STRUCTURED THEORIES IN LCF

D.T. Sannella and R.M. Burstall

Department of Computer Science
University of Edinburgh

Abstract: An extension to the Edinburgh LCF interactive theorem—proving system is described which provides new
ways of constructing theories, drawing upon ideas from the Clear specification language. A new theory can be built
from an existing theory in two new ways: by renaming its types and constants, or by abstraclion (forgetting some
types and constants and perhaps renaming the rest). A way of providing paramelerised theories is described,

These theory-building operations -~ together with operations for forming a primitive theory and for taking the union of
theories ~- allow large theories to be built in a flexible and well-structured fashion. Inference rules and strategies

for proof in structured theories are also discussed.

1 Introduction

Edinburgh LCF {GMW 79] is a mechanised system for conducting proofs interactively, Users prove theorems in
LCF by writing (and then running) goal-directed proof strategies as programs in a general-purpose applicative °
language (ML). Although users are given complete freedom to try any proof strategy they choose (including an
incorrect one) it is impossible to prove an invalid theorem in LCF. The system provides a set of primitive building~

blocks which are useful for building proof strategies, but users are not compelled to make use of them.

The proof of a theorem takes place in the context of a theory -~ that is, of some set of types (type operators,

since potymorphic types are alk d), tants and forming the axiomatisation of some probliem area. New
theories can be built by combining several existing theories and enriching the result with some new type operators,

constants and axioms. A hierarchy of theories can be built in this fashion,

We propose an extension to LCF whereby theories can be built in new ways. Most of this has been implemented
but is not as yet much used. The type operators and constants of a theory may be renamed to produce a new
theory, or we can abstract from a theory (forgetting some of the type operators and constants and perhaps renaming
the rest). We aiso describe a way of providing parameterised theories. These theory-buiiding operations
-~ together with operations for taking the union of two theories and for forming a primitive theory —— allow large
theories to be built in a flexible and well-structured fashion. Such a structured theory inherits the type operators
and constants of the theories from which it was buift (after appropriate renaming) but does not directly inherit the

axioms.

Proving theorems in a structured theory is different from proof in a conventional LCF theory, In the course of a
proof, the user will change frequently from the context of one theory to that of another, climbing down the hierarchy
to prove simple lemmas in basic theories and then up again to apply these lemmas in the proof of theorems in
higher-level theories. We provide some new inference rules to permit such a styie of proof, and we develop a
general strategy for proof in a structured theory. The structure of the theory can be useful in directing the search
for a proof. In many cases the problem of gathering together enough information in & well-structured theory to

prove a theorem can be soived mechanically.

378

We have been strongly influenced by work in structured algebraic specification {e.g. [ADJ 78], [ASM 79} and
[Bau 81]) and in particular by our work with the Clear specification language [BG 77]. The semantics of Clear can
be expressed in terms of the strucluring operstors mentioned above. Our experience with Clear has convinced us
that it is important to retain the structure which ie formed as a large theory is built up in stages, Structuring is
necessary to keep the information in large theories under control. This is our attempt to transport ideas from Clear
to the LCF context.

2 Edinburgh LCF

We now briakly describe the features of Edinburgh LCF which are most important for our purposes. A fuil
description of the system is given in [GMW 79].

Edinburgh LCF {sometimes called simply "LCF') is & system for conducting proofs interactively. It can be viewed
as consisting of three relatively independent components: ML, the metalanguage in which proofs are carried out;

PPLAMBDA, the underlying deductive calculus; and a methodology for goai-directed proof in PPLAMBDA using ML,

ML is a general-purpose applicative language incorporating a completely secure higher-order and polymorphic type
discipline, 1t inciudes a fiexibie mechanism for raising and trapping exceptions and aflows the declaration and use of
abstract data types which are sccessible oniy through the functions provided when the type is deciared, Ordinary
types used in progremming (such as integer, boolean and list) are predefined in ML as well as special types (like

term, formuta and theorem) for use in proving theorems.

PPLAMBOA is a family of deductive calculi or theories with terms from the typed fambda-caicuius and (for each
member of the family) a set of type operators, constants and axioms. PPLAMBDA can be viewed as a collection of
ML functions and types, However, for reasons of efficiency it is in fact implemented only partially in ML. A
theorem (thm} in PPLAMBDA is an ML data structure like & term or formuls, but with & crucial difference! the only
way to construct a theorem is by application of built-in inference rules (i.e., thm is an abstract data type with
inference rules as constructor functions). This ensures that any object of type thm must be true in the theory in
which it was formed, Thus the lype securily provided by the ML type checker is used to maintain logical security.
There are facilities for building a8 new PPLAMBDA theory by combining several theories and enriching the resuit with
some new type operators, constants and axioms. This allows a group of theories to be structured into a hierarchy in
which a theory inherits all the type operators, constants and thecrems (provabie sentences, including axioms) of the

theories from which it was buiit.

Given & theorem io be proved {we use the notation A%Z ¢, where A is a list of assymptions and ¢ is the desired
conciusion), we apply a tactic; that is, a proof rule in the form of an ML function of type
goal => (goal® X {(thm"-»ihm)). This may fail if the goal is not of the appropriate form., If it succeeds then it
delivers a list of subgoals together with a proof; this is a function buillt from inference rules which will produce a
theorem (written Al-c) corresponding to the original goal if it is given a theorem corresponding to each of the
subgoals, Proving a theorem is then a matter of applying one tactic after another until the empty list of goals is

bt d¢. The 11 supplies & coflection of buiit-in tactics, but the user may construct his own. Tacticals like

¥

THEN: tactic X tactic —> tactic

are provided for composing tactics into farger tactics called strafegies. Typically, a user proves a theorem by

interactively dasigning a strategy which will solve the entire problem by reducing his goal to the empty goal fist,

379

3 Structured theories

Edinburgh LCF as described in the previous section is & powerful too! for interactive proof. This has been
demonstrated by the success of a number of attempts at applying LCF to prove rather difficult theorems -- see for
example [Cohn 79]. But one weakness of LCF is that only a primitive facility is provided for structuring theories,

Using the means described earlier, structures such as the following can be built:
T
13 T4\axtension c
ARG
T1 T2
" o el

axtension A T extension B

In this diagram, extension C denotes the new type operators, constants and axioms by which the union of T3 and T4

is enriched to yield T. Extension C is therefore itseif a theory, Each theory inherits the type operators, constants

and theorems of its parents (where the parents of T are T3, T4 and extension C, for pie}, Separate theories
may share common ancestors. The theory containing the interence rules of PPLAMBDA is implicitly a parent of every

theory,

The problem is that we sometimes would like to build theories in other ways. For example, suppose we build

the theory of lists from the theory of booleans:

List = the extension of Boolean by:

types list of o
constants nil: list of @
cons: Q@ X listof @ — |list of @
head: listof o - «
tail: listof @ > listof @
null: list of & -> bool
axioms head(cons(x,1)) = x null(cons(x,l})) = false
tail{cons(x, 1)) = 1 null(nil) = true

(Free variables are implicitly universally quantified.] The theory of stacks may be built in the same way:

Stack = the extension of Boolean by:

types stack of @@
constants nilstack: stack of &
pugsh: @ X stack of & -» stack of @
top: stackof @ - @
pop: stack of @ -» stack of ¢
isempty: stack of @ ~> booi
axioms top(push(x,s)) =
pop(push(x,s)) =

x isempty(push(x,s)) = faise

s isempty(nilstack) = true

Note that Stack is identical to List except for type and constant names. We would like some way of describing this
relation within LCF,

Our solution is to extend LCF to allow new kinds of relationships between theories in addition to the present ‘is
an enrichment of' association. In this case instead of constructing Stack by extending Booleah we can build it from
List by renaming the type operator list as stack, and the constants nif, cons, head, tail and null as nilstack, push,
top, pop and isemply respectively (or List couid be built from Stack by renaming in the opposite direction). # ¢

describes this renaming (details below) then we can form the following structure:

380

Stack
List
list~extension Boolean

Now aithough Stack has List and Boolean as ancestors, it inherits their type operators, constants and theorems only
after they have been renamed according to O, So Stack contains exactly the components given above, and not {for
axample) the theorem faidfcons{x,#}} = [. An advantege of relating Stack to List in this fashion over building the

two theories independently is that now any thecrem proved about lists aut tically extends to 3 corr

ponding
theorem about stacks, without a separate proof,

As another exampie, & theory of symboi tables (for an Aigol~iike language with nested blocks) may be built from
Stack and the theory of arrays {see [GHM 78] and [BG 77] for variations on this exampie):

Array = the extension of Index by:

types array of &

constants nilarray: array of O
pul: index X o X arrayof @ -~ arrey of &
get: index X arrayof @ > «
isin: index X array of @ - bool

adoms get(i, putli,x,a)) = x not(i=j) == getli,put(j,x,a)) = get(i,a)
isin(i, put(i,x,8)) = true notli=j) =3 isin(i,put(j,x,a)) = isin(i,a)
isin{i, nilarray) = faise

SymbolTable = the extension of Stack and Array by:

constants addid: index X @& X stack of array of @ —> stack of array of &
retrieve: index X stackof arrayof a -
isinblock: index X stack of array of @ ~> bool
enterblock, leaveblock: stack of array of @ - stack of array of @
axioms addid{i,x, st} = push{put{i,x,top(st)),pop(st)}
not(isin(i,a)) == retrieve(i,push(a,st)} = retrieve(i,st)

isin(i, &) =3 retrieve(i,push(a,st)} = get(i,a)
isinblock (i, st} = isin(i,top(st))

enterblock(st) = push(nilarray, st)

teaveblock(st} = pop(st)

So far we have built the following structure:

SymbolTable
symboitabie~ Stack Array
extension T \

c . array—-
List Index extension
/ﬁ \ 2 index~

list~ Booiean extension

axtension

[The theories marked with * were nol shown above.]

But now if we work in the theory SymboiTable we are forced to use the type stack of array of a when we mean
symboftable of @, and we must use the constant nilstack instead of niltable. Moreover, since the theory
SymbolTable has Stack and Array as parents, it inherits all of the type operators, constants and theorems of these
theories. Many of these -~ the type operetors stack and array along with most of their associated constants and the
axioms which define tham —~ are irrelevant to the new theory beyond the purpose they served in helping to describe
syrabol tables. We would like to absiract away from the particular construction we used to define symbol tables,
retaining only the type oparators and constants we need to use bot tables and the th which define them.

381

Naturally, in the course of proving a theorem it may be necessary to refer to Stack and Array in order to determine

the properties of symboi tables, but in the meantime they should not intrude.

We can build the theory we want from Symboltable by taking its inverse image under an appropriate renaming
{this is equivalent to the derive operation in Clear). This renaming maps the type operators and constants we want

in the result —— in this case these are the type operators and constants of Index and Boolean together with:

types symboltable of &

constants niltable: symboitable of o
addid: index X & X symboltable of & ~* symboitable of a
retriove: index X symboltable of @ - «
isinblock: index X symboitable of & - bool
enterblock, leaveblock: symbolteble of & -+ symboltable of

(but not stack of a or array of & or any of their constants) —- to the types and constants of SymboiTable. Here,
symboltable of (& maps to stack of array of @, niltable maps to nilstack, and the other type operators and constants
map to themselves. Cailf this renaming CG°'. The inverse image of SymboiTable under O* contains & set of theorems
formed wsing the type operators and constants shown above, consisting of just those sentences which ' maps to

theorems of SymbolTable. If we call the resulting theory BetterSymbolTable, then we have the following structure:
BetterSymbolTable

N

SymboiTable

symboltable— Stack Array
extension T J \
o array-
List index extansion
\ index-
list- Boolean extension
extension

(An arrow pointing down denotes an application of the inverse image constructor. The arrow thus shows the

direction of the renaming.) Again, although BetterSymboiTable has Stack and Array as ancestors, it does not inherit
their type operators, constants and theorems. The relation between the theorems of BetterSymbolTable and the
theorems of its ancestors is indirect - to see if a sentence of BefterSymbolTable is a theorem, translate it using C°'

and then try to prove the result in SymbolTable.

As the examples above show, we propose to change LCF to permit theories to be built in new ways from existing
theories. We treat theories as ML data objects, and we build new theories from old theories by application of
theory-constructing functions. Inheritance of type operators, constants and theorems from ancestor theories is
indirect, even when a theory is constructed as in present-day LCF by combining two existing theories ~~ we believe

that it is important to retain the structure which is formed as a large theory is built up in stages.

Proving a theorem in such a structured theory is different from proof in a conventional LCF theory. In ordinary
LCF the user works within the theory he has chosen for the duration of his terminal session (although this theory
may grow as he adds new ty:Se operators, constants and axioms). All of the theorems of the theory are
immediately available for use in proofs, including the theorems of ite ancestors. In contrast, the theorems of a
structured theory tend to be scattered throughout the structure and must be extracted from the theories in which
they reside whan they are neaeded in a proof. in the course of a proof in a structurad theory, the user may change

from the contaxt of one theory to that of another at will, climbing down the tree (more procisely, DAG) of theories

382

to prove iemmas on basic typss and then up again to apply these lemmas in the proof of theorems conterning

higher-tave! types,

It may seem siily to distribute information in this fashion, in effect making it more difficult for a user to appiy
axioms and previously-proved theorems, But we argue that some scheme of this nature is necessary to keep the
information in a large theory under control. Any sizeable unstructured assortment of theorems is more difficuit to
keep track of then the same collaction of theorems organised into coherent theories, each containing only those
theorems which are directly relevant o it, Moreover, as we will show later, the problem of finding all information
relevant to satistying a particular goal in a proof can be solved mechanically in & well-structured theory. A final
reason for scattering theorems throughout a structured theory is that in the presence of the inverse image theory

constructor, theorems cannot in general be brought up to *top level’,

Although the LCF system was designed for ducting proofs in a particular fogic (PPLAMBDA), much of the
system including ML and the LCF proof methadology is logic-independent, In fact, David Schmidt at Edinburgh and
(separately) Jacek Leszczylowski [Les 82] have done some werk toward the development of an LCF system which
will allow proofs te be conducted in any desired logic. The following formalisation of the theory-building operations is
targely logic-independent as well, It does not depend on the particular inference rules or predefined type operators
and constants of PPLAMBDA. Sentences need not be built from PPLAMBDA forms; any sort of sentence which is

ble to transigtion under a v ing is ptable. See [GB 82] for the precise conditions which an
acceptable logic {called an institulion) must satisfy,

Def: A signature Lise pair <8, where S is a set of lype operators (each having an arity € IN) and Nisa
set of constants (each having a fype constructed from operators in § and type variables).

The type operators and constants of each theory T form a signature, denoted sig(7).

Def: A signature morphism O: <8,{I> -+ <8, (¥> is a pair <f,g> with f:5->S" an arity-preserving map on type

operators and g:{1-*{Y¥" a type-preserving map on constants,

The ‘renaming’ O:sig(List)-> sig{Stack) described above was a signature morphism. In particutar, O=<f,g>
where:

¢(fisty=stack, f(boof}y=boof

g {nil y=nil, k, glcons)=push, glhead)=top, g(tail)=pop, glnuil)=isemply,
gltrue)=true, g(false)=talse, g(not)=not, . . .

Now, O is arity-preserving (because e.g. arity(/ist) = 1 = arity(f(/ist))} and type—preserving (because .g.
(type (cons)) = ¥ (@Xlist of @->list of @) = AXstack of ~*stack of & = type(push) = type(g(cons)), where # is
the extension of f to types). Hote that a signature morphism need not be 1-1 or onto, although O is both,

Def: f D=¢8,{1>, then the derived signature dI, is the signature <d8,d{)>, where dS is the set of types

constructable from operators in S end type variables (the arity of a type is the number of distinct type variables it

contsins), and 4} is the set of well-lyped } -expressions coastructable from tants in {1,

De#: A derived signature morphism d0:L~+L' is a signature morphism do:L->dL',

The renaming O° described above was a derived signature morphism, 0’ 5ig (BetterSymboiTable)+
sig{SymboiTable). Indeed, more of the specification of BetterSymboiTable can be incorporated into this morphism,
Suppose SymboiTable’ is the same as SymboiTable above but without the constants addid, isinblock, enterblock and
feav k (and without the axi which define them}. Let dO:sig(BetterSymbolTable}—>sig(SymbolTable’) be the

383

derived signature morphism which is the same as O' except that:
addid maps to Ai,x, st. push(put{i, x, top(st)), pop(st})
isinblock maps to Ai,st.isin(i,top(st))
enterblock maps to Ast.push(nilarray, st)
teaveblock maps to pop
Then inv-image(dO, SymbolTable'} gives the same theory as inv-image{C’, SymbolTable) (= BetterSymboiTable),

apart from structure,

it 0:I—> ' is a signature morphism then jet 0% T~sent I'~sent be the extension of O to

sentences.

Def: A structured theory is any term built using the following constructors:

prim-theory: signature X set of sentences -> structured theory

ynion: structured theory X structured theory - structured theory

rename: signature morphism - X structured theory - structured theory
inv-image: derived signature morphism X structured theory -~ structured theory

The semantics of structured theories is defined as follows:

sig: structured theory -* signature

sigl prim-theoryt,)] = = if S is a set of ZL-sentences
sigﬂ:union(T,T')B = sig ‘ITB U sig[[T'}] if the signatures are compatiblie
sig renameto, 1] = £, where 0:5- %' citsiglt] =2
sig[linv-image(do,)] = £, where do:E- L' is a derived signature morphism

it sigr] =5

Terms which fail to satisfy the indicated conditions above yield errors. Otherwise, the provable theorems of a

structured theory are as follows:
thms: structured theory > set of sentences

thmsﬂprim-theory_(Z,S)]] = the set of sentences provable from $
thms[[union(T,T')Il = the set of sentences provable from thms[[T]] u thms[[T']]
thmsﬂ:rename(c.ﬂﬂ = the set of sentences provable from o (thmsETB)

thms [inv-imagetdo, T3]} = do~tanms[Tl) = (t| dofwemms 7])

The constructor prim-~theory produces an ordinary LCF (primitive) theory. We use binary union of theories rather

than n-ary union as in ordinary LCF for the sake of simplicity.

Suppose Llist is sig(List), i.e, the signature consisting of the types Jist of & and boof and the constants nil,
cons, head, tail, null, true, false and not (together with the remaining boolean operators), and Siist is the following
set of sentences:

heoad{cons(x,1}) = x

tail{cons(x, 1)} = 1

null(cons(x,1)) = false

nuli{nil) = true
and O:sig{List)->sig{Stack) is as defined above; then

rename (0, union {prim-theory (Zlist, Slist), Boolean))

is the structured theory Stack,

The choice of structuring operators is not at all arbitrary. We were heavily influenced by our previous experience

384

with the Clear specification language [BG 77, 80]. it happens that the semantics of Clear can be expressed entirely
in ferms of these simple theory-building operators (see [San 82a] for detsils). The theory-buiiding operators of
Ciear are at a slightly higher ievel than those we have here; typically an application of & single Clear operator is

equivalent to the application of two or three of our operators.

4 Parameterised theories

One feature which Clear has but which is missing here is a parameterisation mechanism, A paramelerised theory
{or procedure) in Clear can be viewed as a function taking a theory together with a signature morphism to a theory
{parameterised theories with more than one argument are aiso allowed}. Each parameterised theory has a formal
parameter (itseif a theory) which specifies the sort of actual parameter which the parameterised theory will accept.
A typical example of a parameterised theory is Sorting, which produces a theory specifying a sorting function on lists
of objects of type t, given a theory describing t. In this cagse the formal parameter would probably be the following

theory:

POSet = the extension of Boolean by:

types ¢
constants &: t X t — bool
axioms x€x = true

xSy and y€x =3 x =y

*xQy and y<z =3 x€z = true
This says that any actual parameter theory must include at least one type (other than bool) and a constant which
satisfies the laws of a partial order relation on that type. Suppose we have an actuai parameter, the theory SetNat
of sets of natural numbers which includes the constant C: sefnat X setnat — bool, defined in the wsval way.
Before applying Sorting to SetNat, we must construct a signature morphism which ‘fits' the signature of POSet to that
of SetNat, Suppose O: sig(POSet) — sig(SetNat) maps the type t to setnat, and maps the constant € to & (and
maps bool and its constants to themselves), Now the expression Sorting (SetNat{ 0]} is legal and produces the
desired result if the axioms of POSet (translated via 0¥) are theorems of SetNat.

We have a (rather tentative and untested) scheme for introducing Clear-style parameterised theories into LCF,

Let apply be the following function:

apply: structured theory X structured theory —
structured theory X signature morphism ~> structured theory

et apply (Proc,Formal} (Actuai, 0) =
thms{[rename{ G, Formal} Hgthms {[Actual}} then fail
else lot 5 = exiend(a,sig!{?roc]}) in
union{ union(Actual, rename {0, Formal)), rename(3J, Proc) }

This definition is rather high-level; in particular, implementing the first line requires a theorem prover. The
auxiliary function extend takes a signature morphism o:I—> L' and a signature L' (with ZC L") and returns a
signature morphism O:5"-» Z'U(E"~L) which is the extension of O to £ by the identity (i.e. O £ =0 and

a er =jd), This assumes that LCF is modified to allow the same constant to have different types in different
theories; otherwise J could map each constant W in Proc to the constant W, fag, where fag is a token supplied by

the user as an extra argument of apply(Proc, Formal),

Apply is a general function for constructing parameterised theories having one argument (the generalisation to

multiple arguments requires more mechanism), For example, let SortingTh be the following structured theory

385

describing a sorting function on lists of objects of type t:

s-:rtmg‘!'h
\‘ sorting-
extension
Set\ List \
poset- Boolean/ list~
extension extension

The apply function can be ysed to turn this abstract theory of sorting (it is abstract in the sense that nothing is

known about objects of type t except that they are partislly ordered) into an ML function:

Sorting: structured theory X signature morphism -~ structured theory
= apply (SortingTh, POSet)

if SetNat and O:sig(POSet)~ sig(SeiNat) are defined as above, then evalustion of Sorting{SetNat, 0) produces the

following result:

Sorting (SetNat,)

'Q’Somngrh

N e
- / \ / \ extension
'/ \ posct-/ \Booleln/ \‘list-

We would really like POSet to be an ancestor of SetNat in this resyit, since we have gone to the trouble of proving
that the axioms of POSet hold in SetNat. We are exploring another view of structured theories (as 'decorated’

diagrams in the category of theories) in which this would be more natural,

it is important to note severai points regarding parameterised theories, First of all, adding parameterised
theories does not add a new kind of structured theory constructor, since the result of applying a parameterised
theory to an actual parameter is expressible using the present constructors., ‘Second, this scheme for parameterising
theories is only a suggestion inspired by Clear; other kinds of parameterisation may be useful as well, For
example, MODLISP [DJ 80] permits ordinary values as parameters as well as theories. This is useful for defining
(e.9.) the theory of n-dimensional vectors over a type t — here, the theory defining t and the value n are both
parameters. Finally, suppose A and B are both permissible actual parameters of Sorting (with fitting morphisms O
and O' respectively). The structured theories Sorting(A, G) and Sorting(B, 0') then share the parent SortingTh.

This sharing will prove to be important later.

A different way of introducing parameterised theories inte LCF was proposed by [LW 82], in which all the axioms
of the formal parameter theory appear as assumptions of the axioms in the theory which results from the application,
to be discharged in the normal fashion. This approach seems to be incompatible with our desire to retain the
structure of theories; the result of an application could not have the parameterised theory or its formal parametér as

ancestors,

386

5 inferance ruies

As mentioned eariier, a structured theory inherits theorems from its ancestors in an indirect fashion. For
example, to see if ¢ is a theorem of rename(,T), try to find a theorem # of T such that ot (') =t (this may
involve proving a theorem in I'). These relations between theories are reflected in the semantics of structured
theories given above, In this section we give the LCF-style inference rules which encode the semantics and allow

theorems in parent theories to be passed (often in an aitered form) to their children,

in ordinary LCF we use the notation Aj-¢ to denote a theorem. We now need a different notation, since a
theorem is not true in any absolute sense, but only relative to some theory. We will use the notation (Aj-c) in T
to denote the assertion that Al~¢ is a theorem of the structured theory T'; note that (Al-¢) in T if and only if
Al-c € thmsﬂ:TB. We will call this a fact, The same trick is vsed to maintain the logical security of facts as
ordinary LCF uses to protect theorems; fact is an abstract data type with the inference rules listed below as

constructor functions.

PRIM-THEORY: S€S =3 s in prim~theory(L,8)
UNIONLEFT: sin ¥ => s in union(T,T"
UNIONRIGHT: sin T =3 s in union(T,T")
RENAME: sin T => ot(s) in rename(a,T)
INV-IMAGE: do¥(s)im T =3 s in inv-image(dd,T)

in addition, the usuai inference rules of PPLAMBDA (or whatever logical system we use) must be systematically

modified to operate on facts rather than theorems. For example:

ASSUME: w lwin T
CONJ: A1I- w, in T and Azl— w, in T = A1U Azl— \.v“/\w2 inT
SPEC: Al-ViwinT =» AFwtixlinT if t and x are of the same type

it is easy to prove from the semantics that these rules are sound. The following proof of the fact

(& Vx, isempty(pop(push(x, nilstack))) = true) in Stack illustrates their use (we omit routine quantifier stripping):

(- aull{nit) = true) in list-extension (PRIM-THEORY)
= (b nuli(nil) = true) in List {UNIONRIGHT)
(I~ Vi.¥x. tait(cons(x,i)) = 1) in list~extension {PRIM~-THEORY)
=y (F VI.Vx. taii(cons(x,1}) = 1) in List (UNIONRIGHT)
=> (} VI Vx. nuli(tail(cons(x,0)}) = nult(1)) in List {APTERM)
= (I~ Vx.null(tait{cons(x,nil))) = null(nil)) in List {SPEC)
=>» (| Vx.nuli(tail(cons(x,nii})) = true) in List (TRANS)
=» (b Vx.isempty(pop{push(x,niistack))} = true) in Stack (RENAME)

Note that ait of the real work of the proof is done by (the modified versions of} the usual PPLAMBDA inference

rules. The new ruies merely transport facts up the theory tree.

6 Tactics and strategies

The inference rules given in the last section could be used to prove facts in a ‘forward' direction, but the
preferred LCF style is to instead proceed backwards in & goai-directed fashion. A step consists of transforming the
goal into a list of goals which, if they can be achieved (converted to facts}, entail the desired fact. The
transformation steps are carried out by backwards inference rules calied tactics, which can be composed using

tacticals to give strategies, as discussed eariier.

387

The following list contains tactics corresponding to each of the inference rules given in the last section. These
are all simple ML programs, operating on goals of the form (Aj-c)} in? T and returning a list of goals (together with

a proof, not shown),

PRIM-THEORYTAC: s in? prim-theory(L,8) +— [] if s€S, ealse fail

UNIONLEFTTAC: s in? union(T,T') +-> [sin? T] if sisa sigll T]-sentence, else tail
UNIONRIGHTTAC: s in? union(T,T*") +—= [sin?T7T'] ifsisa sig[{‘r']}-sentence, else fail
RENAMETAC: s b+ s in? rename(0,T) -+ [sim?T] #f G#{s)=s‘. olse fail
INV-IMAGETAC: s in? inv-image(do,T) +— [do¥(s) in? 1)

Each of these tactics gives a way of diving into a structured theory with a sentence, yielding a goal concerning a
parent theory and the (possibly transformed) sentence. UNIONRIGHTTAC and UNIONLEFTTAC choose different
parents at & union theory; RENAMETAC yields a different result for the goal s’ in? rename(0,T) depending on which
element of the set 0~ 1(s") = {s} o (s)=s’ } it is given. The following tacticals automate these choices:
UNIONTACTHEN: tac +—> (UNIONLEFTTAC THEN tac) ORELSE (UNIONRIGHTTAC THEN tac)

RENAMETACTHEN: lac +— 3’ in? rename(0,T) +—>

{(RENAMETAC 3, THEN tac) ORELSE ,.. ORELSE (RENAMETAC s" THEN tac)) s' in? rename(O, T}
where {s, ... s} = o 1(s")

The standard LCF tactical ORELSE, given the two tactics la01 and lacz, applies tac, to the goal unless it tails, in
which case tacz is applied,

Each of thg tactics above dives from a theory to ane of its parent theories. The following composite tactical,
given a tactic, explores the entire structured theory by diving repeatediy until it reaches a tip (a primitive theory).
At this point the tactic provided as argument is applied. If this results in the empty goal list, then the goal is
achieved; otherwise a failure is generated which is trapped at the most recent choice point (an application of
UNIONTACTHEN or RENAMETACTHEN), The same process is then used to explore another branch of the tree (or
the same branch, with a different sentence to prove), until the entire tree has been traversed.

DIVETAC: tac > g >
it g = s in? prim-theory(L,8): (TRY tac) g
if g = s in? ynion(T,T*): (UNIONTACTHEN DIVETAC tac) g

if g = s in? rename(0,T): (RENAMETACTHEN DIVETAC tac) g
if g = s in? inv-image(do,T): (INV-IMAGETAC THEN DIVETAC tac) g

¥

]

This uses an auxiliary tactical called TRY; it fails uniess the tactic supplied is able to achieve the goal,

If tac is a powerful general~purpose proof strategy, then DIVETAC tac can automatically provide proofs for a wide
range of facts. It dives down to the tip which contains the information needed to prove the fact at hand (finding

the proper tip may involve a backtracking search), and uses fac to do the 'dirty work' of the proof,

This is quite a good way to go about proving facts in large structured theories. For example, if the goal is
(l-p+q=q+p) in? T where T is & structured theory describing & compiler, then simost alf of the information buried in
T is irrelevant and should be ignored lest the proof get bogged down by silly proof attempts, DIVETAC will fail
quickly when attempting to follow most silly paths (going on to find the correct path) because of a mismatch
between the sentence at hand and the signature of the irrelevant subtheory. For instance, consider the structured
theory union({Nat, Useless). An attempt to prove that p+q=q+p in the combined theory using DIVETAC will ignore the
parent theory Useless; UNIONRIGHTTAC will fail immediately because ptg=q+p is not & sig!IUse&ass]}—sentsnee.

That is, provided that sig [[Useless]] does not include the + operator, The rename construct can form a barrier to

388

irrelevant goals in a similar fashion.

Unfortunately, a large ciass of facts remains which cannot be proved using DIVETAC, These are the cases in
which there is not encugh information in any single tip to accomplish the proof. For exampie, proving that the
equation length(append(l,k}} = lsngih(1} + length(k) holds in the theory of lists and natural numbers requires the

use of information from both subtheories, DIVETAC will fail for this reason.

in cases like these, instead of diving into a structured theory with a sentence, we want to dredge up facts from
the depths of the structured theory, forming the union of all the information available in all the ancestor theories.

Then all these facts can be put to wark in proving the sentance,

it ie easy to prove the follewing derived inference rule:

DREDGE: sedredge(T) =P sinT

where dredge: prim-theory(L,S) > 8
union(T,T%} > dredge(T) U dredge(T’)
rename (o, T} > o¥ (dredge(T))
inv-image{doC, T} - do~ 1 (dredge(T}}

Dredging does not retrieve aff the facts available in a structured theory; some information may be lost along the way

{in particular, it is hard to dredge in theories built using the inv-image constructor).

We add an extra component, the list of avadable facts to goais, with the notation s in? T using F to denote the
goal § in? T with availeble facts £, DREDGETAC uses DREDGE to extract facts from the structured theory at hand,
adding them to the list of available facte in the goal. Subsequent tactics can use these facts to help achieve the
goal. For example, facts having the appropriate form can be added to the simplification sel (another component of

the goal) for use by the simplifier,

DREDGETAC: & in? T using ¥ =—> [& in? T wusing [s1 in T ... s, inTJUF]
where {51 s“} = dredge(T)

We have seen that DIVETAC is capable of proving a certain class of facts, yet DREDGETAC seems to be needed
to collect the information necessary for the proofs of other facts. DREDGETAC alone is not capable of proving some
of the facts which are handled with ease by DIVETAC, and besides it makes no use of theory structure. Some

combination of diving and dredging seems to be necessary in a general strategy for proof in structured theories.

As mentioned sbove, often the structured theory at hand contains a great deal of information which is utteriy
irrelavant to the proot of a desired fact. It is important to restrict the available information as much as possible
before attempting the proof using standard techniques. But how is our strategy to automatically determine exactly

which subset of the ilable information is y for the proof of & fact? In the case of a ordinary LCF and

conventional theorem provers where the axioms, previously proved thaorems, etc. are stored in an unstructured
form, the only approach seems to be some kind of heuristic filter which passes only ‘refovant’ facts, The

construction of such a filter ie difficult, for it is not always obvious which facts are relevant.

This problem is not so perplexing when we are given the information in a highly structured form, such as a
structured theory, As observed earlier, it is easy when diving to exclude certain irrelevant subtheories entirely
hecause rename snd union constructs will form barriers to inappropriate goals, If the theory is well-structured, then
it is likely that all of the information necessary to prove the fact will be located in a relatively small subtheory.
DREDGETAC sppiied to this subtheory will normally collect ail of the information necessary to prove the fact, without

389

much that is irrelevant,

The following strategy is based on DIVETAC and DREDGETAC. The approach is to visit each node in the
structured theory in precisely the same order as in DIVETAC, performing the same action at the tips. But after
trying both parents of a union node and failing, DREDGETAC is used to attempt the proof in the combined theory.
Hence dredging takes place on a theory only after all other methods have failed.

SUPERTAG: tac V> g >
if g = ¢ in? prim-theory(L,8): (TRY tac) g
if g =s in? union(T,T'): ((UNIONTACTHEN SUPERTAC tac)
ORELSE (TRY (DREDGETAC THEN tac))) g
it g =s in? rename(0,T): (RENAMETACTHEN SUPERTAC tac) g
#g = s in? inv-image(O,T): (INV-IMAGETAC THEN SUPERTAC tec) g

There remains an important class of facts which cannot be proved using SUPERTAC, For example, in trying to
prove s in the structured theory union(T, inv-image(da,T’)) it might happen that s is neither a sig[[T]] ~gantence
nor a sig l[inv—image(do,T')]]—sentence, so diving is impossible, Furthermore, the proof of s might require the
use of & fact &' in inv-image(do, T’} which cannot be dredged -- perhaps s‘edo‘7(s”). where s” follows from &
and a' with d0-7(a) = do"(a') = ¢ but 8" in T* is not explicitly available {it is not & previcusly proved fact). In
cases like these it is necessary to first prove &' in inv-image(dU,T’') (or s” in T') as a lemma. The idea for this
lemma must come from the user or from some clever lemma-proposing tactic (but the problem of automatically

proposing the right lemmas in such cases seems rather difficult},

Nelson and Oppen [NO 78] have described an elegant method for combining decision procedures for several
independent theories into a decision procedure for the combined theory; this can be seen as an alternative to our
DREDGETAC. Their method does not work when the theories share operators, so in general it cannot be applied to
the union of structured theories. - But in the special case where the theories do not share operators (and perhaps
also for cases with certain restricted kinds of sharing) their algorithm could be applied in place of DREDGETAC,

The theorem prover of the L (lota) system [NHN 80] also exploits the structure of specifications to facilitate
proofs. It uses theory-tocusing techniques [HN 793 which are related to the strategy embodied in SUPERTAC,

7 implementation and future work

Most of the ideas in this paper were conceived during the construction of a system in LCF for proving theorems
in Clear theories [San 82]. This system (wrilten in ML) accepts a Clear theory expressed in terms of the theory—
building operators described here (the conversion to this form is performed by a different program) and supports
LCF~style theorem proving using inference rules, tactics and strategies similar to those discussed above, Recently-
this system has been modified to remove its Clear bias, and enhanced so that it contains the facilities presented

here, Experimentation has so far been limited to a few relatively simple examples.

The parameterisation mechanism described above has not yet been implemented, {ts implementation should

present no probl R pt that checking if a theory is a valid actual parameter must be implemented as a call on

LCF itself to prove the necessary theorems.

The system does not currently remember the facts it proves for use as temmas in later proofs. This would

obviously be dasirsble, and should not be a difficult feature to impi t. A related impr t would be to

380

represent siructured theories in such a way that common ancestors are truly shared, so that the addition of a newiy—

proved tact to an tor theory kes the fact available in the appropriate places throughout the entire structured
theory. This is important (for instance) when we use parameterised theories. As mentioned earlier, if A and B are
permissible actual parameters of the parameterised theory Sorting (for appropriste 0 and g°) then Sorting(A,O0) and
Sorting (B, 0') share the parent theory SortingTh (the analogous sitvation holds for any parameterised theory). it
often happens that the proof of a fact in a theory such as Sorting (A, O} will depend only on the information
contained in SortingTh. (This in itseif makes the proof easier, especially if A is large.)} Iif the system remembers
such a fact and sharing is implemented, then the fact will become available in Sorting(B, 0') as well. Such a

sharing mechanizsm is slready provided by LCF for conventional LCF theories,

One probiem with the proposals presented in this paper is that the operations given for building structured
theories are rather fow~level. For example, in order to produce & structured theory which is the combination of T
and T' enriched by some type oparators S, constants {1 and axioms A (this corresponds to the only way of buiiding
new theories in conventional LCF) we must write:

vnion{ union{T, T}

prim-theory (<8, > U sigluniontr, 70], A3)

This seems a rather cumbersome way of expressing & simple and commonly required operation.

Qur first solution is to provide a function which makes enriching a theory easier, An infix function enriched by is

defined which aliows the example above to be written:

union (T, T°) enriched by (S, 1, A)
However, the structure which this hides is still visible during proofs. Uitimately we would prefer to use Clear's
theory-building operations themselves as primitive theory constructors. Inference rules and tactics similar to those
presented above can be developed for proving theorems in theories built in this way, aithough they will be somewhat
more compiicated than those given here. Our goal is to ultimately integrate Clear and LCF into a single system for

specifying and proving theorems in large theories,

Acknowledgements

Thanks to Brian Monahan for help with LCF and for making helpful comments on a draft, Of course, we are
indebted to Robin Milner and his cofieagues for LCF and to Joe Goguen for his work on Clear. Thanks from DTS to
Trattoria “dal Francese® in Norcia for an extra reason to attend CAAP 83, This work was supported by 8 studentship

from the University of Edinburgh and by the Science and Engineering Research Council,

8 References

[ADJ 78} Thatcher, J.W., Wagner, E.G. and Wright, J.B. Data type specification: parameterization and
the power of specification techniques, SIGACT 10th Annual Symp. on the Theory of Computing,
San Diego, California.

{ASM 73] Abriat, J.R., Schuman, S.A. and Meyer, B, Specification language Z. M husetts Comput
Associates in¢., Boston, Massachuselts,

[Bav 81] Bawer, F.L. ef a/ (the CIP Language Group) Report on a wide spectrum language for program
specification and development. Report TUM-I18104, Technische Univ. MUnchen,

[BG 77] Burstall, R.M. and Goguen, J.A, Putting theories together to make specifications, Proc, S5th Inti.
Joint Conf. on Artificial intellig . Cambridge, M: h tts, pp. 1045-1058.

{8 8o} Burstali, R.M. and Goguen, J.A. The semantics of Clear, a specification language, Proc. of
Advancad Course on Abstract Software Specifications, Copenhagen. Springer Lecture Noles in

Computer Science, Voi. 86, pp. 282-332,

[Cohn 79]

{DJ 80]

[GB 82]

[GMW 78]

[GHM 78]

[HN 79]

[Les 82]

[Lw 82]

INHN 807

[NO 79]

[San 82]

{San 82a]

391

Cohn, A.J. Machine assisted proofs of recursion implementation. Ph.D. thesis, Dept. of
Computer Science, Univ. of Edinburgh,

Davenport, J.H. and Jenks, R.D. MODLISP. Proc. 1880 LISP Conference, Stanford, California,
pp. 65-74,

Goguen, J.A. and Burstall, R.M. Institutions: logic and specification. Draft report, SR!
International,

Gordon, M.J., Milner, A.J.R. and Wadsworth, C.P. Edinburgh LCF. Springer Lecture Motes in
Computer Science, Vol, 78,

Gultag, J.V., Horowitz, E. and Musser, D.R. Abstract data types and software validation. CACM
21, 12 pp, 1048-1064,

Honda, M. and Nakajima, R. Interactive theorem proving on hierarchically and modularly structured
sets of very many axioms, Pro¢. 6th Intl. Joint Conf, on Artificial intelligence, Tokyo,
pp. 400-402,

Leszczytowski, J. META SYSTEM, Preliminary draft report, Institute of Computer Science, Polish
Academy of Sciences,

Leszczylowski, J. and Wirsing, M. A system for reasoning within and about sigebraic
specifications, Proc, Sth intl. Symp. on Programming, Turin, Springer Lecture Notes in Computer
Science, Vol. 137, pp. 257282,

Nakajima, R., Honda, M. and Nakahara, H. Hierarchical program specification and verification ~~ a
many-sorted logical approach. Acta informatica 14 pp, 136-155,

Nelson, G. and Oppen, D.C. Simplification by cooperating decision procedures, TOPLAS 1, 2
pp. 245-257,

s 1 Q. +3, + $adi

and pragmatics of Clear, a program specification
fanguage. Ph D. thesis, Dept of Compuler Science, Univ, of Edinburgh

Sanneila, D.T. A new semantics for Clear. To appear in Acta Informatica. Also Report
CSR-79-81, Dept. of Computer Science, Univ. of Edinburgh,

