
STRUCTURED THEORIES IN LCF

D.T. Sannella and R.M. Burstall

Department of Computer Science

University of Edinburgh

Abs t rac t : An extension to the Edinburgh LCF interactive theorem-proving system is described which provides new

ways of constructing theories, drawing upon ideas from the Clear specification language. A new theory can be built

from an existing theory in two new ways: by renaming its types and constants, or by abstraction (forgetting some

types and constants and perhaps renaming the rest]. A way of providing parameterised theories is described.

These theory-building operations - - together with operations for forming a primitive theory and for taking the union of

theories - - allow large theories to be built in a flexible and well-structured fashion. Inference rules and str~tngies

for proof in structured theories are also discussed.

1 I n t r oduc t i on

Edinburgh LCF [GMW 79] is a mechanised system for conducting proofs interactively. Users prove theorems in

LCF by writing (and then running) goal-directed proof strategies as programs in a general-purpose applicative "

language (ML). Although users are given complete freedom to try any proof strategy they choose (including an

incorrect one) it is impossible to prove an invalid theorem in LCF. The system provides a set of primitive building-

blocks which are useful for building proof strategies, but users are not compelled to make use of them.

The proof of a theorem takes place in the context of a theory - - that is, of some set of types (type operators,

since polymorphic types are allowed), constants and axioms forming the asicmatisation of some problem area. New

theories can be built by combining several existing theories and enriching the result with some new type operators,

constants and axioms. A hierarchy of theories can be built in this fashion.

We propose an extension to LCF whereby theories can be built in new ways. Most of this has bee n implemented

but is not as yet much used. The type operators and constants of a theory may be renamed to produce a new

theory, or we can abafrec/from a theory (forgetting some of the type operators and constants and perhaps renaming

the rest). We also describe a way of providing parameteriaed theories. These theory-building operations

- - together with operations for taking the union of two theories and for forming a primitive theory - - allow large

theories to be built in a flexible and well-structured fashion. Such a structured theory inherits the type operators

and constants of the theories from which it was buitt (after appropriate renaming) but does not directly inherit the

axioms.

Proving theorems in a structured theory is different from proof in a conventional LCF theory. In the course of a

proof, the user will change frequently from the context of one theory to that of another, climbing down the hierarchy

to prove simple laminas in basic theories and then up again to apply these temmas in the proof of theorems in

higher--level theories. We provide some new inference rules to permit such a style of proof, and we develop a

general strategy for proof in a structured theory. The structure of the theory can be useful in directing the search

for a proof. In many cases the problem of gathering together enough information in a well-structured theory to

prove a theorem can be solved mechanically.

378

We have been ~rongly influenced by work in structured algebraic specification (e.g. ~ADJ 78], ~ASM 79] ~nd

[Bau 81]) and in particular by our work with the Clear specification language [BG ZT]. The semantics of Clear can

be expressed in terms of the structuring operators mentioned above. Our experience with Clear has convinced us

that it is important to retain the structure which is formed as a large theory is built up in stages. Structuring is

necessary to keep the information in large theories under control. This is our attempt to transport ideas from Clear

to the LCF context=

2 E d i n b u r g h L C F

We now briefly describe the features of Edinburgh LCF which are most important for our purposes. A furl

description of the system is given in [GMW 79].

Edinburgh LCF ~sometimss called simpiy 'LCF') is a system for conducting proofs interactively, i t can be viewed

as consisting of three relatively independent components: ML. the metalanguage in which proofs are carried out;

PPLAMBDA, the underlying deductive calculus; and a methodology for goal-directed proof in PPLAMBDA using ML°

ML is a general-purpose ~pp~lcative language incorporating a completely secure higher-order and polymorphic type

discipline. It includes a flexible mechanism for raising and trapping exceptions and allows the declaration and use of

abstract data types which are ~x'~cessible only through the functions provided when the type is declared, Ordinary

types used in programming (such as integer, boolean and list) are predefined in ML as well as special types (like

term, formula and theorem) for use in proving theorems.

PPLAMBDA is a family af deductive catculi or theories with terms from the typed tambala-calculus and (for each

member of the family~ a set of type operators, constants and axioms. PPLAMBDA can be viewed as a collection of

ML functions and types. However= for reasons of efficiency ft is in fact implemented only p~rtiatly in ML. A

theorem (thin) in PPLAMBDA is an ML data structure like e term or formula, but with a crucial difference: the only

way to construct a theorem is by application of built-in inference rules (i . e . , thin is an abstract date type with

inference rules as constructor functions). This ensures that any object of type thin must be true in the theory in

which it was formed. Thus the type security provided by the ML type checker is used to maintain logical security.

There are facilities for building a new PPLAMBDA theory by combining several theories and enriching the result with

some new type operators, constants and axioms. This allows a group of theories to be structured into s hierarchy in

which a theory inherits all the type operators, constants and theorems (provable sentences, including axioms) of the

theories from which it was built.

Given a theorem to be proved (we use the notation A~-c, where A is a list of assumptions and c is the desired

conclusion), we apply a tactic; that is, a proof rule in the form of an ML function of type

goal --> (goal* X (thm'-->thm.~). This may fail if the goal is not of the appropriate form. If it succeeds then it

delivers a list of aubgoats together with a proof; this is a function built from inference rules which will produce a

theorem (written AP-c) corresponding to the original goal i f it is given a theorem corresponding to each of the

subgcats. Proving a theorem is then s matter of applying one tactic after another until the empty list of goals is

obtained. The system supplies a coilestlon of built-in tactics, but the user may construct his own. Tacticals like

THEN: tactic × tactic --> tactic

are provided for composing tactics into larger tactics called strategies. Typically. a user proves a theorem by

interactiv~ly designing a strategy which will ~olve the entire problem by reducing his goat to the empty goal list,

379

3 S t r u c t u r e d t h e o r i e s

Edinburgh LCF as described in the previous section is a powerful tool for interactive proof. This has been

demonstrated by the success of a number of attempts at applying LCF to prove rather difficult theorems - - see for

example [Cohn 79]. But one weakness of LCF is that only a primitive facility is provided for structuring theories.

Using the means described earlier, structures such as the following can be built:

T

13 j T ~ 4 ~ e x t e n s i o n C

T1 T2

extension A ~ ~ ~ ~ '= TO extension B

In this diagram, extension C denotes the new type operators, constants and axioms by which the union of T3 and T4

is enriched to yield T. Extension C is therefore itself a theory. Each theory inherits the type operators, constants

and theorems of its parents (where the parents of T are T3, T4 and extension C, for example)~ Separate theories

may share common ancestors.]'he theory containing the inference rules of PPLAMBDA is implicitly a parent Of every

theory.

The problem is that we sometimes would like to build theories in other ways. For example, suppose we build

the theory of lists from the theory of booleens:

Li._~ = the extension of Boolean by:

types list of O~
¢oP.stm~ nil: list of O~

cons: C~ X list of O~ --> list of C~
head: list of O~ --> a
tail: list of C¢ -'~ list of O~
null: list of O~ --~ bool

axioms head(cons(x, I)) = x nul l (cons(x, I)) = false
ta i l (cons(x, I)) = I null(nil) = true

(Free variables are implicitly universally quantified.) The theory of stacks may be built in the same way:

Stac k = the extension of Boolean by:

types stack of (X
constants nilstack: stack of O~

push: O~ X stack of ~ -~ stack of c¢
top: stack of cZ --~ a
pop: stack of (X --> stack of a
isempty: stack of <X --~ bool

axioms top(push(x,a)) = x isempty(push(x,s)) = false
pop(push(x,s]] = s isempty(nilstack) = true

Note that Stack is identical to List except for type and constant names. We would like some way of describing this

relation within LCF.

Our solution is to extend LCF to allow new kinds of relationships between theories in addition to the present 'is

an enrichment of ' association. In this case instead of constructing Stack by extending Boolean we can build it from

List by renaming the type operator list as stack, end the constants nil, cons, head, tail and null as nilstack, pu~#~,

top, pop and isempty respectively (or List could be built from Stack by renaming in the opposite direction). If O

describes this renaming (details below) then we can form the following structure:

380

Steak

List

l ist-extension Boolean

Now although Stack has List and Boolean as ancestors, it inherits their type operators, constants and theorems only

after they have been renamed according to O. So Stack contains exactly the components given above, and not (for

example) the theorem fa i l (cons(x, l) .~ = t. An advantage ot = relating Stack to List in this fashion over building the

two theories independently is that now any theorem proved about lists automatically extends to a corresponding

theorem about stacks, without a separate proof.

As another example, a theory of symbol tables (for an AlgoHike language with nested blocks) may be built from

Stack arid the theory of arrays (see IGHM 78] and [BG 77'] for variations on this example):

= the extension of Index by:

array of 0f
o l u t l i i l nilerray: array of ~l

put: Index X ~ X array of O~ -~ array of a
get: index X array" of O~ -~
isin: index X array of (X -+ boo l

axioms get(i , p u t (t , x , e)) = x not(i= j) ==~ get(i , p u t (j , x , a)) = ge t (i , s)
isin(i, p u t (i , x . a)) = true not(i= j) ==~ isin(i, p u t (j , x , a)) = is in(i ,a)
istn(i, nilarray] = false

= the extension of Stack and Array by:

addid: index × ~ X stack of array of O~ - * stack of array of 0~
retrieve: index X stack of array of 0~ -* O~
i$inblock: index X stllck of array of IX "~ bool
enterblock, leaveblock: sl~ck of array of ~ -> stack of array of a

eldoms addid{ i ,x , st) = push(put (i ,x , t o p (s t)) , p o p (s t))
no t (i s in (i ,a)) ==~ retr ieve(i , push(a, s t)) = retr ieve(i , st)
is in(i ,s) ===~ retrieve(i, push(e, s t)) = ge t (i , a)
isinblock(i ,st) = i s in (i , top (s t))
enterblock(st) = push(nilsrray, st)
leaveblock(st) = pop(st)

So far we have built the renewing structure:

aymboRebie- ~tack Array _
extension t o ~ ~ , ~ array-

List Index extension

,,.,_/',,. / .<-.....,.,._
Boolean* extension*

exten~on

[The theories marked with * were not shown above.]

But now if we work in the theory SymbotTable we are forced to use the type stack of array of O~ when we mean

symboffabie of (Z, and we must use the constant nilsfack instead of nilfable. Moreover, since the theory

SymbolTabte has Stack and Array as parents, it inherits all of the type operators, constants and theorems of these

theories. Many of these -o the type operators stack and array along with most of their associated constants and the

axioms which define them - - are irrelevant to the new theory beyond the purpose they sewed in helping to describe

symbol tables. We would like to abMract away f rom the particular construction we used to define symbol tables,

retaining only the type operators and constants we need to use symbol tables and the theorems which define them.

38t

Naturally, in the Course of proving a theorem it may be necessary to refer to Stack and Array in order to determine

the properties of symbol tables, but in the meantime they should not intrude.

We can build the theory we want from Symboltablo by taking its inveree image under an appropriate renaming

(this is equivalent to the derive operation in Clear). This renaming maps the type operators and constants we want

in the result - - in this case these are the type operators and constants of Index and Boolean together with:

tyim8 symboltable of O~
¢onstlets niltable: symboitable of a

addid: index X ~ X symboitable of O~ --~ symboltable of O~
retrieve: index X symboltable of O~ -~ rv
isinblock: index X sympoltable of O~ --~ bool
enterblock, leeveblock: symbolteble of iv ~ symboltable of Ot

(but not stack of (X or array of <x or any of their constants) - - to the types and constants of SymbolTable. Here,

aymbolfablo of O~ maps to stack of array of OL, niltable maps to nilstack, and the other type operators and constants

map to themselves. Call this renaming O ' . The inverse image of SymbolTabte under O' contains a set of theorems

formed using the type operators and constants shown above, Consisting of just those sentences which O' maps to

theorems of SymbolTable. If we cell the resulting theory BetterSymbolTable, then we have the following structure:

BetterSymbol'reble

1o'

. 0 array-
Ust Index _ extension

,=/\ /
- Booleon extension

extension

(An arrow pointing down denotes an application of the inverse image constructor. The arrow thus shows the

direction of the renaming.] Again, although BetterSymbolTable has Stack and Array as ancestors, it does not inherit

their type operators, constants and theorems. The relation between the theorems of BetterSymbolTable and the

theorems of its ancestors is indirect - - to see if a sentence of BetterSymbolTable is a theorem, translate it using O'

and then try to prove the result in SymbolTable.

As the examples above show, we propose to change LCF to permit theories to be built in new ways from existing

theories. We treat theories as ML data objects, and we build new theories from old theories by application of

theory-constructing functions. Inheritance of type operators, constants and theorems from ancestor theories is

indirect, even when a theory is constructed as in present-day LCF by combining two existing theories - - we believe

that it is important to retain the structure which is formed as a large theory is built up in stages,

Proving a theorem in such a structured theory is different from proof in a conventional LCF theory. In ordinary

LCF the user works within the theory he has chosen for the duration of his terminal session (although this theory

may grow as he adds new type operators, Constants end axioms). All of the 'theorems of the theory are

immediately available for use in proofs, including the theorems of its ancestors. In contrast, the theorems of a

structured theory tend to be scattered throughout the structure and must be extracted from the theories in which

they reside when they are needed in a proof. In the Course of a proof in a structured theory, the user may change

from the context of one theory to that of another at will, climbing down the tree (more precisely, DAG) of theories

382

to prove temmas on ~s ic types end then up again to apply these laminas in the proof of theorems concerning

higher-level tyl~s.

it may seem silly to distribute in~ormaticn in this ?ashion, ~n effect making it more difficult ?or a user to apply

axioms and previously-proved theorems, But we argue that some scheme of this nature is necessary to keep the

information in a large theory under control. Any sizeable unstructured assortment of theorems is more difficult to

keep track of than the same ¢0tlection of theorems organised into coherent theories, each containing only those

theorems which ere directly relevant to it. Moreover, as we will show later, the problem of finding all information

relevant to satisfying a particular goal in a proof can be solved mechanically in a welt-structured theory. A final

reason for scattering theorems throughout a structured theory Js that in the presence of the inverse image theory

constructor, theorems cannot in general be brought up to 'top ~evel'.

Although the LCF system was designed for conducting proofs in a particular logic (PPLAMBDA), much of the

system including ML and the LCF proof methodology is logic-independent. In fact, David Schmidt st Edinburgh and

(separately) Jacek Leszczylowski [Les 82] have done some work toward the development of an LCF system which

will allow proofs to be conducted in any desired logic. The following formalisaticn of the theory-building operations is

largely logic-independent as wel!. it does not depend on the Particular inference rules or predetined type operators

and constants of PPLAMBDA. Sentences need not be built from PPLAMBDA forms; any sort of sentence which Is

amenable to translation under a renaming is acceptable. See [GB 82] t=or the precise conditions which an

acceptable logic (called an inet/fution) must satisfy.

Oaf: A signature ~, is a pair <8, n> where S is a set of type operators (each having an arity E ~]) and f t is a

set of constants (each having a type constructed from operators in 8 and type variables).

The type operators and constants of each theory T form a signature, denoted sig(T).

Oaf; A signature morphism O: <S,~> -~ <S',~'> is a pair <f,g> with f:8-->S ' an arity-preserving map on type

operators and g : l : ~ - ~ ' a type-preserving map on constants.

The 'renaming' G:sig(List)'-~sig(Stack) described above was a signature morphism, in Particular, C[=<f,g>

where:

f(list}=stack, ~(bool)~-boot
g(nil}=nilataok, g(cena)=puah, g(head)=fop, g(taif)=pop, g(nu/i)=isempty,
g (true)=true, g (false)=false, g {not)shot

Now, 0 is arity-preserving (because e.g, arity(/i~t)= t =ar i ty(fUist) }) and type-preserving (because e.g.

f#(type(cons))= f#(O~Xfiat of ~--~fiet of OL)= ¢z×atack of O~-~tack of O~ = type(push)= type(g(cons)), where f# is

the extension of f to types}. Note that a signature morphism need not be 1-1 or onto, although O is both.

D~: if ~,=<S,n>, then the derived signature d~" is the signature <dS, d~>, where dS is the set of types

constructable from operators in S and type variables (the arity of a type is the number of distinct type variables it

contains), end dt~ is the set of welt-typed),-expressions constructsble from constants in n.

D~: A derived signature morphism do:~-~,~ ' is a signature morphism dO:~,'->d~ ',

The renaming o ' described above was a derived signature morphism, O':sig(BetterSymbolTable)-~

sig(SymbolTable). Indeed, more of the specification of BetterSymbolTable c~n be incorporated into this morphism.

Suppose SymboITable' ~s the same as SymbolTable above but without the constants sddid, isinblock, anterblock and

/eaveb/ock (and without the axioms which define them). Let dO:sig(BetterSymbolTable)-~sig(Symbol Table') be the

383

derived signature morphism which is the same as O' except that:

addid maps to X i ,x , s t .push(put (i ,x , t op (s t)) , pop (s t))
istnblock maps to X i ,s t . i s in (i , top(s t))
enterblock maps to Xst.push(ni larray, st)
leaveblock maps to pop

Then inv-image(dO, 8ymbolTable') gives the same theory as inv-image(O', SymbolTable) (= BetterSymbolTabie),

apart from structure.

If O: ~ - - ~ ' is a signature morphism then let O#:~-sentences-->~'-sentences be the extension of O to

sentences.

Def: A atructured theory is any term built using the following constructors:

pr im-theory: signature X set of sentences --~ structured theory

union: structured theory X structured theory --~ structured theory

rename: signature morphism X structured theory -~ structured theory

inv-image: derived signature morphism X structured theory -~ structured theory

The semantics of structured theories is defined as follows:

sig : structured theory - * signature

s i g~p r i r n - t heo ry (~ ,$)]] = ~ if S is a set of T'--sentences

s ig~[union(T,T ')]] = s i g ~ T]] U s igET ']] if the signatures are compatible

s i g~ rename(O,T)]] = F,', where O:T~--~T'_' • if s ig l~T~ = T~

sig [~ inv- image(da, T)]] = ~ , where do : ~-~ ~ ' is a derived signature morphism

if s i g E r ~ = ~ '

Terms which fail to satisfy the indicated conditions above yield errors. Otherwise, the provable theorems of •

structured theory are as follows:

thms: structured theory .~ set of sentences

thins ~ pr im-theory(E, S)]] = the set of sentences provable from S

thms~union(T,T ')]] = the set of sentences provable from t h m s E T ~ U thms~" T']]

t hmsErename(o ,T) 1] = the set of sentences provable from O # (t h m a E T]]]

t hms i [i nv - image(do , T)]I = d o - l (t h m s E T 1]) = { t I d o # (t) E t h m s E T]])

The constructor prim-theory produces an ordinary LCF (primitive) theory. We use binary union of theories rather

than n-ary union as in ordinary LCF for the sake of simplicity.

suppose Z~list is sig(List), i .e . the signature consisting of the types list of O~ and boo/ and the constants nil,

cons~ head, fa//, null, true, false and not (together with the remaining boolean operators), and Slist is the following

set of sentences:

head(cons(x , I)) = x
ta i l (cons(x , l)) = I
nu l l (cons(x, I)) = false
null(ni l) = true

and O:sig(List)->stg(Stack) is as defined above; then

rename (0, union (pr im-theory ()' l ist, $1ist), Boolean))

is the structured theory Stack.

The choice of structuring operators is not at all arbitrary. We were heavily influenced by our previous experience

384

with the Clear specification langgege [BG ~'7, 80]. it happens that the semantics of Clear can be expressed entirely

in terms et ~ these simple theory-building operators (see [San 82a] for details). The theory-building operators of

Clear are st e slightly higher level then those we have here; typically an application of a single Clear operator is

equivalent to the application of two or three of our operators.

4 Parameter lsed theor ies

One feature which Clear has but which is missing here is a parameterisation mechanism. A parsmeterised theory

(or procedure) in Clear can be viewed ssa function taking a theory together with s signature morphism to a theory

(p6rameterised theories with more than one argument are also allowed). Each parameterised theory has a formal

p~rameter (itseff a theory) which specifies the sort of actual parameter which the paremeterised theory will accept.

A typical example of a paremeterised theory is Sorting, which produces a theory specifying a sorting function on lists

of objects of type t, given a theory describing t, In this case the formal parameter would probably be the following

I:heory:

POSet =

types
conmnts
axioms

the extension of Boolean by:

t
(;: t X t --* heel
x~x = true
x~y and y~x ==~ x = y
x~y and y~z ===~ x~z = true

This says that any actual parameter theory must include at least one type (other than heel) and a constant which

satisfies the laws of s partial order relation on that type. Suppose we have an actual parameter, the theory SetNat

of sets of natural numbers which includes the constant C :setnat X setnat -~ beef, defined in the usual way.

Before applying Sorting to SofNet, we most construct a signature morphism which ~=its' the signature of POSet to that

of SetNat. Suppose O: sig(POSet) -~ sig(SetNet) maps the type t to safest, and maps the constant ~ to C:_ (and

maps bool and its constants to themselves). Now the expression Sorting (SetNat[o]) is legal and produces the

desired result if the axioms of POSet (translated v~ O #) ere theorems of SetNat.

We have a (rather tentative and untested) scheme for introducing Clear-style porameterised theories into LCF.

Let apply be the following function:

apply: structured theory X structured theory ->

structured theory X signature morphism -~ structured theory

let apply (Proc, Format) (Actual, O) =

if thmsErename(o, Formal)]]~thmsEActual]] tfmn

e lm let 0 = extend (0, sig ~ Prec ~) in

union(union (Actual, rename(O, Formal)), rename(O, Proc))

This definition is rather high-level; in particolar, implementing the first line requires a theorem prover, The

auxiliary function extend takes s signature morphism O:T : ' -~ ' and a signature ~ " (with ~ c ~ ") and returns a

~ : T : " - - ~ ' U (~ " - ~) which is the extension of 0 to T~" by the identity (i.e. a l ~ = 0 and signature morphism
I

GI~"- ,~ = id) . This assumes that LCF is modified to allow the same constant to have different types in different

theories; otherwise O could map each constant W in Proc to the constant 0J. tag, where tag is a token supplied by

the user as an extra argument of apply(Proc, Format~).

Apply is a general ~unction for constructing parameterised theories having one argument (the generalisetion to

multiple arguments requires more mechanism). For example, let 8ortingTh be the following structured theory

385

describing a sorting /unction on lists of objects of type t:

SortiegTh z" \

POSet List

p o s e t / ~ " ~ o , . n / ~ ' ~ list- extension extension

The app/y function can be used to turn this abMreot theory of sorting (it is abstract in the sense that nothing is

known about objects of type t except that they are pertkdly ordered) into an ML function:

Sorting: structured theory X signature morphism -~ structured theory

= apply (SortingTh, POSet)

If SetNat and O:sig(POSet)-esig(SetNat) are defined as above, then evaluation of Sorting(SetNat, O) produces the

following result:

Sorting (SetNat, O)

J "

. / \ . ,o..,/ \ , , . .
extension extension

We would really like POSet to be an ancestor of SetNst in this result, since we have gone to the trouble of proving

that the axioms of POSer hold in SetNat. We are exploring another view of structured theories (as 'decorated'

diagrams in the category of theories) in which this would be more natural.

It is important to note several points regarding parameterised theories. First of all, adding parameterised

theories does not add a new kind of structured theory constructor, since the result of applying a parameterised

theory to an actual parameter is expressible using the present constructors. Second, this scheme for perameterising

theories is only a suggestion inspired by Clear; other kinds of parameterisetion may be useful as well. For

example, MODLISP [DJ 80] permits ordinary values as parameters as well as theories. This is useful for defining

(e .g .) the theory of n-dimensional vectors over a type t - - here, the theory defining t and the value n are both

parameters. Finally, suppose A and B are beth permissible actual parameters of Sorting (with fitting morphisms O

and 0 ' respectively). The structured theories Sorting (A, o) and Sort ing(B,o') then share the parent SortingTh.

This sharing will prove to be important later.

A different way of introducing pararneterised theories into LCF was proposed by [LW 82], in which all the axioms

of the formal parameter theory appear as assumptions of the axioms in the theory which results from the application,

to be discharged in the normal fashion. This approach seems to be incompatible with our desire to retain the

structure of theories; the result of an application could not have the parameterised theory or its formal parameter as

ancestors.

386

5 i n f e r e n c e r u | e s

As mentioned earlier, a structured theory inherits theorems &ore its ancestors in an indirect fashion. For

example, to see P, # is a theorem of rename(G, T), try to find a theorem f' of T such that (3 " # (t ') = t (this may

involve proving a theorem in T). These relations between theories are reflected in the semantics of structured

theories given above, in this section we give the LCF-style inference rules which encode the semantics and allow

theorems in parent theories to be passed (often in an altered form) to their children.

~n ordinary LCF we use the notation At-c to denote a theorem. We now need a different notation, since a

theorem is not true in any absolute sense, but only relative to some theory. We will use the notation (AI -c) in T

to denote the assertion that AJ-c is a theorem of the structured theory T; note that (AI-c.) in r if and only if

AJ-c E thms~[T]] . We will call this a fact. The'same trick is used to maintain the logical security of facts as

ordinary LCF uses to protect theorems; fact is an abstract data type with the inference rufas listed below as

constructor functions.

PRIM-THEORY: sES ==~ s in p r im- theory (~ ,S)

UNIONLEFT: s in T ==~ s in un ion(T,T ')

UNIONRIGHT: s in T' ==~ s in union(T, T')

RENAME: s in T ===~ O # (s) in rename(o, T)

INV-IMAGE: d O # (s) in T ===~ s in inv- image(dO, T)

In addition, the usual inference rules of PPLAMBDA (or whatever logical system we use) must be systematically

modified to operate on facts rather than theorems. For example:

ASSUME:

CONJ :

SPEC:

w F- w in T

A l J - W l i n T e n d A 2 ~ - w 2 i n T ==~ A IUA21- WlAW2 in T
A I- V x . w in T ==Y A I- w i t /x) in T if t and x are of the same type

it is easy to prove from the semantics that these rules are sound. The following proof of the fact

(I - Vx.i~empty(popCpuah(x, ni/~fack.~)) = true) in Stack illustrates their use (we omit routine quantif ier str ipping):

(~- nul l (ni l) = t rue) in l ist-extension (PRiM-THEORY)
=:~ (i - nul l (ni l) = t rue) in List (UNIONRIGHT)

(l - Vt. Vx. tail (cons (x, t)) = I) in l ist-extension (PRIM-THEORY)
(I - V I .Vx . t a i l (cons (x , I)) = I) in List (UNIONRIGHT)

===} (I - V I .Vx .nu l l (t e i l (cons (x , I))) = nu l l (I)) in List (APTERM)
(I - Vx.nu l l (ta i l (cons(x , n i l))) = nu l l (n i l)) in List (SPEC)

(J- Vx. null (teil (cons (x, n i l))) = t rue) in List (TRANS)
:==) (I - Vx. isempty(pop(push(x , ni lstack))) = t rue) in Stack (RENAME)

Note that all of the real work of the proof is done by (the modified versions of) the usual PPLAMBDA inference

rules. The new rules merely transport facts up the theory tree.

6 T a c t i c s a n d s t r a t e g i e s

The inference rules given in the last section could be used to prove facts in a 'forward' direction, but the

preferred LCF style is to instead proceed backwards in a goal-directed fashion. A step consists of transforming the

goal into a list of goals which, if they can be achieved (converted to facts), entail the desired fact. The

transformation steps are carried out by t~ckwards inference rules called tactics, which can be composed using

tecticala to give atrategies, as discussed earlier.

387

The following list contains tactics corresponding to each of the inference rules given in the last section. These

are all simple ML programs, operating on goals of the form (AI-o) in? T and returning a list of goals (together with

a proof, not shown).

PRIM-THEORYTAC: s in? pr im-theory(~,,S) ~ [] if s(ES, else fail

UNIONLEFYTAC: s in? union(T,T') i----b [s in? T] i f s is a s ighT]J-sentence, else fail

UNIONRIGH13"AC: s in? union(T,T') I-~--~ [s in? T'] i f s is a s ig~ 'T '] I -sentence, else fail

RENAMETAC: s I - -4 s' in? rename(O,T] I~-> [s in? T] i f O#(s)=s ', else fail

INV-IMAGETAC: s in? inv-image(dO, T) i---e [dO#(s) in? T]

Each of these tactics gives a way of diving into a structured theory with a sentence, yielding a goal concerning a

parent theory and the (possibly transformed) sentence. UNfONRIGHTTAC and UNIONLEFTTAC choose different

parents at a union theory; RENAMETAC yields s different result for the goal s' in? rename(o, T) depending on which

element of the set 0 -1 (s '] = { s I O#(s) =s' } it is given. The following tacticals automate these choices:

UNIONTACTHEN: tac ~ (UNtONLEFTTAC THEN tac) ORELSE (UNIONRIGHTrAC THEN tac)

RENAMETACTHEN: faC F--) s' ~ rename(o, T)

((RI~NAMETAC s I THEN tac) ORELSE . . . ORELSE (RENAMETAC s n THEN tac)) s' in? raceme(G, T)

where {s I . . . an} = 0 - l (s ')

The standard LCF tactical ORELSE, given the two tactics leo I and tac2, applies fac I to the goal unless it fails, in

which case fao 2 iS applied.

Each of the tactics above dives from a theory to one of its parent theories. The following composite tactical,

given a tactic, explores the entire structured theory by diving repeatedly until i t reaches a tip (a primitive theory).

At this point the tactic provided as argument is applied. If this results in the empty goat list, then the goal is

achieved; otherwise a failure is generated which is trapped at the most recent choice point (an application of

UNIONTACTHEN or RENAMETACTHEN], The same process is then used to explore another branch of the tree (or

the same branch, with a different sentence to prove), until the entire tree has been traversed.

DWETAC: tac ~ g

if g = s in? Prim-theory(T.,S): (TRY tac) g

if g = s in? union(T,T') : (UNIONTACTHEN DIVETAC tac) g

if g = s in? ~rename(O,T): (RENAMETACTHEN DIVETAC tac) g

if g = s in? inv- image(dO,T): (INV-IMAGEI"AC THEN DIVETAC fac) g

This uses an auxiliary tactical called TRY; it fails unless the tactic supplied is able to achieve the goal.

If fac is a powerful general-purpose proof strategy, then DIVETAC foe can automatically provide proofs for a wide

range of facts. It dives down to the tip which contains the information needed to prove the fact at hand (finding

the proper tip may involve a backtracking search), and uses fac to do the 'dirty work' of the proof.

This is quite a good way to go about proving facts in large structured theories. For example, it the goal is

(I-p+q=q+p) in? T where T is a structured theory describing a compiler, then almost all of the information buried in

T is irrelevant and should be ignored lest the proof get bogged down by silly proof attempts. DWETAC will fail

quickly when attempting to follow most silly paths (going on to find the correct path) because of a mismatch

between the sentence at hand and the signature of the irrelevant subtheory. For instance, consider the structured

theory union(Nat.Useless). An attempt to prove that p+q=q+p in the combined theory using DIVETAC will ignore the

parent theory Useless; UNIONRIGHI'I'AC will fail immedbttoly because J-p÷q=q+p is not • ~g~Use less~-sentence.

That is, provided that sig ~Useless]I does not include the + operator, The rename construct can form a barrier to

388

irrelevant goaBs in ~ slmila~ fashion.

Unfortunately, a large class of facts remains which cannot be proved using DIVETAC. These are the cases in

which there is not enough information in any single tip to accomplish the proof. For exampte, proving that the

equation length(appendCl, k)) = length(1) + length(k) holds in the theory of lists and natural numbers requires the

use of tnformatiorl from both subtheortes, DIVETAC will fail for this reason.

~n cases like these, instead of diving into a structured theory with a sentence, we want to dredge up facts from

the depths of the structured theory, forming the union of all the information available in all the ancestor theories,

Then all these faot~ can be put to work in proving the sentence.

It is easy to prove ~he following derived inference rule:

DREOGE: sEdredge(T) ~ s in T

where dredge: p r im - theo ry (~ ,8) ~ S

un ion(T,T ') I - - * dredge(T) U dredge(T ')

rename(O, I") ~ O # (dredge(T))

inv--image(dO, T) ~=--~ dO -1 (d redge (T))

Dredging does not retrieve aft the facts available in a structured theory; some information may be lost along the way

{in particular, i t is hard tO dredge in theories built using the inv-image constructor),

We add an extra component, the tt~f of available facts to goals, with the notation s in? Tueing F to denote the

goal ,s /n? T with available facts F. DREDGETAC uses DREDGE to extract facts from the structured theory at hand,

adding them to the list of available facts in the goal. Subsequent tactics can use these facts to help achieve the

goal. For example, facts having the appropriate form can be added to the simplification set (another component of

the goal) for use by the simplif ier.

DREDGETAC: s ~ t n?T using F ~ [s' in? T using Is 1 in T . . . s n in T] U F]

where {s 1 ..~ Sn} = dredge(T)

We have seen that DIVETAC is capable of proving a certain class of facts, yet DREDGETAC seems to be needed

to collect the information necessary for the proofs of other facts. DREDGErAC alone is not capable of proving some

of the facts which are handled with ease by DWETAC, and besides it makes no use of theory structure. Some

combination of diving and dredging seems to be necessary in a general strategy for proof in structured theories.

As mentioned above, often the structured theory at hand contains a great deal of information which is utterly

irrelevant to the proof of a desired fact, It is important to restrict the available information as much as possible

before attempting the proof using standard techniques. But how is our strategy to automatically determine exactly

which subset of the available information is necessary for the proof of a fact? In the case of a ordinary LCF and

conventional theorem provers where the axioms, previously proved theorems, etc. are stored in an unstructured

form, the only approach seems to be some kind of heuristic f i l ter which passes only 'relevant' facts. The

construction of such a f i l ter is difficult, for it is not always obvious which facts are relevant,

This problem is not so perplexing when we are given the information in a highly structured form, such as a

structured theory, As observed earlier, it is easy when diving to exclude certain irrelevant subthecries entirely

because rename and union constructs wil l form barriers to inappropriate goals. If the theory is well-structured, then

it is likely that all of the information necessary to prove the fact will be located in a relatively small suMhecry.

DREOGEI'AC applied to this subthecry will normally collect all of the information necessary to prove the tact, without

389

much that is irrelevant.

The following strategy is based on DIVETAC and DREOGETAC. The approach is to visit each node in the

structured theory in precisely the same order as in DIVETAC, performing the same action at the tips. But after

trying both parents of a union node and failing, DFIEOGETAC is used to attempt the proof in the combined theory.

Hence dredging takes place on a theory only after all other methods have tailed.

SUPERTAC: tac ~ g

if g = s' in? prim-theory(~,S): (TRY tac) g

if g = s in? union(T,T'): ((UNIONTACTHEN SUPERTAC tac)

ORELSE (TRY (DREDGETAC THEN ta t))) g

if g = s in? rename(O,T): (RENAMETACTHEN SUPERTAC tac) g

if g = s in? inv-image(o,T): (INV-IMAGETAC THEN SUPERTAC tac) g

There remains an important class of facts which cannot be proved using SUPERTAC. For example, in trying to

prove s in the structured theory union(T, inv-tmage(do, I ")) it might happen that a is neither a s ig [T~-sentence

nor s Sig[inv-image(do, T'J~-sentence, so diving is impossible. Furthermore, the proof of s might require the

use of a fact a" In inv-image(do, T'.) which cannot be dredged - - perhaps s 'Edo- l (s ") , where ~" follows from a

and a' with dO- l (e) = d o - l (a ") = ~ but .g" M T" is not explicitly available (it is not a previously proved fact). In

cases like these it is necessary to first prove s' in inv-imsge(dO, T') (or s" in T') as a lamina. The idea for this

lamina must come from the user or from some clever lamina-proposing tactic (but the problem of automatically

proposing the right laminas in such cases seems rather difficult).

Nelson =~nd Oppen [NO 79] have described an elegant method for combining decision procedures for several

independent theories into a decision procedure for the combined theory; this can be seen as an alternative to our

DREDGETAC. Their method does not work when the theories share operators, so in general it cannot be applied to

the union of structured theories. But in the special case where the theories do not share operators (and perhaps

also for cases with certain restricted kinds of sharing) their algorithm could be applied in place of DREDGETAC.

The theorem prover of the t. (lots} system [NHN 80] also exploits the structure of specifications to facilitate

proofs. It uses fheory-focusing techniques [HN 79] which are related to the strategy embodied in SUPERTAC.

7 I m p l e m e n t a t i o n and fu tu re w o r k

Most of the ideas in this paper were conceived during the construction of a system in LCF for proving theorems

in Clear theories [San 82]. This system (written in ML) accepts a Clear theory expressed in terms of the theory-

building operators described here (the conversion to this form is performed by a different program) and supports

LCF-style theorem proving using inference rules, tactics and strategies similar to those discussed above. Recently-

this system has been modified to remove its Clear bias, and enhanced so that it contains the facilities presented

here. Experimentation has so far been limited to a few relatively simple examples.

The pe~'ameterisation mechanism described above has not yet been implemented. Its implementation should

present no problems, except that checking if a theory is a valid actual parameter must be implemented as a call on

LC.F itself to prove the necessary theorems.

The system does not currently remember the facts it proves for use as laminas in later proofs. This would

obviously be desirable, end should not be a difficult feature to implement. A related improvement would be to

390

represent s~ructured theorie~ in such a way that common ancestors ere truly shared, so that the addition of a newP~-

proved fact to an ancestor theory makes the fact available in the appropriate places throughout the entire strugtured

theory. This is important (for instance) when we use porameterised theories. As mentioned earlier, if A and B ere

permissible actual parameters of the parameter!sad theory Sorting (for appropriate O and O') then Sort ing(A,o) and

Sorting(B, (7') share the parent theory SortingTh (the analogous situation holds for any parameter!sad theory). It

often happens that the proof of a fact in a theory such as Sorttng(A,O) will depend only on the information

contained in SortingTh. (This in itself makes the proof easier, especially if A is large.) ff the system remembers

such a fact and sharing is implemented, then the fact will become available in Sort ing(B,o') es welt. Such a

sharing mechanism is alre~P.~ provided by LCF for conventions! LCF theories.

One problem with the proposals presented in this paper is that the operations given for building structured

theories are rather low-level. For example, in order to produce a structured theory which is the combination of T

and T' enriched by some type operators S, constants N and axioms A (this corresponds to the only way of building

new theories in conventional LCF) we must write:

union(union(T, T')

prim-theory(< S, n> U s ig~union(T,T ')]] , A))

This seems a rather cumbersome way of expressing a simple and commonly required operation=

Our first solution is to provide a function which makes enriching a theory easier. An infix function enriched by is

defined which allows the example above to be written:

union(T,T') enriched by (S, ~ , A)

However, the structure which this hides is still visible during proofs. Ultimately we would prefer to use Clears

theory-building operations themselves as primitive theory constructors. Inference rules and tactics similar to those

presented above can be developed for proving theorems in theories built in this way, although they will be somewhat

more complicated than those given here. Our goal is to ultimately integrate Clear and LCF into a single system for

specifying and proving theorems in large theories.

Asknowtedgemonts

Thanks to Brian Monahan for help with LCF and for making helpful comments on a draft. Of course, we are

indebted to Robin Milner and his colleagues for LCF and to Joe Goguen for his work on Clear. Thanks from DTS to

Trattoria "dal Fransese" in Norcia for an extra reason to attend CAAP 83. This work was supported by a studentship

from the University of Edinburgh and by the Science and Engineering Research Council.

8 References

[~DJ 78]

[ASM 79]

[Bau el]

[BG 77]

[a~ so]

Thatcher, J.W., Wagner, E.G. and Wright, J.B. Data type specification: porameterization and
the power of specification techniques. SIGACT lOth Annual Syrup. on the Theory of Computing,
San Diego, California.

Abrjal, 3.R.~ $chuman, S.A. and Meyer, B. Specification language Z. Massachusetts Computer
Associates Inc., Boston, Massachusetts.

Bauer, F.L. et al (the CIP Language Group) Report on 8 wide spectrum language for program
specification and development. Report TUM-18104, Technische Univ. MUnchen.

Burstalt, R.M. and Goguen, J.A. Putting theories together to make specifications. Pruc. 5th Intl.
Joint Conf. on Artificial intelligence, Cambridge, Massachusetts, pp. 1045-1058.

Burstall, R.M. and Goguen, J.A. The semantics of Clear, a specification language. Prec. of
Advanc~::l Course on Abstract Software Specifications, Copenhagen. Springer Lecture Notes in
Computer Science, Vol. 86, pp. 292-332.

391

[Cohn 79]

[OJ 80]

[GB 82]

[GMW 7'9]

[GHM 78]

[HN 79]

[Lea 82]

[LW 82]

[NHN 80]

[NO 7S]

[Sen 82]

[San 82a]

Cohn, A.J, Machine assisted proofs of recursion implementation. Ph.D, thesis, Dept. of
Computer Science, Univ. of Edinburgh.

Davenport, J.H. and Jenks, R.D. MODLISP. Proc. 1980 LISP Conference, Stanford, California,
pp. 65-74.

Goguen, J.A. end Burstall, R.M. Institutions: logic end specification. Draft report, SRI
International,

Gordon, M.J, , Milner, A.J.R. and Wadsworth, C,P. Edinburgh LCF. Springer Lecture Notes in
Computer Science, Vol. 78.

Guttag, JoV., Horowitz, E, and Musser, D.R. Abstract data types end software validation. CACM
21, 12 pp. 1048-1064.

Honda, M. and Nakajima, R. Interactive theorem proving on hierarchically and modularly structured
sets of very many axioms. Proc. 6th Intl. Joint Conf. on Artificial Intelligence, Tokyo,
pp. 400-402.

Leszczylowski, J. META SYSTEM, Preliminary draft report, Institute of Computer Science, Polish
Academy of Sciences.

Leszczylowski, J. end Wirsing, M, A system for reasoning within and about algebraic
specifications. Proc. 5th Intl, Syrup, on Programming, Turin, Springer Lecture Notes in Computer
Science, Vol. 137, pp. 257-282.

Nskajima, R., Honda, M. and Nakahara, H. Hierarchical program specification and ver i f ica t ion- -a
many-sorted logical approach. Acts Informatica 14 pp, 135-155,

Nelson, G. and Oppen, D.C. Simplification by cooperating decision procedures, TOPLAS 1. 2
pp. 245-257.

Sanneila, D,T. Semantics, implementation and progmatics of Clear, a program specification
language. Ph. D. thesis, Dept. of Computer Science, Univ. of Edinburgh.

Sannelle, D.T, A new semantics for Clear. To appear in Acts Informatica. Also Report
CSR-79-81, Dept. of Computer Science, Univ. of Edinburgh.

