Win93]),
a Σ-algebra A is called fully abstract when the indistinguishability relation on
A is simply equality. Such an A is called an algebra of minimal redundancy in
[Rei85].

Definition 4.5 ([BHW95]) Let ≈ = 〈≈A〉A∈Alg(Σ) be a family such that each
≈A is a partial congruence on A. A Σ-algebra A is ≈-fully abstract when ≈A
is the equality in A, that is, when for all b ∈ B and v, v′ ∈ [[b]]A we have
v ≈A v′ iff v = v′. For any class A ⊆ Alg(Σ) of Σ-algebras, FA≈(A) ⊆ A is
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the subclass of ≈-fully abstract algebras, that is:

FA≈(A) = {A ∈ A | A is ≈-fully abstract}.

The family ≈ is regular if A/≈A is ≈-fully abstract for every A ∈ Alg(Σ).

Example 4.6 Nat is ≈{bool}-fully abstract, while Term and Term∞ are not.
�

Regularity ensures that the partial congruences which ≈ associates with dif-
ferent algebras are related in a natural way.

Proposition 4.7 ≈OBS is regular.

Proof: We have to show that for all b ∈ B and for all v, v′ ∈ [[b]]A/≈OBS ,A
,

v ≈OBS ,A/≈OBS ,A v
′ iff v = v′.

⇐=: We only need to show that v(= v′) is OBS -reachable. This follows from
the lemma in the proof of Theorem 3.35 and the fact that v is a congruence
class of OBS -reachable values in A.

=⇒: Suppose that v ≈OBS ,A/≈OBS ,A v′. Then for any OBS -context Γ, x 6∈
Vars(Γ), term t such that Γ, x : b ` t : b′ for b′ ∈ OBS and Γ-environment ρ on
A/≈OBS ,A, [[t]]ρ[x 7→v],A/≈OBS ,A

= [[t]]ρ[x 7→v′],A/≈OBS ,A
. Let v̂, v̂′ ∈ [[b]]A be such that

[v̂]≈OBS ,A = v and [v̂′]≈OBS ,A = v′; by the lemma in the proof of Theorem 3.35,
it follows that [[[t]]ρ′[x 7→v̂],A]≈OBS ,A = [[[t]]

ρ′[x 7→v̂′],A]≈OBS ,A for any Γ-environment
ρ′ on A, because for any ρ there is a ρ′ such that ρ = [·]≈OBS,A ◦ ρ′, and vice
versa since Γ is an OBS -context so ρ′(x) is trivially OBS -reachable for any
x ∈ Vars(Γ). But ≈OBS ,A on b′ ∈ OBS is equality so v̂ ≈OBS ,A v̂′, i.e. v = v′.

�

A slightly weaker property than regularity is required to state the main char-
acterization theorem from [BHW95].

Definition 4.8 ([BHW95]) Let ≈ = 〈≈A〉A∈Alg(Σ) be a family such that each
≈A is a partial congruence on A. The family ≈ is weakly regular if A/≈A ∼=
(A/≈A)/≈(A/≈A) for every A ∈ Alg(Σ).

Proposition 4.9 ([BHW95]) If ≈ is regular then it is weakly regular.

Proof: From the definitions. �

We will now define what it means for two Σ-algebras to be behaviourally
equivalent. The definition resembles that of indistinguishability in the sense
that it is based on the idea of performing experiments to probe for differences
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between the two algebras. But in this case performing an experiment means
testing satisfaction of a formula rather than evaluating a term of base type,
and here we are comparing algebras rather than values within a single algebra.
The formulae of importance are equations between terms of observable type,
with variables of observable type.

Definition 4.10 Let Γ be an OBS -context. An observable equation is a for-
mula in context Γ of the form t =b t

′ where b ∈ OBS . Let ObsEqΓ(Σ) be the
set of observable equations in context Γ.

Definition 4.11 Let A,A′ ∈ Alg(Σ). A is behaviourally equivalent to A′

(via equations), written A ≡OBS A′, if there is an OBS -context Γ and Γ-
environments ρA on A and ρA′ on A′ that are OBS -surjective (see Defini-
tion 3.3) such that for any equation ϕ ∈ ObsEqΓ(Σ), A |=ρA ϕ iff A′ |=ρA′ ϕ.

Example 4.12 Nat ≡{bool} Term ≡{bool} Term∞. �

Proposition 4.13 ≡OBS ⊆ Alg(Σ)× Alg(Σ) is an equivalence relation.

Proof: Reflexivity and symmetry are obvious. Transitivity follows from the
observation that the choice of variable names in the context Γ is arbitrary.

�

It might seem surprising that the definition of ≡OBS does not make use of
the higher-order features of the language, except as a result of the way that
equality is expressed via quantification over predicates. So ≡OBS is just the
same as in e.g. [SW83], [MG85], [NO88]. The reason for this choice is that
the natural modification of the definition of ≡OBS to make use of higher-order
formulae (Definition 5.19) gives exactly the same relation, see Corollary 5.22.

The following definition is the key to understanding the relationship between
indistinguishability of values on the one hand and behavioural equivalence
of algebras on the other. The idea is that a family of partial congruences
naturally induces an equivalence on Alg(Σ). If behavioural equivalence is the
relation that is induced by indistinguishability (as will turn out to be the
case, see Theorem 5.21) then it is possible to translate constructions phrased
in terms of behavioural equivalence into constructions phrased in terms of
indistinguishability, and vice versa. There is a close analogy with the case of
finite state machines, where two machines M,M ′ are equivalent if quotienting
M and M ′ by the so-called Nerode equivalence on states yields isomorphic
machines.

Definition 4.14 ([BHW95]) Let ≈ = 〈≈A〉A∈Alg (Σ) be a family such that
each ≈A is a partial congruence on A, and let ≡ ⊆ Alg(Σ) × Alg(Σ) be an
equivalence relation. Then ≡ is factorizable by ≈ if for any A,A′ ∈ Alg(Σ),
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A ≡ A′ iff A/≈A ∼= A′/≈A′ . (Factorizability can be decomposed as follows: ≡
is left-factorizable by ≈ if for any A,A′ ∈ Alg(Σ), A ≡ A′ ⇐ A/≈A ∼= A′/≈A′ ,
and it is right-factorizable by ≈ if for any A,A′ ∈ Alg(Σ), A ≡ A′ ⇒ A/≈A ∼=
A′/≈A′ .)

The following proposition gives right-factorizability of ≡OBS by ≈OBS . Left-
factorizability can be proved directly, but we obtain it instead by applying a
more general result, see Corollary 5.16 below.

Proposition 4.15 For any A,A′ ∈ Alg(Σ), if A ≡OBS A
′ then A/≈OBS ,A

∼=
A′/≈OBS ,A′.

Proof: Suppose that A ≡OBS A
′ via OBS -context Γ and Γ-environments ρA

on A and ρA′ on A′. The proof uses the following:

Lemma Let t, t′ be terms such that Γ ` t : b and Γ ` t′ : b. Then [[t]]ρA,A≈OBS ,A,b

[[t′]]ρA,A iff [[t]]ρA′ ,A′≈OBS ,A′,b [[t′]]ρA′ ,A′ .

Proof:

=⇒: Suppose that [[t]]ρA,A≈OBS ,A,b [[t′]]ρA,A. We know that [[t]]ρA′ ,A′ and [[t′]]ρA′ ,A′
are OBS -reachable since Γ is an OBS -context. Let Γ′ be an OBS -context,
x 6∈ Vars(Γ′) be a variable, s be a term with Γ′, x : b ` s : b′ for b′ ∈ OBS ,
and ρ be a Γ-environment on A′. We need to show that [[s]]ρ[x 7→[[t]]ρA′ ,A′

],A′=

[[s]]ρ[x 7→[[t′]]ρ
A′ ,A

′ ],A′. W.l.o.g. (since ρA′ is OBS -surjective) we can restrict at-

tention to the case where Γ = Γ′ and ρ = ρA′ ; then by Proposition 3.5 it
suffices to show that [[s[x := t]]]ρA′ ,A′= [[s[x := t′]]]ρA′ ,A′ . Now consider the
observable equation ϕ =def s[x := t] =b′ s[x := t′]. We have A |=ρA ϕ
since [[t]]ρA,A≈OBS ,A,b [[t′]]ρA,A; then A′ |=ρA′ ϕ since A ≡OBS A′. Hence
[[s[x := t]]]ρA′ ,A′= [[s[x := t′]]]ρA′ ,A′ by Proposition 3.7.
⇐=: Similarly. � (lemma)

Now define a function h : A/≈OBS ,A → A′/≈OBS ,A′ by taking h([v]≈OBS,A) =
[[[t]]ρA′ ,A′ ]≈OBS ,A′ for b ∈ B and v ∈ [[b]]A, where t is a term in context Γ such
that [[t]]ρA,A= v. We know that such a t exists because v is OBS -reachable by
definition of ≈OBS ,A and because ρA is OBS -surjective. To see that the choice
of the term t and the representative v don’t matter, suppose we have terms t, t′

in context Γ such that [[t]]ρA,A= v ≈OBS ,A,b v
′ = [[t′]]ρA,A; then [[t]]ρA′ ,A′≈OBS ,A′,b

[[t′]]ρA′ ,A′ by the lemma. Thus h is well-defined, and it is easy to see that h is
a Σ-homomorphism. Since our signatures do not contain predicate symbols, h
is a Σ-isomorphism if we can prove that it is bijective.

To see that h is surjective, consider any b ∈ B and representative v of any
congruence class in [[b]]A′/≈OBS ,A′

. Pick a term t in context Γ such that [[t]]ρA′ ,A′=
v; we know that such a t exists because v is OBS -reachable (since v ≈OBS ,A′ v)
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and because ρA′ is OBS -surjective. Then [v]≈OBS,A′ = h([[[t]]ρA,A]≈OBS ,A).

To see that h is injective, suppose there are b ∈ B and v, v′ ∈ [[b]]A such
that h([v]≈OBS,A) = h([v′]≈OBS ,A), where t, t′ are terms in context Γ such that
[[t]]ρA,A= v and [[t′]]ρA,A= v′. Then [[t]]ρA′ ,A′≈OBS ,A′ [[t′]]ρA′ ,A′, so by the lemma
we have [[t]]ρA,A≈OBS ,A [[t′]]ρA,A, i.e. [v]≈OBS,A = [v′]≈OBS ,A .

Thus we have shown that h : A/≈OBS ,A → A′/≈OBS ,A′ is a Σ-isomorphism.
Note that its inverse can be obtained from the proof of surjectivity. �

Example 4.16 Since Nat ≡{bool} Term ≡{bool} Term∞ (Example 4.12), by
Proposition 4.15 Nat/≈{bool},Nat

∼= Term/≈{bool},Term
∼= Term∞/≈{bool},Term∞

(Example 3.34, see also Example 4.2). �

Proposition 4.15 essentially amounts to one direction of Example 5.4 of [BHW95],
where the proof method is the same.

In this paper, we consider only the particular definitions of indistinguishabil-
ity (Definition 4.1) and behavioural equivalence (Definition 4.11) given above.
There are at least two other candidates for each of these definitions, as de-
scribed in [BHW95]. The first variant, which has been studied by [Rei85], is
obtained by allowing Γ to be an arbitrary B-context in both definitions, re-
moving the requirement of OBS -reachability in Definition 4.1, and changing
the requirement of OBS -surjectivity to B-surjectivity in Definition 4.11. The
second variant is obtained by eliminating the context Γ and environments
from both definitions, and changing the requirement of OBS -reachability to
∅-reachability in Definition 4.1; the resulting definition of behavioural equival-
ence has been studied in Section 2 of [ST87]. These alternatives are not studied
here, although all of the proofs required should be similar to those given here.
In our opinion, the first variant is simply wrong because the resulting beha-
vioural equivalence relation fails to identify algebras that differ only in their
behaviour on values of non-observable types that are not OBS -reachable: see
[ONS91] for an example. The second variant seems to be unnecessarily re-
strictive in the presence of parameterised specifications, since (as discussed
in [ST89]) OBS will normally include the parameter types and these types
typically lack generators; this leads to a behavioural equivalence relation that
is too coarse.

Schoett [Sch90] has shown thatA ≡OBS A
′ iff there exists an OBS -correspondence

between A and A′ (a family of relations 〈↔b ⊆ [[b]]A×[[b]]A′〉b∈B such that
for all c : b1 × · · · × bn → b in C and all v1 ∈ [[b1]]A, . . . , vn ∈ [[bn]]A and
v′1 ∈ [[b1]]A′, . . . , v

′
n ∈ [[bn]]A′ , if v1 ↔b1 v′1 and · · · and vn ↔bn v′n then

[[c]]A(v1, . . . , vn) ↔b [[c]]A′(v
′
1, . . . , v

′
n), and such that ↔b is a bijection for b ∈

OBS ). 4 This characterization is useful for proving that specific algebras are

4 In fact, the definition of A ≡OBS A′ in [Sch90] requires [[b]]A= [[b]]A′ for all b ∈
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behaviourally equivalent. Very recently, [BT96] has generalized this result.
First, they consider an arbitrary concrete category of models, rather than that
of ordinary algebras, and study the concepts of behavioural satisfaction and
behavioural equivalence in this context. They then generalize the characteriz-
ation theorem of [Sch90] to the case of arbitrary ≈ and ≡ (satisfying certain
technical conditions) such that ≡ is factorizable by ≈. They also generalize
the characterization theorem of [BHW95] to this context.

5 Expressible congruences and relativization

The language of higher-order logic is powerful enough to express the indistin-
guishability relation ≈OBS by means of a family of predicates, i.e. terms in
the language (cf. [Sch94]). We can use this fact to characterize behavioural
satisfaction of a formula ϕ in terms of ordinary satisfaction of a “relativized”
version of ϕ.

Let Σ = 〈B,C〉 be a signature for which B and C are finite and let OBS ⊆ B.
The assumption of finiteness is required to obtain finite terms in Proposi-
tion 5.1 and Theorem 5.4 below.

Notations like ∀
b∈B

xb:b.t and λ(〈Pb:[b, b]〉b∈B).t will be used below to abbrevi-
ate obvious (finite) terms. The latter assumes some fixed enumeration of the
elements of B; this is not needed for the former since a sequence of universal
quantifiers can be permuted without affecting meaning.

Proposition 5.1 Let A be a Σ-algebra and suppose v̂ ∈ [[̂b]]A for b̂ ∈ B. Then
A |=[x 7→v̂] REACH

b̂
(x) iff v̂ is OBS -reachable, where REACH

b̂
is defined as

follows:

If b̂ ∈ OBS then REACH
b̂

=def λ(x:b̂).true.

OBS , and so there ↔b is required to be equality for b ∈ OBS . Moreover, Schoett
uses partial algebras where the definition of ≡OBS is a little more complicated and
correspondences are required to satisfy additional conditions.
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If b̂ 6∈ OBS then

REACH
b̂

=def

λ(x:b̂). ∀
b6∈OBS

Pb : [b]. ∧
c:b1×···×bn→b′ in C

b′ 6∈OBS

∀
1≤i≤n

xi : bi.

 ∧
1≤j≤n
bj 6∈OBS

Pbj (xj)

⇒ Pb′(c(x1, . . . , xn))


⇒ P

b̂
(x)

Proof: If b̂ ∈ OBS then the proof is trivial. So suppose that b̂ 6∈ OBS .

=⇒: Instantiate REACH
b̂
(x) with Pb = {v ∈ [[b]]A| v is OBS -reachable} ∈

[[[b]]]A for all b 6∈ OBS . It then suffices to show that the closure property on
the left-hand side of the main implication is satisfied. This is easy: for each
c : b1 × · · · × bn → b′ in C, the required term is simply the application of c to
the terms that witness the OBS -reachability of x1, . . . , xn.

⇐=: Suppose that v̂ is OBS -reachable; then there is an OBS -context Γ, term
t with Γ ` t : b̂, and Γ-environment ρ such that [[t]]ρ,A= v̂. We need to show
that A |=[x 7→v̂] REACH

b̂
(x); by Proposition 3.5 it suffices to show that A |=ρ

REACH
b̂
(t). This follows by induction on the structure of t. �

Example 5.2 Consider the signature Σctr and let OBS = {bool}; then REACH bool

is λ(x:bool).true and REACH ctr is:

λ(x:ctr ).∀P :[ctr ].

(P (zero) ∧ ∀y:ctr .P (y)⇒ P (inc(y)) ∧ ∀z:ctr .P (z)⇒ P (dec(z)))

⇒ P (x)

�

Definition 5.3 Let ≈ = 〈≈A〉A∈Alg(Σ) be a family of partial congruences, and
let ∼ = 〈∼b〉b∈B be a family of closed predicates such that ` ∼b : [b, b] for
every base type b ∈ B. Then ≈ is expressible by ∼ if [[∼b]]A= ≈A,b for every
b ∈ B.

The formulae in the following theorem do not make easy reading. INDIST
b̂

characterizes ≈OBS as the greatest (∃b∈BPb:[b, b].Pb̂(x, y)∧ · · ·) partial congru-
ence (CONG(〈Pb〉b∈B)) that is equality on OBS (OBSEQ(〈Pb〉b∈B)) and is
defined only for OBS -reachable values (REACH

b̂
(x) ∧REACH

b̂
(y)).

Theorem 5.4 The indistinguishability relation ≈OBS is expressible by the
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family of predicates 〈INDIST
b̂
〉̂
b∈B, defined as follows:

CONG =def

λ(〈Pb:[b, b]〉b∈B).

∧
c:b1×···×bn→b inC

∀
1≤i≤n

xi, x
′
i:bi.

(∧
1≤j≤n

Pbj (xj, x
′
j)
)

⇒ Pb(c(x1, . . . , xn), c(x′1, . . . , x
′
n))

OBSEQ =def λ(〈Pb:[b, b]〉b∈B). ∧
b∈OBS

∀x, x′:b. Pb(x, x′)⇔ x =b x
′

INDIST
b̂

=def

λ(x:b̂, y:b̂).∃
b∈B

Pb:[b, b].Pb̂(x, y)∧ CONG(〈Pb〉b∈B) ∧OBSEQ(〈Pb〉b∈B)

∧REACH
b̂
(x)∧ REACH

b̂
(y)

Proof: Let A be a Σ-algebra. We need to prove that if v̂, v̂′ ∈ [[b̂]]A, then
A |=[x 7→v̂,y 7→v̂′] INDIST

b̂
(x, y) iff v̂ ≈OBS ,A,̂b v̂

′.

⇐=: Suppose that v̂ ≈OBS ,A,̂b v̂
′. We claim that A |=[x 7→v̂,y 7→v̂′] INDIST

b̂
(x, y)

with the predicates Pb = ≈OBS ,A,b ∈ [[[b, b]]]A for all b ∈ B. By the assumption
we have that A |=[x 7→v̂,y 7→v̂′] Pb̂(x, y); then A |= CONG(〈Pb〉b∈B) since ≈OBS ,A

is a partial congruence on A (Proposition 4.3), A |= OBSEQ(〈Pb〉b∈B) by
the definition of ≈OBS ,A, and A |=[x 7→v̂,y 7→v̂′] REACH

b̂
(x) ∧ REACH

b̂
(y) by

Proposition 5.1.

=⇒: Suppose that A |=[x 7→v̂,y 7→v̂′ ] INDIST
b̂
(x, y). Then v̂ and v̂′ are OBS -

reachable by Proposition 5.1. It remains to show that if Γ is an OBS -context,
z 6∈ Vars(Γ), s is a term such that Γ, z : b̂ ` s : b′ for b′ ∈ OBS , and ρ is
a Γ-environment, then [[s]]ρ[z 7→v̂],A= [[s]]

ρ[z 7→v̂′],A. This is a consequence of the
following lemma:

Lemma For any OBS -context Γ, variable z 6∈ Vars(Γ), term s such that
Γ, z : b̂ ` s : b′, and Γ-environment ρ, ([[s]]ρ[z 7→v̂],A, [[s]]ρ[z 7→v̂′ ],A) ∈ Pb′ .
Proof: By induction on the structure of s. Suppose that s is a vari-
able but not z; then b′ ∈ OBS since Γ is an OBS -context, and the re-
quired property follows from the fact that A |= OBSEQ (〈Pb〉b∈B). Suppose
that s is z; then the required property follows directly from the fact that
A |=[x 7→v̂,y 7→v̂′ ] Pb̂(x, y). Suppose that s is a function application; then the
required property follows from the inductive assumption and the fact that
A |= CONG(〈Pb〉b∈B). � (lemma)
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From this, together with the fact that A |= OBSEQ(〈Pb〉b∈B) and Proposi-
tion 3.7, it follows that [[s]]ρ[z 7→v̂],A= [[s]]

ρ[z 7→v̂′ ],A when b′ ∈ OBS . �

Example 5.5 Consider the signature Σctr and let OBS = {bool}; then INDIST bool

simplifies to λ(x:bool , y:bool).x =bool y and INDIST ctr simplifies to:

λ(x:ctr , y:ctr ).

REACH ctr (x) ∧REACH ctr (y)

∧ ∃P :[ctr , ctr ].P (zero, zero)

∧ ∀a, b:ctr . P (a, b)⇒ P (inc(a), inc(b))

∧ P (dec(a), dec(b))

∧ is-zero(a) =bool is-zero(b)

∧ P (x, y)

This can be used to show that zero ≈{bool},Term dec(inc(zero)) (and similarly
for ≈{bool},Term∞) by taking

P = {(v, v′) | v = v′ ∨ ∃t. x : ctr ` t : ctr

∧ v = t[zero] ∧ v′ = t[dec(inc(zero))]}.

where t[t′] is shorthand for [[t]][x 7→t′],Term . This choice of P works for showing
that t[zero] ≈{bool},Term t[dec(inc(zero))] for any “context” t, but a different
choice of P is required for showing that dec(inc(zero)) ≈{bool},Term zero or
zero ≈{bool},Term dec(dec(inc(inc(zero)))). �

In [Sch94] an expressibility result analogous to Theorem 5.4 for the indistin-
guishability relation used in [Rei85] is given for a language of second-order
logic. Detailed comparisons are rendered difficult by the fact that the logic
used there is untyped. Very recently, [BT96] has shown that regularity (Pro-
position 4.7 above), among other properties of ≈OBS , follows from the charac-
terization of ≈OBS as the greatest partial congruence that is equality on OBS
and is defined only for OBS -reachable values.

Let ≈ = 〈≈A〉A∈Alg (Σ) be a family of partial congruences that is expressible by
the family of predicates ∼ = 〈∼b〉b∈B.

Definition 3.17 showed how to extend a partial congruence to bracket types.
We can express exactly the same thing for any expressible congruence.

Proposition 5.6 For any type τ there is a closed predicate ∼τ such that
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` ∼τ : [τ, τ ] and [[∼τ ]]A= ≈A,τ , given by the following definition:

If τ = b ∈ B then ∼τ =def ∼b.

If τ = [τ1, . . . , τn] then

∼τ =def

λ(p:[τ1, . . . , τn], p′:[τ1, . . . , τn]).

∀
1≤i≤n

xi, x
′
i:τi.

(∧
1≤j≤n

xj ∼τj x′j
)
⇒ (p(x1, . . . , xn)⇔ p′(x′1, . . . , x

′
n))

(The definition of ∼[τ1,...,τn] is recursive, but the result is a finite term for any
type [τ1, . . . , τn].)

Proof: Immediate. �

This leads directly to a family of predicates characterizing the values that are
in the interpretation of types w.r.t. ≈.

Proposition 5.7 For any type τ there is a closed predicate DOM τ such that
` DOM τ : [τ ] and [[DOM τ ]]A= [[τ ]]≈AA , given by the following definition:

If τ = b ∈ B then DOM τ =def λ(x:b).x ∼b x.

If τ = [τ1, . . . , τn] then

DOM τ =def

λ(p:[τ1, . . . , τn]).

p ∼[τ1,...,τn] p ∧ ∀
1≤i≤n

xi:τi.
(
p(x1, . . . , xn)⇒ ∧

1≤j≤n
DOM τj(xj)

)

(Again, this is a recursive definition that gives a finite term for any type.)

Proof: By induction on the structure of τ , using Propositions 3.22 and 5.6.
�

We can use the predicates DOM τ thus defined to transform any formula ϕ
into a formula pϕq such that pϕq is satisfied exactly when ϕ is satisfied w.r.t.
≈. The idea is simply to “relativize” each bound variable by attaching a re-
quirement that the value taken on by the variable is in the interpretation of
its type w.r.t. ≈.

Definition 5.8 Let t be a term in context Γ. The ∼-relativization of t is the
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term ptq (in context Γ) defined as follows:

pxq = x

pc(t1, . . . , tn)q = c(pt1q, . . . , ptnq)
pλ(x1:τ1, . . . , xn:τn).tq = λ(x1:τ1, . . . , xn:τn).

DOM τ1(x1) ∧ · · · ∧DOM τn(xn) ∧ ptq
pt(t1, . . . , tn)q = ptq(pt1q, . . . , ptnq)

pt⇒ t′q = ptq⇒ pt′q
p∀x:τ.tq = ∀x:τ.DOM τ(x)⇒ ptq

The following results relate satisfaction of a formula to satisfaction of its re-
lativized version.

Theorem 5.9 Let A be a Σ-algebra, Γ ` t : τ and let ρ be a Γ-environment
w.r.t. ≈A (so ρ is also an ordinary Γ-environment by Proposition 3.22). Then
[[t]]≈Aρ,A≈A,τ [[ptq]]ρ,A.

Proof: By induction on the structure of the derivation of Γ ` t : τ . For
λ-abstraction, we use Propositions 3.27 and 5.7. For universal quantification,
we use Proposition 5.7. �

Corollary 5.10 Let A be a Σ-algebra, let ϕ be a formula in context Γ and let
ρ be a Γ-environment w.r.t. ≈A. Then A |=≈Aρ ϕ iff A |=ρ pϕq.

Proof: Immediate from Theorem 5.9. �

Corollary 5.11 Let A be a Σ-algebra, v, v′ ∈ [[τ ]]≈A for some τ , and ρ be an
environment w.r.t. ≈A. Then [[px =τ yq]]ρ[x 7→v,y 7→v′],A= [[x ∼τ y]]ρ[x 7→v,y 7→v′ ],A.

Proof: [[px =τ yq]]ρ[x 7→v,y 7→v′ ],A= [[x =τ y]]≈Aρ[x 7→v,y 7→v′],A (by Theorem 5.9, since
≈A,[ ] is equality) = (v ≈A,τ v′) (by Proposition 3.29) = [[x ∼τ y]]ρ[x 7→v,y 7→v′ ],A
(by Proposition 5.6). �

Example 5.12 Let ϕ be the Σctr -formula ∀c:ctr .dec(inc(c)) =ctr c; then
pϕq is ∀c:ctr .DOM ctr (c) ⇒ ∀P :[ctr ].DOM [ctr ](P ) ⇒ P (dec(inc(c))) ⇒ P (c).
This is equivalent to ∀c:ctr .DOM ctr (c) ⇒ INDIST ctr (dec(inc(c)), c) by Co-
rollary 5.11. Let OBS = {bool}. In Term∞, the effect of restricting to values
c such that DOM ctr (c) is to ignore ∞, and the effect of restricting to pre-
dicates P such that DOM [ctr ](P ) is to consider only predicates that respect
≈{bool},Term∞, disregarding e.g. P in Example 3.18. Since Term∞ |=≈ ϕ (Ex-
ample 3.31), Corollary 5.10 says that Term∞ |= pϕq. �
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The definition of the ∼-relativization of a formula is closely related to the
definition of “lifted” formula in [BH96], and Corollary 5.10 is a higher-order
version of Theorem 4.2(i) in [BH96].

Corollary 5.13 Let A,A′ be Σ-algebras such that A/≈A ∼= A′/≈A′, and let
ϕ be a closed formula. Then A |= pϕq iff A′ |= pϕq.

Proof: A |= pϕq iff A |=≈A ϕ (by Corollary 5.10, since ϕ is closed) iff
A/≈A |= ϕ (by Theorem 3.35) iff A′/≈A′ |= ϕ (by Corollary 3.14) iff A′ |=≈A′
ϕ iff A′ |= pϕq. �

The relativization construction may be used to define another behavioural
equivalence relation, in which two algebras are regarded as behaviourally
equivalent provided they cannot be distinguished by relativized formulae.
The motivation for this apparent departure from our earlier notion of be-
havioural equivalence is that it is a convenient technical device for proving
left-factorizability of ≡OBS by ≈OBS (Corollary 5.16), since this follows dir-
ectly from left-factorizability of this new relation by ≈OBS (Theorem 5.15). In
fact, it will turn out (Corollary 5.22) that this “new” relation coincides with
≡OBS .

Definition 5.14 Let A,A′ ∈ Alg(Σ). A is behaviourally equivalent to A′ via
relativized formulae, written A ≡RelForm A′, if there is an OBS -context Γ and
Γ-environments ρA on A and ρA′ on A′ that are OBS -surjective such that for
any formula ϕ in context Γ, A |=ρA pϕq iff A′ |=ρA′ pϕq, where pϕq is the
〈INDIST b〉b∈B-relativization of ϕ.

Theorem 5.15 For any A,A′ ∈ Alg(Σ), if A/≈OBS ,A
∼= A′/≈OBS ,A′ then

A ≡RelForm A′.

Proof: Let h : A/≈OBS ,A → A′/≈OBS ,A′ be an isomorphism. Since ≈OBS is
equality on b ∈ OBS , we have a bijection ĥb : [[b]]A→ [[b]]A′ for b ∈ OBS defined
by [ĥb(v)]≈OBS ,A′,b = hb([v]≈OBS,A,b) for v ∈ [[b]]A.

Let Γ be the OBS -context such that Γb = [[b]]A for every b ∈ OBS (w.l.o.g.
we assume that [[b]]A⊆ X and that [[b]]A and [[b′]]A are disjoint for b 6= b′).
Define an OBS -surjective Γ-environment ρA on A by ρA(x) = x. Define an
OBS -surjective Γ-environment ρA′ on A′ by ρA′(x) = ĥ(x). Since ≈OBS is
equality on b ∈ OBS , ρA (resp. ρA′) is also a Γ-environment w.r.t. ≈OBS on A
(resp. A′). Let ϕ be a formula in context Γ. Then A |=ρA pϕq iff A |=≈OBS ,A

ρA
ϕ

(by Corollary 5.10) iff A/≈OBS ,A |=ψ◦ρA ϕ (by the lemma in the proof of
Theorem 3.35, where ψ is the function from that proof, since ψ[ ] is the identity)
iff A′/≈OBS ,A′ |=h◦ψ◦ρA ϕ (by Proposition 3.13, since h[ ] is the identity) iff
A′/≈OBS ,A′ |=ψ◦ρA′ ϕ (since h ◦ ψ ◦ ρA = ψ ◦ ĥ ◦ ρA) iff A′ |=≈OBS ,A′

ρA′ ϕ iff
A′ |=ρA′

pϕq. �
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Corollary 5.16 For any A,A′ ∈ Alg(Σ), if A/≈OBS ,A
∼= A′/≈OBS ,A′ then

A ≡OBS A
′.

Proof: Observe that for any equation ϕ ∈ ObsEqΓ(Σ), ϕ |=| pϕq since the
extra premise in pϕq always holds, by an easy argument involving Proposi-
tion 5.7. Then just apply Theorem 5.15. �

Example 5.17 To get an example of Corollary 5.16, just turn Example 4.16
around: since Nat/≈{bool},Nat

∼= Term/≈{bool},Term
∼= Term∞/≈{bool},Term∞

(Example 3.34) we obtain Nat ≡{bool} Term ≡{bool} Term∞ (Example 4.12).
�

Yet another definition of behavioural equivalence is obtained by extending
the definition of ≡OBS to take advantage of the availability of higher-order
formulae to perform experiments.

Definition 5.18 A type τ is observable if either:

– τ is a base type that is in OBS ; or
– τ = [τ1, . . . , τn] and τi is observable for all 1 ≤ i ≤ n.

Let Γ be a context. A term t in context Γ is observation-restricted if all types
occurring in t (i.e. as types of bound variables in λ-abstractions and universal
quantifications) are observable. If t is a formula and Γ is an OBS -context then
t is called observable. Let ObsFormΓ(Σ) be the set of observable formulae in
context Γ.

Since predicates in formulae can only arise in two ways — via λ-abstraction
and via quantification — the restrictions imposed on observable formulae en-
sure that predicates in such formulae always have observable type. Note that
ObsEqΓ(Σ) ⊂ ObsFormΓ(Σ).

Definition 5.19 Let A,A′ ∈ Alg(Σ). A is behaviourally equivalent to A′

via formulae, written A ≡OBSForm A′, if there is an OBS -context Γ and Γ-
environments ρA on A and ρA′ on A′ that are OBS -surjective such that for
any formula ϕ ∈ ObsFormΓ(Σ), A |=ρA ϕ iff A′ |=ρA′ ϕ.

Left-factorizability of ≡OBSForm by ≈OBS is another direct consequence of The-
orem 5.15.

Corollary 5.20 For any A,A′ ∈ Alg(Σ), if A/≈OBS ,A
∼= A′/≈OBS ,A′ then

A ≡OBSForm A′.

Proof: For any observable type τ , v ≈OBS ,A,τ v for any v ∈ [[τ ]]A, by induction
on the structure of τ using Proposition 5.6. From this it follows that for any
ϕ ∈ ObsFormΓ(Σ), ϕ |=| pϕq. Then apply Theorem 5.15. �
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Theorem 5.21 ≡RelForm , ≡OBS and ≡OBSForm are factorizable by ≈OBS .

Proof:

≡RelForm : By Proposition 4.15 (since ≡RelForm ⊆ ≡OBS by an argument like
the one in Corollary 5.16) and Theorem 5.15.
≡OBS : By Proposition 4.15 and Corollary 5.16.
≡OBSForm : By Proposition 4.15 (since ≡OBSForm ⊆ ≡OBS ) and Corollary 5.20.

�

It is an easy consequence of the above theorem that all three of our behavi-
oural equivalence relations coincide. This demonstrates that using formulae
more complex than equations as experiments does not allow finer distinctions
between algebras to be made. This is not necessarily what one would expect:
in the case of non-deterministic algebras, the use of more complex formulae
does yield a different relation, see [Nip88].

Corollary 5.22 ≡RelForm = ≡OBS = ≡OBSForm .

Proof: Immediate from Theorem 5.21 and the definition of factorizability.
�

6 Relating abstractor specifications and behavioural specifications

As discussed in the introduction, ordinary specifications consisting of a signa-
ture together with a set of axioms are not sufficiently abstract in that they
sometimes describe classes of algebras that are not closed under behavioural
equivalence. Two approaches to resolving this problem have been proposed.
The first, due to [SW83], is to simply close the class of models of a specification
under behavioural equivalence using an operation called behavioural abstrac-
tion. The second, due to [Rei85], is to take as models of a specification all
those algebras that behaviourally satisfy the axioms. We provide syntax for
all three kinds of specifications here in order to study how they are related.

Definition 6.1 A (flat) specification consists of a signature Σ and a set Φ of
closed Σ-formulae, called axioms. The models of a specification 〈Σ,Φ〉 are all
the algebras in the class

Mod(〈Σ,Φ〉) = {A ∈ Alg(Σ) | A |= Φ}.

Let 〈Σ,Φ〉 be a specification. Let ≈ = 〈≈A〉A∈Alg (Σ) be a family such that
each ≈A is a partial congruence on A, and let ≡ ⊆ Alg(Σ) × Alg(Σ) be an
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equivalence relation.

Definition 6.2 For any class A ⊆ Alg(Σ), the closure of A under ≡ is the
class

Abs≡(A) = {A ∈ Alg(Σ) | A ≡ A′ for some A′ ∈ A}.

When ≡ is the relation ≡OBS for some set OBS of base types, the operator
Abs≡ is known as behavioural abstraction.

A (flat) abstractor specification abstract 〈Σ,Φ〉 w.r.t.≡ has as models all those
Σ-algebras that are equivalent to models of 〈Σ,Φ〉:

Mod(abstract 〈Σ,Φ〉 w.r.t. ≡) = Abs≡(Mod(〈Σ,Φ〉)).

Definition 6.3 A (flat) behavioural specification behaviour 〈Σ,Φ〉 w.r.t. ≈
has as models all those Σ-algebras that satisfy the axioms Φ w.r.t. ≈:

Mod(behaviour 〈Σ,Φ〉 w.r.t. ≈) = {A ∈ Alg(Σ) | A |=≈A Φ}.

The notation used for behavioural specifications should not be confused with
similar notation used in [SW83] and [ST87] for a particular special case of
abstractor specifications.

Example 6.4 〈Σctr ,Φctr 〉 is a specification having as models the class of all
Σctr -algebras that are isomorphic to Nat . abstract 〈Σctr ,Φctr 〉 w.r.t.≡{bool} is an
abstractor specification having as models Nat , Term, Term∞, all Σctr -algebras
that are isomorphic to one of these, and many other Σctr -algebras besides.
behaviour 〈Σctr ,Φctr 〉 w.r.t. ≈{bool} is a behavioural specification having the
same class of models. �

We have now built up enough machinery to redo the development in [BHW95]
in the framework of higher-order logic. Although it is not made explicit there,
their results are independent of the logic used in axioms, provided properties
corresponding to Corollary 3.14 and Theorem 3.35 hold for the logic of in-
terest. In the remainder of this section we merely state the most important
theorems and indicate dependencies; for proofs, more results, and discussion,
see [BHW95].

The theorems below are stated for arbitrary choices of ≈ and ≡ such that
≈ is regular or weakly regular and ≡ is factorizable by ≈. The particular
case of interest is where ≈ and ≡ are ≈OBS and ≡OBS respectively, for an
arbitrary choice OBS of observable base types, which satisfy the requirements
by Propositions 4.7 and 4.9, and Theorem 5.21.
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Theorem 6.5 ([BHW95]) If ≈ is regular and ≡ is factorizable by ≈, then
Mod(behaviour 〈Σ,Φ〉 w.r.t. ≈) = Abs≡(FA≈(Mod(〈Σ,Φ〉))).

Proof: See [BHW95]. The proof depends on Theorem 3.35 and Corollary 3.14,
and the fact that regularity and factorizability implies A ≡ A/≈A for any A.

�

Theorem 6.6 ([BHW95]) If ≈ is weakly regular and ≡ is factorizable by
≈, then Mod(behaviour 〈Σ,Φ〉 w.r.t. ≈) ⊆Mod(abstract 〈Σ,Φ〉 w.r.t. ≡).

Proof: See [BHW95]. The proof depends on Theorem 3.35. �

Note that if the requirement of weak regularity of ≈ is slightly strengthened
to regularity, then Theorem 6.6 is an immediate corollary of Theorem 6.5.

The main characterization theorem is the following:

Theorem 6.7 ([BHW95]) Suppose ≈ is weakly regular and ≡ is factorizable
by ≈. The following conditions are equivalent:

(i) Mod(behaviour 〈Σ,Φ〉 w.r.t. ≈) = Mod(abstract 〈Σ,Φ〉 w.r.t. ≡)
(ii) Mod(〈Σ,Φ〉) ⊆ Mod(behaviour 〈Σ,Φ〉 w.r.t. ≈)

(iii) For all A ∈ Mod(〈Σ,Φ〉), A/≈A ∈ Mod(〈Σ,Φ〉)

Proof: See [BHW95]. The proof depends on Theorems 3.35 and 6.6 and
Corollary 3.14. �

Example 6.8 According to Theorem 6.7, the fact that the model class
Mod(abstract 〈Σctr ,Φctr 〉 w.r.t. ≡{bool}) coincides with the model class
Mod(behaviour 〈Σctr ,Φctr 〉 w.r.t. ≈{bool}) (Example 6.4) follows from the fact
that for all A ∈ Mod(〈Σctr ,Φctr 〉), A/≈A ∈ Mod(〈Σctr ,Φctr 〉). The latter holds
because the only model of 〈Σctr ,Φctr 〉 is (up to isomorphism) Nat , which is
≈{bool}-fully abstract (Example 4.6) and is hence isomorphic to its quotient by
≈{bool},Nat .

Now consider the signature Σ′ctr obtained by adding a constant zero′ : ctr to
Σctr , and the set of axioms Φ′ctr obtained by adding the formula ¬(zero =ctr

zero′) to Φctr and removing the formula GENCTR. Let Nat ′ be the Σ′ctr -
algebra consisting of “two copies of Nat”, defined by taking [[ctr ]]Nat ′= ω ] ω
and the obvious interpretation of the constants such that [[zero]]Nat ′ 6= [[zero ′]]Nat ′

and [[is-zero(zero)]]Nat ′= [[is-zero(zero′)]]Nat ′= T . Then Nat ′ ∈ Mod(〈Σ′ctr ,Φ
′
ctr 〉)

and so Nat ′ ∈ Mod(abstract 〈Σ′ctr ,Φ
′
ctr 〉 w.r.t. ≡{bool}). On the other hand,

Nat ′ 6∈ Mod(behaviour 〈Σ′ctr ,Φ
′
ctr 〉 w.r.t. ≈{bool}) since Nat ′ 6|=≈Nat′ ¬(zero =ctr

zero′), and this is because there is no context which allows us to distinguish
[[zero]]Nat ′ and [[zero ′]]Nat ′. Thus we see that conditions (i) and (ii) of The-
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orem 6.7 are not satisfied. Condition (iii) is also not satisfied since Nat ′/≈Nat ′

is isomorphic to Nat augmented by taking [[zero′]]Nat ′= [[zero]]Nat ′, which does
not satisfy ¬(zero =ctr zero′). �

7 Reasoning about specifications

The results presented above serve to clarify our understanding of behavioural
satisfaction and behavioural equivalence and the relationship between these
in the context of higher-order logic. A concrete benefit of this is a number
of methods for reasoning about specifications, as will be summarized below.
Some of these appear in a different form in [BH96] or elsewhere, while others
(Proof Methods 7.5, 7.8 and 7.10) are new.

We begin by introducing some (mostly standard) concepts and notation. Let
Σ = 〈B,C〉 be a signature. In this section we restrict attention to closed
formulae.

Definition 7.1 A closed formula ϕ is a consequence of a set Φ of closed
formulae, written Φ |= ϕ, if for any Σ-algebra A, A |= Φ implies A |= ϕ.

When reasoning about a specification SP , our goal is to discover whether or
not a given formula ϕ is satisfied by all models of SP . Let ≈ = 〈≈A〉A∈Alg(Σ) be
a family of partial congruences. A related goal is that of discovering whether
or not ϕ is satisfied w.r.t. ≈ by all models of SP . These questions amount to
determining whether or not ϕ is in the theory (resp. theory w.r.t. ≈) of SP .

Definition 7.2 Let A ⊆ Alg(Σ) be a class of Σ-algebras. The theory w.r.t.
≈ of A is the set Th≈(A) = {ϕ | A |=≈A ϕ for every A ∈ A}. The (ordinary)
theory of A is the set Th(A) = {ϕ | A |= ϕ for every A ∈ A}; note that
Th(A) = Th=(A). If SP is a specification, we write Th(SP ) for Th(Mod(SP ))
and Th≈(SP) for Th≈(Mod(SP)).

The essence of reasoning about specifications is to find a way of reducing the
problems of determiningϕ ∈ Th(SP) and ϕ ∈ Th≈(SP) to that of consequence
(Φ |= ψ for appropriate Φ and ψ); then any proof system that is sound for |=
may be used to finish the job. For the ordinary theory of a flat specification, the
reduction is trivial: ϕ ∈ Th(〈Σ,Φ〉) iff Φ |= ϕ. For the theory w.r.t. ≈ and for
behavioural specifications and abstractor specifications, the problem is much
more difficult. We consider each case below, giving proof methods that provide
such reductions. Some cases have particular importance, as indicated below,
while others are treated only for the sake of completeness and/or because the
important cases are reducible to these under certain conditions.
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Let ≈ be expressible by the family of predicates ∼ = 〈∼b〉b∈B, and let ≡ ⊆
Alg(Σ)× Alg(Σ) be an equivalence relation.

7.1 ϕ ∈ Th(behaviour 〈Σ,Φ〉 w.r.t. ≈)

This problem can be reduced to ordinary consequence by applying the follow-
ing easy consequence of Corollary 5.10:

Proposition 7.3 Mod(behaviour 〈Σ,Φ〉 w.r.t. ≈) = Mod(〈Σ, pΦq〉) where
pΦq = {pϕq | ϕ ∈ Φ}. �

This leads to the following proof method:

Proof Method 7.4 ϕ ∈ Th(behaviour 〈Σ,Φ〉 w.r.t. ≈) iff pΦq |= ϕ. �

If ≈ is weakly regular and ≡ is factorizable by ≈, then any behavioural spe-
cification is at least as restrictive as the corresponding abstractor specification
by Theorem 6.6. Thus, under these conditions the proof methods in Section 7.2
below (i.e. Proof Methods 7.5–7.10) may be soundly applied to this problem.

7.2 ϕ ∈ Th(abstract 〈Σ,Φ〉 w.r.t. ≡)

This is the problem that is of importance for reasoning about specifications in
a language like ASL [SW83] that includes a specification-building operation
corresponding to abstract; cf. [Far92].

If Theorem 6.7 applies, this problem can be reduced to the problem treated
in Section 7.1 above. Then Proof Method 7.4 is applicable.

Alternatively, if the formula to be proved is a relativized formula or is logically
equivalent to such a formula, Corollary 5.13 yields the following reduction.

Proof Method 7.5 Suppose that ≡ is factorizable by ≈ and ϕ is equivalent
to a relativized formula, i.e. ϕ |=| pψq for some (closed) formula ψ. Then
Φ |= ϕ implies ϕ ∈ Th(abstract 〈Σ,Φ〉 w.r.t. ≡).

Proof: Suppose A ∈ Mod(abstract 〈Σ,Φ〉 w.r.t. ≡), i.e. there is some algebra
A′ such that A′ ∈ Mod(〈Σ,Φ〉) and A ≡ A′, and Φ |= ϕ. But then A′ |= ϕ,
so A′ |= pψq, and then A |= pψq (by factorizability and Corollary 5.13) so
A |= ϕ. �

This is a direct extension of the method for reasoning about abstractor spe-
cifications presented in Section 4 of [ST87], which applies only to formu-

37



lae built in certain ways from observable equations. By analogy with an
observation there, Proof Method 7.5 is not confined to inferring formulae
that are equivalent to relativized formulae. In order to validly conclude that
ϕ ∈ Th(abstract 〈Σ,Φ〉 w.r.t. ≡), it is enough to have a proof of Φ |= ϕ for
which there is a “horizontal cut” containing only formulae that are equivalent
to relativized formulae. Similar remarks apply to the proof methods presented
below. In applying Proof Method 7.5, we normally (as in the example below)
take ψ to be ϕ, but this is not required. A formula that is equivalent to its own
relativization is called a “≈-invariant” formula in [BH96], but this concept is
not used as the basis of a reasoning method there.

Example 7.6 Suppose that 〈Σnat ,Φnat〉 specifies the natural numbers with
the usual constants (at least 0, 1 and +) and the usual axioms. Now consider
the specification:

Counter =def abstract 〈Σctr ∪ Σnat ,Φctr ∪ Φnat〉 w.r.t. ≡{bool ,nat}

Our aim is to prove the property

∀n,m:nat .n < m⇒ is-zero(mdec(n,minc(m, zero))) =bool false

where the functions minc and mdec (multiple inc/dec) are defined recursively
“on top of” the specification Counter by the following ML-like code:

fun minc(0, c) = c
| minc(n + 1, c) = minc(n, inc(c))

fun mdec(0, c) = c
| mdec(n+ 1, c) = mdec(n, dec(c))

and < (less than) is as usual.

Our framework admits neither structured specifications nor quantification over
functional types (see Section 8 for comments on both of these omissions), which
rules out the obvious ways of expressing the above problem. But we can encode
it using predicates as follows:

ϕ =def ∀n,m:nat .n < m⇒

∀c, c′:ctr .Minc(m, zero, c) ∧Mdec(n, c, c′)⇒ is-zero(c′) =bool false
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where <, Minc, and Mdec are predicates defined as follows:

< =def λ(n:nat ,m:nat).∀P :[nat , nat ].

(∀x:nat .P (0, x+ 1)) ∧ (∀x, y:nat .P (x, y)⇒ P (x+ 1, y + 1))

⇒ P (n,m)

Minc =def λ(n:nat , c:ctr , c′:ctr ).∀P :[nat , ctr , ctr ].

(∀t:ctr .P (0, t, t))∧ (∀x:nat .∀t, v:ctr .P (x, inc(t), v)⇒ P (x+ 1, t, v))

⇒ P (n, c, c′)

Mdec =def λ(n:nat , c:ctr , c′:ctr).∀P :[nat , ctr , ctr ].

(∀t:ctr .P (0, t, t))∧ (∀x:nat .∀t, v:ctr .P (x, dec(t), v)⇒ P (x+ 1, t, v))

⇒ P (n, c, c′)

Our goal is to establish ϕ ∈ Th(Counter). Proof Method 7.5 says that this
follows if we can establish that Φctr ∪Φnat |= ϕ and ϕ |=| pψq for some formula
ψ. The former follows by induction on n. For the latter we first establish that
Minc and Mdec are compatible with ≈{bool ,nat} in the sense that whenever
Minc(n, c, c′) and c ≈{bool ,nat} d then we can find d′ such that Minc(n, d, d′) and
c′ ≈{bool ,nat} d

′, and similarly for Mdec. Using this property we can characterize
pMincq and pMdecq as the ≈{bool ,nat}-closures of Minc and Mdec respectively.
ϕ |= pϕq then follows from this and the compatibility property using the fact
that the final conclusion of ϕ is observable and thus respects ≈{bool ,nat}. For
the converse pϕq |= ϕ one uses the characterization of pMincq and pMdecq
directly.

This problem is taken from Section 5 of [Sch92] where it is shown that an
infinite number of applications of the proof method in [ST87] would be required
in a proof of the property given above. �

Convenient use of Proof Method 7.5 requires a syntactic criterion which en-
ables us to conclude ϕ |=| pϕq directly from the form of ϕ rather than via
a semantic argument as in the above example. It appears, however, that
the above line of reasoning is independent of the particular definition of
the functions minc and mdec and thus should generalize to other recurs-
ively defined local functions. Indeed, we believe that one has ϕ |=| pϕq for
any formula ϕ that arises from an encoding of a formula having a form
like ∀f :τ.〈recursive definition of f〉 ⇒ ψ where τ is a functional type and
ψ |=| pψq, but we leave this question to future research — see Section 8.1. For
the time being we content ourselves with a simpler but useful syntactic cri-
terion that does not apply directly to the above example. This is obtained by
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adding “respectful” abstraction λr and quantification ∀r to the syntax, where:

λr(x1:τ1, . . . , xn:τn).t abbreviates λ(x1:τ1, . . . , xn:τn).

DOM τ1(x1) ∧ · · · ∧DOM τn(xn) ∧ t

∀rx:τ.t abbreviates ∀x:τ.DOM τ (x)⇒ t

Definition 7.7 A respectful formula is a formula that may contain λr and/or
∀r but does not contain λ or ∀.

It is easy to see that ϕ |=| pϕq for any respectful formula ϕ. This gives the
following.

Proof Method 7.8 Suppose that ≡ is factorizable by ≈ and ϕ is a closed
respectful formula. Then Φ |= ϕ implies ϕ ∈ Th(abstract 〈Σ,Φ〉 w.r.t. ≡).

�

In the case of behavioural abstraction, note that ∀r on base types corresponds
exactly to reachable quantification as in [Sch92].

Example 7.9 Consider the binary predicate on ctr that determines if one
value can be obtained from another by application of inc:

comes-after(x:ctr , y:ctr ) = “∃n ≥ 0.incn(y) =ctr x”

This can be expressed in our framework as follows:

comes-after =def λ(x:ctr , y:ctr).∀P :[ctr , ctr ].

(∀a:ctr .P (a, a))∧ (∀a:ctr .P (inc(a), a))

∧ (∀a, b, c:ctr.P (a, b)∧ P (b, c)⇒ P (a, c))

⇒ P (x, y)

Now consider the formula

ϕ =def ∀x, y:ctr .comes-after(x, y)∨ comes-after(y, x)

Then ϕ 6∈ Th(abstract 〈Σctr ,Φctr 〉 w.r.t.≡{bool}), as can be seen by considering
Term ∈ Mod(abstract 〈Σctr ,Φctr 〉 w.r.t. ≡{bool}) (Example 6.4) and instantiat-
ing x to dec(inc(zero)) and y to zero.

Next, consider a respectful version of ϕ:

ϕr =def ∀rx, y:ctr .comes-after r(x, y)∨ comes-after r(y, x)
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where

comes-after r =def λ
r(x:ctr , y:ctr).∀rP :[ctr , ctr ].

(∀ra:ctr .P (a, a))∧ (∀ra:ctr .P (inc(a), a))

∧ (∀ra, b, c:ctr.P (a, b)∧ P (b, c)⇒ P (a, c))

⇒ P (x, y)

Informally, the effect of the respectful quantifiers is to give

comes-after r(x:ctr , y:ctr) = “∃n ≥ 0.incn(y) ≈ctr x”

for x, y that respect ≈. Taking ≈ to be ≈{bool}, the respectful quantifier over
ctr in ϕr quantifies over the {bool}-reachable values of type ctr (so in Term∞,
the value ∞ is excluded). We can use Proof Method 7.8 to conclude ϕr ∈
Th(abstract 〈Σctr ,Φctr 〉 w.r.t. ≡{bool}) from Φctr |= ϕr, since ϕr is a respectful
formula. As observed above, this conclusion is not valid for the non-respectful
version ϕ. �

Since every observable formula amounts to a respectful formulae (since re-
spectful abstraction and quantification over observable types is equivalent to
ordinary abstraction and quantification), we have the following:

Proof Method 7.10 Suppose that ϕ is a closed observable formula. Then
Φ |= ϕ implies ϕ ∈ Th(abstract 〈Σ,Φ〉 w.r.t. ≡OBS ). �

7.3 ϕ ∈ Th≈(〈Σ,Φ〉)

This is the problem that is studied in [BH96], where it is argued that a solution
to this problem provides the basis of a strategy for proving correctness of
implementation steps in stepwise refinement of specifications (cf. [BH95] and
“abstractor” implementations in [ST88b]).

The following proof method follows immediately from Corollary 5.10:

Proof Method 7.11 ϕ ∈ Th≈(〈Σ,Φ〉) iff Φ |= pϕq. �

This is essentially the same as the solution proposed in [BH96], except that
because the analogue of our Corollary 5.10 there involves infinitary formulae,
more work is required to reduce the problem to one of consequence for finitary
formulae.
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If Theorem 6.7 applies then this problem is equivalent to the problem treated
in Section 7.4 below according to the following result, taking ≡ to be the
equivalence induced by ≈, i.e. such that A ≡ A′ iff A/≈A ∼= A′/≈A′. See
Example 7.18.

Proposition 7.12 ([BHW95]) If ≡ is factorizable by ≈ then Th≈(Abs≡(A)) =
Th≈(A).

Proof: Straightforward, using Corollary 3.14 and two applications of The-
orem 3.35. �

(In [BHW95], this result has an additional assumption, not used in the proof,
that ≈ is weakly regular.)

7.4 ϕ ∈ Th≈(behaviour 〈Σ,Φ〉 w.r.t. ≈)

Corollary 5.10 and Proposition 7.3 yield the following proof method:

Proof Method 7.13 ϕ ∈ Th≈(behaviour 〈Σ,Φ〉 w.r.t. ≈) iff pΦq |= pϕq.
�

Another approach, which appears to be more powerful, is obtained by appeal-
ing to the following results:

Proposition 7.14 ([BHW95]) If ≡ is factorizable by ≈ then

Th≈(Abs≡(FA≈(A))) = Th(FA≈(A)).

Proof: By Proposition 7.12 and the definition of fully abstract algebra. �

Proposition 7.15 ([BH96])

FA≈(Mod(〈Σ,Φ〉)) = Mod(〈Σ,Φ ∪ {∀x, y:b.(x ∼b y ⇔ x =b y) | b ∈ B}〉).

Proof: Directly from the definition of fully abstract algebra. �

These together with Theorem 6.5 (taking ≡ to be the equivalence induced by
≈) yield the following:

Proof Method 7.16 Suppose that ≈ is regular. Then ϕ ∈ Th≈(behaviour 〈Σ,Φ〉 w.r.t.≈)
iff Φ ∪ {∀x, y:b.(x ∼b y ⇔ x =b y) | b ∈ B} |= ϕ. �
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This is essentially the same as the method proposed in [BH96], with the proviso
concerning infinitary formulae mentioned earlier.

It is worth pointing out that a weaker but very simple and potentially useful
consequence of this is the following:

Proof Method 7.17 Suppose that ≈ is regular. Then ϕ ∈ Th≈(behaviour 〈Σ,Φ〉 w.r.t.≈)
if Φ |= ϕ. �

Example 7.18 Consider the formula ϕ from Example 7.9. We know ϕ ∈
Th≈{bool}(behaviour 〈Σctr ,Φctr 〉 w.r.t.≈{bool}) by Proof Method 7.17 since Φctr |=
ϕ. Since Theorem 6.7 applies (see Example 6.8), by Proposition 7.12 we also
obtain ϕ ∈ Th≈{bool}(〈Σctr ,Φctr 〉). �

Finally, a more direct approach to this problem is to reduce it trivially to
consequence w.r.t. ≈:

Definition 7.19 A closed formula ϕ is a consequence of a set Φ of closed
formulae w.r.t. ≈, written Φ |=≈ ϕ, if for any Σ-algebra A, A |=≈A Φ implies
A |=≈A ϕ.

Proof Method 7.20 ϕ ∈ Th≈(behaviour 〈Σ,Φ〉 w.r.t. ≈) iff Φ |=≈ ϕ. �

Then what is required to finish the job is a proof system that is sound for
|=≈. See [Rei85], where a proof system for conditional equational logic is given
that is sound for an indistinguishability relation different from ≈OBS , in the
context of partial algebras; see also [HW95].

7.5 ϕ ∈ Th≈(abstract 〈Σ,Φ〉 w.r.t. ≡)

If ≡ is factorizable by≈ then this problem is equivalent to the problem treated
in Section 7.3 above according to Proposition 7.12. Thus Proof Method 7.11
is applicable. If Theorem 6.7 applies then Proof Methods 7.13–7.20 from Sec-
tion 7.4 are applicable as well.

Example 7.21 Consider once again the formula ϕ from Example 7.9, and
recall from Example 7.18 that ϕ ∈ Th≈{bool}(behaviour 〈Σctr ,Φctr 〉 w.r.t.≈{bool})
using Proof Method 7.17. Since Theorem 6.7 applies, we also obtain ϕ ∈
Th≈{bool}(abstract 〈Σctr ,Φctr 〉 w.r.t. ≡{bool}). �
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8 Further work

We consider below the treatment of functional types and structured specific-
ations, and the potential for application of the results presented above.

8.1 Functional types

The language defined in Section 2 is higher-order because it allows quantific-
ation over predicates in addition to the usual quantification over individuals.
There is however no quantification over function types or use of functions as
arguments to predicates or functions, cf. e.g. [Möl87], [Mei92]. There are two
reasons for wanting to include functional types. First, higher-typed functional
constants in signatures permit elegant specifications both of functional data
structures such as streams and λ-models, and of higher-typed constants such
as map and iter. Second, (higher-typed) functions used locally in formulae
allow us to express some examples in a much clearer way — compare the
informal presentation in Example 7.6 with the formula that encodes it.

Higher-typed functions can be added either by encoding them in terms of
what is already present in the language, or by extending the basic frame-
work with additional primitives. A specification having a signature involving
higher-typed constants can be translated into a specification with a first-order
signature by closing the set of base types under a formal function space con-
structor ⇒, adding appropriately-typed S, K and application operators, and
changing the types of constants to use ⇒ in place of → (assuming w.l.o.g.
that all constants are curried). The axioms of the specification have to be
translated to make the use of application explicit and to use S and K instead
of λ-abstraction, and finally augmented by the usual equations constraining
the interpretation of these additional operators. In addition to S and K one
could also add a family of fixpoint operators (Y ) to allow for recursively-
defined functions in axioms. The source language of this encoding would then
resemble the framework of [Grü90], except that his logic is first-order.

Even when signatures contain only first-order constants, function types can
be useful in formulae as shown by Example 7.6. Such types can be encoded
using predicate types as shown there. We believe that the passage from the
informal presentation to its encoding can be made more systematic, following
ideas in [TvD88]; it also seems to be possible to encode uses of a description
operator like Hilbert’s ι which selects values that satisfy a predicate. The
interpretation we give to predicate types means that this encoding yields the
full set-theoretic function space. This is in contrast to the encoding above,
where carriers of “functional” types like int ⇒ int may exclude functions that
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are not λ-definable. We can use such types for types of variables in formulae,
but the result would be different from the result of using predicate types
because of this different interpretation of the function space.

Reasoning about values of functional types by explicitly expanding formulae
according to an encoding is cumbersome. A more attractive alternative is
to develop proof methods that work directly on the “high-level” syntax. An
example would be a proof method to enable us to conclude ϕ |=| pϕq in
Example 7.6, exploiting the fact that ϕ arises as the encoding of a specification
involving recursively-defined functions.

Alternatively, we could extend the basic framework itself with function types.
This involves giving an interpretation to such types, both in the standard case
and w.r.t. a partial congruence. As we have seen above, there are different
choices for the standard case. Using the full function space to interpret func-
tion types in signatures precludes examples like the specification of λ-models:
postulating an injection from the full function space D → D to D admits only
the trivial model. On the other hand, using the full function space to interpret
functional types occurring locally in formulae seems unproblematic, and one
can imagine situations in which an oracle deciding the halting problem, which
would require more than just the λ-definable functions, would be useful. We
might even want to provide two different function spaces, with different nota-
tions to distinguish between them. The interpretation of function types w.r.t.
a partial congruence is possible but is not straightforward, since with the ob-
vious choice, namely [[τ → τ ′]]≈A= {f : [[τ ]]≈A→ [[τ ′]]≈A| ∀u, v ∈ [[τ ]]≈A.u ≈A,τ v ⇒
f(u) ≈A,τ ′ f(v)}, Proposition 3.22 fails to hold. A solution will be presented
in a future paper.

8.2 Structured specifications

We have restricted attention above to the study of flat specifications con-
sisting of a signature together with a set of axioms. Large specifications are
normally built in a structured fashion, using specification-building operations
like enrich, + and derive. It is well-known that structured specifications cannot
in general be reduced to equivalent flat specifications (see e.g. [ST95]), and
the structure of specifications provides an interesting added dimension to the
study of reasoning about specifications, implementation of specifications, etc.

An attempt to extend the characterization results to structured specifications
in the context of first-order logic appears in [BHW95], where the extension of
behaviour to structured specifications is a post hoc construction on the class
of models of the underlying specification:

Mod(behaviour SP w.r.t. ≈) = {A ∈ Alg(Σ) | A/≈A ∈ Mod(SP )}
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where Σ is the signature of SP . An alternative is to interpret the specification-
building operations in SP in the usual way but with axioms in SP satisfied
according to |=≈ rather than |=, along the following lines:

M̂od(behaviour SP w.r.t. ≈) = Mod≈(SP )

Mod≈(〈Σ,Φ〉) = {A ∈ Alg(Σ) | A |=≈ Φ}

Mod≈(derive from SP by σ) = {A σ | A ∈ Mod≈(SP )}

Mod≈(enrich SP by types B constants C axioms Φ) =

{A ∈ Alg(Sig(SP) ∪ 〈B,C〉) | A Sig(SP) ∈ Mod≈(SP ) ∧A |=≈ Φ}

Mod≈(SP + SP ′) =

{A ∈ Alg(Sig(SP) ∪ Sig(SP ′)) |

A Sig(SP) ∈ Mod≈(SP ) ∧A Sig(SP ′) ∈ Mod≈(SP ′)}

where Sig(SP ) denotes the signature of the specification SP , σ : Σ → Σ′ is
a signature morphism, A′ σ is the reduct of a Σ′-algebra A′ to a Σ-algebra,
and A′ Σ is the reduct along an inclusion Σ ↪→ Σ′. If SP is a flat specification
then Mod(behaviour SP w.r.t. ≈) and M̂od(behaviour SP w.r.t. ≈) coincide
by Theorem 3.35. But for structured specifications they do not coincide in
general. Methods for reasoning about structured specifications — see e.g. the
inference rules in [ST88a] — apply to the second interpretation but appear to
be inapplicable to the first. Further research is required to clarify the relation-
ship between abstractor specifications (which generalize easily to structured
specifications) and this alternative interpretation of behavioural specifications.
For now, it is perhaps worth mentioning that the characterization results above
should straightforwardly extend to the case of structured specifications using
the extended definition of behaviour given in [BHW95].

8.3 Application of results

One of our motivations for studying behavioural semantics of specifications
with higher-order formulae as axioms was a desire to apply the results in
the Extended ML framework for the formal development of ML programs
from specifications [ST89], [KST95]. The characterization results and reas-
oning methods are of direct relevance in this context: the interpretation of
Extended ML interfaces involves abstractor specifications, and the logical sys-
tem used for writing axioms is (a form of) higher-order logic. However, it is
difficult to apply the results as they stand to Extended ML because of the lack
of functional types and treatment of structured specifications discussed above.
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In particular, the most obvious pertinent examples of the use of behavioural
semantics in the context of higher-order logic require functional types.

Once these extensions have been carried out, we will be in a position to ap-
ply the results and proof methods to examples in Extended ML and else-
where, which should shed considerable light on their usefulness. Without hav-
ing attempted many examples, we are not yet in a position to understand
the tradeoffs between the various proof methods that may be applicable in a
particular situation. But in view of the size and complexity of the predicates
INDIST

b̂
in Theorem 5.4, it seems clear that proof methods that involve the

direct manipulation of relativized formulae will not be convenient for use in
practice when ≈ is the indistinguishability relation ≈OBS . Here, a promising
avenue is the search for more tractable predicates which correctly express≈OBS

under restrictions that are acceptable in practice (cf. [BH96]). Proof methods
which make no use of the predicates INDIST

b̂
(e.g. Proof Methods 7.20 and

7.10) do not suffer from this problem.
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