
Mobile Resource Guarantees for Smart Devices?

David Aspinall1, Stephen Gilmore1, Martin Hofmann2, Donald Sannella1, and
Ian Stark1

1 Laboratory for Foundations of Computer Science, School of Informatics,
The University of Edinburgh

2 Lehr- und Forschungseinheit für Theoretische Informatik, Institut für Informatik,
Ludwig-Maximilians-Universität München

Abstract. We present the Mobile Resource Guarantees framework: a
system for ensuring that downloaded programs are free from run-time
violations of resource bounds. Certificates are attached to code in the
form of efficiently checkable proofs of resource bounds; in contrast to
cryptographic certificates of code origin, these are independent of trust
networks. A novel programming language with resource constraints en-
coded in function types is used to streamline the generation of proofs of
resource usage.

1 Introduction

The ability to move code and other active content smoothly between execution
sites is a key element of current and future computing platforms. However, it
presents huge security challenges — aggravating existing security problems and
presenting altogether new ones — which hamper the exploitation of its true po-
tential. Mobile Java applets on the Internet are one obvious example, where de-
velopers must choose between sandboxed applets and working within a crippled
programming model; or signed applets which undermine portability because of
the vast range of access permissions which can be granted or denied at any of the
download sites. Another example is open smart cards with multiple applications
that can be loaded and updated after the card is issued, where there is currently
insufficient confidence in available security measures to take full advantage of
the possibilities this provides.

A promising approach to security is proof-carrying code [26], whereby mobile
code is equipped with independently verifiable certificates describing its security
properties, for example type safety or freedom from array-bound overruns. These
certificates are condensed and formalised mathematical proofs which are by their
very nature self-evident and unforgeable. Arbitrarily complex methods may be
used by the code producer to construct these certificates, but their verification by
the code consumer will always be a simple computation. One may compare this
to the difference between the difficulty of producing solutions to combinatorial

? This research was supported by the MRG project (IST-2001-33149) which is funded
by the EC under the FET proactive initiative on Global Computing.

problems such as Rubik’s cube or satisfiability, and the ease of verifying whether
an alleged solution is correct or not.

A major advantage of this approach is that it sidesteps the difficult issue of
trust : there is no need to trust either the code producer, or a centralized certifica-
tion authority. If some code comes with a proof that it does not violate a certain
security property, and the proof can be verified, then it does not matter whether
the code (and/or proof) was written by a Microsoft Certified Professional or a
monkey with a typewriter: the property is guaranteed to hold. The user does
need to trust certain elements of the infrastructure: the code that checks the
proof (although a paranoid user could in principle supply a proof checker him-
self); the soundness of the logical system in which the proof is expressed; and, of
course, the correctness of the implementation of the virtual machine that runs
the code — however these components are fixed and so can be checked once
and for all. In any case, trust in the integrity of a person or organization is not
a reliable basis for trusting that the code they produce contains no undiscov-
ered accidental security bugs! In practice it seems best to take advantage of both
existing trust infrastructures, which provide a degree of confidence that down-
loaded code is not malicious and provides desired functionality, and the strong
guarantees of certain key properties provided by proof-carrying code.

Control of resources (space, time, etc.) is not always recognized as a secu-
rity concern but in the context of smart cards and other small devices, where
computational power and especially memory are very limited, it is a central is-
sue. Scenarios of application which hint at the security implications include the
following:

– a provider of distributed computational power may only be willing to of-
fer this service upon receiving dependable guarantees about the required
resource consumption;

– third-party software updates for mobile phones, household appliances, or
car electronics should come with a guarantee not to set system parameters
beyond manufacturer-specified safe limits;

– requiring certificates of specified resource consumption will also help to pre-
vent mobile agents from performing denial of service attacks using bona fide
host environments as a portal;

and the one of most relevance in the present context:

– a user of a handheld device, wearable computer, or smart card might want
to know that a downloaded application will definitely run within the limited
amount of memory available.

The usual way of dealing with programs that exceed resource limits is to monitor
their usage and abort execution when limits are exceeded. Apart from the waste
that this entails — including the resources consumed by the monitoring itself —
it necessitates programming recovery action in the case of failure.

The Mobile Resource Guarantees (MRG) project is applying ideas from
proof-carrying code to the problem of resource certification for mobile code. As

with other work on proof-carrying code for safety properties, certificates contain
formal proofs, but in our case, they claim a resource usage property. Work in
MRG has so far concentrated mainly on bounds on heap space usage, but most
of the infrastructure that has been built is reusable for bounds on other kinds
of resources. One difference between MRG and other work on proof-carrying
code is that proof certificates in MRG refer to bytecode programs rather than
native code. One bytecode language of particular interest is JVML [22] but there
are others, including the CIL bytecode of the Microsoft .NET framework [24],
JavaCard [33], and the restricted version of JVML described in [32]. An elegant
solution to the tension between the engineering requirement to make theorem
proving and proof checking tractable, while at the same time remaining faith-
ful to the imperative semantics of these underlying bytecode languages, is the
Grail intermediate language (see Sect. 5) which also targets multiple bytecode
languages.

One of the central issues in work on proof-carrying code is how proofs of
properties of code are produced. One traditional approach is for object code and
proofs to be generated from source code in a high-level language by a certifying
compiler like Touchstone [10], using types and other high-level source informa-
tion.3 The MRG project follows this approach, building on innovative work on
linear resource-aware type systems [14,15], whereby programs are certified by
virtue of their typing as satisfying certain resource bounds. For instance, in a
space-aware type system, the type of an in-place sorting function would be dif-
ferent from the type of a sorting function, like merge sort, that requires extra
working space to hold a copy of its input; still different would be the type of
a sorting function that requires a specific number of extra cells to do its work,
independent of the size of its input. A corresponding proof of this behaviour
at the bytecode level can be generated automatically from a typing derivation
in such a system in the course of compiling the program to bytecode. It even
turns out to be possible to infer heap space requirements in many situations
[16]. This work has been carried out in a first-order ML-like functional language,
Camelot (described in Sect. 3), that has been developed as a testbed by the
MRG project. The underlying proof-carrying code infrastructure operates at
the bytecode (Grail) level; Camelot is just an example of a language that a code
producer might use to produce bytecode together with a proof that it satisfies
some desired resource bound.

This paper is an overview of the achievements of the MRG project as of the
summer of 2004. It is self-contained, but due to space limitations many points
are sketched or glossed over; full technical details can be found in the papers
that are cited below. The main contribution of the paper is a presentation of the
overall picture into which these technical contributions are meant to fit.

In the next section, we describe the overall architecture of the MRG frame-
work, including the rôle of the two language levels (Grail and Camelot), and how

3 A slightly different approach was taken by the work on Typed Assembly Language
([25] and later), where a fixed type system is provided for the low-level language,
and certification amounts to providing a typing in this low-level type system.

MRG-style proof-carrying code fits with standard Java security. Sections 3 and 4
focus on the “upper” language level, introducing Camelot and space-aware type
systems. Section 5 focuses on the “lower” language level, describing the Grail
intermediate language and the way that it provides both a tractable basis for
proof and relates to (multiple) imperative bytecode languages. Section 6 ties
the two language levels together by explaining the logic for expressing proofs
of resource properties of bytecode programs and the generation of proofs from
resource typings. A conclusion outlines the current status of the MRG project
and summarizes its contributions.

2 Architecture and deployment

In this section we discuss the architecture of a smart device-based system which
deploys the technology of the MRG project in a novel protocol for certifying
resource bounds on downloaded code from an untrusted source. Our protocol is
designed so that it can be integrated with the built-in mechanism for Java byte-
code checking, via the Security Manager. In the JVM, the Security Manager is
entrusted with enforcing the security policy designated by the user, and ensuring
that no violations of the security policy occur while the code runs.

In our protocol, a Resource Manager is responsible for verifying that the
certificate supplied with a piece of code ensures that it will execute within the
advertised resource constraints. A Proof Checker is invoked to do this. If the
check succeeds, we have an absolute guarantee that the resource bounds are
met, so it is not necessary to check for resource violations as the code runs. Our
Resource Manager is not a replacement for the standard Java Security Manager
but instead forms a perimeter defense which prevents certain non-well-behaved
programs from being executed at all.

The Mobile Resource Guarantees framework provides a high-level language,
Camelot, and a low-level language, Grail, into which this is compiled. (Camelot is
presented in more detail in Sect. 3 and Grail is discussed in Sect. 5.) Application
developers work in the high-level language and interact with resource typing
judgements at the appropriate level of abstraction for their realm of expertise.
For this approach to be successful it is necessary for the compilation process
to be transparent [23] in that the resource predictions made at the high-level
language level must survive the compilation process so that they remain true at
the low level. This places constraints on the expressive power of the high-level
language, prohibiting the inclusion of some more complex language features. It
also places constraints on the nature of the compilation process itself, requiring
the compiler to sometimes sacrifice peak efficiency for predictability, which is
the familiar trade-off from development of real-time software.

A consumer of proof-carrying code (such as Grail class files with attached
proofs of resource consumption) requires an implementation technology which
enforces the security policy that they specify. The Java agents introduced in the
J2SDK version 1.5.0 provide the most direct way to implement these policies.
An agent is a “hook” in the JVM allowing the PCC consumer to attach their

own implementation of their security policy as an instance of a general-purpose
PCC Security Manager.

Java agents can be used for several resource-bound-specific purposes:

1. to query the attached proof and decide to refuse to load, build and execute
the class if necessary;

2. to apply per-class or per-package use restrictions by modifying each method
in the class with entry and exit assertions that inspect resource consumption
measures; and

3. to apply per-method constraints on heap-allocation and run-time by instru-
menting method bodies.

Each of these checks can be unloaded at JVM instantiation time to allow a
mobile-code consumer to vary their security policy between its tightest and laxest
extrema.

3 Space types and Camelot

This section describes the high-level language Camelot and the space type system
which together allow us to produce JVM bytecode endowed with guaranteed and
certified bounds on heap space consumption.

Syntactically, and as far as its functional semantics is concerned, Camelot is
essentially a fragment of the ML dialect O’Caml [29]. In particular, it provides
the usual recursive datatypes and recursive (not necessarily primitive recursive)
definition of functions using pattern matching, albeit restricted to flat patterns.

One difference to O’Caml is that Camelot compiles to JVM bytecode and
provides (via the O’Camelot extension [36]) a smooth integration of genuine Java
methods and objects.

The most important difference, however, lies in Camelot’s memory model.
This uses a freelist, managed directly by the compiled code, rather than relying
exclusively on garbage collection. All non-primitive types in a Camelot program
are compiled to JVM objects of a single class Diamond, which contains appro-
priate fields to hold data for a single node of any datatype. Unused objects are
released to the freelist so that their space can be immediately reused. The com-
piler generates the necessary code to manage the freelist, based on some language
annotations described below.

This conflation of types into a single allocation unit is standard for memory
recycling in constrained environments; there is some loss of space around the
edges, but management is simple and in our case formally guaranteed to succeed.
If required, we could duplicate our analysis to manage a range of cell sizes in
parallel, but we have not yet seen compelling examples for this.

3.1 The diamond type

Following [14], Camelot has an abstract type denoted <> whose members are
heap addresses of Diamond-objects. The only way to access this type is via

datatype constructors. Suppose for example that we have defined a type of in-
teger lists as follows4

type iList = !Nil | Cons of int ∗ iList

If this is the only type occurring in a program then the Diamond class will look
as follows (in simplified form and Java notation):

public class Diamond extends java.lang.Object {
public Diamond R0;
public int V1;

}

If, say, x1 is an element of type iList , hence compiled to an object reference of
type Diamond, we can form a new list x2 by

let x2 = Cons(9,x1) in ...

The required object reference will be taken from the aforementioned freelist
providing it is non-empty. Otherwise, the JVM new instruction will be executed
to allocate a new object of type Diamond.

If, however, we have in our local context an element d of type <> then we
can alternatively form x2 by

let x2 = Cons(9,x1)@d in ...

thus instructing the compiler to put the new Cons cell into the Diamond object
referenced by d, whose contents will be overwritten.

Using these phrases in the context of pattern matching provides us with
elements of type <> and also refills the freelist. A pattern match like

match x with
Cons(h,t)@d −> ...

is evaluated by binding h, t and d to the contents of the “head” (h) and “tail”
(t) fields and the reference to x itself (d). Thus, in the body of the pattern match
d is an element of type <> available for constructing new Cons cells.

Alternatively, the syntax

match x with
Cons(h,t)@ −> ...

returns the cell occupied by x to the freelist for later use.
Finally, an unannotated pattern match such as

match x with
Cons(h,t) −> ...

performs ordinary non-destructive matching.
4 The annotation ! ensures that the constructor Nil is represented by a null pointer

rather than a proper object.

3.2 Linear typing

When a list x is matched against a pattern of the form Cons(h,t)@d or Cons(h,t)@
it is the responsibility of the programmer to ensure that the list x itself is not
used anymore because its contents will be overwritten subsequently. For this
purpose, the Camelot compiler has an option that enforces (affine) linear use
of all variables. If all variables are used at most once in their scope then there
can in particular be no reference to x in the body of the pattern match above.
In [14] a formal proof is given that such a program behaves purely functionally,
i.e., as if the type <> was replaced by the unit type. Linear typing is, however,
a fairly crude discipline and rules out many sound programs. In [6] we present
an improved type system that distinguishes between modifying and read-only
access to a data structure and in particular allows multiple read-only accesses,
which would be ruled out by the linear discipline. This is not yet implemented
in Camelot. Alternatively, the programmer can turn off the linear typing option
and rely on his or her own judgement, or use some other scheme.

3.3 Extended Example

The code in Figure 1 shows a standalone Camelot application containing a func-
tion start : string list −> unit which serves as an entry point. It is assumed
that the program is executed by applying start to an (ordinary) list of strings
obtained, e.g., from the standard input.

We see that the function ins destroys its argument, whereas the sorting func-
tion sort : ilist −> ilist, as well as the display function show list : ilist −> unit,
each leave their argument intact.

3.4 Certification of memory usage

The idea behind certification of heap-space usage in MRG is as follows: given a
Camelot program containing a function start : string list −> unit, find a linear
function s(x) = ax + b with the property that evaluating (the compiled version
of) start on an input list of length n will not invoke the new instruction provided
that the freelist contains initially no less than s(n) cells.

Once we have such a linear function s we can then package our compiled
bytecode together with a wrapper that takes input from stdin or a file, initialises
(using new) the freelist to hold s(n) cells where n is the size of the input, and
then evaluates start.

3.5 Inference of space bounds

Such linear space bounds can efficiently be obtained using the type-based anal-
ysis described in [16] which has subsequently been implemented and tuned to
Camelot in [17]. In summary, this analysis infers for each function contained
in the program a numerically annotated type describing its space usage. The
desired bounding function can then be directly read off from the type of start.

type iList = !Nil | Cons of int ∗ iList

let ins a l = match l with
Nil −> Cons(a,Nil)

| Cons(x,t)@ −> if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l = match l with
Nil −> Nil

| Cons(a,t) −> ins a (sort t)

let show list0 l = match l with
Nil −> ””

| Cons(h,t) −> begin
match t with

Nil −> string of int h
| Cons(h0,t0) −> (string of int h) ˆ ”, ” ˆ (show list0 t)

end

let show list l = ”[” ˆ (show list0 l) ˆ ”]”

let stringList to intList ss =
match ss with

[] −> Nil
| (h::t) −> Cons((int of string h),(stringList to intList t))

let start args =
let l1 = (stringList to intList args)

in let = print string (”\nInput list :\n l1 = ” ˆ (show list l1))
in let l2 = sort l1
in let = print string (”\nResult list:\n l2 = ” ˆ (show list l2))
in ()

Fig. 1. A standalone Camelot program

ins : 1, int −> iList[0|int,#,0] −> iList[0|int,#,0], 0;
int of string : 0, string −> int, 0;
print string : 0, string −> unit, 0;
show list : 0, iList [0| int,#,0] −> string, 0;
show list0 : 0, iList [0| int,#,0] −> string, 0;
sort : 0, iList [0| int,#,1] −> iList[0|int,#,0], 0;
start : 0, list 1 [string,#,2|0] −> unit, 0;
stringList to intList : 0, list 1 [string,#,2|0] −> iList[0|int,#,1], 0;
string of int : 0, int −> string, 0;

Fig. 2. Output of space analysis on the program in Fig. 1

The result of running the analysis on our example program is given in Fig-
ure 2. The entry

ins : 1
↑
, int −> iList[0|int,#,0] −> iList[0|int,#,0], 0;

indicates that a successful run of ins requires the freelist to contain 1 cell to
begin. The entry

stringList to intList : 0, list 1 [string,#,2
↑
|0] −> iList[0|int,#,1

↑
], 0;

indicates that a call to stringList to intList on an input list of length n requires
a freelist of size 2n and upon completion leaves a freelist of size 1m where m is
the length of the resulting iList .

Finally, the entry

start : 0, list 1 [string,#,2
↑
|0] −> unit, 0

indicates that a call to start requires a freelist of size 2n where n is the length of
the input, so the desired bounding function can be chosen as s(n) = 2n in this
case.

More generally, a (hypothetical) entry

f : 3, iList [0| int,#,17] −> iList[0|int,#,13],11

would indicate that a call to f : iList −> iList with an argument of length n
requires a freelist of minimum size 3 + 17n to succeed without invoking new.
Moreover, if the resulting list has length m then the freelist will have size at
least 11+13m plus of course the number of cells left over from the initial freelist
in case its size was above the minimum specified by the typing.

Actually, the meaning of the constant 17 in the typing is “17 per Cons-cell
of the argument” which in the case of linear lists specialises to 17n with n being
the length. In the case of data structures with more than one constructor, nested
data-structures, and tree-like data structures this view is more fine-grained than
linear functions in the overall size.

Other examples discussed in [17] include functions on trees such as heap
sort and computation of Huffman codes, as well as functions where the space
bounding function has fractional coefficients, e.g. s(n) = 4

3n.
Regarding the functionality of the space inference we note two important

aspects. First, the numerical annotations arise as solutions of a system of linear
inequalities which is in turn obtained from a skeleton type derivation which has a
numerical variable wherever a numerical annotation would be required. Second,
the soundness of destructive pattern matches in the sense of Sect. 3.2 arises also
as a precondition to the correctness of the space analysis. For further detail we
refer to [16].

4 Parameter size

Other guarantees of resource properties that are under consideration in MRG
include execution time, stack size, and size of parameters supplied to system
calls. Of these three, the third has been studied in more detail albeit not to
the same extent as heap space consumption. We summarise the partial results
achieved so far.

Suppose we are given a system call

brake : int ∗ int −> unit

where it is “safety critical” that whenever brake is called with parameters (x,y)
then some proposition P(x,y), e.g. a conjunction of linear inequalities describing
some “safe window”, must be satisfied. We emphasize that the brake function
itself will not be implemented in Camelot but assumed as given, for example by
being part of the system architecture.

A possible scenario for such a situation could consist of a car manufacturer
providing an API which allows for third party firmware updates. The manufac-
turer would publicise a certain safety policy concerning the parameters supplied
in calls to the methods provided in the API. The manufacturer would guar-
antee that adherence to this safety policy will prevent severe hazards. Within
the safety policy the third party provider will try to optimise the behavioural
properties of the system. Whether or not such optimisation actually happens
need not be formally established; our goal is only to ensure adherence to the
manufacturer-supplied safety policy.

In order to express such a safety property on the bytecode level one can
use the instrumented operational semantics and bytecode logic which will be
described below in Sect. 6.

Here we are concerned with the question of how such safety policies can be
expressed on the level of Camelot through a type system in such a way that
functions can be checked individually once their typing is known, following the
usual typing principles, e.g.: to show that a function has a certain type show
that its body has that type assuming it to hold for any recursive call within the
body.

We claim that a solution based on dependent types in the style of Dependent
ML [37] fits these requirements very closely. In a nutshell, the idea is as follows.
In order to guarantee that a function main calls brake exclusively with such safe
parameters, we may try to type main using dependent types under the following
assumed typing for brake. (Since the function brake is not itself implemented in
Camelot, we can assume an arbitrary typing for it.)

brake : {(x,y) : int ∗ int | P} −> unit

We will now explain how this idea has been elaborated within MRG. We re-
emphasise that these results are partial as yet and that this section must be
understood as a report on on-going work.

4.1 Extending Camelot with dependent types

In order to express the desired typing constraints without overly interfering with
the language design, Pfenning and Xi’s Dependent ML (DML) [37] appears to
be particularly suitable.

DML assumes a simply (i.e. non-dependently) typed base language on top of
which dependent types are added in such a way that every dependently typed
program also makes sense in the simply typed base language. Moreover, the
question whether or not a given simply typed program admits a given depen-
dent typing translates into a constraint solving problem in a certain constraint
language over which DML is parametric. For our purposes, we choose linear
arithmetic over the integers as constraint language.

DML types may depend on types from the constraint language, but not on
other DML types. In particular, the types from the constraint language, the
so-called index sorts, do not themselves form DML types but can be reflected
into DML using singleton types if so desired. Likewise, code may not depend
on values of index sorts, only on values of DML types. In this way, all index
information may be erased from a DML program and a simply typed program
is obtained.

We remark that this is not the case for more radical approaches to dependent
typing such as Cayenne [7].

For our purposes, we use linear arithmetic for the constraint language which
means that the index sorts include int and are closed under cartesian product.
We need two type families: Int , Bool : int −> Type with the intention that Int(i)
contains just the integer i and Bool(i) contains true if 1 ≤ i and false otherwise.

We assume the following constants with typing as indicated:

0 : Int(0)
1 : Int(1)
plus : Pi x,y:int .Pi xx:Int(x).Pi yy:Int(y).Int(x+y)
true : Pi x:int|1<=x.Bool(x)
false : Pi x:int |x<=0.Bool(x)
leq : Pi x,y:int .Int(x) −> Int(y) −> Bool(1+y−x)

The type former Pi obeys the usual rule for dependent function space due to
Martin-Löf: if e : Pi x:t.A(x) and i :t then e[i] : A(i). We use square brackets
for dependent application to mark that the argument of such an application is
always a term of the constraint language which can be automatically inferred
using Xi’s elaboration algorithm [37]. Moreover, index application is irrelevant
to the actual behaviour of a program; it only affects typeability.

Subset constraints in a Pi-type express that such index arguments must obey
a certain constraint and are written using vertical bars as in the typing of true.
They can be viewed as syntactic sugar for ordinary dependent application if one
closes the index sorts under subsets of index sorts with respect to predicates
expressible in the constraint language.

In order to be able to reflect knowledge about branches in a case distinction
into the typing we use the following typing rule for if-then-else:

Γ ` t1 : Bool(i) Γ, 1 ≤ i ` t2 : T Γ, i ≤ 0 ` t3 : T

Γ ` if t1 then t2 else t3 : T
(If)

We remark here that typing contexts contain bindings of ordinary variables to
types, of index variables to index sorts, and constraints on the index variables.

The remaining types and rules of Camelot remain unchanged. We emphasize
that since DML has been developed as an extension to Standard ML and Camelot
is equivalent to a subset of Standard ML this extension is unproblematic and not
at all innovative. What is innovative is the application of DML to the problem
of certifying parameter sizes and also, perhaps, the particular DML signature
given above.

4.2 Example

We are now in a position to formally express the constraints on calls to brake as
a DML typing.

brake : Pi x,y:int |P(x,y).Int(x) −> Int(y) −> Unit

For the sake of concreteness assume that P(x,y) is x+y <= 10.
Now suppose that we are given a main function that calls brake with two given

parameters but prior to the call checks that these parameters indeed satisfy the
required constraint, in order to prevent unsafe calls to brake:

brake : Int −> Int −> Unit
main : Int −> Int −> Unit
main = lambda xx:Int.lambda yy:Int.

if leq(plus(xx,yy),10)
then brake(xx,yy)
else brake(0,0)

Here is how this program can be typed in our dependently typed extension.
As already mentioned the index abstractions and applications can be inferred
automatically.

brake : Pi x,y:int |x+y<=10.Int(x) −> Int(y) −> Unit
main : Pi x,y:int.Int(x) −> Int(y) −> Unit
main = lambda x,y:int.lambda xx:Int(x).lambda yy:Int(y).

if leq[x+y,10](plus[x,y](xx,yy),10)
then brake[x,y](xx,yy)
else brake0,0

Let us see how the typing rule If above allows us to typecheck this definition.
Put

Γ = x : int, y : int, xx : Int(x), yy : Int(y)

and then we have

Γ ` leq[x + y, 10](plus[x, y](xx, yy), 10) : Bool(1 + 10− (x + y))

So, in the “then” branch of the conditional we have the additional constraint

1 <= 1+10−(x+y)

or equivalently, x+y <= 10, which is what is required to typecheck the applica-
tion brake[x,y](xx,yy).

4.3 Summary

We have shown in this section how an extension of Camelot with dependent
types in the style of DML [37] can be used to automatically check adherence
to bounds on parameters to system calls. Of course, this is only a first step. In
contrast to the case of heap space certification, we have not yet developed the
automatic generation of certificates in bytecode logic for this application. More
significantly, generalisations of the described per-call policy will be needed for
some applications. For instance, one may want to require some constraint on the
parameters supplied to all calls of a given function during a certain interval. As
a special case, one might require an upper bound on the number of calls to some
function (e.g., network connections) or on the sum of the parameters, e.g., in
the case where a system function performs an automatic payment. It remains to
be seen to what extent dependent typing provides solutions to these problems
as well.

5 Grail

We now move on to the low-level Grail language that is the target of the Camelot
compiler, and our vehicle for proof-carrying code5. The challenge here is to iden-
tify a language that not only supports formal proofs of resource usage, based on
information from Sect. 3, but also maps directly onto executable bytecodes. To
do this we give Grail two distinct semantics, one functional and one imperative.
These are provably compatible, and the two viewpoints allow flexible reasoning
about resources.

An extended discussion of the properties of Grail appears in [9]. Here we begin
by outlining the constraints that shape it. The language for our proof-carrying
code needs to be all of the following:

– The target for the Camelot compiler;
– A basis for attaching resource assertions;
– Amenable to formal proof about resource usage;
– The format for sending and receiving guaranteed code;
– Executable.

The first three of these suggest a simple functional language, suitable as the
output of a transforming Camelot compiler. This is strengthened by the fact that
we must also perform transparent compilation, to preserve resource information
computed at the Camelot level. However, the final two requirements demand a
ruder machine language: what we guarantee should be the actual resource profile
of runnable code.
5 Grail stands for “Guaranteed Resource Allocation Intermediate Language”

method static int fib (int n) =
let

val a = 0 // Local variable declarations
val b = 1

fun loop (int a, int b, int n) = // Local function declaration
let

val b = add a b // Lexically scoped variables
val a = sub b a // hide outer declarations
val n = sub n 1

in
test(n,a,b) // Tail recursive function call

end

fun test (int n, int a, int b) = // Another function declaration
if n<=1 then b else loop(a,b,n) // Conditional recursive call

in
test(n,a,b) // Main expression

end

Fig. 3. Grail code to compute the Fibonacci number Fn. For speed, we keep
track of both Fk and Fk+1 in accumulating parameters a and b.

Our solution is to arrange that Grail programs, such as that in Fig. 3, can
be both evaluated functionally, using call-by-value, and executed imperatively,
with state and goto — with both routes giving exactly the same result. In
the functional reading “x=5” is a lexically-scoped declaration; on imperative
execution it updates a named storage cell. This dual approach then satisfies
all the requirements for our low-level language. The final two requirements are
satisfied by providing an assembler from (the imperative interpretation of) Grail
to JVM classfiles, which can be executed and transported over a network, and
a disassembler that reconstructs the original Grail code.

The functional semantics is comparatively standard: Grail has strong static
typing, call-by-value first-order functions, mutually recursive local declarations,
and lexical scoping. Within this, we make several simplifications appropriate to a
compiler target language. For example, local function declarations may not nest,
functions are only applied to values, and expressions can contain just one basic
operation; later we shall see some further constraints on control and dataflow.

The Fibonacci code of Fig. 3 is the body of a single method. Above this,
Grail provides precisely the class and object structure built into the Java vir-
tual machine. Thus the basic expression operators include not just add and sub
but also primitives to create and manipulate objects on the Java heap. We use
these to implement the space management inferred for Camelot programs by the
analyses of Sect. 3.

The comments in Figure 4 present an alternative view of the same code,
as a purely imperative stream of assignment statements and jumps. Instead of

method static int fib (int n) =
let

val a = 0 // Initial assignment
val b = 1 // to variables

fun loop (int a, int b, int n) = // Labelled basic block, with
let // live variable annotation

val b = add a b
val a = sub b a // Sequence of assignments
val n = sub n 1 // updating named registers

in
test(n,a,b) // Goto, with live variable

end // annotation

fun test (int n, int a, int b) = // Another labelled basic block
if n<=1 then b else loop(a,b,n) // Conditional return or jump

in
test(n,a,b) // Initial entry label

end

Fig. 4. Imperative Grail code to calculate the Fibonacci number Fn. Comments
indicate semantics for execution on the Java virtual machine.

local functions we have a collection of basic blocks, function calls are merely
jumps, and parameter lists now track which variables are live. This imperative
reading gives a direct map onto Java bytecode: Grail variables are JVM variables,
and each statement expands to a short sequence of instructions, which compose
exactly as laid out in the Grail source. For example:

val b = add a b
val a = sub b a
val n = sub n 1

becomes

9 iload 1 13 iload 2 17 iload 0
10 iload 2 14 iload 1 18 iconst 1
11 iadd 15 isub 19 isub
12 istore 2 16 istore 1 20 istore 0

This gives bytecode that is highly stereotyped, and our disassembler recovers the
original Grail simply by clustering instruction sequences. We can even identify
variable names from standard JVM metadata.

These different views on Grail allow us to support sound formal reasoning,
using the logical rules presented in the next section, at the same time as effective
transmission and execution, following the architecture of Sect. 2. However, this
is only justified if the functional and imperative semantics coincide. We ensure
this by placing some additional constraints on Grail. A method declaration is
well-formed if:

– Local functions are closed (all variables appear in their parameter lists);
– Invocations of local functions are all tail calls;
– The arguments of every function call syntactically match its declared pa-

rameters — for example, fun f (int x) is always invoked as f(x).

We have a formal semantics for both the functional and imperative views of
Grail, defined by induction over the structure of programs. For well-formed code
we can prove a strong correspondence between these:

Theorem 1. Every well-formed Grail method body can be presented either as
functional declarations or decomposed into imperative basic blocks:

mbody -imperative
�

functional
blocklist.

Suppose now that E is a variable environment and s is a matching initial state,
appropriate for mbody and blocklist respectively:

E =var s where var = fv(mbody) = Var(blocklist) .

Then functional evaluation and imperative execution coincide: for any final value v

E ` mbody ⇓fun v if and only if s ` blocklist ⇓imp v .

Moreover, these evaluations also have identical effect on the heap, and make
matching use of time and memory space.

Sect. 6 has more detail on the functional operational semantics, and its accom-
panying logic. We can apply this theorem to show that evaluation metrics for
functional Grail match execution steps of the corresponding imperative Java
bytecode [30]. Part of this development includes a formalisation within the Is-
abelle theorem prover of both functional and imperative semantics, as well as
the translation between them.

Further results on the properties of well-formed Grail appear in [9]: relat-
ing (functional) free variables to (imperative) liveness; and matching dataflow
analysis of imperative single-use registers to a functional linear type system.

To take advantage of these results, our Camelot compiler must of course
generate well-formed Grail. To do this it carries out a range of standard trans-
formations, such as λ-lifting, variable renaming, and insertion of intermediate
declarations. These are all legitimate functional rearrangements; but in the light
of Theorem 1 we can also show that these correspond directly to imperative com-
pilation techniques: namely conversion to static single-assignment form (SSA)
and then elimination of Φ-functions [3].

This is an instance of a more general observation, that low-level transforma-
tions on registers and imperative variables map to functional transformations of
Grail. Thus we can carry out bytecode optimisations like register allocation and
sharing while still in the intermediate language of our compiler [35].

Many of the transformations used in compiling Camelot to Grail are famil-
iar from other functional languages; ideas like A-normal and CPS form, types
in compilation, and typed low-level languages [2,5,11,12,25,34]. We have taken
particular inspiration from λ-JVM, a functional language for expressing gen-
eral JVM programs [19]. The novelty of Grail, by comparison with these other
schemes, lies in the fact that it is strict enough to support a reversible translation
to bytecode which preserves execution costs.

Grail generates bytecode with a regular form that makes it particularly
straightforward to analyze: for example, the JVM operand stack is always empty
between Grail statements, and local variables keep the same type throughout a
method body. Simplifications like these appear in other proposals for effective
use of Java on smart devices — thus, for example, all Grail programs immedi-
ately satisfy Leroy’s conditions for fast on-card JavaCard verification [21]. Simi-
larly, the Squawk JVM architecture runs on very small devices with a tripartite
memory structure (ROM/NVRAM/RAM) [32]: we already satisfy many of the
conditions for Squawk bytecode, and we believe that the remaining ones can be
ensured by manipulation at the Grail level.

In building a PCC framework with Java classfiles as the transport format,
the natural question is: why not just use Java bytecode as the base language?
The results presented here give the answer: Grail is Java bytecode, but with
a stern discipline over the flow of control and data that makes it efficient and
straightforward to analyze.

6 Bytecode logic and certificate generation

Our proof-carrying code infrastructure equips Grail programs with certificates
concerning their resource usage. Certificates contain a claim of resource usage
together with (instructions for generating) a proof of the claim. The proof is
expressed in a program logic for Grail that we have designed specifically for the
purpose. In this section we give an overview of the program logic and then of
the process of certificate generation. Full technical details of this work appear in
[4,8].

6.1 Resource-counting operational semantics

We want assertions to express properties of program execution as defined by
the Grail (functional) operational semantics. The operational semantics is de-
fined as a big-step relation which is annotated with resource measurements. An
expression e is evaluated in an environment E and heap h, written

E ` h, e ⇓ (h′, v, p).

to yield a value v, an updated heap h′, and a resource component p. As usual,
an environment is a mapping from variables to values, and a heap is modelled
as a finite map from a set of locations to values.

The resource component p is a tuple which includes a measure of the number
of instructions executed when evaluating e, and the maximum size of the frame
stack. The amount of heap space consumed when evaluating e is not included in
p, because it can be calculated as the size of the difference between the domains
of the input heap and output heap, |dom(h′)−dom(h)|. This is possible because
we do not model garbage collection; indeed, the JVM specification [22] does
not even require garbage collection to occur (and it does not take place on the
versions 1.X of the JavaCard platform).

The rules defining the operational semantics are straightforward to write,
given knowledge of the translation from Grail into Java bytecode outlined in the
previous section. Example rules for if statements are shown further below.

6.2 A logic for Grail

A possible starting point for the logic would be to take an existing program logic
for Java bytecode, perhaps based on cutting down a logic for Java, and extend it
to express the resource-related properties of interest. However, to do this would
be to ignore the advantages brought by Grail: rather than attaching assertions to
sequences of bytecode instructions, we may attach them to Grail functions, and
relate them rather directly to the types used by our Camelot compiler. Moreover,
the functional viewpoint afforded by Grail allows more elegant rules in several
cases than are possible in a Hoare-style logic.

This led us to design a custom logic of partial correctness for Grail. Sequents
are of the form:

Γ � e : P,

relating a Grail expression e to a specification P under some set of assumptions
Γ of the same form. The specification P denotes a predicate which constrains
possible executions of e as defined by the resource-counting operational seman-
tics.

Satisfaction of a specification P by a program e is denoted by |= e : P and
asserts that every (terminating) execution lies within the domain of P , that is

∀E, h, h′, v, p. E ` h, e ⇓ (h′, v, p) implies P (E, h, h′, v, p).

Similarly to VDM, our specification predicates allow us to relate the environment
and the initial heap to the result, the final heap and the resources consumed.
This means that there is no need for auxiliary variables that are necessary in
a Hoare-style logic to relate results in the post-condition to inputs in the pre-
condition. This has a particular technical advantage in that we do not require
the often rather complicated adaptation rules of Hoare logic when using proven
(or assumed) specifications for procedures6.

So far we have not introduced a syntax for writing specification predicates.
Instead we use the higher-order logic of the theorem prover, Isabelle/HOL [28], in
which we have formalised the entire Grail-based PCC framework. This particular
form of shallow embedding for propositions is known as the extensional approach.
As a rather trivial example of a specification, the predicate |dom(h)| = |dom(h′)|
is satisfied by programs which do not allocate heap space.

Many of the rules of our logic correspond closely with rules of the operational
semantics. For example, the rule for an if statement looks like this:

6 in our case: Grail methods and function calls

Γ � e1 : P1 Γ � e2 : P2

Γ � if x then e1 else e2 : λ E h h′ v p.∃p′. p = tick2(p′)∧
(E〈x〉 = true −→ P1(E, h, h′, v, p′)) ∧
(E〈x〉 = false −→ P2(E, h, h′, v, p′)) ∧
(E〈x〉 = true ∨ E〈x〉 = false)

(if)

In fact, every if statement satisfies a predicate which is equivalent to this form:
either the environment binds x to true and we have P1, or the environment binds
x to false and we have P2. But P1 and P2 are not satisfied exactly: we have to
adjust the resource component p to account for two extra bytecode instructions
(corresponding to the variable lookup and branch).

This rule in the logic captures the behaviour of evaluating either branch of
an if statement, expressed in the operational semantics by the two cases:

E〈x〉 = true E ` h, e1 ⇓ (h1, v, p)
E ` h, if x then e1 else e2 ⇓ (h1, v, tick2(p))

(if-true)

E〈x〉 = false E ` h, e2 ⇓ (h1, v, p)
E ` h, if x then e1 else e2 ⇓ (h1, v, tick2(p))

(if-false)

which also advance the clock resource component by two steps.
The only place in which the domain of the heap is altered is in Grail’s new

statement, which corresponds to a new statement in Java. This uses a special
constructor for a class c which assigns the contents of xi to each of the n fields
zi in the newly constructed object. The rule in the logic is this:

Γ � new c [zi := xi] : λ E h h′ v p. p = tickn+1() ∧ v = Ref newloc(h)∧
h′ = h[newloc(h) 7→ (c, {zi := E〈xi〉})]

(vnew)

The function newloc models the JVM memory allocator’s assignment of a new
location which isn’t already in the domain of h. An object is modelled as a pair
(c,flds) where c is a class name and flds is a record assigning field names to
values. As usual, the resource component counts the clock ticks: in this case the
time taken by a new instruction is n+1 ticks. The resulting heap contains a new
object with the appropriate fields. This rule captures exactly the behaviour of
object construction. Obviously, unrestricted new instructions can lead to uncon-
trolled growth of the heap. The crux of our memory management and resource
assertion system is to severely restrict where new can be used.

Compared with directly expanding operational semantics, the power of the
logic comes in the rules for function and method calls. The rules are similar to
Hoare’s original rule for parameterless procedures (but lacking preconditions,
since we have a logic for partial correctness). For a function call, the rule is:

Γ, (f (x1, . . . , xn) : P) � mbodyf : λ E h h′ v p. P (E, h, h′, v, tick1(call1(p)))
Γ � f(x1, . . . , xn) : P

(call)

This allows one to recursively use the assumption that a call to f satisfies a
specification when proving that the unfolded definition of f (mbodyf) indeed
satisfies the specification.7 Again, however, we must adjust the specification to
take account of the resources used in evaluating the function call itself. In this
case, the clock advances by one tick and a counter for depth of calls is incre-
mented. In the case of method calls, the depth count corresponds to the number
of frames on the framestack; we make a similar count for functions so that we
might measure the effects of tail-recursion optimisation. When resource compo-
nents are combined in let-expressions (corresponding imperatively to sequential
composition), the resulting resource component takes the maximum of the depth
values in each sub-expression.

As well as the rules corresponding to each syntactic element of Grail, the
logic has two essential structural rules:

e : P ∈ Γ

Γ � e : P
(vax)

Γ � e : P ∀E h h′ v p. P (E, h, h′, v, p) −→ P ′(E, h, h′, v, p)
Γ � e : P ′

(vconseq)

We have established strong results about the bytecode logic, including sound-
ness and (relative) completeness.

Theorem 2. (Soundness) If Γ � e : P then Γ |= e : P .

Theorem 3. (Completeness) If |= e : P then � e : P .

The obvious statement of these theorems belies the complexity of their proofs.
A delicate inductive argument on the depth of evaluation and function call nest-
ing is needed to prove the call and method invocation rules sound. To prove
completeness, we used a novel technique based on the admissibility of a cut rule
for the logic. Full details of the development appear in [4].

7 Because of the restrictions of Grail described in Sect. 5, the actual parameters
x1, . . . , xn coincide with the formal parameters as mentioned in mbodyf . For method
calls, however, the appropriate rule must instantiate parameters, substituting into
the method body.

6.3 The role of the theorem prover

If we are to believe in the correctness of our approach, it is an essential require-
ment that the program logic is sound for the semantics of Grail. Plausibility of
the whole framework lies with Theorem 2 above.

Taking this point seriously led us to formalise both the program logic and the
semantics of Grail within a theorem prover, providing machine-checked proofs of
the above theorems. This follows the approach of several other researchers (most
closely, Kleymann [18] and Nipkow [27]). In previous work, this methodology was
advocated to increase confidence in meta-theoretical results for program logics,
especially soundness, to avoid the possibility of embarrassment (experienced by
several authors previously) of proposing unsound or inconsistent logics because
of subtle flaws in paper-based arguments.8

For our PCC infrastructure, this approach provides also the possibility of
using the formally derived proof rules to represent proof evidence directly (or
indirectly as the result of applications of tactics). This gives us an easy way of
constructing certificates, which may be represented simply as proof script texts
for Isabelle with a certain format. To check a certificate, we must extract the
claim it makes, and see if the proof successfully replays when applied to the
code which has been delivered. An advantage of this approach is that the logic
is automatically extensible: to satisfy particular resource policies we may draw
on additional stock lemmas which amount to derived proof rules in the logic.

The obvious drawback of using Isabelle proof scripts directly is that Isabelle
is now required on the client (code consumer) side, and the size of Isabelle’s code
base and memory footprint precludes its use on most small devices! Of course,
one may change the point at which proof-checking is done to be on a securely-
connected and trusted proof server (employing the strategy known as off-device
verification), but our viewpoint is that while our present implementation is ideal
for an experimental research prototype, it ought to be replaced by a dedicated
proof checker for real deployment. A dedicated checker for our logic could be
much smaller and more efficient than a general purpose theorem prover.

6.4 Generating certificates

While the bytecode logic outlined above enjoys the property of being relatively
complete, our experience is that it is rather too low-level for the straightforward
construction of certificates. Our initial strategy was to use (formalised versions
of) the space assertions obtained from the space type system as specifications
of the corresponding compiled functions. Syntax-directed backwards applica-
tion of the proof rules for the program logic would then generate purely logical
verification conditions arising from side-conditions which should be provable au-
tomatically.
8 Of course, just as paper-based arguments may be scrutinised by many readers, we

should encourage at least the statements of our formal theorems and the requisite
definitions to be examined by others; we may delegate trust in the proofs themselves
to the community’s trust in the implementation of the theorem prover.

Unfortunately, the hope that this could be achieved turned out to be too
naive. Firstly, the generated verification conditions contained many quantifiers,
which were not automatically instantiated using Isabelle’s standard solvers. More
seriously, stronger invariants than just freelist balance were required, in par-
ticular invariants concerning separation of certain data structures in the heap
(cf. [31]).

Our solution to both problems is to introduce a notion of derived assertion
which more directly expresses in the logic the semantic intention of notions from
the high-level type system described in Sect. 3. These derived assertions do not
encompass the full power of the program logic, only that needed to capture the
meaning and invariants underlying the space type system.

More concretely, derived assertions have the form

e : {|∆, m . T, n, U |}

Here ∆ is a typing environment assigning numerically annotated types as in
Sect. 3.5 to variables in e, T is a numerically annotated type, and m,n are
numbers. Additionally, U records the set of variables that are actually used in
e.

A derived assertion expands into an ordinary assertion in the program logic
which expresses the semantic meaning of the typing judgement

∆, m . e : T, n

in the system from [16]. Intuitively, this semantic meaning is as follows: given
a stack S and a heap h such that S and h are type-correct with respect to
∆ (when ∆ says x : iList then S[x] should indeed point to a linked list in h),
then provided e evaluates under S, h to some value v under a purely functional
semantics without any space constraints then it will do so in the freelist-based
memory model without invoking new provided the freelist has minimum size
M . Upon completion the freelist will contain N cells. Here M equals m plus the
number of cells obtained from the number of nodes in the data structures pointed
to by S according to the numerical annotations in ∆. Likewise, N equals n plus
the number of cells obtained from the number of nodes in the data structures
pointed to by v according to the numerical annotations in T , plus of course any
excess in the initial size of the freelist.

All of this is under the additional assumption that during the evaluation of
e no live cell (reachable from the current stack) will be returned to the freelist.
As mentioned in Sect. 3.2, this condition is guaranteed under linear typing, and
this is currently what is modelled in the derived assertion scheme. That is, in
addition to what has been explained already, the derived assertion expresses that
the heap regions corresponding to distinct variables listed in U do not overlap.

There are some other technical conditions which turned out to be required.
For example, the final heap will equal the initial heap on those locations that
are aliased with neither the arguments nor the freelist (i.e. contents of locations
not affected by the evaluation should not change).

In total, the definition of the meaning of derived assertions consists of a few
hundred lines of Isabelle code. Fortunately, though, we were able to prove once
and for all a set of derived proof rules for these derived assertions which roughly
follow the typing rules from [16] and allow us to prove derived assertions in a
syntax-directed fashion rather than by unfolding definitions. The only non-trivial
side-conditions that arise during this syntax-directed backwards application of
derived rules are numerical inequalities, all of which turn out to be easily provable
provided the derived assertions to start with were constructed from results of
the analysis in [17].

Since the analysis [17] speaks about high-level Camelot code whereas the
program logic is about compiled Grail, the derived rules sometimes apply to
canonical sequences of Grail instructions which arise e.g. from compiling a match
construct. It should also be noted that the inference is run on intermediate
code in monomorphised A-normal form which is (although syntactically correct
Camelot) already quite close to the compiled Grail.

Overall, our approach can be compared to the idea of Foundational Proof-
Carrying Code (FPCC) [1], which also takes a formalised machine semantics as
a starting point (although for a real machine rather than bytecode), and then
derives high-level rules and typing principles. However, whereas FPCC aims at
building general derived rules from the ground up, involving complex model
constructions, we have instead started from a specific high-level analysis and
derived its type soundness directly.

At the time of writing we have conducted very promising experiments (in
particular insertion sort and heap sort) where we prove a concrete space bound
by first deducing it from an appropriate derived assertion and then proving the
latter by backwards application of derived proof rules, where the choice of rule to
use is always clear. In principle it is now indeed possible to generate proof scripts
automatically during compilation, giving the correct invariants and auxiliary
lemmas to be able to establish derived assertions. To make that happen we have
designed an Isabelle tactic that can solve derived assertions automatically, given
partial typing information from the Camelot compiler. We are now extending
this to more examples and connecting to the Camelot compiler to complete the
PCC infrastructure. Full details of the certificate generation strategy are given
in [8].

7 Conclusions

The MRG project has delivered a prototype framework for guaranteeing resource
security in mobile applications, based on proof-carrying code for the Java Virtual
Machine. We have demonstrated the feasibility of PCC for resource verification,
based on the technologies developed in the project. As part of this, the MRG
work has made specific contributions to the relevant state of the art:

– Type systems for memory management in high-level programming languages.
These allow static checks on heap usage and automatic inference of space

bounds. For devices with severe memory constraints, this offers the opportu-
nity to raise the current cautious programming model: from manual control
of fixed allocation to an automated freelist, without compromising memory
safety.

– Resource-exact compilation. Camelot extends the standard task of a compiler
— to preserve the meaning of a program — to also reliably preserve resource
behaviour. Thus we can use source language types and assertions to correctly
describe resource usage for the corresponding executables.

– Grail. Our target language shows not only the practicality of carrying out
formal proofs on bytecode; also that a PCC consumer can recover enough
structure from the corresponding JVM executable to repeat and verify these
proofs.

– The Grail bytecode logic. With its shallow embedding into Isabelle/HOL,
this allows us to derive VDM-style assertions of time and space usage for
programs. We have formally verified this implementation as sound and com-
plete for a resource-counting operational semantics of Grail.

– The system of derived assertions in the Grail logic. Our logical interpretation
of space types provides a toolkit for transferring source-level statements of
heap usage into machine-checkable bytecode proofs.

– The MRG architecture. This brings all these components together in an
end-to-end PCC framework.

The current system serves as a demonstrator and experimental platform. For
practical applications there remain issues of size and performance: although our
certificates are small, the trusted code base is large, and programmed for flexibil-
ity rather than speed. The present framework, with a full theorem prover at both
producer and consumer side, is sufficient for wholesale PCC; for example where
a software developer passes certified code to a device vendor for approval. A
targeted checker built just for the bytecode logic would be considerably smaller,
enough to support some retail PCC, where an individual consumer can check
downloaded code on their PC before installing on a smart device. Proof-checking
on the device itself remains an extremely challenging goal.

Certain components in the MRG framework are natural targets for future
development. Automatic certificate generation, as sketched in the last section,
has been demonstrated for individual examples, but we need to extend this suc-
cess to more general settings. Resource policies are a user-level description of
what a consumer requires of incoming code. We need to investigate how best to
express these, and how to map them into specifications in the bytecode logic.
Finally, we require a treatment of termination to complement the bytecode logic,
which is a logic of partial correctness (all its assertions are contingent on termi-
nation). There are established approaches to proving termination; these are in
general different to those for correctness, so decoupling them is appropriate, and
moreover leads to simpler rules for method and function invocation.

In future MRG work, we look to broaden our programme to address other
scenarios for PCC application. These include different kinds of resources, like net-
work connections or concurrent threads; as well as other application domains,

such as microcontrollers for embedded systems, or mobile code in the Grid. In
this last case, for example, existing systems like the Globus “Resource Speci-
fication Language” [13] state hoped-for space and time requirements, possibly
even just from back-of-the-envelope calculations, whereas we would aim for static
checks of correctness.

At the language level, we propose to transfer some of our work on type sys-
tems and logics across to Java itself. We would do this by expressing resource
assertions in the industry standard Java Modeling Language (JML), which al-
ready has a certain amount of formal tool support [20].

The continuing progress of the project will be publicized on the MRG web-
site, http://www.lfcs.ed.ac.uk/mrg. This carries papers and downloadable
software as well as a web-based demonstration.

Acknowledgments: We acknowledge the excellent work of the research assistants
and students of the Mobile Resource Guarantees project. Kenneth MacKen-
zie and Nicholas Wolverson led the implementation work on the Camelot com-
piler. Kenneth developed the Grail assembler and disassembler tools gf and
gdf; Laura Korte and Matthew Prowse also contributed towards gf. Lennart
Beringer, Hans-Wolfgang Loidl, Alberto Momigliano, Matthew Prowse and Olha
Shkaravska developed theorem proving infrastructure for the formalisation of the
bytecode logic and proved results about the logic itself. Michal Konečný worked
on the type system for the Camelot language, and Robert Atkey investigated
related systems. Steffen Jost implemented the lfd infer tool. Roberto Amadio
contributed many useful ideas on resource types.

References

1. A. Appel. Foundational proof-carrying code. In Proceedings of LICS’01, pages
247–256. IEEE Computer Society Press, 2001.

2. A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

3. A. W. Appel. SSA is functional programming. ACM SIGPLAN Notices, 33(4):17–
20, Apr. 1998.

4. D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program
logic for resource verification. In Proceedings of the 17th International Conference
on Theorem Proving in Higher-Order Logics, (TPHOLs 2004), volume 3223 of
LNCS, pages 34–49. Springer, 2004.

5. D. Aspinall and A. Compagnoni. Heap bounded assembly language. Journal of
Automated Reasoning, 31(3–4):261–302, 2003.

6. D. Aspinall and M. Hofmann. Another type system for in-place update. In
D. Le Métayer, editor, Programming Languages and Systems (Proceedings of ESOP
2002), volume 2305 of Lecture Notes in Computer Science. Springer, 2002.

7. L. Augustsson. Cayenne - a language with dependent types. In International
Conference on Functional Programming, pages 239–250, 1998.

8. L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Towards certifi-
cate generation for linear heap consumption. In Proceedings of the ICALP/LICS
Workshop on Logics for Resources, Processes, and Programs (LRPP2004), 2004.

http://www.lfcs.ed.ac.uk/mrg

9. L. Beringer, K. MacKenzie, and I. Stark. Grail: a functional form for imperative
mobile code. In Foundations of Global Computing: Proceedings of the 2nd EATCS
Workshop, number 85.1 in Electronic Notes in Theoretical Computer Science. El-
sevier, June 2003.

10. C. Colby, P. Lee, G. C. Necula, F. Blau, K. Cline, and M. Plesko. A certifying
compiler for Java. In Proceedings of the 2000 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI00), Vancouver, Canada,
2000.

11. C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with
continuations. In Proc. PDLI ’93, ACM SIGPLAN Notices 28(6), pages 237–247,
1993.

12. C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. Retrospective on “The
essence of compiling with continuations”. In 20 Years of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (1979–1999):
A Selection. ACM Press, 2003.

13. I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A dis-
tributed resource management architecture that supports advance reservations and
co-allocation. In Proceedings of the IEEE/IFIP 7th International Workshop on
Quality of Service, 1999.

14. M. Hofmann. A type system for bounded space and functional in-place update.
Nordic Journal of Computing, 7(4):258–289, 2000.

15. M. Hofmann. Linear types and non size-increasing polynomial time computation.
Information and Computation, 183:57–85, 2003.

16. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order
functional programs. In Proceedings of the 30th ACM Symposium on Principles of
Programming Languages, New Orleans, 2003.

17. S. Jost. lfd infer: an implementation of a static inference on heap space usage. In
Proceedings of Second Workshop on Semantics, Program Analysis and Computing
Environments for Memory Management (SPACE 2004), 2004.

18. T. Kleymann. Hoare Logic and VDM: Machine-Checked Soundness and Complete-
ness Proofs. PhD thesis, LFCS, University of Edinburgh, 1999.

19. C. League, V. Trifonov, and Z. Shao. Functional Java bytecode. In Proc. 5th SCI
World Multiconference, Workshop on Intermediate Representation Engineering for
the Java Virtual Machine. Internat. Inst. of Informatics and Systemics, July 2001.

20. G. Leavens, R. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: notations and tools
supporting detailed design in Java. In OOPSLA 2000 Companion, pages 105–106,
2000.

21. X. Leroy. Bytecode verification on Java smart cards. Software Practice & Experi-
ence, 32:319–340, 2002.

22. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java
Series. Addison-Wesley, Jan. 1997.

23. K. MacKenzie and N. Wolverson. Camelot and Grail: resource-aware functional
programming for the JVM. In Trends in Functional Programming, volume 4, pages
29–46. Intellect, 2004.

24. Microsoft. Overview of the .NET framework. In .NET Framework Developer’s
Guide. http://msdn.microsoft.com.

25. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems, 21(3):528–
569, 1999.

26. G. Necula. Proof-carrying code. In Proceedings of the ACM Symposium on Prin-
ciples of Programming Languages, 1997.

http://msdn.microsoft.com

27. T. Nipkow. Hoare logics for recursive procedures and unbounded nondeterminism.
In Computer Science Logic (CSL 2002), volume 2471 of LNCS, pages 103–119.
Springer, 2002.

28. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, Jan. 2002.

29. O’Caml Web site. The O’Caml Language. http://www.ocaml.org.
30. M. Prowse. Proving Grail resource bounds. University of Edinburgh, May 2003.
31. J. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS 2002: Proceedings of the Seventeenth Annual IEEE Symposium on Logic in
Computer Science, pages 55–74, 2002.

32. N. Shaylor, D. N. Simon, and W. R. Bush. A Java virtual machine architecture
for very small devices. In Language, Compiler, and Tool Support for Embedded
Systems: Proceedings of LCTES ’03, number 38(7) in ACM SIGPLAN Notices,
pages 31–41, July 2003.

33. Sun Microsystems. Java Card 2.2 Platform Specification, 2003. available online at
http://java.sun.com/products/javacard/specs.html.

34. M. Wand. Correctness of procedure representations in higher-order assembly lan-
guage. In Proc. MFPS ’91, LNCS 298, pages 294–311. Springer, 1992.

35. N. Wolverson. Optimisation and resource bounds in Camelot compilation. Labo-
ratory for Foundations of Computer Science, University of Edinburgh, 2003.

36. N. Wolverson and K. MacKenzie. O’Camelot: Adding objects to a resource aware
functional language. In Trends in Functional Programming, volume 4, pages 47–62.
Intellect, 2004.

37. H. Xi and F. Pfenning. Dependent types in practical programming. In Proceedings
of the 26th ACM SIGPLAN Symposium on Principles of Programming Languages,
pages 214–227, San Antonio, January 1999.

http://www.ocaml.org
http://java.sun.com/products/javacard/specs.html

