
Computing and Informatics, Vol. 20, 2001, ??–??, V 2003-Sep-4

Casl — THE COMMON ALGEBRAIC SPECIFICATION
LANGUAGE: SEMANTICS AND PROOF THEORY

Till Mossakowski

Department of Computer Science, University of Bremen, Germany
e-mail: till@tzi.de

Anne Haxthausen

Informatics and Mathematical Modelling, Techn. University of Denmark, Lyngby
e-mail: ah@imm.dtu.dk

Donald Sannella

LFCS, School of Informatics, University of Edinburgh, Edinburgh, UK
e-mail: dts@inf.ed.ac.uk

Andrzej Tarlecki

Institute of Informatics, Warsaw University and Institute of Computer Science,
PAS, Warsaw, Poland
e-mail: tarlecki@mimuw.edu.pl

Abstract. Casl is an expressive specification language that has been designed to
supersede many existing algebraic specification languages and provide a standard.
Casl consists of several layers, including basic (unstructured) specifications, struc-
tured specifications and architectural specifications (the latter are used to prescribe
the structure of implementations).

We describe an simplified version of the Casl syntax, semantics and proof cal-
culus at each of these three layers and state the corresponding soundness and com-
pleteness theorems. The layers are orthogonal in the sense that the semantics of a

2 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

given layer uses that of the previous layer as a “black box”, and similarly for the
proof calculi. In particular, this means that Casl can easily be adapted to other
logical systems.

Keywords: Algebraic specification, formal software development, logic, calculi,
institutions

1 INTRODUCTION

Algebraic specification is one of the most extensively-developed approaches in the
formal methods area. The most fundamental assumption underlying algebraic spec-
ification is that programs are modelled as algebraic structures that include a col-
lection of sets of data values together with functions over those sets. This level of
abstraction is commensurate with the view that the correctness of the input/output
behaviour of a program takes precedence over all its other properties. Another
common element is that specifications of programs consist mainly of logical axioms,
usually in a logical system in which equality has a prominent role, describing the
properties that the functions are required to satisfy—often just by their interrela-
tionship. This property-oriented approach is in contrast to so-called model-oriented
specifications in frameworks like VDM [24] which consist of a simple realization of
the required behaviour. However, the theoretical basis of algebraic specification is
largely in terms of constructions on algebraic models, so it is at the same time much
more model-oriented than approaches such as those based on type theory (see e.g.
[41]), where the emphasis is almost entirely on syntax and formal systems of rules,
and semantic models are absent or regarded as of secondary importance.

Casl [4] is an expressive specification language that has been designed by CoFI,
the international Common Framework Initiative for algebraic specification and de-
velopment [38, 16], with the goal to subsume many previous algebraic specification
languages and to provide a standard language for the specification and development
of modular software systems.

This paper gives an overview of the semantic concepts and proof calculi under-
lying Casl. Section 2 starts with institutions and logics, abstract formalizations of
the notion of logical system. The remaining sections follow the layers of the Casl

language:

1. Basic specifications provide the means to write specifications in a particular in-
stitution, and providing a proof calculus for reasoning within such unstructured
specifications. The institution underlying Casl, together with its proof calcu-
lus, is presented in Sections 3 (for many-sorted basic specifications) and 4 (the
extension to subsorting). Section 5 explains some of the language constructs
that allow one to write down theories in this institution rather concisely.

2. Structured specifications, expressing how more complex specifications are built

Casl — The Common Algebraic Specification Language: semantics and proof theory 3

from simpler ones (Section 6). The semantics and proof calculus is given in
a way that is parameterized over the particular institution and proof calculus
for basic specifications (as given at the basic specification layer). Hence, the
institution and proof calculus for basic specifications can be changed without
the need to change anything for structured specifications.

3. Architectural specifications, in contrast to structured specifications, prescribe
the structure of the implementation, with the possibility of enforcing a separate
development of composable, reusable implementation units (Section 7). Again,
the semantics and proof calculus at this layer is formulated in terms of the
semantics and proof calculus given in the previous layers.

4. Finally, libraries of specifications allow the (distributed) storage and retrieval of
named specifications. Since this is rather straightforward, space considerations
led to the omission of this layer of Casl in the present work.

Due to space limitations, this paper only covers a simplified version of Casl,
and mainly introduces semantic concepts, while language constructs are only briefly
treated in Section 5. A full account of Casl (also covering libraries of specifications)
will appear in [40] (see also [16, 4, 34]), while a gentle introduction is provided in
[39].

2 INSTITUTIONS AND LOGICS

First, before considering the particular concepts underlying Casl, we recall how
specification frameworks in general may be formalized in terms of so-called institu-
tions [19].

An institution I = (Sign,Sen,Mod, |=) consists of

• a category Sign of signatures,

• a functor Sen : Sign → Set giving, for each signature Σ, a set of sentences
Sen(Σ), and for each signature morphism σ : Σ → Σ′, a sentence translation
map Sen(σ) : Sen(Σ)→Sen(Σ′), where Sen(σ)(ϕ) is often written σ(ϕ),

• a functor Mod : Signop → CAT 1 giving, for each signature Σ, a category of
models Mod(Σ), and for each signature morphism σ : Σ→Σ′, a reduct functor
Mod(σ) : Mod(Σ′)→Mod(Σ), where Mod(σ)(M ′) is often written M ′|σ,

• a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ Sign,

such that for each σ : Σ→Σ′ in Sign the following satisfaction condition holds:

M ′ |=Σ′ σ(ϕ) ⇐⇒ M ′|σ |=Σ ϕ

1 Here, CAT is the quasi-category of all categories. As metatheory, we use ZFCU , i.e.
ZF with axiom of choice and a set-theoretic universe U . This allows for the construction
of quasi-categories, i.e. categories with more than a class of objects. See [22].

4 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

for each M ′ ∈Mod(Σ′) and ϕ ∈ Sen(Σ).

An institution with unions is an institution equipped with a partial binary op-
eration ∪ on signatures, such that there are two “inclusions” ι1 : Σ1→Σ1 ∪ Σ2 and
ι2 : Σ2→Σ1 ∪ Σ2. We write M |Σi for M |ιi : Σi→Σ1∪Σ2 (i = 1, 2) whenever ιi is clear
from the context. Typically (e.g. in the Casl institution), ∪ is a total operation.
However, in institutions without overloading, generally two signatures giving the
same name to different things cannot be united.

Further properties of signature unions, as well as other requirements on institu-
tions, are needed only in Sect. 7 on architectural specifications and will be introduced
there.

Within an arbitrary but fixed institution, we can easily define the usual notion
of logical consequence or semantical entailment. Given a set of Σ-sentences Γ and
a Σ-sentence ϕ, we say that ϕ follows from Γ, written Γ |=Σ ϕ, iff for all Σ-models
M , we have M |=Σ Γ implies M |=Σ ϕ. (Here, M |=Σ Γ means that M |=Σ ψ for
each ψ ∈ Γ.)

Coming to proofs, a logic [29] extends an institution with proof-theoretic entail-
ment relations that are compatible with semantic entailment.

A logic LOG = (Sign,Sen,Mod, |=,`) is an institution (Sign,Sen, Mod, |=)
equipped with an entailment system `, that is, a relation `Σ ⊆ P(Sen(Σ))×Sen(Σ)
for each Σ ∈ |Sign|, such that the following properties are satisfied:

1. reflexivity: for any ϕ ∈ Sen(Σ), {ϕ} `Σ ϕ,

2. monotonicity: if Γ `Σ ϕ and Γ′ ⊇ Γ then Γ′ `Σ ϕ,

3. transitivity: if Γ `Σ ϕi for i ∈ I and Γ ∪ {ϕi | i ∈ I} `Σ ψ, then Γ `Σ ψ,

4. `-translation: if Γ `Σ ϕ, then for any σ : Σ→Σ′ in Sign, σ(Γ) `Σ′ σ(ϕ),

5. soundness: if Γ `Σ ϕ then Γ |=Σ ϕ.

A logic is complete if, in addition, Γ |=Σ ϕ implies Γ `Σ ϕ.

It is easy to obtain a complete logic from an institution by simply defining `
as |=. Hence, ` might appear to be redundant. However, the point is that ` will
typically be defined via a system of finitary derivation rules. This gives rise to a
notion of proof that is absent when the institution is considered on its own, even
if the relation that results coincides with semantic entailment which is defined in
terms of the satisfaction relation.

3 MANY-SORTED BASIC SPECIFICATIONS

Casl’s basic specification layer is an expressive language that integrates subsorts,
partiality, first-order logic and induction (the latter expressed using so-called sort
generation constraints).

Casl — The Common Algebraic Specification Language: semantics and proof theory 5

3.1 Many-sorted institution

The institution underlying Casl is introduced in two steps [8, 14]. In this section, we
introduce the institution of many-sorted partial first-order logic with sort generation
constraints and equality, PCFOL=. In Section 4, subsorting is added.

3.1.1 Signatures

A many-sorted signature Σ = (S,TF ,PF , P) consists of a set S of sorts, S∗×S-
indexed families TF and PF of total and partial function symbols, with TFw,s ∩
PFw,s = ∅ for each (w, s) ∈ S∗×S, where constants are treated as functions with no
arguments, and an S∗-indexed family P of predicate symbols. We write f : w → s ∈
TF for f ∈ TFw,s (with f : s for empty w), f : w →? s ∈ PF for f ∈ PFw,s (with
f :→? s for empty w) and p : w ∈ P for p ∈ Pw.

Although TFw,s and PFw,s are required to be disjoint, so that a function sym-
bol with a given profile cannot be both partial and total, function and predicate
symbols may be overloaded: we do not require e.g. TFw,s and TFw′,s′ (or TFw,s and
PFw′,s′) to be disjoint for (w, s) 6= (w′, s′). To ensure that there is no ambiguity
in sentences, however, symbols are always qualified by profiles when used. In the
Casl language constructs (see Section 5), such qualifications may be omitted when
they are unambiguously determined by the context.

Given signatures Σ and Σ′, a signature morphism σ : Σ→Σ′ maps sorts, function
symbols and predicate symbols in Σ to symbols of the same kind in Σ′. A partial
function symbol may be mapped to a total function symbol, but not vice versa, and
profiles must be preserved, so for instance f : w → s in Σ maps to a function symbol
in Σ′ with profile σ∗(w) → σ(s), where σ∗ is the extension of σ to finite strings of
symbols. Identities and composition are defined in the obvious way, giving a category
Sign of PCFOL=-signatures.

3.1.2 Models

Given a finite string w = s1 . . . sn and sets Ms1 , . . . ,Msn , we write Mw for the
Cartesian product Ms1 × · · · ×Msn . Let Σ = (S,TF ,PF , P).

A many-sorted Σ-model M consists of a non-empty carrier set Ms for each
sort s ∈ S, a total function (fw,s)M : Mw → Ms for each total function symbol f :
w → s ∈ TF , a partial function (fw,s)M : Mw ⇀Ms for each partial function symbol
f : w →? s ∈ PF , and a predicate (pw)M ⊆Mw for each predicate symbol p : w ∈ P .
Requiring carriers to be non-empty simplifies deduction and makes it unproblematic
to regard axioms (see Section 3.1.3) as implicitly universally quantified. A slight
drawback is that the existence of initial models is lost in some cases, even if only
equational axioms are used, namely if the signature is such that there are no ground
terms of some sort. However, from a methodological point of view, specifications
with such signatures typically are used in a context where loose rather than initial
semantics is appropriate.

6 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

A many-sorted Σ-homomorphism h : M → N maps the values in the carriers
of M to values in the corresponding carriers of N in such a way that the values
of functions and their definedness is preserved, as well as the truth of predicates.
Identities and composition are defined in the obvious way. This gives a category
Mod(Σ).

Concerning reducts, if σ : Σ→Σ′ is a signature morphism and M ′ is a Σ′-model,
thenM ′|σ is a Σ-model with (M ′|σ)s := M ′

σ(s) for s ∈ S and analogously for (fw,s)M ′|σ
and (pw)M ′|σ . The same applies to any Σ′-homomorphism h′ : M ′→N ′: its reduct
h′|σ : M ′|σ → N ′|σ is the Σ-homomorphism defined by (h′|σ)s := h′σ(s) for s ∈ S.
It is easy to see that reduct preserves identities and composition, so we obtain a
functor Mod(σ) : Mod(Σ′)→Mod(Σ). Moreover, it is easy to see that reducts are
compositional, i.e., we have, for example, (M ′′|θ)|σ = M ′′|σ;θ for signature morphisms
σ : Σ→Σ′, θ : Σ′→Σ′′ and Σ′′-models M ′′. This means that we have indeed defined
a functor Mod : Signop→CAT .

3.1.3 Sentences

Let Σ = (S,TF ,PF , P). A variable system over Σ is an S-sorted, pairwise disjoint
family of variables X = (Xs)s∈S. Let such a variable system be given.

As usual, the many-sorted Σ-terms over X are defined inductively as comprising
the variables in X, which have uniquely-determined sorts, together with applications
of function symbols to argument terms of appropriate sorts, where the sort is de-
termined by the profile of its outermost function symbol. This gives an S-indexed
family of sets TΣ(X) which can be made into a (total) many-sorted Σ-model by
defining (fw,s)TΣ(X) to be the term-formation operations for f : w → s ∈ TF and
f : w →? s ∈ PF , and (pw)TΣ(X) = ∅ for p : w ∈ P .

An atomic Σ-formula is either: an application pw(t1, . . . , tn) of a predicate sym-
bol to terms of appropriate sorts; an existential equation t

e
= t′ or strong equation

t
s
= t′ between two terms of the same sort; or an assertion def t that the value of

a term is defined. This defines the set AFΣ(X) of many-sorted atomic Σ-formulas
with variables in X. The set FOΣ(X) of many-sorted first-order Σ-formulas with
variables in X is then defined by adding a formula F (false) and closing under con-
junction ϕ ∧ ψ, implication ϕ ⇒ ψ and universal quantification ∀x : s • ϕ. We
use the usual abbreviations: ¬ϕ for ϕ ⇒ F , ϕ ∨ ψ for ¬(¬ϕ ∧ ¬ψ), T for ¬F and
∃x : s • ϕ for ¬∀x : s • ¬ϕ.

A sort generation constraint states that a given set of sorts is generated by
a given set of functions. Technically, sort generation constraints also contain a
signature morphism component; this allows them to be translated along signa-
ture morphisms without sacrificing the satisfaction condition. Formally, a sort
generation constraint over a signature Σ is a triple (S̃, F̃ , θ), where θ : Σ → Σ,
Σ = (S,TF ,PF , P), S̃ ⊆ S and F̃ ⊆ TF ∪ PF .

Now a Σ-sentence is either a closed many-sorted first-order Σ-formula (i.e. a
many-sorted first-order Σ-formula over the empty set of variables), or a sort gener-
ation constraint over Σ.

Casl — The Common Algebraic Specification Language: semantics and proof theory 7

Given a signature morphism σ : Σ→Σ′ and variable system X over Σ, we can
get a variable system σ(X) over Σ′ by taking

σ(X)s′ :=
⋃

σ(s)=s′

Xs

Since TΣ(X) is total, the inclusion ζσ,X : X→ TΣ′(σ(X))|σ (regarded as a variable
valuation) leads to a term evaluation function

ζ#
σ,X : TΣ(X)→TΣ′(σ(X))|σ

that is total as well. This can be inductively extended to a translation along σ of Σ-
first order formulas with variables inX by taking σ(t) := ζ#

σ,X(t), σ(pw(t1, . . . , tn)) :=

σw(p)σ∗(w)(σ(t1), . . . , σ(tn)), σ(t
e
= t′) := σ(t)

e
= σ(t′), σ(∀x : s • ϕ) = ∀x :

σ(s) •σ(ϕ), and so on. The translation of a Σ-constraint (S̃, F̃ , θ) along σ is the Σ′-
constraint (S̃, F̃ , θ;σ). It is easy to see that sentence translation preserves identities
and composition, so sentence translation is functorial.

3.1.4 Satisfaction

Variable valuations are total, but the value of a term with respect to a variable
valuation may be undefined, due to the application of a partial function during the
evaluation of the term. Given a variable valuation ν : X →M for X in M , term
evaluation ν# : TΣ(X) ⇀M is defined in the obvious way, with t ∈ dom(ν#) iff all
partial functions in t are applied to values in their domains.

Even though the evaluation of a term with respect to a variable valuation may
be undefined, the satisfaction of a formula ϕ in a model M is always defined, and
it is either true or false: that is, we have a two-valued logic. The application
pw(t1, . . . , tn) of a predicate symbol to a sequence of argument terms is satisfied
with respect to a valuation ν : X→M iff the values of all of t1, . . . , tn are defined
under ν# and give a tuple belonging to pM . A definedness assertion def t is satisfied
iff the value of t is defined. An existential equation t1

e
= t2 is satisfied iff the values

of t1 and t2 are defined and equal, whereas a strong equation t1
s
= t2 is also satisfied

when the values of both t1 and t2 are undefined; thus both notions of equation
coincide for defined terms. Satisfaction of other formulae is defined in the obvious
way. A formula ϕ is satisfied in a model M , written M |= ϕ, iff it is satisfied with
respect to all variable valuations into M .

A Σ-constraint (S̃, F̃ , θ) is satisfied in a Σ-model M iff the carriers of M |θ of
sorts in S̃ are generated by the function symbols in F̃ , i.e. for every sort s ∈ S̃ and
every value a ∈ (M |θ)s, there is a Σ-term t containing only function symbols from
F̃ and variables of sorts not in S̃ such that ν#(t) = a for some valuation ν into M |θ.

For a sort generation constraint (S̃, F̃ , θ) we can assume without loss of gener-
ality that all the result sorts of function symbols in F̃ occur in S̃. If not, we can
just omit from F̃ those function symbols not satisfying this requirement, without
affecting satisfaction of the sort generation constraint: in the Σ-term t witnessing

8 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

the satisfaction of the constraint, any application of a function symbol with result
sort outside S̃ can be replaced by a variable of that sort, which gets as assigned
value the evaluation of the function application.

For a proof of the satisfaction condition, see [34].

3.2 Proof calculus

We now come to the proof calculus for Casl many-sorted basic specification. The
rules of derivation are given in Fig. 1.

The first rules (up to ∀-intro) are standard rules of first-order logic [7]. Reflex-
ivity, Congruence and Substitution differ from the standard rules since they have to
take into account potential undefinedness of terms. Hence, Reflexivity only holds
for variables (which by definition are always defined), and Substitution needs the
assumption that the terms being substituted are defined. (Note that definedness,
D(t), is just an abbreviation for the existential equality t

e
= t.) Totality, Function

Strictness and Predicate Strictness have self-explanatory names; they allow to infer
definedness statements. Finally, the last two rules deal with sort generation con-
straints. If these are seen as second-order universally quantified formulas, Induction
corresponds to second-order ∀-Elim, and Sortgen-Intro corresponds to second-order
∀-Intro. The ϕj correspond to the inductive bases and inductive steps that have to
be shown, while the formula

∧
s∈S ∀x : θ(s)•Ψs(x) is the statement that is shown by

induction (note that if S consists of more than one sort, we have a parallel induction
running simultaneously over several sorts).

A derivation of Φ ` ϕ is a tree (called derivation tree) such that

• the root of the tree is ϕ,

• all the leaves of the tree are either in Φ or marked as local assumption,

• each non-leaf node is an instance of the conclusion of some rule, with its children
being the correspondingly instantiated premises,

• any assumptions marked with [. . .] in the proof rules are marked as local as-
sumptions.

If Φ and ϕ consist of Σ-formulas, we also write Φ `Σ ϕ. In practice, one will work
with acyclic graphs instead of trees, since this allows the re-use of lemmas.

Some rules contain a condition that some variables occur freely only in local
assumptions. These conditions are the usual Eigenvariable conditions of natural
deduction style calculi. They more precisely mean that if the specified variables
occur freely in an assumption in a proof tree, the assumption must be marked as
local and have been used in the proof of the premise of the respective rule.

The following theorem is proved in [37]:

Theorem 1. The above proof calculus yields an entailment system. Equipped with
this entailment system, the Casl institution SubPCFOL= becomes a sound logic.
Moreover, it is complete if sort generation constraints are not used.

Casl — The Common Algebraic Specification Language: semantics and proof theory 9

(Absurdity) false
ϕ (Tertium non datur)

[ϕ] [ϕ⇒ false]
...

...
ψ ψ

ψ

(⇒-intro)

[ϕ]
...
ψ

ϕ⇒ ψ (⇒-elim)

ϕ
ϕ⇒ ψ
ψ (∀-elim) ∀x : s.ϕ

ϕ

(∀-intro) ϕ
∀x : s.ϕ

where xs occurs freely only in local assumptions

(Reflexivity)
xs

e
= xs

if xs is a variable

(Congruence) ϕ
(
∧
xs∈FV (ϕ) xs

e
= ν(xs))⇒ ϕ[ν]

if ϕ[ν] defined

(Substitution) ϕ
(
∧
xs∈FV (ϕ) D(ν(xs)))⇒ ϕ[ν]

if ϕ[ν] defined and FV (ϕ) occur freely only in local assumptions

(Totality)
D(fw,s〈xs1 , . . . , xsn〉)

if w = s1 . . . sn, f ∈ TFw,s

(Function Strictness) t1
e
= t2
D(t)

t some subterm of t1 or t2

(Predicate Strictness)
pw〈t1, . . . , tn〉

D(ti)
i ∈ {1, . . . , n}

(Induction)

(S, F, θ : Σ̄→Σ)
ϕ1 ∧ · · · ∧ ϕk∧

s∈S ∀x : θ(s) •Ψs(x)

F = {f1 : s1
1 . . . s

1
m1
→s1; . . . ; fk : sk1 . . . s

k
mk
→sk},

Ψsj is a formula with one free variable x of sort θ(sj), j = 1, . . . , k,

ϕj = ∀x1 : θ(sj1), . . . , xmj : θ(sjmj)•(
D(θ(fj)(x1, . . . , xmj)) ∧

∧
i=1,... ,mj ; s

j
i∈S

Ψsji
(xi)

)
⇒ Ψsj

(
θ(fj)(x1, . . . , xmj)

)

(Sortgen-intro)
ϕ1 ∧ · · · ∧ ϕk ⇒

∧
s∈S ∀x : θ(s) • ps(x)

(S, F, θ : Σ̄→Σ)

F = {f1 : s1
1 . . . s

1
m1
→s1; . . . ; fk : sk1 . . . s

k
mk
→sk},

for s ∈ S, the predicates ps : θ(s) occur only in local assumptions,
and for j = 1, . . . , k,

ϕj = ∀x1 : θ(sj1), . . . , xmj : θ(sjmj)•(
D(θ(fj)(x1, . . . , xmj)) ∧

∧
i=1,... ,mj ; s

j
i∈S

psji
(xi)

)
⇒ psj

(
θ(fj)(x1, . . . , xmj)

)

Fig. 1. Deduction rules for Casl basic specifications

10 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

With sort generation constraints, inductive datatypes such as the natural num-
bers can be specified monomorphically (up to isomorphism). By Gödel’s incom-
pleteness theorem, there cannot be a recursively axiomatized complete calculus for
such systems.

Theorem 2. If sort generation constraints are used, the Casl logic is not complete.
Moreover, there cannot be a recursively axiomatized sound and complete entailment
system for many-sorted Casl basic specifications.

Instead of using the above calculus, it is also possible to use an encoding of the
Casl logic into second order logic, see [34].

4 SUBSORTED BASIC SPECIFICATIONS

Casl allows the user to declare a sort as a subsort of another. In contrast to most
other subsorted languages, Casl interprets subsorts as injective embeddings be-
tween carriers – not necessarily as inclusions. This allows for more general models
in which values of a subsort are represented differently from values of the supersort,
an example being integers (represented as 32-bit words) as a subsort of reals (rep-
resented using floating point). Furthermore, to avoid problems with modularity (as
described in [21, 31]), there are no requirements like monotonicity, regularity or local
filtration imposed on signatures. Instead, the use of overloaded functions and predi-
cates in formulae of the Casl language is required to be sufficiently disambiguated,
such that all parses have the same semantics.

4.1 Subsorted institution

In order to cope with subsorting, the institution for basic specifications presented
in Section 3 has to be modified slightly. First, in Section 4.1.1, the category of
signatures is defined (each signature is extended with a pre-order ≤ on its set of
sorts) and a functor from this category into the category of many-sorted signatures
is defined. Then, in Sections 4.1.2–4.1.4, the notions of models, sentences and satis-
faction can be borrowed from the many-sorted institution via this functor. Technical
details follow below, leading to the institution of subsorted partial first-order logic
with sort generation constraints and equality (SubPCFOL=).

4.1.1 Signatures

A subsorted signature Σ = (S,TF ,PF , P,≤) consists of a many-sorted signature
(S,TF ,PF , P) together with a reflexive transitive subsort relation ≤ on the set S
of sorts.

For a subsorted signature, we define overloading relations for function and pred-
icate symbols: Two function symbols f : w1 → s1 (or f : w1 →? s1) and f : w2 → s2

(or f : w2 →? s2) are in the overloading relation iff there exists a w ∈ S∗ and s ∈ S

Casl — The Common Algebraic Specification Language: semantics and proof theory 11

such that w ≤ w1, w2 and s1, s2 ≤ s. Similarly, two qualified predicate symbols
p : w1 and p : w2 are in the overloading relation iff there exists a w ∈ S∗ such that
w ≤ w1, w2.

Let Σ = (S,TF ,PF , P,≤) and Σ′ = (S ′,TF ′,PF ′, P ′,≤′) be subsorted signa-
tures. A subsorted signature morphism σ : Σ → Σ′ is a many-sorted signature
morphism from (S,TF ,PF , P) into (S ′,TF ′,PF ′, P ′) preserving the subsort rela-
tion and the overloading relations.

With each subsorted signature Σ = (S,TF ,PF , P,≤) we associate a many-
sorted signature Σ̂, which is the extension of the underlying many-sorted signature
(S,TF ,PF , P) with

• a total embedding function symbol em : s→ s′ for each pair of sorts s ≤ s′

• a partial projection function symbol pr : s′ →? s for each pair of sorts s ≤ s′

• a unary membership predicate symbol in(s) : s′ for each pair of sorts s ≤ s′

It is assumed that the symbols used for injection, projection and membership are
distinct and not used otherwise in Σ.

In a similar way, any subsorted signature morphism σ from Σ into Σ′ extends
to a many-sorted signature morphism σ̂ from Σ̂ into Σ̂′.

The construction ̂ is a functor from the category of subsorted signatures SubSig
into the category of many-sorted signatures Sign.

4.1.2 Models

For a subsorted signature Σ = (S,TF ,PF , P,≤), with embedding symbols em,
projection symbols pr , and membership symbols in, the subsorted models for Σ are
ordinary many-sorted models for Σ̂ satisfying a set Ax(Σ) of sentences ensuring that:

• Embedding functions are injective.

• The embedding of a sort into itself is the identity function.

• All compositions of embedding functions between the same two sorts are equal
functions.

• Projection functions are injective when defined.

• Embedding followed by projection is identity.

• Membership in a subsort holds just when the projection to the subsort is defined.

• Embedding is compatible with those functions and predicates that are in the
overloading relations.

Subsorted Σ-homomorphisms are ordinary many-sorted Σ̂-homomorphisms.
Hence, the category of subsorted Σ-models SubMod(Σ) is a full subcategory of

Mod(Σ̂), i.e. SubMod(Σ) = Mod(Σ̂, Ax(Σ)).
The reduct of Σ′-models and Σ′-homomorphisms along a subsorted signature

morphism σ from Σ into Σ′ is the many-sorted reduct along the signature morphism
σ̂. Since subsorted signature morphisms preserve the overloading relations, this is
well-defined and leads to a functor Mod(σ̂) : SubMod(Σ′)→SubMod(Σ).

12 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

4.1.3 Sentences

For a subsorted signature Σ, the subsorted sentences are the ordinary many-sorted
sentences for the associated many-sorted signature Σ̂.

Moreover, the subsorted translation of sentences along a subsorted signature
morphism σ is the ordinary many-sorted translation along σ̂.

The syntax of the Casl language (cf. Sect. 5) allows the user to omit subsort
injections, thus permitting the axioms to be written in a simpler and more intuitive
way. Static analysis then determines the corresponding sentences of the underlying
institution by inserting the appropriate injections.

4.1.4 Satisfaction

Since subsorted Σ-models and Σ-sentences are just certain many-sorted Σ̂-models
and Σ̂-sentences, the notion of satisfaction for the subsorted case follows directly
from the notion of satisfaction for the many-sorted case. Since reducts and sen-
tence translation are ordinary many-sorted reducts and sentence translation, the
satisfaction condition is satisfied for the subsorted case as well.

4.2 Borrowing of proofs

The proof calculus can borrowed from the many-sorted case. To prove that a Σ-
sentence ϕ is a Σ-consequence of a set of assumptions Φ, one just has to prove that
ϕ is a Σ̂-consequence of Φ and Ax(Σ), i.e.

Φ `Σ ϕ

if and only if

Φ ∪ Ax(Σ) `
Σ̂
ϕ

Soundness and (for the sublogic without sort generation constraints) completeness
follows from the many-sorted case.

5 CASL LANGUAGE CONSTRUCTS

Since the level of syntactic constructs will be treated only informally in this paper,
we just give a brief overview of the constructs for writing basic specifications (i.e.
specifications in-the-small) in Casl. A detailed description can be found in the
Casl Language Summary [26] and the Casl semantics [8].

The Casl language provides constructs for declaring sorts, subsorts, operations2

and predicates that contribute to the signature in the obvious way. Operations,

2 At the level of constructs, functions are called operations.

Casl — The Common Algebraic Specification Language: semantics and proof theory 13

predicates and subsorts can also be defined in terms of others; this leads to a corre-
sponding declaration plus a defining axiom.

%list [], nil , ::
%prec { :: } < { ++ }

spec List [sort Elem] =

free type List [Elem] ::= nil | :: (head :? Elem; tail :? List [Elem]);
sort NEList [Elem] = {L : List [Elem] • ¬L = nil};
op ++ : List [Elem]× List [Elem]→ List [Elem];
forall e : Elem; K ,L : List [Elem]

• nil ++L = L %(concat nil)%
• (e :: K) ++L = e :: K ++L %(concat cons)%

end

Fig. 2. Specification of lists over an arbitrary element sort in Casl.

Operation and predicate symbols may be overloaded; this can lead to ambigui-
ties in formulas. A formula is well-formed only if there is a unique way of consistently
adding profile qualifications, up to equivalence with respect to the overloading rela-
tions.

For operations and predicates, mixfix syntax is provided. Precedence and as-
sociativity annotations may help to disambiguate terms containing mixfix symbols.
There is also a syntax for literals such as numbers and strings, which allows the
usual datatypes to be specified purely in Casl, without the need for magic built-in
modules.

Binary operations can be declared to be associative, commutative, idempotent,
or to have a unit. This leads to a corresponding axiom, and, in the case of associa-
tivity, to an associativity annotation.

The type, free type and generated type constructs allow the concise descrip-
tion of datatypes. These are expanded into the declaration of the corresponding
constructor and selector operations and axioms relating the selectors and construc-
tors. In the case of generated and free datatypes, a sort generation constraint is also
produced. Free datatypes additionally lead to axioms that assert the injectivity of
the constructors and the disjointness of their images.

A typical Casl specification is shown in Fig. 2. The translation of Casl con-
structs to the underlying mathematical concepts is formally defined in the Casl

semantics [8], which gives the semantics of language constructs in two parts. The
static semantics checks well-formedness of a specification and produces a signature
as result, failing to produce any result for ill-formed phrases. The model semantics
provides the corresponding model-theoretic part of the semantics and produces a
class of models as a result, and is intended to be applied only to phrases that are
well-formed according to the static semantics. A statically well-formed phrase may
still be ill-formed according to the model semantics, and then no result is produced.

14 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

6 STRUCTURED SPECIFICATIONS

The Casl structuring concepts and constructs and their semantics do not depend
on a specific framework of basic specifications. This means that the design of many-
sorted and subsorted Casl specifications as explained in the previous sections is
orthogonal to the design of structured specifications that we are now going to de-
scribe (this also holds for the remaining parts of Casl: architectural specifications
and libraries). In this way, we achieve that the Casl basic specifications as given
above can be restricted to sublanguages or extended in various ways (or even re-
placed completely) without the need to reconsider or to change syntax and semantics
of structured specifications. The central idea for achieving this form of genericity is
the notion of institution introduced in Section 2. Indeed, many different logics, in-
cluding first-order [19], higher-order [12], polymorphic [?], modal [15, 53], temporal
[18], process [18], behavioural [10], and object-oriented [51, 20, 27, 52, 2] logics have
been shown to be institutions.

SPEC ::= BASIC-SPEC

| SPEC1 and SPEC2

| SPEC with σ
| SPEC hide σ
| SPEC1 then free { SPEC2 }

Fig. 3. Simplified syntax of Casl structured specifications

6.1 Syntax and semantics of structured specifications

Given an arbitrary but fixed institution with unions, it is now possible to define
structured specifications. Their syntax is given in Fig. 3. The syntax of basic speci-
fications BASIC-SPEC (as well as that of signature morphisms σ) is left unexplained,
since it is provided together with the institution.

Fig. 4 shows the semantics of structured specifications [47, 8]. The static seman-
tics is shown on the left of the figure, using judgements of the form ` phrase �result
(read: phrase statically elaborates to result). The model semantics is shown on the
right, using judgements of the form ` phrase ⇒ result (read: phrase evaluates to
result).

As expected, we assume that every basic specification (statically) determines a
signatures and a (finite) set of axioms, which in turn determine the class of models
of this specification.

Using the model semantics, we can define semantical entailment as follows: a
well-formed Σ-specification SP entails a Σ-sentence ϕ, written SP |=Σ ϕ, if ϕ is
satisfied in all SP -models. Moreover, we also have a simple notion of refinement
between specifications: SP1 refines to SP2, written SP1 ;; SP2, if every SP2-model
is also an SP1-model. Given a Σ1-specification SP1 and a Σ2-specification SP2, a

Casl — The Common Algebraic Specification Language: semantics and proof theory 15

` BASIC-SPEC � 〈Σ,Γ〉
` BASIC-SPEC � Σ

` BASIC-SPEC � 〈Σ,Γ〉
M = {M ∈Mod(Σ) |M |= Γ}

` BASIC-SPEC⇒M

` SP1 � Σ1

` SP2 � Σ2

Σ1 ∪ Σ2 is defined
` SP1 and SP2 � Σ1 ∪ Σ2

` SP1 � Σ1 ` SP2 � Σ2

Σ′ = Σ1 ∪ Σ2 is defined
` SP1 ⇒M1 ` SP2 ⇒M2

M={M ∈Mod(Σ′) |M |Σi ∈Mi, i = 1, 2}
` SP1 and SP2 ⇒M

` SP � Σ
` SP with σ : Σ→Σ′ � Σ′

` SP � Σ ` SP ⇒M
M′ = {M ∈Mod(Σ′) |M |σ ∈M}
` SP with σ : Σ→Σ′ ⇒M′

` SP � Σ′

` SP hide σ : Σ→Σ′ � Σ

` SP � Σ′ ` SP ⇒M
M′ = {M |σ |M ∈M}

` SP hide σ : Σ→Σ′ ⇒M′

` SP1 � Σ1 ` SP2 � Σ2

Σ1 ⊆ Σ2

` SP1 then free { SP2 }� Σ2

` SP1 � Σ1 ` SP2 � Σ2

ι : Σ1→Σ2 is the inclusion
` SP1 ⇒M1 ` SP2 ⇒M2

M′ = {M |M is Mod(ι)-free over M ι in M2}
` SP1 then free { SP2 }⇒M′

M being Mod(ι)-free over M ι in M2 means that for each model M ′ ∈ M2

and model morphism h : M ι → M ′
ι, there exists a unique model morphism

h# : M→M ′ with h#
ι = h.

Fig. 4. Semantics of structured specifications

specification morphism σ : SP1 → SP2 is a signature morphism σ : Σ1 → Σ2 such
that for each SP2-model M , M |σ is an SP1-model. Note that σ : SP1→ SP2 is a

specification morphism iff SP1 ;; SP2 hide σ.

The above language is a somewhat simplified version of Casl structured speci-
fications. The first simplification concerns the way signature morphisms are given.
It is quite inconvenient to be forced to always write down a complete signature mor-
phism, listing explicitly how each fully qualified symbol is mapped. As a solution
to this problem, Casl provides a notion of symbol maps, based on an appropriate

16 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

notion of institution with symbols. Symbol maps are a very concise notation for sig-
nature morphisms. Qualifications with profiles, symbols that are mapped identically
and even those whose mapping is determined uniquely may be omitted. Details can
be found in [8, 33].

The second simplification concerns the fact that it is often very convenient
to define specifications as extensions of existing specifications. For example, in
SPEC then free { SPEC′ }, typically SPEC′ is an extension of SPEC, and one does not
really want to repeat all the declarations in SPEC again in SPEC′ just for the sake of
turning SPEC′ into a self-contained specification. Therefore, Casl has a construct
SP then SP ′, where SP ′ can be a specification fragment that is interpreted in the
context (referred to as the local environment) coming from SP . Again, details can
be found in [8].

6.2 A proof calculus for structured specifications

As explained above, the semantics of Casl structured specifications is parameterized
over an institution providing the semantics of basic specifications. The situation with
the proof calculus is similar: here, we need a logic, i.e. an institution equipped with
an entailment system. Based on this, it is possible to design a logic independent
proof calculus [13] for proving entailments of the form SP ` ϕ, where SP is a
structured specification and ϕ is a formula, see Fig. 5. Fig. 6 shows an extension of
the structured proof calculus to refinements between specifications. Note that for
the latter calculus, an oracle for conservative extensions is needed. A specification
morphism σ : SP1→SP2 is conservative iff each SP1-model is the σ-reduct of some
SP2-model.3

(CR)
{SP ` ϕi}i∈I {ϕi}i∈I ` ϕ

SP ` ϕ (basic) ϕ ∈ Γ
〈Σ,Γ〉 ` ϕ

(sum1) SP1 ` ϕ
SP1 and SP2 ` ι1(ϕ)

(sum2) SP2 ` ϕ
SP1 and SP2 ` ι2(ϕ)

(trans) SP ` ϕ
SP with σ ` σ(ϕ)

(derive)
SP ` σ(ϕ)

SP hide σ ` ϕ

Fig. 5. Proof calculus for entailment in structured specifications

Theorem 3 (Soundness [13]). The calculus for structured entailment is sound, i.e.
SP ` ϕ implies SP |= ϕ. Also, the calculus for refinement between finite structured

specifications is sound, i.e. SP1 ; SP2 implies SP1 ;; SP2.

3 Besides this model-theoretic notion of conservativeness, there also is a weaker
consequence-theoretic notion: SP2 |= σ(ϕ) implies SP1 |= ϕ, and a proof-theoretic notion
coinciding with the consequence-theoretic one for complete logics: SP2 ` σ(ϕ) implies
SP1 ` ϕ. For the calculus of refinement, we need the model-theoretic notion.

Casl — The Common Algebraic Specification Language: semantics and proof theory 17

(Basic) SP ` Γ
〈Σ,Γ〉; SP

(Sum) SP1 with ι1 ; SP SP2 with ι2 ; SP
SP1 and SP2 ; SP

(Trans1) SP ; SP ′ with θ θ = σ−1

SP with σ ; SP ′
(Trans2) SP ; SP ′ hide σ

SP with σ ; SP ′

(Derive) SP ; SP ′′

SP hide σ ; SP ′
if σ : SP ′→SP ′′

is a conservative extension

(Trans-equiv)
(SP with σ) with θ ; SP ′

SP with σ;θ ; SP ′

Fig. 6. Proof calculus for refinement of structured specifications

Before we can state a completeness theorem, we need to formulate some technical
assumptions on the underlying institution I.

An institution has the Craig interpolation property, if for any pushout

Σ
σ1- Σ1

Σ2

σ2

? θ1 - Σ′

θ2

?

any Σ1-sentence ϕ1 and any Σ2-sentence ϕ2 with

θ2(ϕ1) |= θ1(ϕ2),

there exists a Σ-sentence ϕ (called the interpolant) such that

ϕ1 |= σ1(ϕ) and σ2(ϕ) |= ϕ2.

A cocone for a diagram in Sign is called (weakly) amalgamable if it is mapped
to a (weak) limit under Mod. I (or Mod) admits (finite) (weak) amalgamation if
(finite) colimit cocones are (weakly) amalgamable, i.e. if Mod maps (finite) colimits
to (weak) limits. An important special case is pushouts in the signature category,
which are prominently used for instance in instantiations of parameterized specifica-
tions. (Recall also that finite limits can be constructed from pullbacks and terminal
objects, so that finite amalgamation reduces to preservation of pullbacks and termi-
nal objects — dually: pushouts and initial objects). Here, the (weak) amalgamation
property requires that a pushout

Σ - Σ1

Σ2

?
- ΣR

?

18 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

in Sign is mapped by Mod to a (weak) pullback

Mod(Σ) � Mod(Σ1)

Mod(Σ2)

6

� Mod(ΣR)

6

of categories. Explicitly, this means that any pair (M1,M2) ∈Mod(Σ1)×Mod(Σ2)
that is compatible in the sense that M1 and M2 reduce to the same Σ-model can
be amalgamated to a unique (or weakly amalgamated to a not necessarily unique)
ΣR-model M (i.e., there exists a (unique) M ∈ Mod(ΣR) that reduces to M1 and
M2, respectively), and similarly for model morphisms.

An institution has conjunction, if for any Σ-sentences ϕ1 and ϕ2, there is a Σ-
sentence ϕ that holds in a model iff ϕ1 and ϕ2 hold. The notion of an institution
having implication is defined similarly.

Theorem 4 (Completeness [13]). Under the assumptions that

• the institution has the Craig interpolation property,

• the institution admits weak amalgamation,

• the institution has conjunction and implication and

• the logic is complete,

the calculi for structured entailment and refinement between finite structured spec-
ifications are complete.

Actually, the assumption of Craig interpolation and weak amalgamation can be
restricted to those diagrams for which it is really needed. Details can be found in
[13].

Notice though that even a stronger version of the interpolation property, namely
Craig-Robinson interpolation as in [17], still needs closure of the set of sentences
under implication in order to ensure the completeness of the above compositional
proof system.

A problem with the above result is that Craig interpolation often fails, e.g. it
does not hold for the Casl institution SubPCFOL= (only for the sublanguage
without subsorts and sort-injective signature morphisms, see [11]). This problem
may be overcome by adding a “global” rule to the calculus, which does a kind of
normal form computation, while maintaining the structure of specifications to guide
proof search as much as possible; see [35].

Checking conservativity in the CASL institution The proof rules for re-
finement are based on an oracle checking conservativeness of extensions. Hence,
logic-specific rules for checking conservativeness are needed. For Casl, conserva-
tiveness can be checked by syntactic criteria: e.g. free types and recursive definitions

Casl — The Common Algebraic Specification Language: semantics and proof theory 19

over them are always conservative. But more sophisticated rules are also available,
see [37]. Note that checking conservativeness is at least as complicated as checking
non-provability: for a Σ-specification SP , SP 6|= ϕ iff SP and 〈Σ, {¬ϕ}〉 is consis-
tent iff SP and 〈Σ, {¬ϕ}〉 is conservative over the empty specification. Hence, even
checking conservativeness in first-order logic is not recursively enumerable, and thus
there is no recursively axiomatized complete calculus for this task.4

Proof rules for free specifications An institution independent proof theory
for free specifications has not been developed yet (if this should be feasible at all).
Hence, for free specifications, one needs to develop proof support for each institution
separately. For the Casl institution, this has been done in [37]. The main idea is
just to mimick a quotient term algebra construction, and to restrict proof support
to those cases (e.g. Horn clause theories) where the free model is given by such a
construction. Details can be found in [37].

6.3 Named and parameterized specifications and views

Structured specifications may be named, so that the reuse of a specification may be
replaced by a reference to it through its name. A named specification may declare
some parameters, the union of which is extended by a body ; it is then called generic.
A reference to a generic specification should instantiate it by providing, for each
parameter, an argument specification together with a fitting morphism from the
parameter to the argument specification. Fitting may also be achieved by (explicit)
use of named views between the parameter and argument specifications. The union
of the arguments, together with the translation of the generic specification by an
expansion of the fitting morphism, corresponds to a pushout construction—taking
into account any explicit imports of the generic specification, which allow symbols
used in the body to be declared also by arguments.

Since parameterization may be expressed in terms of union and translation, we
omit its semantics and proof rules here.

Semantically, a view v : SP1→SP2 from a Σ1-specification SP1 to a Σ2-specifica-
tion SP2 is basically is a specification morphism σ : SP1→SP2, leading to a proof
obligation SP1 ; SP2 hide σ. A similar proof obligation is generated for anony-
mous instantiations of parameterized specifications (i.e. not given by a named view).

Naming specifications and referencing them by name leads to graphs of specifi-
cations. This is formalized as a so-called development graph [35, 37], which express

4 The situation is even more subtle. The model-theoretic notion of conservative exten-
sion (or, equivalently, of refinement between specifications involving hiding) corresponds to
second-order existential quantification. It is well-known that the semantics of second-order
logic depends on the background set theory [28]. For example, one can build a specifica-
tion and its extension that is conservative (or equivalently, provide another specification
to which it refines) iff the continuum hypothesis holds — a question that is undecidable
on the basis of our background metatheory ZFCU .

20 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

sharing between specifications, thereby leading to a more efficient proof calculus,
and providing management of proof obligations and proofs for structured specifica-
tion, as well as management of change.

7 ARCHITECTURAL SPECIFICATIONS

Architectural specifications in Casl provide a means of stating how implementa-
tion units are used as building blocks for larger components. (Dynamic interaction
between modules and dynamic changes of software structure are currently beyond
the scope of this approach.)

Units are represented as names to which a specification is associated. Such a
named unit is to be thought of as an arbitrarily selected model of the specification.
Units may be parameterized, where specifications are associated with both the pa-
rameters and the result. The result specification is required to extend the parameter
specifications. A parameterized unit is to be understood as a function which, given
models of the parameter specifications, outputs a model of the result specification;
this function is required to be persistent in the sense that reducing the result to the
parameter signatures reproduces the parameters.

Units can be assembled via unit expressions which may contain operations such
as renaming or hiding of symbols, amalgamation of units, and application of a
parameterized unit. Terms containing such operations will only be defined if symbols
that are identified, e.g. by renaming them to the same symbol or by amalgamating
units that have symbols in common, are also interpreted in the same way in all
“collective” models of the units defined so far.

An architectural specification consists of declarations and/or definitions of a
number of units, together with a way of assembling them to yield a result unit.

Example 5. A (fictitious) specification structure for a compiler might look roughly
as follows:

Identifier List
HHHHj ���

�����
��

ProgramText

���
�� HHHHj

AbstractSyntax SymbolTable

���
�� HHHHj ���

�� HHHHj
Parser StaticAnalyser CodeGeneratorXXXXXXXXXz 9���

���
��

Compiler

?

(The arrows indicate the extension relation between specifications.) An architectural
specification of the compiler in Casl might have the following form:

arch spec BuildCompiler =

Casl — The Common Algebraic Specification Language: semantics and proof theory 21

units I : Identifier with sorts Identifier ,Keyword ;
L : Elem → List[Elem];
IL = L[I fit sort Elem 7→ Identifier]
KL = L[I fit sort Elem 7→ Keyword]
PT : ProgramText given IL, KL;
AS : AbstractSyntax given PT ;
ST : SymbolTable given PT ;
P : Parser given AS ;
SA : StaticAnalyser given AS , ST ;
CG : CodeGenerator given ST

result P and SA and CG
end

(Here, the keyword with is used to just list some of the defined symbols. The key-
word given indicates imports.) According to the above specification, the parser, the
static analyser, and the code generator would be constructed building upon a given
abstract syntax and a given mechanism for symbol tables, and the compiler would
be obtained by just putting together the former three units. Roughly speaking, this
is only possible (in a manner that can be statically checked) if all symbols that are
shared between the parser, the static analyser and the code generator already appear
in the units for the abstract syntax or the symbol tables — otherwise, incompatibili-
ties might occur that make it impossible to put the separately developed components
together. For instance, if both StaticAnalyser and CodeGenerator declare
an operation lookup that serves to retrieve symbols from the symbol table, then the
corresponding implementations might turn out to be substantially different, so that
the two components fail to be compatible. Of course, this points to an obvious flaw
in the architecture: lookup should have been declared in SymbolTable.

Consider an institution with unions I = (Sign,Sen,Mod, |=). We assume that
the signature category is finitely cocomplete and that the institution admits amalga-
mation. We also assume that signature unions are exhaustive in the sense that given
two signatures Σ1 and Σ2 and their union Σ1

ι1−→ (Σ1 ∪Σ2)
ι2←− Σ2, for any models

M1 ∈Mod(Σ1) and M2 ∈Mod(Σ2), there is at most one model M ∈Mod(Σ1∪Σ2)
such that M ι1 = M1 and M ι2 = M2. In such a framework we formally present a
small but representative subset of Casl architectural specifications. The fragment
— or rather, its syntax — is given in Fig. 7.

Architectural specifications: ASP ::= arch spec Dcl∗ result T

Unit declarations: Dcl ::= U : SP | U : SP1
τ−→ SP2

Unit terms: T ::= U | U [T fit σ] | T1 and T2

Fig. 7. A fragment of the architectural specification formalism

Example 5 additionally uses unit definitions and imports. Unit definitions U = T

22 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

introduce a (non-parameterized) unit and give its value by a unit term. Imports can
be regarded as syntactical sugar for a parameterized unit which is instantiated only
once: if U1 : SPEC1, then

U2 : SPEC2 given U1

abbreviates

U ′2 : SPEC1 → SPEC2 ;
U2 =U ′2 [U1].

We now sketch the formal semantics of our language fragment and show how
correctness of such specifications may be established.

7.1 Semantics of architectural specifications

The semantics of architectural specifications introduced above is split into their
static and model semantics, in very much the same way as for structured specifica-
tions in Sect. 6.

Unit terms are statically elaborated in a static context Cst = (Pst ,Bst), where
Pst maps parameterized unit names to signature morphisms and Bst maps non-
parameterized unit names to their signatures. We require the domains of Pst and
Bst to be disjoint. The empty static context that consists of two empty maps
will be written as C ∅st . Given an initial static context, the static semantics for
unit declarations produces a static context by adding the signature for the newly
introduced unit, and the static semantics for unit terms determines the signature
for the resulting unit.

In terms of the model semantics, a (non-parameterized) unit M over a signature
Σ is just a model M ∈Mod(Σ). A parameterized unit F over a parameterized unit
signature τ : Σ1 → Σ2 is a persistent partial function F : Mod(Σ1) ⇀ Mod(Σ2)
(i.e. F (M) τ = M for each M ∈ Dom(F)).

The model semantics for architectural specifications involves interpretations of
unit names. These are given by unit environments E, i.e. finite maps from unit
names to units as introduced above. On the model semantics side, the analogue
of a static context is a unit context C, which is just a class of unit environments,
and can be thought of as a constraint on the interpretation of unit names. The
unconstrained unit context, which consists of all environments, will be written as
C∅. The model semantics for unit declarations modifies unit contexts by constraining
the environments to interpret the newly introduced unit names as determined by
their specification or definition.

A unit term is interpreted by a unit evaluator UEv , a function that yields a unit
when given a unit environment in the unit context (the unit environment serves to
interpret the unit names occurring in the unit term). Hence, the model semantics
for a unit term yields a unit evaluator, given a unit context.

The complete semantics is given in Figures 8 (static semantics) and 9 (model
semantics) where we use some auxiliary notation: given a unit context C, a unit

Casl — The Common Algebraic Specification Language: semantics and proof theory 23

` UDD∗ � Cst Cst ` T � Σ

` arch spec UDD∗ result T � (Cst ,Σ)

C ∅st ` UDD1 � (Cst)1 · · · (Cst)n−1 ` UDDn � (Cst)n

` UDD1 . . .UDDn � (Cst)n

` SP � Σ U 6∈ (Dom(Pst) ∪ Dom(Bst))

(Pst ,Bst) ` U : SP � (Pst ,Bst + {U 7→ Σ})

` SP1 � Σ1 ` SP2 � Σ2 τ : Σ1 → Σ2

U 6∈ (Dom(Pst) ∪ Dom(Bst))

(Pst ,Bst) ` U : SP1
τ−→ SP2 � (Pst + {U 7→ τ},Bst)

U ∈ Dom(Bst)

(Pst ,Bst) ` U � Bst(U)

Pst(U) = τ : Σ→ Σ′ Cst ` T � ΣT σ : Σ→ΣT

(τ ′ : ΣT → Σ′T , σ
′ : Σ′ → Σ′T) is the pushout of (σ, τ)

(Pst ,Bst) ` U [T fit σ] � Σ′T

Cst ` T1 � Σ1 Cst ` T2 � Σ2

Σ = Σ1 ∪ Σ2 with inclusions ι1 : Σ1 → Σ, ι2 : Σ2 → Σ

(Pst ,Bst) ` T1 and T2 � Σ

Fig. 8. Static semantics of architectural specifications

name U and a class V ,

C × {U 7→ V} := {E + {U 7→ V } | E ∈ C,V ∈ V},

where E + {U 7→ V } maps U to V and otherwise behaves like E . The model
semantics assumes that the static semantics has been successful on the constructs
considered; we use the notations introduced by this derivation of the static semantics
in the model semantics rules whenever convenient.

The model semantics is easily seen to be compatible with the static semantics

24 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

in the following sense: we say that C fits Cst = (Pst ,Bst), if, whenever Bst(U) = Σ
and E ∈ C, then E(U) is a Σ-model, and a corresponding condition holds for Pst .
Obviously, C∅ fits C ∅st . Now if C fits Cst , then Cst ` T � Σ and C ` T ⇒ UEv imply
that UEv(E) is a Σ-model for each E ∈ C. Corresponding statements hold for the
other syntactic categories (unit declarations, architectural specifications).

We say that an architectural specification is internally correct (or simply: cor-
rect) if it has both static and model semantics. Informally, this means that the
architectural design the specification captures is correct in the sense that any real-
ization of the units according to their specifications allows us to construct an overall
result by performing the construction prescribed by the result unit term.

Checking correctness of an architectural specification requires checking that all
the rules necessary for derivation of its semantics may indeed be applied, that is,
all their premises can be derived and the conditions they capture hold. Perhaps the
only steps which require further discussion are the rules of the model semantics for
unit application and amalgamation in Fig. 9. Only there do some difficult premises
occur, marked by (∗), (∗∗) and (∗∗∗), respectively. All the other premises of the
semantic rules are “easy” in the sense that they largely just pass on the information
collected about various parts of the given phrase, or perform a very simple check
that names are introduced before being used, signatures fit as expected, etc.

First we consider the premises (∗∗) and (∗∗∗) in the rules for unit application
and amalgamation, respectively. They impose “amalgamability requirements”, nec-
essary to actually build the expected models by combining the simpler models, as
indicated. Such requirements are typically expected to be at least partially dis-
charged by static analysis — similarly to the sharing requirements present in some
programming languages (cf. e.g. Standard ML [42]). Under our assumptions, the
premise (∗∗) may simply be skipped, as it always holds (since all parameterized
units are persistent functions, E (U)(UEv(E) σ) τ = UEv(E) σ, and so the required

unique model M ∈ Mod(Σ′T) exists by the amalgamation property of the insti-
tution). The premise (∗∗∗) may fail though, and a more subtle static analysis of
the dependencies between units may be needed to check that it holds for a given
construct.

The premise (∗) in the rule for application of a parameterized unit requires
that the fitting morphism correctly “fits” the actual parameter as an argument
for the parameterized unit. To verify this, one typically has to prove that the
fitting morphism is a specification morphism from the argument specification to
the specification of the actual parameter. Similarly as with the proof obligations
arising for instantiations of parameterized specifications discussed in Sect. 6.3, this
in general requires some semantic or proof-theoretic reasoning. Moreover, a suitable
calculus is needed to determine a specification for the actual parameter. One naive
attempt to provide it might be to build such a specification inductively for each unit
term using directly specifications of its components. Let SPT be such a specification
for the term T . In other words, verification conditions aside:

• SPU is SP , where U : SP is the declaration of U ;

Casl — The Common Algebraic Specification Language: semantics and proof theory 25

• SPT1 and T2 is (SPT1 and SPT2);

• SPU [T fit σ] is ((SPT with τ ′) and (SP ′ with σ′)), where U : SP
τ−→ SP ′ is

the declaration of U and (τ ′, σ′) is the pushout of (σ, τ), as in the corresponding
rule of the static semantics.

It can easily be seen that SPT so determined is indeed a correct specification for
T , in the sense that if Cst ` T � Σ and C ` T ⇒ UEv then ` SPT � Σ and
` SPT ⇒M with UEv(E) ∈ M for each E ∈ C. Therefore, we could replace the

requirement (∗) by SP ;; SPT hide σ.
However, this would be highly incomplete. Consider a trivial example:

units U : {sort s; op a : s}
ID : {sort s; op b : s} → {sort s; op b : s}
F : {sort s; op a, b : s; axiom a = b} → . . .

result F [U and ID [U fit b 7→ a]]

The specification we obtain for the argument unit term of F does not capture that
fact that a = b holds in all units that may actually arise as the argument for F
here. The problem is that the specification for a unit term built as above entirely
disregards any dependencies and sharing that may occur between units denoted by
unit terms, and so is often insufficient to verify correctness of unit applications.
Hence, this first try to calculate specifications for architectural unit terms turns out
to be inadequate, and a more complex form of architectural verification is needed.

7.2 Verification

The basic idea behind verification for architectural specifications is that we want to
extend the static information about units to capture their properties by an additional
specification. However, as discussed at the end of the previous section, we must
also take into account sharing between various unit components, resulting from
inheritance of some unit parts via for instance parameterized unit applications. To
capture this, we accumulate information on non-parameterized units in a single global
signature ΣG, and represent non-parameterized unit signatures as morphisms into
this global signature, assigning them to unit names by a map Bv . The additional
information resulting from the unit specifications will be accumulated in a single
global specification SPG over this signature (i.e., we will always have ` SPG �

ΣG). Finally, we will of course store the entire specification for each parameterized
unit, assigning them to parameterized unit names by a map Pv . This results in
the concept of a verification context Cv = (Pv ,Bv , SPG). A static unit context
ctx (Cv) = (Pst ,Bst) may easily be extracted from such an extended one: for each
U ∈ Dom(Bv), Bst(U) = Σ, where Bv(U) = i : Σ → ΣG, and for each U ∈
Dom(Pv), Pst(U) = τ , where Pv(U) = SP1

τ−→ SP2.
Given a morphism θ : ΣG → Σ′G that extends the global signature (or a global

specification morphism θ : SPG → SP ′G) we write Bv ;θ for the corresponding exten-
sion of Bv (mapping each U ∈ Dom(Bv) to Bv(U);θ). C ∅v is the “empty” verification

26 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

context (with the initial global specification5).
The intuition introduced above is reflected in the forms of verification judgments,

and captured formally by the verification rules:

` ASP :: SP

Architectural specifications yield a specification of the result.

Cv ` Dcl :: C ′v

In a verification context, unit declarations yield a new verification context.

(Pv ,Bv , SPG) ` T :: Σ
i−→ SP ′G

θ←− SPG

In a verification context, unit terms yield their signature embedded into a new
global specification, obtained as an indicated extension of the old global speci-
fication.

The verification rules to derive these judgments are in Fig. 10, with diagrams
helping to read the more complicated rules for unit application and amalgamation
in Fig. 11.

It should be easy to see that the verification semantics subsumes (in the obvious
sense) the static semantics: a successful derivation of the verification semantics
ensures a successful derivation of the static semantics with results that may be
extracted from the results of the verification semantics in the obvious way.

More crucially, a successful derivation of the verification semantics on an archi-
tectural specification ensures a successful derivation of the model semantics, and
hence the correctness of the architectural specification.

To state this more precisely, we need an extension to verification contexts of the
notion that a unit context fits a static context: a unit context Cv fits a verification
context Cv = (Pv ,Bv , SPG), where ` SPG ⇒MG, if

• for each E ∈ C and U ∈ Dom(Pv) with Pv(U) = SP
τ−→ SP ′, where ` SP ⇒M

and ` SP ′ ⇒M′, we have E (U)(M) ∈M′ for all M ∈M, and

• for each E ∈ C, there exists MG ∈MG such that for all U ∈ Dom(Bv), E (U) =
MG Bv (U); we say then that E is witnessed by MG.

Now, the following claims follow by induction:

• For every architectural specification ASP , if ` ASP :: SP with ` SP ⇒M then
` ASP ⇒ (C,UEv) for some unit context C and unit evaluator UEv such that
UEv(E) ∈M for all E ∈ C.
• For any unit declaration Dcl and verification context Cv , if Cv ` Dcl :: C ′v then

for any unit context C that fits Cv , C ` Dcl ⇒ C ′ for some unit context C ′ that
fits C ′v ; this generalizes to sequences of unit declarations in the obvious way.

5 More precisely, this is the basic specification consisting of the initial signature with
no axioms.

Casl — The Common Algebraic Specification Language: semantics and proof theory 27

• For any unit term T and verification context Cv = (Pv ,Bv , SPG), where `
SPG ⇒MG, if Cv ` T :: Σ

i−→ SP ′G
θ←− SPG, where ` SP ′G ⇒M′

G, then for
any unit context C that fits Cv , C ` T ⇒ UEv for some unit evaluator UEv such
that for each E ∈ C witnessed by MG ∈ MG, there exists a model M ′

G ∈ M′
G

such that M ′
G θ = MG and M ′

G i = UEv(E).

In particular this means that a successful derivation of the verification semantics
ensures that in the corresponding derivation of the model semantics, whenever the
rules for unit application and amalgamation are invoked, the premises marked by
(∗), (∗∗) and (∗∗∗) hold. This may also be seen somewhat more directly:

(∗) Given the above relationship between verification and model semantics, the re-
quirement (∗) in the model semantics rule for unit application follows from the
requirement that SP with σ;i ; SP ′G in the corresponding verification rule.

(∗∗) As pointed out already, the premises marked by (∗∗) may be removed by the
assumption that the institution we work with admits amalgamation.

(∗∗∗) Given the above relationship between verification and model semantics, the ex-
istence of models required by (∗∗∗) in the model semantics rule for unit amalga-
mation can be shown by gradually constructing a compatible family of models
over the signatures in the corresponding diagram in Fig. 11 (this requires amal-
gamation again); the uniqueness of the model so constructed follows from our
assumption on signature union.

Note that only checking the requirement (∗) relies on the information gathered in the
specifications built for unit terms by the verification semantics. The other require-
ments are entirely “static” in the sense that they may be checked also if we replace
specifications by their signatures. This may be used to further split the verification
semantics into two parts: an extended static analysis, performed without taking
specifications into account, but considering in detail all the mutual dependencies
between units involved to check properties like those labeled by (∗∗) and (∗∗∗); and
a proper verification semantics aimed at considering unit specifications and deriving
specifications for unit terms from them. See [54] for details.

7.3 Enriched Casl, diagram semantics and the cell calculus

The verification semantics of architectural specifications presented in the previous
section crucially depends on amalgamation in the underlying institution. However,
the Casl institution fails to have this property:

Example 6. The simplest case where amalgamation fails is the following: let Σ be
the signature with sorts s and t and no operations, and let Σ1 be the extension of

28 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

Σ by the subsort relation s ≤ t. Then the pushout

Σ - Σ1

Σ1

?
- Σ1

?

in SubSig fails to be amalgamable (since two models of Σ1, compatible w.r.t. the
inclusion of Σ, may interpret the subsort injection differently).

The solution is to embed the Casl institution into an institution that enjoys
the amalgamation property. The main idea in the definition of the required ex-
tended institution is to generalize pre-orders of sorts to categories of sorts, i.e. to
admit several different subsort embeddings between two given sorts; this gives rise
to the notion of enriched Casl signature. Details can be found in [50]. This means
that before a Casl architectural specification can be statically checked and verifi-
cation conditions can be proved, it has to be translated to enriched Casl, using the
embedding.

One might wonder why the mapping from subsorted to many-sorted specifica-
tions introduced in Sect. 4 is not used instead of introducing enriched Casl. Indeed,
this is possible. However, enriched Casl has the advantage of keeping the subsorting
information entirely static, avoiding any axioms to capture the built-in structural
properties, as would be the case with the mapping from Sect. 4.

This advantage plays a role in the so-called diagram semantics of architectural
specifications. It replaces the global signatures that are used in the static seman-
tics by diagrams of signatures and signature morphisms, see [8]. In the “extended
static part” of the verification semantics, the commutativity conditions concerning
signature morphisms into the global signature have then to be replaced by model-
theoretic amalgamation conditions. Given an embedding into an institution with
amalgamation such as the one discussed above, the latter conditions are equivalent
to factorization conditions of the colimit of the embedded diagram. For (enriched)
Casl, these factorization conditions can be dealt using a calculus (the so-called cell
calculus) for proving equality of morphisms and symbols in the colimit; see [25]. A
verification semantics without reference to overall global specifications (which re-
lies on the amalgamation property) and consequently with more “local” verification
conditions is yet to be worked out.

8 REFINEMENT

The standard development paradigm of algebraic specification [5] postulates that for-
mal software development begins with a formal requirement specification (extracted
from a software project’s informal requirements) that fixes only expected properties
but ideally says nothing about implementation issues; this is to be followed by a
number of refinement steps that fix more and more details of the design, so that one

Casl — The Common Algebraic Specification Language: semantics and proof theory 29

finally arrives at what is often termed the design specification. The last refinement
step then results in an actual implementation in a programming language.

Casl’s views express some aspect of refinement, namely that as a specification
is successively refined during the development process, the model class gets smaller
and smaller as more and more design decision are made, until a monomorphic de-
sign specification or program is reached. However, Casl’s views are not expressive
enough for refinement, being primarily a means for naming fitting morphisms for
parameterized specifications. This is because there are more aspects of refinement
than just model class inclusion.

One central issue here is so-called constructor refinement [48]. This includes the
basic constructions for writing implementation units that can be found in program-
ming languages, e.g. enumeration types, algebraic datatypes (that is, free types) and
recursive definitions of operations. Also, unit terms in architectural specifications
can be thought of as (logic independent) constructors: they construct larger units
out of smaller ones. Refinements may use these constructors, and hence the task of
implementing a specification may be entirely discharged (by supplying appropriate
constructs in some programming language), or may be reduced (via an architectural
specification) to the implementation of smaller specifications. A first refinement
language following these lines is described in [30].

A second central issue concerns behavioural refinement. Often, a refined specifi-
cation does not satisfy the initial requirements literally, but only up to some sort of
behavioural equivalence. E.g. if stacks are implemented as arrays-with-pointer, then
two arrays-with-pointer only differing in their “junk” entries (that is, those beyond
the pointer) exhibit the same behaviour in terms of the stack operations. Hence,
they correspond to the same abstract stack and should be treated as being the same
for the purpose of the refinement. This can be achieved e.g. by using observational
equivalences between models, which are usually induced by sets of observable sorts
[46].

9 CONCLUSION

Casl is a complex specification language providing both a complete formal seman-
tics and a proof calculus for all its constructs. A central property of the design of
Casl is the orthogonality between on the one hand basic specifications providing
means to write theories in a specific logic, and on the other hand structured and
architectural specifications, which have a logic-independent semantics. This means
that the logic for basic specifications can easily be changed while keeping the rest of
Casl unchanged. Indeed, Casl is actually the central language in a whole family
of languages. Casl concentrates on the specification of abstract data types and
(first-order) functional requirements, while some (currently still prototypical) exten-
sions of Casl also consider the specification of higher-order functions [36, 49] and
of reactive [9, 43, 44, 45] and object-oriented [3, 23] behaviour. Restrictions of Casl

to sublanguages [34] make it possible to use specialized tool support.

30 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

Now that the design of Casl and its semantics have been completed and are
laid out in a forthcoming two-volume book [39, 40], the next step is to put Casl

into practical use. A library of basic datatypes and several case studies have been
developed in Casl [1]; they show how Casl works in practice. Of course, tool
support is an important issue as well. There is a Casl tool set [32] providing a parser
and static analysis for the various levels of Casl. Concerning proof support for
basic specifications, the Casl tool set provides several logical codings that interface
Casl to existing theorem provers such as Isabelle/HOL. The tool Maya [6] provides
management of proof obligations arising from Casl structured specifications. These
proof obligations can be discharged by calling external theorem provers. Currently,
this tool support is also being made independent of the underlying logical system,
so that the orthogonality of the different levels of Casl is also reflected at the level
of tools. Then programming languages (formalized as particular institutions) can
also be integrated, leading to a framework and environment for formal software
development.

Acknowledgements

This paper reports results of the Common Framework Initiative (CoFI); hence
we thank all the contributors to CoFI, without whom it simply would not exist.
This work has been partially supported by KBN grant 7T11C 002 21 and European
AGILE project IST-2001-32747, and by the British-Polish Research Partnership
Programme.

REFERENCES

[1] Casl case studies. Available at http://www.pst.informatik.uni-muenchen.de/
~baumeist/CoFI/case.html.

[2] S. Alagi. Institutions: integrating objects, XML and databases. Information and
Software Technology, 44:207–216, 2002.

[3] D. Ancona, M. Cerioli, and E. Zucca. Extending Casl by late binding. In C. Choppy,
D. Bert, and P. Mosses, editors, Recent Trends in Algebraic Development Techniques,
14th International Workshop, WADT’99, Bonas, France, volume 1827 of Lecture
Notes in Computer Science. Springer-Verlag, 2000.

[4] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. D. Mosses,

D. Sannella, and A. Tarlecki. Casl: The common algebraic specification lan-
guage. Theoretical Computer Science, 286:153–196, 2002.

[5] E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner. Algebraic Foundations of Sys-
tems Specification. Springer, 1999.

[6] S. Autexier and T. Mossakowski. Integrating HolCasl into the development graph
manager Maya. In A. Armando, editor, Frontiers of Combining Systems, 4th Inter-
national Workshop, volume 2309 of Lecture Notes in Computer Science, pages 2–17.
Springer-Verlag, 2002.

Casl — The Common Algebraic Specification Language: semantics and proof theory 31

[7] J. Barwise and J. Etchemendy. Language, proof and logic. CSLI publications, 2002.
[8] H. Baumeister, M. Cerioli, A. Haxthausen, T. Mossakowski, P. Mosses, D. Sannella,

and A. Tarlecki. Casl semantics. In P. Mosses, editor, Casl Reference Manual. [40],
Part III.

[9] H. Baumeister and A. Zamulin. State-based extension of Casl. In Proceedings IFM
2000, volume 1945 of Lecture Notes in Computer Science. Springer-Verlag, 2000.

[10] M. Bidoit and R. Hennicker. On the integration of observability and reachability
concepts. In M. Nielsen and U. Engberg, editors, Foundations of Software Science
and Computation Structures, 5th International Conference, FOSSACS 2002. Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2002 Grenoble, France, April 8-12, 2002, Proceedings, volume 2303 of Lecture Notes
in Computer Science, pages 21–36. Springer, 2002.

[11] T. Borzyszkowski. Generalized interpolation in CASL. Information Pro-
cessing Letters, 76/1-2:19–24, 2000.

[12] T. Borzyszkowski. Higher-order logic and theorem proving for structured specifica-
tions. In C. Choppy, D. Bert, and P. Mosses, editors, Workshop on Algebraic Devel-
opment Techniques 1999, volume 1827 of LNCS, pages 401–418, 2000.

[13] T. Borzyszkowski. Logical systems for structured specifications. Theo-
retical Computer Science, 286:197–245, 2002.

[14] M. Cerioli, A. Haxthausen, B. Krieg-Brückner, and T. Mossakowski. Permissive sub-
sorted partial logic in Casl. In M. Johnson, editor, Algebraic methodology and soft-
ware technology: 6th international conference, AMAST 97, volume 1349 of Lecture
Notes in Computer Science, pages 91–107. Springer-Verlag, 1997.

[15] C. Cirstea. Institutionalising many-sorted coalgebraic modal logic. In CMCS 2002,
Electronic Notes in Theoretical Computer Science. Elsevier Science, 2002.

[16] CoFI. The Common Framework Initiative for algebraic specification and development,
electronic archives. Notes and Documents accessible from http://www.brics.dk/
Projects/CoFI/.

[17] T. Dimitrakos and T. Maibaum. On a generalised modularisation theo-

rem. Information Processing Letters, 74(1-2):65–71, 2000.
[18] J. L. Fiadeiro and J. F. Costa. Mirror, mirror in my hand: A duality

between specifications and models of process behaviour. Mathematical Structures in
Computer Science, 6(4):353–373, 1996.

[19] J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for
specification and programming. Journal of the Association for Computing Machinery,
39:95–146, 1992. Predecessor in: LNCS 164, 221–256, 1984.

[20] J. A. Goguen and R. Diaconescu. Towards an algebraic semantics for the object
paradigm. In RECENT trends in data type specification: workshop on specification of
abstract data types: COMPASS: selected papers, number 785. Springer Verlag, Berlin,
Germany, 1994.

[21] A. Haxthausen and F. Nickl. Pushouts of order-sorted algebraic specifications. In
Proceedings of AMAST’96, volume 1101 of Lecture Notes in Computer Science, pages
132–147. Springer-Verlag, 1996.

[22] H. Herrlich and G. Strecker. Category Theory. Allyn and Bacon, Boston, 1973.

32 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

[23] H. Hussmann, M. Cerioli, and H. Baumeister. From UML to Casl (static part).
Technical report, 2000. Technical Report of DISI - Universit di Genova, DISI-TR-00-
06, Italy.

[24] C. B. Jones. Systematic Software Development Using VDM. Prentice Hall, 1990.
[25] B. Klin, P. Hoffman, A. Tarlecki, L. Schröder, and T. Mossakowski. Checking amal-

gamability conditions for Casl architectural specifications. In Mathematical Founda-
tions of Computer Science, volume 2136 of LNCS, pages 451–463. Springer, 2001.

[26] CoFI Language Design Group, B. Krieg-Brückner and P.D. Mosses (eds.). Casl

summary. In P. Mosses, editor, Casl Reference Manual. [40], Part I.
[27] A. Lopes and J. L. Fiadeiro. Preservation and reflection in specification. In Algebraic

Methodology and Software Technology, pages 380–394, 1997.
[28] K. Meinke and J. V. Tucker, editors. Many-sorted Logic and its Applications. Wiley,

1993.
[29] J. Meseguer. General logics. In Logic Colloquium 87, pages 275–329. North Holland,

1989.
[30] T. Mossakowski. Refinement. In P. Mosses, editor, Casl Reference Manual. [40], Part

V.
[31] T. Mossakowski. Colimits of order-sorted specifications. In F. Parisi Presicce, editor,

Recent trends in algebraic development techniques. Proc. 12th International Work-
shop, volume 1376 of Lecture Notes in Computer Science, pages 316–332. Springer,
1998.

[32] T. Mossakowski. Casl: From semantics to tools. In S. Graf and M. Schwartzbach,
editors, TACAS 2000, volume 1785 of Lecture Notes in Computer Science, pages
93–108. Springer-Verlag, 2000.

[33] T. Mossakowski. Specification in an arbitrary institution with symbols. In C. Choppy,
D. Bert, and P. Mosses, editors, Recent Trends in Algebraic Development Techniques,
14th International Workshop, WADT’99, Bonas, France, volume 1827 of Lecture
Notes in Computer Science, pages 252–270. Springer-Verlag, 2000.

[34] T. Mossakowski. Relating Casl with other specification languages: the
institution level. Theoretical Computer Science, 286:367–475, 2002.

[35] T. Mossakowski, S. Autexier, and D. Hutter. Extending development graphs with
hiding. In H. Hußmann, editor, Fundamental Approaches to Software Engineering,
volume 2029 of Lecture Notes in Computer Science, pages 269–283. Springer-Verlag,
2001.

[36] T. Mossakowski, A. Haxthausen, and B. Krieg-Brückner. Subsorted partial higher-
order logic as an extension of Casl. In C. Choppy, D. Bert, and P. Mosses, editors,
Recent Trends in Algebraic Development Techniques, 14th International Workshop,
WADT’99, Bonas, France, volume 1827 of Lecture Notes in Computer Science, pages
126–145. Springer-Verlag, 2000.

[37] T. Mossakowski, P. Hoffman, S. Autexier, and D. Hutter. Casl proof calculus. In
P. Mosses, editor, Casl Reference Manual. [40], Part IV.

[38] P. D. Mosses. CoFI: The Common Framework Initiative for Algebraic Specification
and Development. In TAPSOFT ’97, Proc. Intl. Symp. on Theory and Practice of
Software Development, volume 1214 of LNCS, pages 115–137. Springer-Verlag, 1997.

Casl — The Common Algebraic Specification Language: semantics and proof theory 33

[39] P. D. Mosses and M. Bidoit. Casl — the common algebraic specification language:
User Manual. Lecture Notes in Computer Science. Springer. To appear.

[40] P. D. Mosses (ed.). Casl — the common algebraic specification language: Reference
Manual. Lecture Notes in Computer Science. Springer. To appear.

[41] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf ’s Type The-
ory: An Introduction. Oxford Univ. Press, 1990.

[42] L. Paulson. ML for the Working Programmer. Cambridge University Press, 1996. 2nd
edition.

[43] G. Reggio, E. Astesiano, and C. Choppy. Casl-LTL - a Casl extension for dynamic
reactive systems - summary. Technical Report of DISI - Università di Genova, DISI-
TR-99-34, Italy, 2000.

[44] G. Reggio and L. Repetto. Casl-CHART: a combination of statecharts and of
the algebraic specification language Casl. In Proc. AMAST 2000, volume 1816 of
Lecture Notes in Computer Science. Springer Verlag, 2000.

[45] M. Roggenbach. CSP-Casl — a new integration of process algebra and algebraic
specification. In Third AMAST Workshop on Algebraic Methods in Language Pro-
cessing (AMiLP-3), TWLT. University of Twente, 2003. to appear.

[46] D. Sannella and A. Tarlecki. On observational equivalence and alge-

braic specification. Journal of Computer and System Sciences, 34:150–178, 1987.

[47] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution.

Information and Computation, 76:165–210, 1988.

[48] D. Sannella and A. Tarlecki. Toward formal development of programs

from algebraic specifications: Implementations revisited. Acta Informatica,
25:233–281, 1988.

[49] L. Schröder and T. Mossakowski. HasCasl: Towards integrated specification
and development of Haskell programs. In H. Kirchner and C. Reingeissen, editors,
Algebraic Methodology and Software Technology, 2002, volume 2422 of Lecture Notes
in Computer Science, pages 99–116. Springer-Verlag, 2002.

[50] L. Schröder, T. Mossakowski, P. Hoffman, B. Klin, and A. Tarlecki. Amalgamation
in the semantics of Casl. Theoretical Computer Science, to appear.

[51] A. Sernadas, J. F. Costa, and C. Sernadas. An institution of object behaviour. In
H. Ehrig and F. Orejas, editors, Recent Trends in Data Type Specification, volume
785 of Lecture Notes in Computer Science, pages 337–350. Springer-Verlag, 1994.

[52] A. Sernadas and C. Sernadas. Denotational semantics of object specification within
an arbitrary temporal logic institution. Research report, Section of Computer Science,
Department of Mathematics, Instituto Superior Técnico, 1049-001 Lisboa, Portugal,
1993. Presented at IS-CORE Workshop 93.

[53] A. Sernadas, C. Sernadas, C. Caleiro, and T. Mossakowski. Categorical fibring of
logics with terms and binding operators. In D. Gabbay and M. d. Rijke, editors,
Frontiers of Combining Systems 2, Studies in Logic and Computation, pages 295–
316. Research Studies Press, 2000.

[54] A. Tarlecki. Abstract specification theory: an overview. In M. Broy and
M. Pizka, editors, Models, Algebras, and Logics of Engineering Software, volume 191

34 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

of NATO Science Series — Computer and System Sciences, pages 43–79. IOS Press,
2003.

Casl — The Common Algebraic Specification Language: semantics and proof theory 35

` UDD∗ ⇒ C C ` T ⇒ UEv

` arch spec UDD∗ result T ⇒ (C,UEv)

C∅ ` UDD1 ⇒ C1 · · · Cn−1 ` UDDn ⇒ Cn
` UDD1 . . .UDDn ⇒ Cn

` SP ⇒M
C ` U : SP ⇒ C × {U 7→ M}

` SP1 ⇒M1 ` SP2 ⇒M2

F = {F : M1→M2 | for M ∈M1, F (M) τ = M}
C ` U : SP1

τ−→ SP2 ⇒ C × {U 7→ F}

C ` U ⇒ {E 7→ E (U) | E ∈ C}

C ` T ⇒ UEv

for each E ∈ C, UEv(E) σ ∈ Dom(E (U))
}

(∗)
for each E ∈ C, there is a unique M ∈Mod(Σ′T) such that

M τ ′ = UEv(E) and M σ′ = E (U)(UEv(E) σ)

}
(∗∗)

UEv ′ = {E 7→M | E ∈ C,M τ ′ = UEv(E),M σ′ = E (U)(UEv(E) σ)}
C ` U [T fit σ]⇒ UEv ′

C ` T1 ⇒ UEv 1 C ` T2 ⇒ UEv 2

for each E ∈ C, there is a unique M ∈Mod(Σ) such that
M ι1 = UEv 1(E) and M ι2 = UEv 2(E)

}
(∗∗∗)

UEv = {E 7→M | E ∈ C and M ι1 = UEv 1(E),M ι2 = UEv 2(E)}
C ` T1 and T2 ⇒ UEv

Fig. 9. Model semantics of architectural specifications

36 T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki

` Dcl∗ :: Cv Cv ` T :: Σ
i−→ SP ′G

θ←− SPG

` arch spec Dcl∗ result T :: SP ′G hide i

C ∅v ` Dcl1 :: (Cv)1 · · · (Cv)n−1 ` Dcln :: (Cv)n
` Dcl1 . . .Dcln :: (Cv)n

U 6∈ (Dom(Pv) ∪ Dom(Bv)) ` SP � Σ

(ΣG
θ−→ Σ′G

i←− Σ) is the coproduct of ΣG and Σ

(Pv ,Bv , SPG) ` U : SP ::
(Pv , (Bv ;θ) + {U 7→ i}, (SPG with θ) and (SP with i))

U 6∈ (Dom(Pv) ∪ Dom(Bv))

(Pv ,Bv , SPG) ` U : SP1
τ−→ SP2 :: (Pv + {U 7→ SP1

τ−→ SP2},Bv , SPG)

Bv(U) = Σ
i−→ SPG

(Pv ,Bv , SPG) ` U :: Σ
i−→ SPG

id←− SPG

(Pv ,Bv , SPG) ` T :: ΣT
i−→ SP ′G

θ←− SPG

Pv(U) = SP
τ−→ SP ′ ` SP � Σ ` SP ′ � Σ′ σ : Σ→ ΣT

(τ ′ : ΣT → Σ′T , σ
′ : Σ′ → Σ′T) is the pushout of (σ, τ)

(τ ′′ : Σ′G → Σ′′G, i
′ : Σ′T → Σ′′G) is the pushout of (i, τ ′)
SP with σ;i ; SP ′G

(Pv ,Bv , SPG) ` U [T fit σ] ::

Σ′T
i′−→ (SP ′G with τ ′′) and (SP ′ with σ′;i′)

θ;τ ′′←− SPG

(Pv ,Bv , SPG) ` T1 :: Σ1
i1−→ SP1

G
θ1←− SPG

(Pv ,Bv , SPG) ` T2 :: Σ2
i2−→ SP2

G
θ2←− SPG

Σ = Σ1 ∪ Σ2 with inclusions ι1 : Σ1 → Σ, ι2 : Σ2 → Σ
(θ′2 : Σ1

G → Σ′G, θ
′
1 : Σ2

G → Σ′G) is the pushout of (θ1, θ2)
j : Σ→ Σ′G satisfies ι1;j = i1;θ′2 and ι2;j = i2;θ′1

(Pv ,Bv , SPG) ` T1 and T2 ::

Σ1 ∪ Σ2
j−→ (SP1

G with θ′2) and (SP2
G with θ′1)

θ1;θ′2←− SPG

Fig. 10. Verification rules

Casl — The Common Algebraic Specification Language: semantics and proof theory 37

Σ

ΣT

Σ′

Σ′T
6

σ

-
τ

-τ ′

6

σ′

ΣG Σ′G Σ′′G-θ -τ ′′

6

i
6

i′

ΣG

Σ1
G

Σ2
G

Σ1

Σ2

Σ1 ∪ Σ2 Σ′G
@
@
@
@
@@R

θ2

�
�
�
�
���

θ1

6
i1

?
i2

PPPPq
ι1

��
��1

ι2

-j

HH
HHH

HHHH
HHHj

θ′2

��
�
��
��
��
�
��*

θ′1

Fig. 11. Diagrams for unit application and amalgamation

