
1

On behavioural abstraction and behavioural satisfaction
in higher-order logic∗

Martin Hofmann† and Donald Sannella‡

Laboratory for Foundations of Computer Science
University of Edinburgh

Abstract

The behavioural semantics of specifications with higher-order logical formulae as axioms is
analyzed. A characterization of behavioural abstraction via behavioural satisfaction of formulae
in which the equality symbol is interpreted as indistinguishability, which is due to Reichel and
was recently generalized to the case of first-order logic by Bidoit et al, is further generalized to
this case. The fact that higher-order logic is powerful enough to express the indistinguishability
relation is used to characterize behavioural satisfaction in terms of ordinary satisfaction, and to
develop new methods for reasoning about specifications under behavioural semantics.

1 Introduction

An important ingredient in the use of algebraic specifications to describe data abstractions is the
concept of behavioural equivalence between algebras, which seems to appropriately capture the “black
box” character of data abstractions, see e.g. [GGM76], [GM82], [ST87] and [ST92]. Roughly speaking
(since there are different choices of definition), two algebras A,B over a signature Σ are behaviourally
equivalent with respect to a distinguished set OBS of observable types if all computations that
can be expressed using the functions in Σ and that yield a result of a type in OBS produce the
same result in both A and B. (The set OBS is typically taken to include primitive types like
Booleans and natural numbers.) A specification of a data abstraction should characterize a class
of algebras that is closed under behavioural equivalence; otherwise it forbids some realizations that
are indistinguishable from acceptable ones. Closure can be ensured by the specification framework
(by making all specification-building operations deliver closed classes, see e.g. [NO88]) or by the
specifier (by applying a specification-building operation, sometimes known as behavioural abstraction,
to form the closure, see e.g. [SW83], [ST87]). The term “behavioural semantics” is sometimes used
to characterize approaches that take the need for behavioural closure into account. Behavioural
abstraction seems to be an implicit ingredient of model-oriented approaches to specification such as
VDM and Z, where a specification spells out one or more concrete models but any program that
delivers the same results is regarded as an acceptable realization.

An unfortunate problem with behavioural semantics in general and the behavioural abstraction
operation in particular is that it complicates the task of reasoning about specifications. For example,
if a specification SP satisfies a formula ϕ then the behavioural abstraction of SP need not satisfy
ϕ. Reasoning methods that are appropriate in the context of behavioural semantics have been
developed, but these are either insufficiently powerful (e.g. [ST87], cf. Section 5 of [Sch92]) or tend
∗A condensed version of this paper will appear in: Proc. 20th Colloq. on Trees in Algebra and Programming, Intl.

Joint Conf. on Theory and Practice of Software Development (TAPSOFT), Aarhus. Springer LNCS (1995).
†E-mail mxh@dcs.ed.ac.uk. Supported by a Human Capital and Mobility fellowship, contract number

ERBCHBICT930420.
‡E-mail dts@dcs.ed.ac.uk. Supported by an EPSRC Advanced Fellowship and EPSRC grants GR/H73103 and

GR/J07303.

2

to be too complicated for convenient use in practice (e.g. [Hen91], [Far92]). One avenue of attack
on this problem is to consider the relationship between the class of algebras produced by applying
the behavioural abstraction operation to a specification 〈Σ,Φ〉, and the class of algebras obtained by
simply interpreting equality in the axioms Φ as indistinguishability rather than as identity. The latter
approach, sometimes known as behavioural satisfaction, was pioneered by Reichel [Rei85] who showed
that these two classes coincide when the axioms involved are conditional equations, provided that
the conditions used are equations between terms of types in OBS . This yields a reasoning method
for specifications involving behavioural abstraction: given a sound proof system for behavioural
satisfaction, any consequence ϕ of a specification 〈Σ,Φ〉 that can be proved in that system will hold
in the behavioural abstraction of 〈Σ,Φ〉, provided Φ and ϕ have the required form.

The usefulness of this reasoning method is limited by the fact that conditional equations are not
powerful enough for convenient practical use in writing specifications. But in a recent development,
Bidoit et al have generalized Reichel’s result to the case of specifications with first-order equational
formulae and reachability constraints as axioms, and to arbitrary relations of behavioural equivalence
and indistinguishability. In [BHW94] they show that the coincidence of classes described above holds
in this context as well, whenever the class of models of 〈Σ,Φ〉 (under ordinary satisfaction) is closed
under quotienting w.r.t. indistinguishability of values, provided that indistinguishability is regular
and that behavioural equivalence is factorizable by indistinguishability. A companion paper [BH94a]
uses this characterization as the basis for a reasoning method.

In this paper we examine these issues for the case of (flat) specifications with higher-order logical
formulae as axioms. Our first main contribution is a generalization1 of the framework and results
of [BHW94]. Although it is not made explicit there, the main results in [BHW94] including the
characterization theorem do not strongly depend on the form of axioms. The same result holds for
any logical system for which behavioural satisfaction of a formula ϕ in A coincides with ordinary
satisfaction of ϕ in the quotient of A w.r.t. indistinguishability and for which isomorphisms preserve
and reflect satisfaction. In Sections 2 and 3 we give syntax and semantics for higher-order formulae
and show that these properties hold for such formulae (Theorem 3.28 and Corollary 3.12 respectively).
In Section 4 we formulate definitions of behavioural equivalence and indistinguishability, and we show
that the former is factorizable by the latter (Theorem 5.15) and that indistinguishability is regular
(Proposition 4.4). This leads directly to a characterization result analogous to the one in [BHW94]
(Theorem 6.8). Although the generalization to higher-order logic results in certain complications,
it also yields a simplification: since equality and reachability constraints may be expressed directly
in higher-order logic, they need not be given specialized treatment, and the rôle of equality in the
context of behavioural semantics is revealed as special case of something more general.

Higher-order logic provides sufficient power to express the indistinguishability relation as a pre-
dicate (Theorem 5.2, cf. [Sch94]). A second main contribution is the application of this fact to
develop methods for reasoning about specifications under behavioural semantics. In Section 5 we
characterize behavioural satisfaction in terms of ordinary satisfaction, by giving a translation that
takes any formula ϕ to a “relativized” formula pϕq such that the latter is satisfied exactly when
the former is behaviourally satisfied (Corollary 5.7). This translation plays an important rôle in the
comparison of various alternative definitions of behavioural equivalence, differing in the set of “ex-
periments” used to test algebras, which leads to the conclusion that the three definitions considered
yield the same relation (Corollary 5.16). These results, together with the characterization theorem
of Section 6, lead directly to various proof methods that are summarized in Section 7.

2 The language of higher-order logic

The syntax of the typed variant of higher-order logic we will use is described below. The logic
is higher-order because quantification over predicates (i.e. sets) is allowed in addition to the usual
quantification over individuals. For the sake of simplicity, functions of higher type are not catered
for, but see Section 8 for comments on a possible extension.

1In fact, [BHW94] uses the infinitary logic Lω1ω , so strictly speaking our framework is not a generalization. The
extension to infinitary logic is easy and raises no interesting issues, so we omit it.

3

Definition 2.1 A signature Σ consists of a set B of base types and a set C of constants such that
each c ∈ C has an arity n ≥ 0, an n-tuple of argument types b1, . . . , bn ∈ B and a result type b ∈ B,
which we abbreviate c : b1 × · · · × bn → b.

Let Σ = 〈B,C〉 be a signature.

Definition 2.2 The types over Σ are given by the following grammar:

τ ::= b | [τ1, . . . , τn] (n ≥ 0)

where b ∈ B. Types(Σ) denotes the set of all types over Σ.

A type of the form [τ1, . . . , τn] may be regarded as the type of n-ary predicates taking arguments of
types τ1, . . . , τn. For example, is-zero : [int], <: [int, int], has-property : [int , [int]], where is-zero(3)
does not hold but has-property(0, is-zero) does. A more suggestive syntax for a type [τ1, . . . , τn]
might be τ1 × · · · × τn → Prop, where Prop is the type of propositions; in particular, the type []
may be thought of as Prop. However, since λ-abstraction can be used to form predicates but not
ordinary functions (see below), we need to distinguish between the arrow used to write the types of
constants and the arrow in τ1 × · · · × τn → Prop.

Let X be a fixed infinite set of variables, ranged over by x.

Definition 2.3 The terms over Σ are given by the following grammar:

t ::= x | c(t1, . . . , tn) | λ(x1:τ1, . . . , xn:τn).t | t(t1, . . . , tn) | t⇒ t′ | ∀x:τ.t (n ≥ 0)

where c ∈ C. As usual, we regard α-convertible terms as equal, where the binding constructs are λ
and ∀. We write c as an abbreviation for c() when c : → b, and ∀x1, . . . , xn:τ.t as an abbreviation
for ∀x1:τ. · · · .∀xn:τ.t.

Function application (written c(t1, . . . , tn)) is distinguished from predicate application (written
t(t1, . . . , tn)) although both notations are similar. λ-abstraction is for forming predicates; implication
(⇒) and universal quantification are for forming propositions. There is just one syntax class for terms:
terms that denote individuals (e.g. +(3, 2)) are not distinguished syntactically from terms denoting
predicates (e.g. λ(x:int, y:int).prime(+(x, y))) or propositions (e.g. ∀P :[int].(∀x:int .P (x))⇒ P (3)).
But in order for a term to denote anything at all, it has to be typable according to the following
definitions.

Definition 2.4 A context Γ is a sequence of the form x1 : τ1, . . . , xn : τn where xi 6= xj for all i 6= j.
We write Γ(xj) for τj and Vars(Γ) for {x1, . . . , xn}, and we identify Γ with the Types(Σ)-sorted set
of variables such that Γτ = {x ∈ Vars(Γ) | Γ(x) = τ} for all τ ∈ Types(Σ). Concatenation of
contexts, written Γ,Γ′, is required to yield a context, i.e. it is required that Vars(Γ) ∩Vars(Γ′) = ∅.
Let T ⊆ Types(Σ) be a subset of the set of types over Σ; then Γ is called a T -context if Γ(x) ∈ T for
all x ∈ Vars(Γ).

Definition 2.5 We write Γ ` t : τ if this judgement is derivable using the rules in Figure 1, and
then we call t a term in context Γ. A term t is closed if it is typable in the empty context, i.e. if
` t : τ . A predicate (in context Γ) is a term t such that Γ ` t : [τ1, . . . , τn]. A formula (in context

Γ) is a term ϕ such that Γ ` ϕ : [].

Proposition 2.6 The following weakening and permutation rules are admissible in the system of
rules given in Figure 1:

Γ ` t : τ
Γ, x : τ ′ ` t : τ

(weak)

Γ,Γ′ ` t : τ
Γ′,Γ ` t : τ

(perm)

Proof: Obvious.

4

Γ ` x : Γ(x)
(var)

Γ, x1 : τ1, . . . , xn : τn ` t : []
Γ ` λ(x1:τ1, . . . , xn:τn).t : [τ1, . . . , τn]

(λ)

c : b1 × · · · × bn → b Γ ` t1 : b1 · · · Γ ` tn : bn
Γ ` c(t1, . . . , tn) : b

(fun)

Γ ` t : [τ1, . . . , τn] Γ ` t1 : τ1 · · · Γ ` tn : τn
Γ ` t(t1, . . . , tn) : []

(pred)

Γ ` t : [] Γ ` t′ : []
Γ ` t⇒ t′ : []

(⇒)

Γ, x : τ ` t : []
Γ ` ∀x:τ.t : []

(∀)

Figure 1: Typing rules

There is no need to include equality as a built-in predicate, since it is expressible using higher-
order quantification. That is, suppose Γ ` t : τ and Γ ` t′ : τ ; then

t =τ t
′ abbreviates ∀P :[τ].P (t)⇒ P (t′)

where P is chosen arbitrarily such that P 6∈ Vars(Γ).
Existential quantification and the missing connectives are expressible as usual in terms of ∀ and

⇒:
true abbreviates ∀P :[].P ⇒ P
false abbreviates ∀P :[].P
¬ϕ abbreviates ϕ⇒ false

ϕ ∨ ϕ′ abbreviates (¬ϕ)⇒ ϕ′

ϕ ∧ ϕ′ abbreviates ¬(¬ϕ ∨ ¬ϕ′)
∃x:τ.ϕ abbreviates ¬∀x:τ.¬ϕ

Finally, there is no need to treat reachability constraints as a special case, since induction prin-
ciples are expressible. For example, suppose that nat ∈ B and 0 : → nat and succ : nat → nat are
in C. The following formula (call this GENNAT for future reference) asserts that nat is generated
by 0 and succ:

∀P :[nat].(P (0) ∧ ∀n:nat .(P (n)⇒ P (succ(n))))⇒ ∀n:nat .P (n)

The following example gives a taste of the expressive power of the language thus defined.

Example 2.7 Consider the signature with base types sched (schedule) and proc (process) and con-
stants start :→ sched , step : sched → sched and who : sched → proc. We would like to require that
start is a fair schedule, i.e. that it schedules each process infinitely often. The following is essentially
a translation of a formula in the modal mu-calculus [Sti92] into higher-order logic.

The following predicate expresses that a predicate P holds infinitely often in a schedule s:

infinitely-often =def λ(P :[sched], s:sched). always((λ(s′:sched).eventually(P, s′)) , s)

Then the required fairness property is fair(start), where fair is expressed in terms of infinitely-often
as follows:

fair =def λ(s:sched). ∀p:proc.infinitely-often((λ(s′:sched).who(s′) = p) , s)

5

The predicates always and eventually are expressed as greatest resp. least fixed points. The least
and greatest fixed point operators can be expressed directly as follows:

µ =def λ(Φ:[[sched], sched] , s:sched). ∀P :[sched].(∀s′:sched .Φ(P, s′)⇒ P (s′))⇒ P (s)
ν =def λ(Φ:[[sched], sched] , s:sched). ∃P :[sched].(∀s′:sched .P (s′)⇒ Φ(P, s′)) ∧ P (s)

and the definitions of always and eventually are then:

always =def λ(P :[sched], s:sched).
ν(λ(always-P:[sched], s′:sched). P (s′) ∧ always-P(step(s′)) , s)

eventually =def λ(P :[sched], s:sched).
µ(λ(eventually-P:[sched], s′:sched). P (s′) ∨ eventually-P(step(s′)) , s)

Expanding fair(start) gives a single formula expressing the required property. �

The language defined above is a trimmed version of the “classical theory of simple types” as intro-
duced by Henkin in [Hen50]. Henkin considers non-standard models for which a natural Gentzen-style
proof system is sound and complete. A good reference is also Chapter 4 of Schütte’s monograph
[Sch77] where cut-elimination for this system is established.

3 Semantics of higher-order logic

Let Σ = 〈B,C〉 be a signature.
Terms over Σ are interpreted in the context of a Σ-algebra which gives meaning to the base types

and the constants in Σ.

Definition 3.1 A Σ-algebra A consists of a carrier set [[b]]A for every b ∈ B, and interpretations of
constants [[c]]A∈ ([[b1]]A×· · · × [[bn]]A→ [[b]]A) for every c : b1 × · · · × bn → b in C. The class of all
Σ-algebras is denoted Alg(Σ). Σ-homomorphisms and Σ-isomorphisms are as usual; we write A ∼= A′

if there is a Σ-isomorphism h : A→ A′.

Let A be a Σ-algebra.
We define two interpretations for terms. The first is the obvious “standard” interpretation with

respect to an environment mapping free variables to values. The second interpretation is modulo a
partial congruence relation on A. In the latter interpretation, quantification (and λ-abstraction) is
over only those elements of types that respect the congruence; as a result, equality in formulae refers
to the congruence rather than to identity of values. The particular partial congruence of interest will
be a relation of indistinguishability with respect to a given set of observable base types, to be defined
in Section 4. Theorem 3.28 below demonstrates a relationship between the two interpretations that
will be crucial in the sequel.

Our use of partial congruences in Section 3.2 below stems from the need to establish an appro-
priate relationship between indistinguishability and behavioural equivalence, see Theorem 5.15, in
order to apply the characterization theorems in Section 6. If the indistinguishability relation were
not defined as a partial congruence, the desired relationship with the behavioural equivalence relation
would not hold.

3.1 Standard interpretation

Definition 3.2 Types of the form [τ1, . . . , τn] are interpreted as follows:

[[[τ1, . . . , τn]]]A= Pow([[τ1]]A×· · · × [[τn]]A).

Thus, [[[]]]A is {{}, {∗}} where ∗ is the empty tuple. Recalling that [] means Prop, {} may be
thought of as denoting false and {∗} as denoting true, so we will use the abbreviation ff for {} and
tt for {∗}.

Let Γ be a context.

6

Definition 3.3 A Γ-environment (on A) is a Types(Σ)-sorted function ρ = 〈ρτ : Γτ → [[τ]]A〉τ∈Types(Σ).
We write [x1 7→ v1, . . . , xn 7→ vn] to denote the evident environment, and the notation ρ[x1 7→
v1, . . . , xn 7→ vn] denotes the environment ρ superseded at x1, . . . , xn by v1, . . . , vn respectively. When
x ∈ Vars(Γ) we write ρ(x) for ρΓ(x)(x). Let T ⊆ Types(Σ); a Γ-environment ρ is T -surjective if
ρτ : Γτ → [[τ]]A is surjective for each τ ∈ T .

Definition 3.4 Let ρ be a Γ-environment. The interpretation of constants is extended to terms in
context Γ as follows:

[[x]]ρ,A = ρ(x)
[[c(t1, . . . , tn)]]ρ,A = [[c]]A([[t1]]ρ,A, . . . , [[tn]]ρ,A)

[[λ(x1:τ1, . . . , xn:τn).t]]ρ,A = {(v1, . . . , vn) | v1 ∈ [[τ1]]A and · · · and vn ∈ [[τn]]A
and [[t]]ρ[x1 7→v1,...,xn 7→vn],A= tt}

[[t(t1, . . . , tn)]]ρ,A = if ([[t1]]ρ,A, . . . , [[tn]]ρ,A) ∈ [[t]]ρ,A then tt else ff
[[t⇒ t′]]ρ,A = if [[t]]ρ,A= tt then [[t′]]ρ,A else tt
[[∀x:τ.t]]ρ,A = if [[t]]ρ[x 7→v],A= tt for all v ∈ [[τ]]A then tt else ff

The following substitution property will be handy in proofs in later sections. As usual, s[x := t]
denotes the result of simultaneously replacing all occurrences of the variable x in the term s by the
term t, with appropriate changes of bound variable names to avoid variable capture.

Proposition 3.5 For any Γ ` t : τ and Γ, x : τ ` s : τ ′ and any Γ-environment ρ, [[s]]ρ[x 7→[[t]]ρ,A],A=
[[s[x := t]]]ρ,A.

Proof: By induction on the structure of s. �
The following shows that the above interpretation of terms and types is sound with respect to the
typing relation.

Proposition 3.6 If Γ ` t : τ and ρ is a Γ-environment then [[t]]ρ,A∈ [[τ]]A.

Proof: By induction on the structure of the derivation of Γ ` t : τ . �
The following proposition demonstrates that =τ really is equality (i.e. identity of values).

Proposition 3.7 Suppose v, v′ ∈ [[τ]]A for some type τ . Then for any environment ρ, [[x =τ

y]]ρ[x 7→v,y 7→v′],A= tt iff v = v′.

Proof:

⇐=: Obvious.

=⇒: Suppose that [[∀P :[τ].P (x)⇒ P (y)]]ρ[x 7→v,y 7→v′],A= tt and consider the predicate {v} ∈ [[[τ]]]A.
We have [[P (x)]]ρ[x 7→v,P 7→{v}],A= tt and so [[P (y)]]ρ[y 7→v′,P 7→{v}],A= tt; thus v′ ∈ {v}, i.e. v = v′.

�
This entitles us to use ϕ⇔ ϕ′ as an abbreviation for ϕ =[] ϕ

′.

Definition 3.8 Let B′ ⊆ B be a subset of the set of base types in Σ, and let b ∈ B. A value v ∈ [[b]]A
is B′-reachable if there is a B′-context Γ, a term t with Γ ` t : b, and a Γ-environment ρ, such that
[[t]]ρ,A= v.

Intuitively, v is B′-reachable if v can be obtained by application of constants to values of types in
B′.

Recall the earlier claim that the formula GENNAT asserts that the type nat is generated by
0 : → nat and succ : nat → nat . Indeed, for any algebra A over the relevant signature,
[[GENNAT]][],A= tt iff every value of type nat in A is ∅-reachable. (The “if” direction is ob-
vious; to see that the “only if” direction holds, simply instantiate GENNAT with the predicate
P = {v ∈ [[nat]]A| v is ∅-reachable} ∈ [[[nat]]]A.)

It is easy to see that the abbreviations defined for the connectives ¬, ∨, ∧ and for ∃ and true have
the expected meaning. The following shows that the abbreviation defined for false is also correct.

7

Proposition 3.9 For any environment ρ, [[false]]ρ,A= ff .

Proof: Recall that false is ∀P :[].P and take P = ff ∈ [[[]]]A. �

Definition 3.10 Let ϕ be a formula in context Γ. Suppose ρ is a Γ-environment; then we write
A |=ρ ϕ if [[ϕ]]ρ,A= tt. We write A |= ϕ (A satisfies ϕ) if A |=ρ ϕ for all Γ-environments ρ. If ϕ′ is
also a formula in context Γ, we write ϕ |=| ϕ′ (ϕ is equivalent to ϕ′) if for all A ∈ Alg(Σ) and all
Γ-environments ρ, A |=ρ ϕ iff A |=ρ ϕ

′. Finally, if Φ is a set of formulae in context Γ then we write
A |= Φ if A |= ϕ for all ϕ ∈ Φ.

The following proposition is used to show that isomorphisms preserve and reflect satisfaction, as
in almost any conceivable logical system.

Proposition 3.11 Let h : A → A′ be an isomorphism. Extend h to bracket types by taking
h[τ1,...,τn](p) = {(hτ1(v1), . . . , hτn(vn)) | (v1, . . . , vn) ∈ p} ∈ [[[τ1, . . . , τn]]]A′ for p ∈ [[[τ1, . . . , τn]]]A.
Let t be a term in context Γ and let ρ be a Γ-environment; then h([[t]]ρ,A) = [[t]]h◦ρ,A′ .

Proof: By induction on the structure of t. �

Corollary 3.12 If A ∼= A′ then A |= ϕ iff A′ |= ϕ.

Proof: By Proposition 3.11, since h[] is the identity and since hτ is a bijection for every type
τ . �

3.2 Interpretation w.r.t. a partial congruence

Definition 3.13 A partial congruence ≈ on A is a family of partial equivalence relations (i.e.,
symmetric and transitive relations) 〈≈b ⊆ [[b]]A×[[b]]A〉b∈B such that for all c : b1× · · ·× bn → b in C
and all v1, v

′
1 ∈ [[b1]]A, . . . , vn, v

′
n ∈ [[bn]]A, if v1 ≈b1 v′1 and · · · and vn ≈bn v′n then [[c]]A(v1, . . . , vn) ≈b

[[c]]A(v′1, . . . , v
′
n). A (total) congruence is a reflexive partial congruence.

Let ≈ be a partial congruence on A. As suggested at the beginning of Section 3, the partial
congruence of interest will be a relation of indistinguishability to be defined later. The reader
may find it helpful to keep this in mind in order to understand the motivation behind some of the
definitions and results below. We do not restrict attention to this particular partial congruence at
this point because much of the sequel does not depend on the special features of this relation, and
because there are several different indistinguishability relations of potential interest (although we
will consider only one).

The idea behind the development which follows is to generalise the usual definition of satisfaction
up to a partial congruence in first-order equational logic to higher-order logic. Whereas in the first-
order case it is enough to interpret the primitive equality symbol as the partial congruence and to
restrict all quantifiers to values lying in the domain of the partial congruence, the situation is more
complicated here. We must make sure that the predicate variables only range over predicates which
“respect” the partial congruence. What this means exactly is not entirely obvious for types with
nested brackets. That the definition we give is indeed the right generalisation of the first-order case
is shown by Proposition 3.24 and Theorem 3.28. In the first-order case, Proposition 3.24 is obvious
from the definition of satisfaction.

The following definition explains how to extend the partial congruence ≈, which relates values of
base types only, to a so-called logical relation (see e.g. [Mit90]) over all types. The resulting relation
will be used below to give an interpretation of bracket types.

Definition 3.14 We extend ≈ to “bracket” types by taking p ≈[τ1 ,...,τn] p
′ for p, p′ ∈ [[[τ1, . . . , τn]]]A

iff for all v1, v
′
1 ∈ [[τ1]]A, . . . , vn, v

′
n ∈ [[τn]]A, if v1 ≈τ1 v′1 and · · · and vn ≈τn v′n then (v1, . . . , vn) ∈ p

iff (v′1, . . . , v
′
n) ∈ p′. We say that v ∈ [[τ]]A respects ≈ if v ≈τ v.

A predicate p ∈ [[[τ1, . . . , τn]]]A respects ≈ if it does not differentiate between values that are related
by ≈. Note that trivially ∅ ≈[τ1 ,...,τn] ∅, and that v ≈[] v

′ iff v = v′.

8

Proposition 3.15 ≈τ is a partial equivalence relation for any type τ .

Proof: Obvious. �

Note that extending a (total) congruence to bracket types does not in general yield a (total) equi-
valence relation.

Corollary 3.16 If v ≈τ v′ then v and v′ respect ≈.

Proof: Apply symmetry and transitivity. �

The difference between the standard interpretation of terms and their interpretation with respect
to a partial congruence stems from the following definition.

Definition 3.17 Interpretation of types w.r.t. ≈ is defined as follows:

[[b]]≈A = {v ∈ [[b]]A| v respects ≈}

[[[τ1, . . . , τn]]]≈A = {p ∈ Pow([[τ1]]≈A×· · · × [[τn]]≈A) | p respects ≈}

We have [[[]]]≈A= [[[]]]A= {ff , tt}. Note that if ≈ is a congruence, then [[b]]≈A= [[b]]A. The second clause
of the above definition is well-formed because of the following proposition.

Proposition 3.18 [[τ]]≈A⊆ [[τ]]A for any type τ .

Proof: By induction on the structure of τ . (Thus the proof that [[[τ1, . . . , τn]]]≈A is well-defined
depends on [[τ1]]≈A, . . . , [[τn]]≈A, which have been shown to be well-defined at a previous stage.) �

The following proposition shows that the extension of ≈ to bracket types, restricted to type inter-
pretations [[[τ1, . . . , τn]]]≈A, is trivial in the sense that it does not identify distinct values.

Proposition 3.19 For all p, p′ ∈ [[[τ1, . . . , τn]]]≈A, if p ≈[τ1,...,τn] p
′ then p = p′.

Proof: Let v1 ∈ [[τ1]]≈A, . . . , vn ∈ [[τn]]≈A; then v1 ≈τ1 v1 and · · · and vn ≈τn vn. If p ≈[τ1,...,τn] p
′

then (v1 . . . , vn) ∈ p iff (v1 . . . , vn) ∈ p′, i.e. p = p′. �

Let Γ be a context.

Definition 3.20 A Γ-environment (w.r.t. ≈, on A) is a Types(Σ)-sorted function ρ = 〈ρτ : Γτ →
[[τ]]≈A〉τ∈Types(Σ). We adopt the previously-explained notations for environments.

Definition 3.21 Let ρ be a Γ-environment w.r.t. ≈. The interpretation w.r.t. ≈ of terms that are
typable in context Γ is defined as follows:

[[x]]≈ρ,A = ρ(x)

[[c(t1, . . . , tn)]]≈ρ,A = [[c]]A([[t1]]≈ρ,A, . . . , [[tn]]≈ρ,A)

[[λ(x1:τ1, . . . , xn:τn).t]]≈ρ,A = {(v1, . . . , vn) | v1 ∈ [[τ1]]≈A and · · · and vn ∈ [[τn]]≈A
and [[t]]≈ρ[x1 7→v1,...,xn 7→vn],A= tt}

[[t(t1, . . . , tn)]]≈ρ,A = if ([[t1]]≈ρ,A, . . . , [[tn]]≈ρ,A) ∈ [[t]]≈ρ,A then tt else ff

[[t⇒ t′]]≈ρ,A = if [[t]]≈ρ,A= tt then [[t′]]≈ρ,A else tt

[[∀x:τ.t]]≈ρ,A = if [[t]]≈ρ[x 7→v],A= tt for all v ∈ [[τ]]≈A then tt else ff

A comparison of the above definition with the corresponding definition for the standard interpretation
(Definition 3.4) reveals that the only difference is the change to the meaning of λ-abstraction and
universal quantification induced by the different interpretation of types.

The proof of soundness does not go through directly; a stronger induction hypothesis is required.

9

Proposition 3.22 If Γ ` t : τ and ρ, ρ′ are Γ-environments w.r.t. ≈ such that ρ(x) ≈Γ(x) ρ
′(x) for

each x ∈ Vars(Γ), then [[t]]≈ρ,A, [[t]]
≈
ρ′,A∈ [[τ]]A and [[t]]≈ρ,A≈τ [[t]]≈ρ′,A.

Proof: By induction on the structure of the derivation of Γ ` t : τ . The proof that [[t]]≈ρ,A, [[t]]
≈
ρ′,A∈

[[τ]]A is exactly the same as the proof of Proposition 3.6. �

Corollary 3.23 If Γ ` t : τ and ρ is a Γ-environment w.r.t. ≈ then [[t]]≈ρ,A∈ [[τ]]≈A.

Proof: Apply Proposition 3.22 with ρ′ = ρ. �

The following proposition shows that =τ refers to the partial congruence ≈ under interpretation
of terms w.r.t. ≈. This is due to the fact that the quantifier in the formula ∀P :[τ].P (t) ⇒ P (t′)
(which t =τ t

′ abbreviates) ranges over predicates that respect ≈.

Proposition 3.24 Suppose v, v′ ∈ [[τ]]≈A for some type τ . Then for any environment ρ w.r.t. ≈,
[[x =τ y]]

≈
ρ[x 7→v,y 7→v′],A= tt iff v ≈τ v′.

Proof:

⇐=: Suppose v ≈τ v′. Any predicate p ∈ [[[τ]]]≈A respects ≈, i.e. v ∈ p iff v′ ∈ p.

=⇒: Suppose that [[∀P :[τ].P (x)⇒ P (y)]]≈ρ[x 7→v,y 7→v′],A= tt and consider the predicate p = {w | w ≈τ
v} ∈ [[[τ]]]≈A. We have [[P (x)]]≈ρ[x 7→v,P 7→p],A= tt so [[P (y)]]≈ρ[y 7→v′,P 7→p],A= tt ; thus v′ ∈ p, i.e.
v′ ≈τ v. �

The interpretation of the formula GENNAT with respect to ≈ is also different from what it was
under the standard interpretation. For any algebra A over the relevant signature, [[GENNAT]]≈[],A=
tt iff every value in [[nat]]≈A is congruent to a ∅-reachable value. (The “if” direction depends on
the requirement that P ∈ [[[nat]]]≈A rather than P ∈ [[[nat]]]A; to see that the “only if” direction
holds, instantiate GENNAT with P = {v ∈ [[nat]]≈A| ∃v

′ ∈ [[nat]]≈A.v ≈nat v
′ and v′ is ∅-reachable} ∈

[[[nat]]]≈A. Note that there are choices of A and ≈ for which {v ∈ [[nat]]≈A| v is ∅-reachable} 6∈ [[[nat]]]≈A.)

Definition 3.25 Let ϕ be a formula in context Γ. Suppose ρ is a Γ-environment w.r.t. ≈; then
we write A |=≈ρ ϕ if [[ϕ]]≈ρ,A= tt . We write A |=≈ ϕ (A satisfies ϕ w.r.t. ≈) if A |=≈ρ ϕ for all
Γ-environments ρ w.r.t. ≈. If Φ is a set of formulae in context Γ then we write A |=≈ Φ if A |=≈ ϕ
for all ϕ ∈ Φ.

When ≈ is the indistinguishability relation (see Definition 4.1 below), |=≈ is known as behavioural
satisfaction.

3.3 Relating |= and |=≈

Let ≈ be a partial congruence on A.

Definition 3.26 Suppose v ∈ [[b]]A for b ∈ B such that v ≈b v; then the congruence class of v w.r.t.
≈ is defined as [v]≈b = {v′ ∈ [[b]]A| v ≈b v

′}. The quotient of A by ≈, written A/≈, is then defined
as follows:

[[b]]A/≈ = {[v]≈b | v ∈ [[b]]A and v ≈b v} for all b ∈ B

[[c]]A/≈([v1]≈b1 , . . . , [vn]≈bn) = [[[c]]A(v1, . . . , vn)]≈b for all c : b1 × · · · × bn → b in C.

Since ≈ is a partial congruence, the choice of representatives v1, . . . , vn in the definition of [[c]]A/≈
doesn’t matter. Note that if ≈ is a congruence, then A/≈ is the usual quotient algebra, with
[[b]]A/≈= [[b]]A/≈b.

10

Proposition 3.27 A/≈ is a Σ-algebra, that is [[c]]A/≈∈ ([[b1]]A/≈×· · ·× [[bn]]A/≈→ [[b]]A/≈) for every
c : b1 × · · · × bn → b in C.

Proof: Easy, since if v1 ∈ [[b1]]A/≈, . . . , vn ∈ [[bn]]A/≈ then v1 ≈b1 v1 and · · · and vn ≈bn vn so
[[c]]A(v1, . . . , vn) ≈b [[c]]A(v1, . . . , vn). �

The following theorem demonstrates a fundamental relationship between the two interpretations
defined above. In the first-order case, it says that standard satisfaction of a formula ϕ in a quotient
algebra A/≈ is equivalent to satisfaction of ϕ, with the symbol = interpreted as ≈, in A itself.

Theorem 3.28 A/≈ |= ϕ iff A |=≈ ϕ.

Proof: Define two families of functions 〈ψτ : [[τ]]≈A→ [[τ]]A/≈〉τ∈Types(Σ) and 〈χτ : [[τ]]A/≈→
[[τ]]≈A〉τ∈Types(Σ) by induction on τ as follows:

for all v ∈ [[b]]≈A,
ψb(v) = [v]≈b

for all v ∈ [[b]]A/≈,
χb(v) = some arbitrary element of v

for all p ∈ [[[τ1, . . . , τn]]]≈A,
ψ[τ1,...,τn](p) = {(v1, . . . , vn) ∈ [[τ1]]A/≈×· · · × [[τn]]A/≈| (χτ1(v1), . . . , χτn(vn)) ∈ p}

for all p ∈ [[[τ1, . . . , τn]]]A/≈,
χ[τ1,...,τn](p) = {(v1, . . . , vn) ∈ [[τ1]]≈A×· · · × [[τn]]≈A| (ψτ1(v1), . . . , ψτn(vn)) ∈ p}

These functions are well-defined. First, ψ and χ[τ1,...,τn] are not affected by the choice of χb. Second,
for all v ∈ [[τ]]A/≈, χτ (v) respects ≈ (for base types b, we have v ≈b v for v ∈ [[b]]A/≈; for bracket
types, it follows from the fact that v ≈τ v′ implies ψτ (v) = ψτ (v′)). We have for all v ∈ [[τ]]A/≈,
ψτ (χτ (v)) = v and for all v ∈ [[τ]]≈A, χτ (ψτ (v)) ≈τ v, both by induction on the structure of τ (the
latter uses again the fact that v ≈τ v′ implies ψτ (v) = ψτ (v′)). The former implies that ψτ is onto
for all τ . Note that ψ[] is the identity.

The remainder of the proof relies on the following:

Lemma For any Γ ` t : τ and Γ-environment ρ w.r.t. ≈, [[t]]ψ◦ρ,A/≈= ψτ([[t]]≈ρ,A).

Proof: By induction on the structure of t. For function application, we use the fact
that ψb([[c]]A(v1, . . . , vn)) = [[c]]A/≈(ψb1(v1), . . . , ψbn(vn)) for c : b1 × · · · × bn → b in C.
For universal quantification, we use the fact that ψ is onto. �

This gives A/≈ |= ϕ =⇒ A |=≈ ϕ, as follows. Suppose that A/≈ |= ϕ, i.e. Γ ` ϕ : [] and for all
Γ-environments ρ on A/≈, A/≈ |=ρ ϕ. Then suppose ρ is a Γ-environment on A w.r.t. ≈. We
need to show that A |=≈ρ ϕ. But ψ ◦ ρ is a Γ-environment on A/≈, and so [[ϕ]]≈ρ,A= ψ[]([[ϕ]]≈ρ,A) =
[[ϕ]]ψ◦ρ,A/≈= tt .

Applying χ to both sides of the equation in the lemma gives χτ ([[t]]ψ◦ρ,A/≈) = χτ (ψτ ([[t]]≈ρ,A)) ≈τ
[[t]]≈ρ,A. This gives A/≈ |= ϕ ⇐= A |=≈ ϕ, as follows. Suppose that A |=≈ ϕ, i.e. Γ ` ϕ : [] and for
all Γ-environments ρ w.r.t. ≈, A |=≈ρ ϕ. Then suppose ρ is a Γ-environment on A/≈. We need to
show that A/≈ |=ρ ϕ. Since ψ is onto, ρ factors through ψ: ρ = ψ ◦ ρ′ for some Γ-environment ρ′

w.r.t. ≈. Thus [[ϕ]]ψ◦ρ′,A/≈= χ[]([[ϕ]]ψ◦ρ′,A/≈) ≈[] [[ϕ]]≈ρ′,A= tt, i.e. A/≈ |=ρ ϕ. �

A trivial consequence of Theorem 3.28 is the fact that when ≈ is equality, |=≈ coincides with |=.
Theorem 3.28 for the case of first-order equational logic with reachability constraints is Theorem 3.17
of [BHW94], where the proof method is analogous.

We believe that the above development would do through, mutatis mutandis, for Henkin models
[Hen50] as well as in a constructive framework like that of topos theory [Pho92]. In the absence of the
axiom of choice, e.g. in topos theory, one must replace the function χ in the proof of Theorem 3.28
by a relation which is functional up to ≈.

11

4 Behavioural equivalence and indistinguishability

We now consider specific definitions of indistinguishability and behavioural equivalence. Let Σ =
〈B,C〉 be a signature, and let OBS , the observable base types of Σ, be a subset of B. The intention
is that OBS includes just those base types that are directly visible to clients; typically this would
include types like bool and nat . All other types, including all bracket types, are hidden in the sense
that their values may only be inspected indirectly by performing experiments (i.e. evaluating terms)
that yield a result of a type in OBS .

The following defines the indistinguishability relation used in [NO88]. Two values v, v′ are in-
distinguishable if no experiment of observable type with additional observable inputs is able to
distinguish between them.

Definition 4.1 Let the family of partial congruences ≈OBS = 〈≈OBS ,A〉A∈Alg(Σ) be such that for
any Σ-algebra A, base type b ∈ B and v, v′ ∈ [[b]]A, v ≈OBS,A,b v

′ (v and v′ are indistinguishable)
iff v and v′ are OBS-reachable, and for any OBS-context Γ, variable x 6∈ Vars(Γ), term t with
Γ, x : b ` t : b′ for b′ ∈ OBS , and Γ-environment ρ, [[t]]ρ[x 7→v],A= [[t]]ρ[x 7→v′],A.

Proposition 4.2 For any Σ-algebra A, ≈OBS ,A is a partial congruence on A.

Proof: The proof that ≈OBS ,A is preserved by the constants proceeds by induction on the structure
of the “experiment term”. The only non-trivial part of the proof is to show that [[c]]A(v1, . . . , vn) =
[[c]]A(v′1, . . . , v

′
n) for c : b1 × · · · × bn → b in C and b ∈ OBS, where v1 ≈OBS ,A,b1 v

′
1 and · · · and

vn ≈OBS ,A,bn v
′
n. This involves a chain of n equations. The first of these is [[c]]A(v1, v2, . . . , vn) =

[[c]]A(v′1, v2, . . . , vn) which follows from v1 ≈OBS ,A,b1 v
′
1 by considering the term c(x, t2, . . . , tn) for

terms t2, . . . , tn such that [[tj]]ρ,A= vj for 2 ≤ j ≤ n, where ρ is a Γ-environment and Γ is an OBS-
context; these terms exist since v2, . . . , vn are OBS-reachable. �

Note that each ≈OBS ,A can be extended to a congruence by simply removing the requirement of
OBS -reachability from Definition 4.1. This would not be an unreasonable modification but for the
fact that then Proposition 4.9 and hence Theorem 5.15 below would not hold, meaning that the
results in Section 6 would not be applicable.

By analogy with the terminology of denotational semantics (see e.g. [Win93]), a Σ-algebra A is
called fully abstract when the indistinguishability relation on A is simply equality. Such an A is
called an algebra of minimal redundancy in [Rei85].

Definition 4.3 ([BHW94]) Let ≈ = 〈≈A〉A∈Alg(Σ) be a family such that each ≈A is a partial
congruence on A. A Σ-algebra A is ≈-fully abstract when ≈A is the equality in A, that is, when for
all b ∈ B and v, v′ ∈ [[b]]A we have v ≈A v′ iff v = v′. For any class A ⊆ Alg(Σ) of Σ-algebras,
FA≈(A) ⊆ A is the subclass of ≈-fully abstract algebras, that is:

FA≈(A) = {A ∈ A | A is ≈-fully abstract}.

The family ≈ is regular if A/≈A is ≈-fully abstract for every A ∈ Alg(Σ).

Regularity ensures that the partial congruences which≈ associates with different algebras are related
in a natural way.

Proposition 4.4 ≈OBS is regular.

Proof: We have to show that for all b ∈ B and v, v′ ∈ [[b]]A/≈OBS,A
, v ≈OBS ,A/≈OBS,A v

′ iff v = v′.

⇐=: We only need to show that v(= v′) is OBS-reachable. This follows from the lemma in the proof
of Theorem 3.28 and the fact that v is a congruence class of OBS-reachable values in A.

=⇒: Suppose that v ≈OBS ,A/≈OBS,A v′. Then for any OBS-context Γ, x 6∈ Vars(Γ), term t such
that Γ, x : b ` t : b′ for b′ ∈ OBS and Γ-environment ρ on A/≈OBS ,A, [[t]]ρ[x 7→v],A/≈OBS,A

=

[[t]]ρ[x 7→v′],A/≈OBS,A
. Let v̂, v̂′ ∈ [[b]]A be such that [v̂]≈OBS,A = v and [v̂′]≈OBS,A = v′; by the

12

lemma in the proof of Theorem 3.28, it follows that [[[t]]
ρ′[x 7→v̂],A]≈OBS,A = [[[t]]

ρ′[x 7→v̂′],A]≈OBS,A

for any Γ-environment ρ′ on A, because for any ρ there is a ρ′ such that ρ = [·]≈OBS,A ◦ ρ′, and
vice versa since Γ is an OBS -context so ρ′(x) is trivially OBS -reachable for any x ∈ Vars(Γ).
But ≈OBS ,A on b′ ∈ OBS is equality so v̂ ≈OBS,A v̂′, i.e. v = v′. �

We will now define what it means for two Σ-algebras to be behaviourally equivalent. The defin-
ition resembles that of indistinguishability in the sense that it is based on the idea of performing
experiments to probe for differences between the two algebras. But in this case performing an ex-
periment means testing satisfaction of a formula rather than evaluating a term of base type. The
formulae of importance are equations between terms of observable type, with variables of observable
type.

Definition 4.5 Let Γ be an OBS -context. An observable equation is a formula in context Γ of the
form t =b t

′ where b ∈ OBS. Let ObsEqΓ(Σ) be the set of observable equations in context Γ.

Definition 4.6 Let A,A′ ∈ Alg(Σ). A is behaviourally equivalent to A′ (via equations), written
A ≡OBS A′, if there is an OBS-context Γ and Γ-environments ρA on A and ρA′ on A′ that are
OBS-surjective such that for any equation ϕ ∈ ObsEqΓ(Σ), A |=ρA ϕ iff A′ |=ρA′ ϕ.

Proposition 4.7 ≡OBS ⊆ Alg(Σ) ×Alg(Σ) is an equivalence relation.

Proof: Reflexivity and symmetry are obvious. Transitivity follows from the observation that the
choice of variable names in the context Γ is arbitrary. �

It might seem surprising that the definition of ≡OBS does not make use of the higher-order
features of the language, except as a result of the way that equality is expressed via quantification
over predicates. So ≡OBS is just the same as in e.g. [SW83], [MG85], [NO88]. The reason for this
choice is that the natural modification of the definition of≡OBS to make use of higher-order formulae
(Definition 5.13) gives exactly the same relation, see Corollary 5.16.

The following definition is the key to understanding the relationship between indistinguishability
of values on the one hand and behavioural equivalence of algebras on the other. The idea is that a
family of partial congruences naturally induces an equivalence on Alg(Σ). If behavioural equivalence
is the relation that is induced by indistinguishability (as will turn out to be the case, see The-
orem 5.15) then it is possible to translate constructions phrased in terms of behavioural equivalence
into constructions phrased in terms of indistinguishability, and vice versa. There is a close analogy
with the case of finite state machines, where two machines M,M ′ are equivalent if quotienting M
and M ′ by the so-called Nerode equivalence on states yields isomorphic machines.

Definition 4.8 ([BHW94]) Let ≈ = 〈≈A〉A∈Alg(Σ) be a family such that each ≈A is a partial
congruence on A, and let ≡ ⊆ Alg(Σ) × Alg(Σ) be an equivalence relation. Then ≡ is factorizable
by ≈ if for any A,A′ ∈ Alg(Σ), A ≡ A′ iff A/≈A ∼= A′/≈A′. (Factorizability can be decomposed as
follows: ≡ is left-factorizable by ≈ if for any A,A′ ∈ Alg(Σ), A ≡ A′ ⇐= A/≈A ∼= A′/≈A′, and it
is right-factorizable by ≈ if for any A,A′ ∈ Alg(Σ), A ≡ A′ =⇒ A/≈A ∼= A′/≈A′.)

The following proposition gives right-factorizability of ≡OBS by ≈OBS . Left-factorizability can be
proved directly, but we obtain it instead by applying a more general result, see Corollary 5.11 below.

Proposition 4.9 For any A,A′ ∈ Alg(Σ), if A ≡OBS A
′ then A/≈OBS ,A ∼= A′/≈OBS,A′ .

Proof: Suppose that A ≡OBS A′ via OBS -context Γ and Γ-environments ρA on A and ρA′ on A′.
The proof uses the following:

Lemma Let t, t′ be terms such that Γ ` t : b and Γ ` t′ : b. Then [[t]]ρA,A≈OBS ,A,b

[[t′]]ρA,A iff [[t]]ρA′ ,A′≈OBS,A′,b [[t′]]ρA′ ,A′.

Proof:

13

=⇒: Suppose that [[t]]ρA,A≈OBS,A,b [[t′]]ρA,A. We know that [[t]]ρA′ ,A′ and [[t′]]ρA′ ,A′ are
OBS-reachable since Γ is an OBS-context. Let Γ′ be an OBS-context, x 6∈ Vars(Γ′)
be a variable, s be a term with Γ′, x : b ` s : b′ for b′ ∈ OBS , and ρ be a Γ-
environment on A′. We need to show that [[s]]ρ[x 7→[[t]]ρ

A′ ,A
′],A′= [[s]]ρ[x 7→[[t′]]ρ

A′ ,A
′],A′ .

W.l.o.g. (since ρA′ is OBS-surjective) we can restrict attention to the case where
Γ = Γ′ and ρ = ρA′ ; then by Proposition 3.5 it suffices to show that [[s[x := t]]]ρA′ ,A′=
[[s[x := t′]]]ρA′ ,A′ . Now consider the observable equation ϕ =def s[x := t] =b′ s[x :=
t′]. We have A |=ρA ϕ since [[t]]ρA,A≈OBS ,A,b [[t′]]ρA,A; then A′ |=ρA′ ϕ since A ≡OBS

A′. Hence [[s[x := t]]]ρA′ ,A′= [[s[x := t′]]]ρA′ ,A′ by Proposition 3.7.
⇐=: Similarly. �

Now define a function h : A/≈OBS ,A → A′/≈OBS,A′ by h([v]≈OBS,A) = [[[t]]ρA′ ,A′]≈OBS,A′ for b ∈ B
and v ∈ [[b]]A, where t is a term in context Γ such that [[t]]ρA,A= v. We know that such a t exists
because v is OBS -reachable by definition of ≈OBS ,A and because ρA is OBS-surjective. To see that
the choice of the term t and the representative v don’t matter, suppose we have terms t, t′ in context
Γ such that [[t]]ρA,A= v ≈OBS,A,b v

′ = [[t′]]ρA,A; then [[t]]ρA′ ,A′≈OBS ,A′,b [[t′]]ρA′ ,A′ by the lemma. Thus
h is well-defined, and it is easy to see that h is a Σ-homomorphism.

To see that h is surjective, consider any b ∈ B and representative v of any congruence class in
[[b]]A′/≈OBS,A′

. Pick a term t in context Γ such that [[t]]ρA′ ,A′= v; we know that such a t exists because
v is OBS-reachable (since v ≈OBS ,A′ v) and because ρA′ is OBS-surjective. Then [v]≈OBS,A′ =
h([[[t]]ρA,A]≈OBS,A).

To see that h is injective, suppose b ∈ B and v, v′ ∈ [[b]]A such that h([v]≈OBS,A) = h([v′]≈OBS,A),
where t, t′ are terms in context Γ such that [[t]]ρA,A= v and [[t′]]ρA,A= v′. Then [[t]]ρA′ ,A′≈OBS ,A′

[[t′]]ρA′ ,A′, so by the lemma we have [[t]]ρA,A≈OBS ,A [[t′]]ρA,A, i.e. [v]≈OBS,A = [v′]≈OBS,A.
Thus we have shown that h : A/≈OBS,A → A′/≈OBS,A′ is a Σ-isomorphism. �

Proposition 4.9 essentially amounts to one direction of Example 3.25 of [BHW94], where the proof
method is the same.

In this paper, we consider only the particular definitions of indistinguishability (Definition 4.1)
and behavioural equivalence (Definition 4.6) given above. There are two other candidates for each
of these definitions, as described in [BHW94]. The first variant, which has been studied by [Rei85],
is obtained by allowing Γ to be an arbitrary B-context in both definitions, removing the require-
ment of OBS -reachability in Definition 4.1, and changing the requirement of OBS -surjectivity to
B-surjectivity in Definition 4.6. The second variant is obtained by eliminating the context Γ and en-
vironments from both definitions, and changing the requirement of OBS -reachability to ∅-reachability
in Definition 4.1; the resulting definition of behavioural equivalence has been studied in Section 2
of [ST87]. These alternatives are not studied here, although all of the proofs required should be
similar to those given here. In our opinion, the first variant is simply wrong because the resulting
behavioural equivalence relation fails to identify algebras that differ only in their behaviour on val-
ues of non-observable types that are not OBS -reachable: see [ONS91] for an example. The second
variant seems to be unnecessarily restrictive in the presence of parameterised specifications, since (as
discussed in [ST89]) OBS will normally include the parameter types and these types typically lack
generators; this leads to a behavioural equivalence relation that is too coarse.

5 Expressible congruences and relativization

The language of higher-order logic is powerful enough to express the indistinguishability relation
≈OBS by means of a family of predicates, i.e. terms in the language (cf. [Sch94]). We can use this
fact to characterize behavioural satisfaction of a formula ϕ in terms of ordinary satisfaction of a
“relativized” version of ϕ.

Let Σ = 〈B,C〉 be a signature for which B and C are finite. The assumption of finiteness is
required to obtain finite terms in Theorem 5.2 below.

14

Notations like ∀
b∈B

xb:b.t and λ(〈Pb:[b, b]〉b∈B).t will be used below to abbreviate obvious (finite)
terms. The latter assumes some fixed enumeration of the elements of B; this is not needed for the
former since a sequence of quantifiers can be permuted without affecting meaning.

Definition 5.1 Let ≈ = 〈≈A〉A∈Alg(Σ) be a family of partial congruences, and let ∼ = 〈∼b〉b∈B be
a family of closed predicates such that ` ∼b : [b, b] for every base type b ∈ B. Then ≈ is expressible
by ∼ if [[∼b]][],A= ≈A,b for every b ∈ B.

Theorem 5.2 The indistinguishability relation ≈OBS is expressible by the family of predicates
〈INDIST

b̂
〉̂
b∈B, defined as follows:

If b̂ ∈ OBS then REACH
b̂

=def λ(x:̂b).true.

If b̂ 6∈ OBS then

REACH
b̂

=def

λ(x:̂b). ∀
b 6∈OBS

Pb : [b].

 ∧
c:b1×···×bn→b′ in C

b′ 6∈OBS

∀
1≤i≤n

xi : bi.

 ∧
1≤j≤n
bj 6∈OBS

Pbj(xj)

⇒ Pb′(c(x1, . . . , xn))


⇒ P

b̂
(x)

CONG =def

λ(〈Pb:[b, b]〉b∈B).

∧
c:b1×···×bn→b in C

∀
1≤i≤n

xi, x
′
i:bi.

(∧
1≤j≤n

Pbj(xj, x
′
j)
)
⇒ Pb(c(x1, . . . , xn), c(x′1, . . . , x

′
n))

OBSEQ =def λ(〈Pb:[b, b]〉b∈B).∧
b∈OBS

∀x, x′:b. Pb(x, x′)⇔ x =b x
′

INDIST
b̂

=def

λ(x:̂b, y:̂b).∃
b∈B

Pb:[b, b].

CONG(〈Pb〉b∈B) ∧OBSEQ(〈Pb〉b∈B) ∧ REACH
b̂
(x) ∧ REACH

b̂
(y) ∧ P

b̂
(x, y)

Proof: Let A be a Σ-algebra. We will use the following lemma.

Lemma Suppose v̂ ∈ [[̂b]]A. Then A |=[x 7→v̂] REACH
b̂
(x) iff v̂ is OBS -reachable.

Proof: If b̂ ∈ OBS then the proof is trivial. So suppose that b̂ 6∈ OBS.

=⇒: Instantiate REACH
b̂
(x) with Pb = {v ∈ [[b]]A| v is OBS -reachable} ∈ [[[b]]]A for all

b 6∈ OBS . It then suffices to show that the closure property on the left-hand side
of the main implication is satisfied. This is easy: for each c : b1 × · · · × bn → b′

in C, the required term is simply the application of c to the terms that witness the
OBS-reachability of x1, . . . , xn.

15

⇐=: Suppose that v̂ is OBS-reachable; then there is an OBS-context Γ, term t with
Γ ` t : b̂, and Γ-environment ρ such that [[t]]ρ,A= v̂. We need to show that A |=[x 7→v̂]
REACH

b̂
(x); by Proposition 3.5 it suffices to show that A |=ρ REACH

b̂
(t). This

follows by induction on the structure of t. �

We need to prove that if v̂, v̂′ ∈ [[̂b]]A, then A |=
[x 7→v̂,y 7→v̂′] INDIST

b̂
(x, y) iff v̂ ≈

OBS,A,̂b
v̂′.

⇐=: Suppose that v̂ ≈
OBS ,A,̂b

v̂′. We claim that A |=
[x 7→v̂,y 7→v̂′] INDIST

b̂
(x, y) with the predicates

Pb = ≈OBS,A,b ∈ [[[b, b]]]A for all b ∈ B. By the assumption we have that A |=
[x 7→v̂,y 7→v̂′]

P
b̂
(x, y); then A |= CONG(〈Pb〉b∈B) since ≈OBS ,A is a partial congruence on A (Proposi-

tion 4.2), A |= OBSEQ(〈Pb〉b∈B) by the definition of ≈OBS,A, and A |=
[x 7→v̂,y 7→v̂′] REACH

b̂
(x)∧

REACH
b̂
(y) by the above lemma.

=⇒: Suppose that A |=
[x 7→v̂,y 7→v̂′] INDIST

b̂
(x, y). Then v̂ and v̂′ are OBS-reachable by the above

lemma. It remains to show that if Γ is a OBS -context, z 6∈ Vars(Γ), s is a term such that
Γ, z : b̂ ` s : b′ for b′ ∈ OBS, and ρ is a Γ-environment, then [[s]]

ρ[z 7→v̂],A= [[s]]
ρ[z 7→v̂′],A. This is

a consequence of the following lemma:

Lemma For any OBS-context Γ, variable z 6∈ Vars(Γ), term s with Γ, z : b̂ ` s : b′,
and Γ-environment ρ, ([[s]]

ρ[z 7→v̂],A, [[s]]ρ[z 7→v̂′],A) ∈ Pb′.

Proof: By induction on the structure of s. Suppose that s is a variable but not z;
then b′ ∈ OBS since Γ is an OBS-context, and the required property follows from
the fact that A |= OBSEQ(〈Pb〉b∈B). Suppose that s is z; then the required property
follows directly from the fact that A |=

[x 7→v̂,y 7→v̂′] Pb̂(x, y). Suppose that s is a function
application; then the required property follows from the inductive assumption and the
fact that A |= CONG(〈Pb〉b∈B). �

From this, together with the fact that A |= OBSEQ (〈Pb〉b∈B) and Proposition 3.7, it follows
that [[s]]

ρ[z 7→v̂],A= [[s]]
ρ[z 7→v̂′],A when b′ ∈ OBS. �

In [Sch94] an analogous expressibility result for the indistinguishability relation used in [Rei85]
is given for a language of second-order logic. Detailed comparisons are rendered difficult by the fact
that the logic used there is untyped.

Let ≈ = 〈≈A〉A∈Alg(Σ) be a family of partial congruences that is expressible by the family of
predicates ∼ = 〈∼b〉b∈B .

Definition 3.14 showed how to extend a partial congruence to bracket types. We can express
exactly the same thing for any expressible congruence.

Proposition 5.3 For any type τ there is a closed predicate ∼τ such that ` ∼τ : [τ, τ] and [[∼τ]][],A=
≈A,τ , given by the following definition:

If τ = b ∈ B then ∼τ =def ∼b.

If τ = [τ1, . . . , τn] then

∼τ =def

λ(p:[τ1, . . . , τn], p′:[τ1, . . . , τn]).

∀
1≤i≤n

xi, x
′
i:τi.

(∧
1≤j≤n

xj ∼τj x′j
)
⇒ (p(x1, . . . , xn)⇔ p′(x′1, . . . , x

′
n))

(The definition of ∼[τ1,...,τn] is recursive, but the result is a finite term for any type [τ1, . . . , τn].)

Proof: Immediate. �

16

This leads directly to a family of predicates characterizing the values that are in the interpretation
of types w.r.t. ≈.

Proposition 5.4 For any type τ there is a closed predicate DOM τ such that ` DOM τ : [τ] and
[[DOM τ]][],A= [[τ]]≈AA , given by the following definition:

If τ = b ∈ B then DOM τ =def λ(x:b).x ∼b x.

If τ = [τ1, . . . , τn] then

DOM τ =def

λ(p:[τ1, . . . , τn]).p ∼[τ1,...,τn] p ∧ ∀
1≤i≤n

xi:τi.
(
p(x1, . . . , xn)⇒ ∧

1≤j≤n
DOM τj (xj)

)
(Again, this is a recursive definition that gives a finite term for any type.)

Proof: By induction on the structure of τ , using Propositions 3.18 and 5.3. �
We can use the predicates DOM τ thus defined to transform any formula ϕ into a formula pϕq

such that pϕq is satisfied exactly when ϕ is satisfied w.r.t. ≈. The idea is simply to “relativize”
each bound variable by attaching a requirement that the value taken on by the variable is in the
interpretation of its type w.r.t. ≈.

Definition 5.5 Let t be a term in context Γ. The ∼-relativization of t is the term ptq (in context
Γ) defined as follows:

pxq = x
pc(t1, . . . , tn)q = c(pt1q, . . . , ptnq)

pλ(x1:τ1, . . . , xn:τn).tq = λ(x1:τ1, . . . , xn:τn).DOM τ1(x1) ∧ · · · ∧DOM τn(xn) ∧ ptq
pt(t1, . . . , tn)q = ptq(pt1q, . . . , ptnq)

pt⇒ t′q = ptq⇒ pt′q
p∀x:τ.tq = ∀x:τ.DOM τ (x)⇒ ptq

The following results relate satisfaction of a formula to satisfaction of its relativized version.

Theorem 5.6 Let A be a Σ-algebra, Γ ` t : τ and let ρ be a Γ-environment w.r.t. ≈A (so ρ is also
an ordinary Γ-environment by Proposition 3.18). Then [[t]]≈Aρ,A≈A,τ [[ptq]]ρ,A.

Proof: By induction on the structure of the derivation of Γ ` t : τ . For λ-abstraction, we use
Propositions 3.22 and 5.4. For universal quantification, we use Proposition 5.4. �

Corollary 5.7 Let A be a Σ-algebra, let ϕ be a formula in context Γ and let ρ be a Γ-environment
w.r.t. ≈A. Then A |=≈Aρ ϕ iff A |=ρ pϕq.
Proof: Immediate from Theorem 5.6. �

The definition of the ∼-relativization of a formula is closely related to the definition of “lifted”
formula in [BH95], and Corollary 5.7 is a higher-order version of Theorem 15 there.

Corollary 5.8 Let A,A′ be Σ-algebras such that A/≈A ∼= A′/≈A′ , and let ϕ be a closed formula.
Then A |= pϕq iff A′ |= pϕq.
Proof: A |= pϕq iff A |=≈A ϕ (by Corollary 5.7, since ϕ is closed) iff A/≈A |= ϕ (by Theorem 3.28)
iff A′/≈A′ |= ϕ (by Corollary 3.12) iff A′ |=≈A′ ϕ iff A′ |= pϕq. �

The relativization construction may be used to define another behavioural equivalence relation, in
which two algebras are regarded as behaviourally equivalent provided they cannot be distinguished
by relativized formulae. The motivation for this apparent departure from our earlier notion of
behavioural equivalence is that it is a convenient technical device for proving left-factorizability
of ≡OBS by ≈OBS (Corollary 5.11), since this follows directly from left-factorizability of this new
relation by ≈OBS (Theorem 5.10). In fact, it will turn out (Corollary 5.16) that this “new” relation
coincides with ≡OBS .

17

Definition 5.9 Let A,A′ ∈ Alg(Σ). A is behaviourally equivalent to A′ via relativized formulae,
written A ≡RelForm A′, if there is an OBS -context Γ and Γ-environments ρA on A and ρA′ on A′

that are OBS-surjective such that for any formula ϕ in context Γ, A |=ρA pϕq iff A′ |=ρA′ pϕq, where
pϕq is the 〈INDIST b〉b∈B-relativization of ϕ.

Theorem 5.10 For any A,A′ ∈ Alg(Σ), if A/≈OBS,A ∼= A′/≈OBS ,A′ then A ≡RelForm A′.

Proof: Let h : A/≈OBS,A → A′/≈OBS,A′ be an isomorphism. Since ≈OBS is equality on b ∈ OBS,
we have a bijection ĥb : [[b]]A→ [[b]]A′ for b ∈ OBS defined by [ĥb(v)]≈OBS,A′,b = hb([v]≈OBS,A,b) for
v ∈ [[b]]A.

Let Γ be the OBS -context such that Γb = [[b]]A for every b ∈ OBS (w.l.o.g. we assume that
[[b]]A⊆ X and that [[b]]A and [[b′]]A are disjoint for b 6= b′). Define an OBS -surjective Γ-environment
ρA on A by ρA(x) = x. Define an OBS -surjective Γ-environment ρA′ on A′ by ρA′(x) = ĥ(x).
Since ≈OBS is equality on b ∈ OBS , ρA (resp. ρA′) is also a Γ-environment w.r.t. ≈OBS on A
(resp. A′). Let ϕ be a formula in context Γ. Then A |=ρA pϕq iff A |=≈OBS,A

ρA
ϕ (by Corollary 5.7)

iff A/≈OBS,A |=ψ◦ρA ϕ (by the lemma in the proof of Theorem 3.28, where ψ is the function from
that proof, since ψ[] is the identity) iff A′/≈OBS ,A′ |=h◦ψ◦ρA ϕ (by Proposition 3.11, since h[] is the
identity) iff A′/≈OBS,A′ |=ψ◦ρA′ ϕ (since h ◦ ψ ◦ ρA = ψ ◦ ĥ ◦ ρA) iff A′ |=≈OBS,A′

ρA′ ϕ iff A′ |=ρA′ pϕq.
�

Corollary 5.11 For any A,A′ ∈ Alg(Σ), if A/≈OBS ,A ∼= A′/≈OBS ,A′ then A ≡OBS A
′.

Proof: Observe that for any equation ϕ ∈ ObsEqΓ(Σ), ϕ |=| pϕq since the extra premise in pϕq
always holds, by an easy argument involving Proposition 5.4. Then just apply Theorem 5.10. �

Yet another definition of behavioural equivalence is obtained by extending the definition of ≡OBS
to take advantage of the availability of higher-order formulae to perform experiments.

Definition 5.12 A type τ is observable if either:

• τ is a base type that is in OBS; or

• τ = [τ1, . . . , τn] and τi is observable for all 1 ≤ i ≤ n.

Let Γ be a context. A term t in context Γ is observation-restricted if all types occurring in t (i.e.
as types of bound variables in λ-abstractions and universal quantifications) are observable. If t is
a formula and Γ is an OBS-context then t is called observable. Let ObsFormΓ(Σ) be the set of
observable formulae in context Γ.

Since predicates in formulae can only arise in two ways — via λ-abstraction and via quantification
— the restrictions imposed on observable formulae ensure that predicates in such formulae always
have observable type. Note that ObsEqΓ(Σ) ⊂ ObsFormΓ(Σ).

Definition 5.13 Let A,A′ ∈ Alg(Σ). A is behaviourally equivalent to A′ via formulae, written
A ≡OBSForm A′, if there is an OBS-context Γ and Γ-environments ρA on A and ρA′ on A′ that are
OBS-surjective such that for any formula ϕ ∈ ObsFormΓ(Σ), A |=ρA ϕ iff A′ |=ρA′ ϕ.

Left-factorizability of ≡OBSForm by ≈OBS is another direct consequence of Theorem 5.10.

Corollary 5.14 For any A,A′ ∈ Alg(Σ), if A/≈OBS ,A ∼= A′/≈OBS ,A′ then A ≡OBSForm A′.

Proof: For any observable type τ , v ≈OBS,A,τ v for any v ∈ [[τ]]A, by induction on the structure of
τ using Proposition 5.3. From this it follows that for any ϕ ∈ ObsFormΓ(Σ), ϕ |=| pϕq. Then apply
Theorem 5.10. �

Theorem 5.15 ≡RelForm , ≡OBS and ≡OBSForm are factorizable by ≈OBS .

Proof:

18

≡RelForm: By Proposition 4.9 (since ≡RelForm ⊆ ≡OBS by an argument like the one in Corol-
lary 5.11) and Theorem 5.10.

≡OBS : By Proposition 4.9 and Corollary 5.11.

≡OBSForm : By Proposition 4.9 (since ≡OBSForm ⊆ ≡OBS) and Corollary 5.14. �

It is an easy consequence of the above theorem that all three of our behavioural equivalence rela-
tions coincide. This demonstrates that using formulae more complex than equations as experiments
does not allow finer distinctions between algebras to be made. This is not necessarily what one
would expect: in the case of non-deterministic algebras, the use of more complex formulae does yield
a different relation, see [Nip88].

Corollary 5.16 ≡RelForm = ≡OBS = ≡OBSForm .

Proof: Immediate from Theorem 5.15 and the definition of factorizability. �

6 Relating abstractor specifications and behavioural specific-
ations

As discussed in the introduction, ordinary specifications consisting of a signature together with a set
of axioms are not sufficiently abstract in that they sometimes describe classes of algebras that are not
closed under behavioural equivalence. Two approaches to resolving this problem have been proposed.
The first, due to [SW83], is to simply close the class of models of a specification under behavioural
equivalence using an operation called behavioural abstraction. The second, due to [Rei85], is to take
as models of a specification all those algebras that behaviourally satisfy the axioms. We provide
syntax for all three kinds of specifications here in order to study how they are related.

Definition 6.1 A (flat) specification consists of a signature Σ and a set Φ of closed Σ-formulae,
called axioms. The models of a specification 〈Σ,Φ〉 are all the algebras in the class

Mod(〈Σ,Φ〉) = {A ∈ Alg(Σ) | A |= Φ}.

Let 〈Σ,Φ〉 be a specification. Let ≈ = 〈≈A〉A∈Alg(Σ) be a family such that each ≈A is a partial
congruence on A, and let ≡ ⊆ Alg(Σ) ×Alg(Σ) be an equivalence relation.

Definition 6.2 For any class A ⊆ Alg(Σ), the closure of A under ≡ is the class

Abs≡(A) = {A ∈ Alg(Σ) | A ≡ A′ for some A′ ∈ A}.

When ≡ is the relation ≡OBS for some set OBS of base types, the operator Abs≡ is known as
behavioural abstraction.

A (flat) abstractor specification, written abstract 〈Σ,Φ〉 w.r.t. ≡, has as models all those Σ-
algebras that are equivalent to models of 〈Σ,Φ〉:

Mod(abstract 〈Σ,Φ〉 w.r.t. ≡) = Abs≡(Mod(〈Σ,Φ〉)).

Definition 6.3 A (flat) behavioural specification, written behaviour 〈Σ,Φ〉 w.r.t. ≈, has as models
all those Σ-algebras that satisfy the axioms Φ w.r.t. ≈:

Mod(behaviour 〈Σ,Φ〉 w.r.t. ≈) = {A ∈ Alg(Σ) | A |=≈A Φ}.

The notation used for behavioural specifications should not be confused with similar notation used
in [SW83] and [ST87] for a particular special case of abstractor specifications.

We have now built up enough machinery to redo the development in [BHW94] in the framework
of higher-order logic. Although it is not made explicit there, their results are independent of the
logic used in axioms, provided properties corresponding to Corollary 3.12 and Theorem 3.28 hold

19

for the logic of interest. In the remainder of this section we merely state the theorems and indicate
dependencies; for proofs and discussion, see [BHW94].

The theorems below hold for arbitrary choices of ≈ and ≡ that satisfy the following assumption:

Assumption ≈ is regular and ≡ is factorizable by ≈.

The particular case of interest is where ≈ and ≡ are ≈OBS and ≡OBS respectively, for an arbit-
rary choice OBS of observable base types. These satisfy the assumption by Proposition 4.4 and
Theorem 5.15.

Theorem 6.4 ([BHW94]) Mod(behaviour 〈Σ,Φ〉 w.r.t. ≈) = Abs≡(FA≈(Mod(〈Σ,Φ〉))).
Proof: See [BHW94]. The proof depends on Corollary 3.12 and Theorem 3.28. �

Corollary 6.5 ([BHW94]) Mod(behaviour 〈Σ,Φ〉 w.r.t. ≈) ⊆ Mod(abstract 〈Σ,Φ〉 w.r.t. ≡). �

Definition 6.6 ([BHW94]) For any class A ⊆ Alg(Σ) of Σ-algebras, define:

1. Beh≈(A) = Abs≡(FA≈(A)).

2. A/≈ = {A/≈A | A ∈ A}.

Theorem 6.7 ([BHW94]) Mod(abstract 〈Σ,Φ〉 w.r.t. ≡) = Beh≈(Mod(〈Σ,Φ〉)/≈).

Proof: See [BHW94]. The proof uses the fact that A ≡ A/≈A. �

The main characterization theorem is the following:

Theorem 6.8 ([BHW94]) The following conditions are equivalent:

1. Mod(behaviour 〈Σ,Φ〉 w.r.t. ≈) = Mod(abstract 〈Σ,Φ〉 w.r.t. ≡)

2. Mod(〈Σ,Φ〉) ⊆ Mod(behaviour 〈Σ,Φ〉 w.r.t. ≈)

3. Mod(〈Σ,Φ〉)/≈ ⊆ Mod(〈Σ,Φ〉)

Proof: See [BHW94]. The proof depends on Theorems 3.28, 6.4 and 6.7. �

7 Reasoning about specifications

The results presented above serve to clarify our understanding of behavioural satisfaction and behavi-
oural equivalence and the relationship between these in the context of higher-order logic. A concrete
benefit of this is a number of methods for reasoning about specifications, as will be summarized below.
Some of these appear in a different form in [BH95] or elsewhere, while others (Proof Methods 7.14,
7.16 and 7.17) are new.

We begin by introducing some (mostly standard) concepts and notation. Let Σ = 〈B,C〉 be a
signature. In this section we restrict attention to closed formulae.

Definition 7.1 A closed formula ϕ is a consequence of a set Φ of closed formulae, written Φ |= ϕ,
if for any Σ-algebra A, A |= Φ implies A |= ϕ.

When reasoning about a specification SP , our goal is to discover whether or not a given formulae
ϕ is satisfied by all models of SP . Let ≈ = 〈≈A〉A∈Alg(Σ) be a family of partial congruences. A
related goal is that of discovering whether or not ϕ is satisfied w.r.t. ≈ by all models of SP . These
questions amount to determining whether or not ϕ is in the theory (resp. theory w.r.t. ≈) of SP .

Definition 7.2 Let A ⊆ Alg(Σ) be a class of Σ-algebras. The theory w.r.t. ≈ of A is the set
Th≈(A) = {ϕ | A |=≈A ϕ for every A ∈ A}. The (ordinary) theory of A is the set Th(A) = {ϕ |
A |= ϕ for every A ∈ A}; note that Th(A) = Th=(A). If SP is a specification, we write Th(SP) for
Th(Mod(SP)) and Th≈(SP) for Th≈(Mod(SP)).

20

The essence of reasoning about specifications is to find a way of reducing the problems of determining
ϕ ∈ Th(SP) and ϕ ∈ Th≈(SP) to that of consequence (Φ |= ψ for appropriate Φ and ψ); then any
proof system that is sound for |= may be used to finish the job. For the ordinary theory of a flat
specification, the reduction is trivial: ϕ ∈ Th(〈Σ,Φ〉) iff Φ |= ϕ. For the theory w.r.t. ≈ and for
behavioural specifications and abstractor specifications, the problem is much more difficult. We
consider each case below, giving proof methods that provide such reductions.

Let ≈ be expressible by the family of predicates ∼ = 〈∼b〉b∈B , and let ≡ ⊆ Alg(Σ) × Alg(Σ) be
an equivalence relation.

7.1 ϕ ∈ Th≈(〈Σ,Φ〉)
This is the problem that is studied in [BH95], where it is argued that a solution to this problem
provides the basis of a strategy for proving correctness of implementation steps in stepwise refinement
of specifications (cf. [BH94b] and “abstractor” implementations in [ST88]).

The following proof method follows immediately from Corollary 5.7:

Proof Method 7.3 ϕ ∈ Th≈(〈Σ,Φ〉) iff Φ |= pϕq. �

This is essentially the same as the solution proposed in [BH95], except that because the analogue of
our Corollary 5.7 there involves infinitary formulae, more work is required to reduce the problem to
one of consequence for finitary formulae.

Alternatively, if Theorem 6.8 applies, then this problem is equivalent to the problem treated in
Section 7.3 below according to the following result:

Proposition 7.4 ([BHW94]) If ≡ is factorizable by ≈ then Th≈(Abs≡(A)) = Th≈(A).

Proof: See [BHW94]. The proof depends on Corollary 3.12 and Theorem 3.28. �

In this case, Proof Methods 7.7–7.13 below are also applicable.

7.2 ϕ ∈ Th(behaviour 〈Σ,Φ〉 w.r.t. ≈)
This problem can be reduced to ordinary consequence by applying the following easy consequence
of Corollary 5.7:

Proposition 7.5 Mod(behaviour 〈Σ,Φ〉 w.r.t. ≈) = Mod(〈Σ, pΦq〉) where pΦq = {pϕq | ϕ ∈ Φ}.
�

This leads to the following proof method:

Proof Method 7.6 ϕ ∈ Th(behaviour 〈Σ,Φ〉 w.r.t. ≈) iff pΦq |= ϕ. �

If ≈ is regular and ≡ is factorizable by ≈, then any behavioural specification is at least as re-
strictive as the corresponding abstractor specification by Corollary 6.5. Thus, under these conditions
the proof methods in Section 7.4 below (i.e. Proof Methods 7.14–7.17) may be soundly applied to
this problem.

7.3 ϕ ∈ Th≈(behaviour 〈Σ,Φ〉 w.r.t. ≈)

This is the problem that is studied in [BH94a], for a specific indistinguishability relation different
from ≈OBS .

Corollary 5.7 and Proposition 7.5 yield the following proof method:

Proof Method 7.7 ϕ ∈ Th≈(behaviour 〈Σ,Φ〉 w.r.t. ≈) iff pΦq |= pϕq. �

Another approach, which appears to be more powerful, is obtained by appealing to the following
results:

21

Proposition 7.8 ([BHW94]) If ≡ is factorizable by ≈ then Th≈(Abs≡(FA≈(A))) = Th(FA≈(A)).

Proof: By Proposition 7.4 and the definition of fully abstract algebra. �
Proposition 7.9 ([BH95]) FA≈(Mod(〈Σ,Φ〉)) = Mod(〈Σ,Φ ∪ {∀x, y:b.(x ∼b y ⇔ x =b y) | b ∈
B}〉).
Proof: Directly from the definition of fully abstract algebra. �
These together with Theorem 6.4 yield the following:

Proof Method 7.10 Suppose that ≈ is regular and ≡ is factorizable by ≈. Then ϕ ∈ Th≈(behaviour
〈Σ,Φ〉 w.r.t. ≈) iff Φ ∪ {∀x, y:b.(x ∼b y ⇔ x =b y) | b ∈ B} |= ϕ. �
This is essentially the same as the method proposed in [BH95], with the proviso concerning infinitary
formulae mentioned earlier.

It is worth pointing out that a weaker but very simple and potentially useful consequence of this
is the following:

Proof Method 7.11 Suppose that ≈ is regular and ≡ is factorizable by ≈. Then ϕ ∈ Th≈(behaviour
〈Σ,Φ〉 w.r.t. ≈) if Φ |= ϕ. �

Finally, a more direct approach to this problem is to reduce it trivially to consequence w.r.t. ≈:

Definition 7.12 A closed formula ϕ is a consequence of a set Φ of closed formulae w.r.t. ≈, written
Φ |=≈ ϕ, if for any Σ-algebra A, A |=≈A Φ implies A |=≈A ϕ.

Proof Method 7.13 ϕ ∈ Th≈(behaviour 〈Σ,Φ〉 w.r.t. ≈) iff Φ |=≈ ϕ. �
Then what is required to finish the job is a proof system that is sound for |=≈. See [Rei85], where a
proof system for conditional equational logic is given that is sound for an indistinguishability relation
different from ≈OBS , in the context of partial algebras; see also [HW93].

7.4 ϕ ∈ Th(abstract 〈Σ,Φ〉 w.r.t. ≡)
This is the problem that is of importance for reasoning about specifications in a language like ASL
[SW83] that includes a specification-building operation corresponding to abstract; cf. [Far92].

If Theorem 6.8 applies, this problem can be reduced to the problem treated in Section 7.2 above.
Then Proof Method 7.6 is applicable.

Alternatively, if the formula to be proved is a relativized formula or is logically equivalent to such
a formula, Corollary 5.8 yields the following reduction.

Proof Method 7.14 Suppose that ≡ is factorizable by ≈ and ϕ |=| pψq for some closed formula ψ.
Then Φ |= ϕ implies ϕ ∈ Th(abstract 〈Σ,Φ〉 w.r.t. ≡).

Proof: Suppose A ∈ Mod(abstract 〈Σ,Φ〉 w.r.t. ≡), i.e. there is some algebra A′ such that A′ ∈
Mod(〈Σ,Φ〉) and A ≡ A′, and Φ |= ϕ. But then A′ |= ϕ, so A′ |= pψq, and then A |= pψq (by
factorizability and Corollary 5.8) so A |= ϕ. �
This is a direct extension of the method for reasoning about abstractor specifications presented in
Section 4 of [ST87], which applies only to formulae built in certain ways from observable equations.
By analogy with an observation there, Proof Method 7.14 is not confined to inferring formulae that are
equivalent to relativized formulae. In order to validly conclude that ϕ ∈ Th(abstract 〈Σ,Φ〉 w.r.t. ≡),
it is enough to have a proof of Φ |= ϕ for which there is a “horizontal cut” containing only formulae
that are equivalent to relativized formulae. Similar remarks apply to the proof methods presented
below. A formula that is equivalent to a relativized formula is called a “≈-invariant” formula in
[BH95], but this concept is not used as the basis of a reasoning method there.

A useful special case of Proof Method 7.14 can be obtained by adding “respectful” abstraction
λr and quantification ∀r to the syntax, where:

λr(x1:τ1, . . . , xn:τn).t abbreviates λ(x1:τ1, . . . , xn:τn).DOM τ1(x1) ∧ · · · ∧DOM τn(xn) ∧ t
∀rx:τ.t abbreviates ∀x:τ.DOM τ(x)⇒ t

22

Definition 7.15 A respectful formula is a formula that may contain λr and/or ∀r but does not
contain λ or ∀.

It is easy to see that ϕ |=| pϕq for any respectful formula ϕ. This gives the following.

Proof Method 7.16 Suppose that ≡ is factorizable by ≈ and ϕ is a closed respectful formula. Then
Φ |= ϕ implies ϕ ∈ Th(abstract 〈Σ,Φ〉 w.r.t. ≡). �

In the case of behavioural abstraction, note that ∀r on base types corresponds exactly to reachable
quantification as in [Sch92]. Also, since every observable formula amounts to a respectful formu-
lae (since respectful abstraction and quantification over observable types is equivalent to ordinary
abstraction and quantification), we have the following:

Proof Method 7.17 Suppose that ϕ is a closed observable formula. Then Φ |= ϕ implies ϕ ∈
Th(abstract 〈Σ,Φ〉 w.r.t. ≡OBS). �

In Section 5 of [Sch92], Schoett highlights an inadequacy in the method for reasoning about
abstractor specifications presented in [ST87]. He gives a simple abstractor specification with axioms
in first-order equational logic and a property that it satisfies, and shows that an infinite number
of applications of the proof method in [ST87] would be required in a proof of that property. This
particular example is easily dealt with using Proof Method 7.16: the required property can be
expressed using higher-order respectful quantifiers and proved in the unabstracted specification,
whereupon a single application of the proof method completes the proof.

7.5 ϕ ∈ Th≈(abstract 〈Σ,Φ〉 w.r.t. ≡)
If ≡ is factorizable by ≈ then this problem is equivalent to the problem treated in Section 7.1 above
according to Proposition 7.4. Thus Proof Method 7.3 is applicable. If Theorem 6.8 applies then
Proof Methods 7.7–7.13 from Section 7.3 are applicable as well.

8 Further work

One of our reasons for studying behavioural semantics of specifications with higher-order formulae as
axioms was the desire to apply the results in the Extended ML framework for the formal development
of ML programs from specifications [ST89], [KST94]. The characterization results and reasoning
methods are of direct relevance in this context: the interpretation of Extended ML interfaces involves
abstractor specifications, and the logical system used for writing axioms is (a form of) higher-order
logic. However, the framework presented here needs to be extended in two directions to make the
match a perfect one.

First, the framework needs to be generalized to allow functions of higher type as in [Mei92], in
addition to the predicates of higher type that are already present. The most obvious examples which
require the use of behavioural semantics in the context of higher-order logic (e.g. in Extended ML)
use such functions. Such a generalization would involve adding constants of higher type to signatures
and allowingλ-abstraction to be used for forming functions as well as predicates. This can be done, as
we will describe in a future paper; the generalization is not straightforward because Proposition 3.18
does not hold if we extend Definition 3.17 with obvious choices for [[τ → τ ′]]≈A, such as {f : [[τ]]≈A→
[[τ ′]]≈A| ∀u, v ∈ [[τ]]≈A.u ≈A,τ v ⇒ f(u) ≈A,τ′ f(v)}. Furthermore, for functions to be of real use there
must be a way of constructing them from “specifications”, e.g. recursive definitions. Therefore, one
needs a unique choice operator or (in the absence of a syntax for proofs) a general choice operator ε as
in HOL [GM93]. The presence of such a choice operator again poses non-trivial albeit surmountable
problems. But note that n-ary functions may already be coded as (n+1)-ary predicates in the usual
way, and that this coding extends to functions of higher type.

Second, the use of behaviour and abstract in the context of structured specifications built using
operations like enrich and derive needs to be studied. An attempt at this appears in [BHW94],

23

where the extension of behaviour to structured specifications is a post hoc construction on the class
of models of the underlying specification:

Mod(behaviour SP w.r.t. ≈) = Beh≈(Mod(SP))

Unless SP is a flat specification, the result that this produces is different from what is obtained when
the specification-building operations in SP are interpreted in the usual way but with axioms in SP
satisfied according to |=≈ rather than |=. Further work is required to clarify the relationship between
abstractor specifications (which generalize easily to structured specifications) and this alternative
interpretation of behavioural specifications.

Applying the results and proof methods to concrete examples should shed considerable light.
Without having attempted such examples, we are not yet in a position to understand the tradeoffs
between the various proof methods that may be applicable in a particular situation. But in view
of the size and complexity of the predicates INDIST

b̂
in Theorem 5.2, it seems clear that proof

methods that involve the direct manipulation of relativized formulae will not be convenient for
use in practice when ≈ is the indistinguishability relation ≈OBS . Here, a promising avenue is the
search for more tractable predicates which correctly express ≈OBS in restricted circumstances (cf.
the notion of “conditional axiomatization” in [BH95]). Proof methods which make no use of the
predicates INDIST

b̂
(e.g. Proof Methods 7.13 and 7.17) do not suffer from this problem.

Acknowledgements: Thanks to Michel Bidoit and Rolf Hennicker for many very useful com-
ments, including an explanation of how [BH95] relates to concepts and results in Sections 5 and 7.
Proof Method 7.10 is due to them, and they pointed out that a previous version of Proof Meth-
ods 7.14 and 7.16 were unnecessarily restrictive. Thanks to Andrzej Tarlecki for many discussions
on related topics and for drawing our attention to the idea behind the predicate INDIST

b̂
in The-

orem 5.2. Thanks to David Aspinall for helpful comments on a draft of this paper, and to Wolfgang
Degen for providing useful pointers to the literature.

References
[BH94a] M. Bidoit and R. Hennicker. Proving behavioural theorems with standard first-order logic. Proc. 4th Intl.

Conf. on Algebraic and Logic Programming, Madrid. Springer LNCS 850 (1994).

[BH94b] M. Bidoit and R. Hennicker. Proving the correctness of behavioural implementations. Draft report, Ecole
Normale Supérieure (1994).

[BH95] M. Bidoit and R. Hennicker. Behavioural theories. Selected Papers from the 10th Workshop on Specifica-
tion of Abstract Data Types, Santa Margherita Ligure. Springer LNCS, to appear (1995).

[BHW94] M. Bidoit, R. Hennicker and M. Wirsing. Behavioural and abstractor specifications. Report LIENS-94-
10, Ecole Normale Supérieure (1994). To appear in Science of Computer Programming. A short version
appeared as: Characterizing behavioural semantics and abstractor semantics. Proc. 5th European Symp.
on Programming, Edinburgh. Springer LNCS 788, 105–119 (1994).

[Far92] J. Farrés-Casals. Verification in ASL and Related Specification Languages. Ph.D. thesis, Report CSR-92-
92, Univ. of Edinburgh (1992).

[GGM76] V. Giarratana, F. Gimona and U. Montanari. Observability concepts in abstract data type specification.
Proc. 1976 Symp. on Mathematical Foundations of Computer Science, Gdansk. Springer LNCS 45, 567–
578 (1976).

[GM82] J. Goguen and J. Meseguer. Universal realization, persistent interconnection and implementation of ab-
stract modules. Proc. 9th Intl. Colloq. on Automata, Languages and Programming, Aarhus. Springer
LNCS 140, 265–281 (1982).

[GM93] M. Gordon and T. Melham. Introduction to HOL: a theorem proving environment for higher-order logic.
Cambridge Univ. Press (1993).

[Hen50] L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic 15:81–91 (1950).

[Hen91] R. Hennicker. Context induction: a proof principle for behavioural abstractions and algebraic implement-
ations. Formal Aspects of Computing 4:326–345 (1991).

24

[HW93] R. Hennicker and M. Wirsing. Behavioural specifications. In: Proof and Computation. Marktoberdorf
International Summer School, 1993. NATO ASI Series F, Vol. 139. Springer, to appear.

[KST94] S. Kahrs, D. Sannella and A. Tarlecki. The semantics of Extended ML: a gentle introduction. Proc. Intl.
Workshop on Semantics of Specification Languages, Utrecht, 1993. Springer Workshops in Computing,
186–215 (1994).

[Mei92] K. Meinke. Universal algebra in higher types. Theoretical Computer Science 100:385–417 (1992).

[MG85] J. Meseguer and J. Goguen. Initiality, induction and computability. In: Algebraic Methods in Semantics
(M. Nivat and J. Reynolds, eds.). Cambridge Univ. Press, 459–540 (1985).

[Mit90] J. Mitchell. Type systems for programming languages. In Handbook of Theoretical Computer Science, Vol.
B (J. van Leeuwen, ed.), 365–458. North Holland (1990).

[Nip88] T. Nipkow. Observing nondeterministic data types. Selected Papers from the 5th Workshop on Specifica-
tion of Abstract Data Types, Gullane. Springer LNCS 332, 170–183 (1988).

[NO88] P. Nivela and F. Orejas. Initial behaviour semantics for algebraic specifications. Selected Papers from the
5th Workshop on Specification of Abstract Data Types, Gullane. Springer LNCS 332, 184–207 (1988).

[ONS91] F. Orejas, M. Navarro and A. Sánchez. Implementation and behavioural equivalence: a survey. Selected
Papers from the 8th Workshop on Specification of Abstract Data Types, Dourdan. Springer LNCS 655,
93–125 (1991).

[Pho92] W. Phoa. An introduction to fibrations, topos theory, the effective topos and modest sets. Report ECS-
LFCS-92-208, Univ. of Edinburgh (1992).

[Rei85] H. Reichel. Behavioural validity of conditional equations in abstract data types. Proc. of the Vienna Conf.
on Contributions to General Algebra, 1984. Teubner-Verlag, 301–324 (1985).

[ST87] D. Sannella and A. Tarlecki. On observational equivalence and algebraic specification. Journal of Computer
and System Sciences 34:150–178 (1987).

[ST88] D. Sannella and A. Tarlecki. Toward formal development of programs from algebraic specifications: im-
plementations revisited. Acta Informatica 25:233–281 (1988).

[ST89] D. Sannella and A. Tarlecki. Toward formal development of ML programs: foundations and methodology.
Joint Conf. on Theory and Practice of Software Development, Barcelona. Springer LNCS 352, 375–389
(1989).

[ST92] D. Sannella and A. Tarlecki. Toward formal development of programs from algebraic specifications:
model-theoretic foundations. Proc. 19th Intl. Colloq. on Automata, Languages and Programming, Vi-
enna. Springer LNCS 623, 656–671 (1992).

[SW83] D. Sannella and M. Wirsing. A kernel language for algebraic specification and implementation.Proc. 1983
Intl. Conf. on Foundations of Computation Theory, Borgholm. Springer LNCS 158, 413–427 (1983).

[Sch92] O. Schoett. Two impossibility theorems on behavioural specification of abstract data types. Acta Inform-
atica 29:595–621 (1992).

[Sch94] P.-Y. Schobbens. Second-order proof systems for algebraic specification languages. Selected Papers from
the 9th Workshop on Specification of Abstract Data Types, Caldes de Malavella. Springer LNCS 785,
321–336 (1994).

[Sch77] K. Schütte. Proof Theory. Springer (1977).

[Sti92] C. Stirling. Modal and temporal logics for processes. Report ECS-LFCS-92-221, Univ. of Edinburgh (1992).
To appear in: Proc. of the VIII Banff Higher Order Workshop, Springer Workshops in Computing (1995).

[Win93] G. Winskel. The Formal Semantics of Programming Languages. MIT Press (1993).

