as4

its simplicity and the small amount of additional communica-
tion overhead that is required. An analysis of the system is
described to determine its mean time to failure.
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Completeness of Proof Systems for Equational
Specifications
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Abstract—Contrary to popular belief, equational logic with induction
is not complete for initial models of equational specifications. Indeed,
under some regimes (the Clear specification language and meost other
algebraic specification languages) no proof system exists which is com-
plete even with respect to ground equations. A collection of known
results is presented along with some new observations.

Index Terms—Algebraic specifications, equational logic, proof systems.

Manuscript received February 1, 1984; revised December 10, 1984.
This work was supported by the Science and Engineering Research
Council of Great Britain and AT&T Bell Laboratories.

D. B. MacQueen is with AT&T Bell Laboratories, Murray Hill, NJ
07974.

D. T. Sannella is with the Department of Computer Science, Univer-
sity of Edinburgh, Edinburgh EH9 3JZ, Scotland.

I. INTRODUCTION

INCE the pioneering work of Guttag [18], Zilles [30] , and
Sthe ADJ group [16] there has been substantial work on
applying universal algebra to the specification of abstract data
types and programs. Typical specifications involve several
sorts (kinds of data), so standard universal algebra as in [17] is
not immediately applicable since it deals with algebras having
only a single sort. Heterogeneous or many-sorted universal
algebra as developed in [5] and [20] is therefore more useful
for this purpose. The generalization to many sorts has been
widely assumed to be straightforward, but recently Goguen
and Meseguer [14] have shown that a classical result of univer-
sal algebra, that equational logic is sound and complete for
equational specifications, does not automatically extend from
the one-sorted to the many-sorted case. This surprising fact
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A signature Ebool
sorts bool
opns false, true : bool

not : bool - bool

and, or : bool,bool »+ bool

Some Z-equations EM°l
Y¢. not(true) = false

v¢. not(false) = true
v¥x:bool. and(x,x) = x
v¥x:bool. and(x,not(x)) = false
¥x:bool. or{x,x) =

¥x:bool. or(x.not(x)) = true

Fig. 1. Signatures,

refutes certain results in [2] and [20]. Goguen and Meseguer
then show how the usual rules of equational deduction can be
modified to give a system which is sound and complete in the
many-sorted case. ‘

But this is not the whole story. Ordinary many-sorted equa-
tional algebra is not sufficiently powerful for use in specifica-
tion because it provides no way of excluding certain undesirable
models (for example, it is impossible to specify Booleans in
such a way that true # false is guaranteed). Accordingly, work
on algebraic specification uses many-sorted algebra with exten-
sions to provide the necessary power. First attempts (e.g.,
[16]) restricted attention to the initial models of a specifica-
tion. Later work on parameterized and “loose” specifications
(e.g., in the Clear specification language [8]; cf. [21]) general-
ized this idea, permitting equational specifications to include
data constraints (or hierarchy constraints as in CIP-L [1])
specifying that certain subalgebras of any model must be free
extensions of ‘(respectively generated from) certain smaller
subalgebras. It seems to have been assumed by many that
equational logic with these modifications remains sound and
complete if an appropriate induction rule is added. This as-
sumption turns out to be false; such a proof system is indeed
sound, but it is not complete. Indeed, no sound and complete
proof system exists in either extended situation.

II. PRELIMINARIES—SPECIFICATIONS, MODELS, PROOF
SYSTEMS, AND COMPLETENESS

The following short sequence of definitions is a necessary
prerequisite to the statement of completeness results for those
who are not familiar with previous work on algebraic spécifica-
tion. The first five definitions are adapted from [8]. Some
familiar examples of some of these concepts are given in Fig. 1.

Definition: A signature X is a set of sorts (data type ﬁames)
together with a set of operators (operation names), where each
operator hasa type of the formsl, - - - ,sn > swheresl, - - -, sn,
s are sorts. If T and Z' are signatures then Z is a subsignature

of ', written £ C X', if sorts(Z) C sorts(Z') and operators(Z) C

operators(Z").

Definition: Given a signature X, a Z-algebra A consists
of a countable carrier set |A|; for each sort s of Z (the pos-
sible values of that data type) together with a total function
wat|A|sy X+ X |A|gn > |A|s for each operator w:sl,
sn—>s of E If C 2 then the restriction of A to T’ (wntten
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Az algebra A (a model of 3001:(2b°°l.8buul))
|A|bool = {0.1.2}

falseA =0

t.rueA =1

notA(O) =1

nota(l) = notA(Z) =0

andA(O.O) = 0 and (0 1) =0 andA(O,Z) =2
andA(l.O) =0 andA(l.l) =1 andA(l.Z) =2
andA(Z.O) =0 andA(Z,l) =2 andA(2,2) =2
or,(0.0) = 0 or,(0,1) = 1 or,(0.2) = 2
orA(l,O) =1 or (1 1) =1 or(1.2) =2
orA(2.0) =1 or (2 1) =2 orA(2,2) =2

equations, algebras.

AIE') is the ='-algebra obtained by forgetting the carriers and
functions of A corresponding to sorts and operators which are
notin ',

Definition: Given a signature % and Z-algebras 4, A’ a Z-
homomorphism f:4~ A’ consists of a map f;: [A| s~ |A|s for
each sort s of £ which preserves the operations; i.e., for every
operator w:sl, -+, sn—>s in T and every a, € |A|S1, -7

a, € IA’sns fS(wA(als Tt an)) Wy’ (fsl(al) fsn(an))

5

A|g' ~A'|z’ obtained by restricting
f to the sorts in Z'. A homomorphism f:4 -+ 4’ which is 1-1
and onto is called. an isomorphism, written A = A'.

Definition: Given a signature X, a Z-equation VX.t=1¢ is a
finite set X of variables of sorts in T together with a pair ¢, ¢ of
Z-terms (possibly containing variables from X)) of the samé sort.
Terms and equations containing no variables are called ground.
A Z-algebra 4 sarzsf jes a T-equation VX.¢t =1t (written 4 |=
VX.t =¢") if the equation is “true” (both sides evaluate to the
same thing) for all assignments of values in A4 to the variables
in X.

Definition: A specification is a signature X together with a set
of Z-equations. A Z-algebra A4 satisfies a specification (Z, E)
if A satisfies every equation in E. Then A is called a model
of (Z, E). If SP=(Z, E)and SP' = (X', E') are specifications
then SP is a subspecification of SP', written SP C SP', if £ C

Formally, we shall define a proof system as any relation be-
tween spemﬁcatlons and equations such that the set of equa-
tions provable in (i.e., related to) a specification is recursively
enumerable. In practice a proof system is a set of inference
rules together with a notion of proof leading to such a relation.
The recursive enumerability requirement captures the idea that
a proof system is an effective procedure for generating the
theorems of a.specification. It is possible to study proof sys-
tems which do not satisfy this requirement (as in infinitary
logic [22]) but this topic is outside the scope of this paper.

Definition: A proof system is a relation - C Specifications X
Equations such that if a specification SP is effectively given
(.., SP=(Z, E) where E is recursively enumerable) then the
set of provable equations {e|SP I~ e} is recursively enumerable.

Definition: A proof system I is called complete for a speci-
fication SP=(Z, E) if every Z-equation e which is satisfied in
every model of SP (i.e., SP [ e) is provable from SP using
(ie., SP I-e). Conversely, |- is sound for SP if every Z-equa-
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k- C Specifications x Equations is the smallest relation such that!:

1. E is a set of Z-equations and t=t'€ E => (L.E) I:q t=t

. (reflexivity) t is a Z-term => (I,E) I—.-q t=t

. (symmetry) (L,E) !;-q t=t'

2

3 =, (CE)I t=t
4. (transitivity) (Z, E)I— t=t' and (E, E)l— t'=t”
5.

= (EE)}- t=t"

(substitutivity) (Z. E)t— t=t' and (I.E) l—qu u' and sort(x):sort(u)
= (2 E) I- t[u/x]=t"[u'/x]
IThis is actually a proof system for quantifier-free equations. A
quantifier-free equation ¢ = ¢' is unphc1tly quantified by all the variables
which appear int and t', so it is equivalent to the equation V vars(?) U

vars(t'). t=1¢'.

Fig. 2. The proof system leq-

'5! C Specifications x Equations is the smallest relation such that:

1. E is a set of T-equations and vX.t=t'€ E => (I,E) by VX =t

2. (reflexivity) X is a set of variables of sorts in £ and t is a I-term with vars(t)cX

= (I,E) By YX.t=t
3. (symmetry) (Z.E) o YX-t=t

= (L.E) 't_:u vX.t'=t
4. (transitivity) (Z.E) 5y YX-t=t' and (Z.E) Iy YX U=t

= (L.E)k, vXt=t"

5. (substitutivity) (Z,E) b vX.t=t' and (L,E) sy YY-u=u’ and x:s€X and sort(u)=s
= (I.E) hy Y (X-fx:s}uy. t[u/t] t'{u’/x]

6. (abstraction) (Z,E) by YX-t=t' and x¢X and s€sorts(f) => (I,E) [ vXuix:s].t=t'

7. (concretionl) (Z.E) ia“ vX.t=t’

= (L.E)E, VX-Y.i=t

unless for some sort s there is- a I-term of sort s with variables in. X but no Z-term of

sort s with variables in X-Y.

1 This version of concretion is due to B. Mahr and J. Loeckx. Regard-
less, this rule is redundant since it may be derived from rule S.

Fig. 3. The proof system Ig)y.

tion provable from SP using I is satisfied in every model of
SP.

III. COMPLETENESS RESULTS
A. Completeness for Ordinary Equational Specifications

A classical theorem of universal algebra (due to Birkhoff [4])
states that equational logic (the proof system kg, given in Fig.
2) is complete for one-sorted specifications. Goguen and
Meseguer []4] have shown that this result extends to the
many-sorted case only if equational logic is modified slightly
by adding rules to add and delete quantifiers. This modified
proof system fgy is given in Fig. 3. They show that the un-
modified proof system fsq is not even sound in the many-
sorted case. They demonstrate this by means of the following
example.

SP = enrich Bool by
sorts s
opns f:s = bool
eqns Vn:s. f(n) = not(f(n))

(We borrow Clear’s enrich operation for this example; Bool is
given in Fig. 1.) Now, g, can be used to show that

true = or(f(n),not(f(n)))
= or(f(n),{(n))
=1f(n)
= and(f(n), ()
= and(f(n),not(f(n)))
= false

(recall that kg is a proof system for quantifier-free equations)
and so SP kg, true = false. But this equation does not hold in
the model of SP obtained by extending the Zyqoj-algebra of
Fig. 1 by adding an empty camer set for sort 5. Thus kg isnot
sound. :

Using tgy the same sequence of deductions shows that SP
fem Vn:strue = false. This equation is satisfied by all models
of SP; it is vacuously satisfied when the carrier set for sort s is
empty. The concretion rule cannot be applied to remove the
quantifiers, since there is no ground term of sort s.

B. Completeness for Initial Models of Specifications

A specification will typically have a number of different
(nonisomorphic) models. Some of these will be trivial, and
others will contain extra useless values (like the value 2 in the
example of Fig. 1). Most approaches to the specification of
abstract data types and programs restrict consideration to a
special subset of models; probably the best-known example is
the “initial algebra” approach of [16] in which a specification
is taken to specify only its initial models.

Definition: A model A of a specification SP is an initial
model of SP if for every model B of SP there is a unique homo-
morphism #:4 - B.

Equivalently, a Z-algebra 4 is an initial model of SP=(Z, E)
iff it satisfies the following conditions.

o “No junk:” Every element in A is the value of some ground

~ Z-term.
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[Bl,,,, = {01} [Clyeqy = 1493

!alsea =0, falsec =4

true, = 1 true, = ¥

notB(O) =1 nol.c(A) =v

nota(l) =0 notC(V) = A

and _(0.0) = andB(O.l) = ands(l.O) =0 andC(A.A) = undc(A,V) = and (V.4) = &
and.(1.1) = 1 and (V.V) = V

orB(O.D) =0 orC(A.A) =A

orn(o.l) = ora(l.O) = ora(l,l) =1 orc(A.V) = orC(V.A) = orc(v.v') =V

Fig. 4. Two initial models of Bool = (Zy41, Epool)-

e “No confusion:” For every ground Z-equation e, 4 satis-
fies e iff SP = e.

For a proof that these definitions are equivalent and for three
other equivalent definitions see [15].

It is well known that the initial models of any specification
form an isomorphism class; this allows us to refer to the initial
model. Category-theoretically speaking, the initial model of
a specification SP is the initial object in the category Mod(SP)
of SP-models and homomorphisms between them. Note that
the “no junk™ condition corresponds to an induction principle;
since all values in the initial model are generated by terms,
proof by structural induction on terms is possible. The Zyo01
algebra A in Fig. 1 does not satisfy “no junk,” so it is not an
initial model of Bool. Two initial models of Bool are given in
Fig. 4.

When only initial models of specifications are considered,
fam is complete with respect to ground equations (this is a
consequence of the result of [14] mentioned above) but
Nourani [25] shows that no proof system is sound and com-
plete with respect to nonground equations. (He actually shows
that equational logic with induction is not complete, but his
proof generalizes easily.) This follows from a consequence of
Matijasevi¢’s theorem (see [9]) which states that the set of
equations which hold in the standard model of the natural
numbers (with 0, +, X, and -) is not recursively enumerable.
It is easy to construct a (one-sorted) specification Nat such that
the standard model of the natural numbers is an initial model
of Nat (see Fig. 5), so no complete proof system for the initial
models of Nat can exist. This result applies to the specifica-
tion language ACT ONE [10].

C. Completeness for Specifications with Data Constraints

Some languages for algebraic specification adopt what can
be seen as a generalization of the initial model approach. They
permit specifications to include data constraints which must be
satisfied (in addition to the equations) by any model of the spec-
ification. Each data constraint specifies that for each model,
the subalgebra of that model corresponding to a certain sub-
specification must be a free extension of the subalgebra corre-
sponding to a certain smaller subspecification. The effect is to
provide ways to specifying algebras which are initial relative
to the interpretation of a subspecification, and of specifying
algebras which are extensions (i.e., do not disturb the carriers
but only add new operations) of model of a subspecification.
Data constraints make it possible to write parameterized speci-
fications like Set-of-X (see Fig. 5) where X may be arbitrary.
With data constraints it is also possible to construct loose
specifications having different nonisomorphic models (see
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SetChoose in Fig. 5 for an example). This enables a specifica-
tion to be left purposefully vague so as to allow some freedom
to the implementor. The necessary formal definitions below
are followed by an intuitive explanation of the meaning of a
data constraint.

Definition: Suppose SP=(Z, E)and SP' =(Z', E') are speci-
fications with SP C SP’, A and FA are models of SP and SP’,
respectively, and n4:4 —>FA]2 is a Z-homomorphism. Then
FA is a free SP'-model on A with unit n4 if for every model B
of SP' and Z-homomorphism f:4 - B|z there is a unique Z'-
homomorphism f#: F4 - B such that n, - F*l)=f

A4 Fas FA
7 l P> lf #
.8 B
SP models SP' models

According to a result of [23], for all equational specifications
SP and SP' and every model A of SP there is a free SP’-model
on A. It is easy to prove that all free SP'-models on A are
isomorphic; this means we can talk about the free SP'-model
on A.

Definition: Suppose SP=(Z, E)and SP' = (', E")are specifi-
cations with SP C SP'and A’ isamodel of SP’. Let4=A'|z, let
FA be the free SP"-model on A, and let e = (id4)*:FA—~> A'.
Then A’ is (SP C SP')-free if €4 is an isomorphism.

This definition is due to [29]. Burstall and Goguen [8]
(cf. [21]) give a slightly different definition, saying that A’ is
(SP C SP')-free if FA=A', but there are examples which show
that this is not sufficient [6]. Category-theoretically speaking
(see [24]) the existence of a free SP'-model FA for every SP-
model A determines a functor F: Mod(SP) > Mod(SP") which is
left adjoint to the forgetful functor _|5 :Mod(SP") > Mod(SP);
1 and e are the unit and counit, respectively, of the adjunction.

Definition: Given a signature Z, a 2-data constraint dc is a pair
of specifications SP, SP’ such that SP C SP' and sig(SP")C =
(where sig(SP") is the signature of SP'). A Z-algebra A4 satis-
fies a Z-data constraint SP C SP" if Asg(sp') is (SP C SP')ree.

The above definitions are adapted from [13]. For simplicity
we have chosen to adopt a special case which provides all the
power necessary for our purposes; these data constraints are
essentially the same as the initial restrictions of [21]. The in-
completeness theorem below also holds for more general no-
tions of data constraint as in [11] and [12] (where they are
called free generating constraints) and [13].

It is not obvious from the definition what it means intuitively
for an algebra to satisfy a data constraint SP C SP’. It turns
out that, in analogy with the definition of initial model in Sec-
tion III-B, there are two conditions which the algebra must

- satisfy.

o “No junk:” Every element of Alsig(sp) is the value of
some sig(SP’)-term containing variables only in sorts of SP, for
some assignment of values to variables.

e “No confusion:” The values of two sig(SP')-terms are the
same in 4 for some assignment of values to variables iff they
are forced to be equal by the interpretation of SPin A and the
equations of SP'.
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Bool =
dcBool =
DBool =

as in figure 1
¢ < Bool
{Bool,{dcBool})

sorts nat

opns 0 : nat

succ : nat - nat

+, x, - : nat,nat - nat

vn: nat. 0 + n = o'

vm,n:nat. suce(n) + m = succ(n + m)
vnmnat. 0 xn = 0

¥m,n:nat. suce(n) xm = (nxm) + m
v¥nmnat. 0 -n =0

vnmnat. n -0 =n

vm,n:nat. suce(n) - suce(m) = n-m
$ C Nat

(Nat,{dcNat})

Nat =

eqns

deNat =

DNat =
Ident = enrich Bool by
sorts element
opns eq : element,element - bool
eqns Va:element. eq(a.a) = true
va,b:element. eq(a,b) = eq(b.a)
V¥a,b,c:element. eq(a.b) and eq(b,c) and not(eq(a.c)) = false

Dident = (ldent,{dcBool})

Set = enrich Ident by

sorts set

opns ¢ : set
add : element,set - set

: element,set - bool
Va b:element, S:set. add(a,add(b,S)) = add(b,add(a.S))
va:element, S:set. add(a,add(a.S)) = add(a,S)
Va:element. a € ¢ = false
Va,b:element, S:set. a € add(b,S) = eq(a,b) or a€S
Ident C Set

(Set,{fdcBool.dcSet})

eqns

dcSet =
DSet =

SetChoose = enrich Set by

opns choose : set - elemen
eqns Va:element, S:set. choose(add(a S)) € add(a.S) = true

DSetChoose = {(SetChoose,{dcBool,dcSet})

Fig. 5. Data specifications.

Again, the “no junk” condition corresponds to an induction
principle. The idea of “no confusion” is the same as in the case
of initial algebras (as few equations as possible are satisfied)
although the condition itself is more complicated. Some ex-
amples of data constraints and algebras which satisfy them are
given in Fig. 5.

Definition: A data specification is a specification (Z, E) to-
gether with a set of Z-data constraints DC. A Z-algebra satis-
fies a data specification (SP, DC) if it satisfies SP and every
data constraint in DC.

Referring to Fig. 5, the models of DBool are just the initial

models of Bool as in Fig. 4. In general, if SP is a specification
then the models of the data specification (SP, {® C SP}) will
be the initial models of SP. The models of DNat are then the
initial models of Nat and hence are isomorphic to the standard
model of the natural numbers. Every model of DIdent will
consist of a model of DBool extended by some arbitrary carrier
for the sort element together with an equivalence relation eq.
Note that the initial models of Ident are rather uninteresting
since they all have an empty carrier for the sort element. The
constraint dcSet says that in each model A of DSet, || =
P(|Aident) (the set of finite subsets of |4 igent) With the ap-
_propriate interpretations for the operators ¢, add, and €. The
models of DSetChoose are the same as the models of DSet ex-
cept that each model includes an operaton which will select an
arbitrary element from a nonempty set. DSetChoose is a loose
specification because the result of choose is only partially
specified; the choice of which element of a set to return (and
the result when the argument is ¢) is left up to the implemen-
tor. Specification languages like Clear provide a convenient
syntax for presenting data specifications so users never have to
write data constraints explicitly. We have borrowed Clear’s
enrich operation for the examples in Fig. 5 but we have chosen
to display the data constraints.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 5, MAY 1985

For data specifications Igy is not complete with respect to
ground equations, even when induction is permitted. This fact
is demonstrated by the following simple example:

DSP = enrich DNat by
opns f:nat - nat
eqns Vn:nat. f(n)=2 X f(n+1)

where 1 and 2 are abbreviations for succ(0) and succ (succ (0)).
For all models 4 of DSP we have A F V¢.f(0) = 0 (recall that
the function associated with f must be total and the sort nat
does not include an “infinite” element). But this equation is
not provable using gy with induction; this may be shown by
induction and case analysis on the terms which may be derived
from f(0).

Note that DSP is not a counterexample for the completeness
of Igym with respect to ground equations for initial models of
equational specifications (Section III-B). The initial model of
DSP viewed as a purely equational specification (i.e., ignoring
the data constraint dcNat) does not satisfy V¢.f(0)=0. It is
the “no junk” requirement (with respect to the operators of
DNat, not DSP!) imposed by the data constraint dcNat which
makes the difference by forcing the value of f(0) to be equal
to the value of some term of the form succ/(0) (for j = 0).

It is possible to prove the equation V¢.f(0)=0 in DSP if a
strong enough proof system (including proof by contradiction)
is used. But for some data specifications there is no proof sys-
tem which is strong enough to prove all true ground equations.

Theorem: There exists no proof system for data specifica-
tions which is sound and complete with respect to ground
equations.

Proof: Proposition 4 of [3] states that for any total recur-
sive function £:IN X IN > N there is a finite data specification
SP; having as its only model (to within isomorphism) an alge-
bra Ay consisting of the natural numbers IN enriched by the
function

1 if 3x €N such that f(x,y) >0
exg(y) =

0  otherwise.
Suppose f'is the total recursive function

{1 if x codes a convergent computation of ¢,,(y)
fx,y)= .
0 otherwise
(where ¢, is the partial recursive function with G6del number
¥). Then exy is the characteristic function of the complete
recursively enumerable set K (see [26]) so exy is not recursive
and therefore its graph is not recursively enumerable. Hence
the set of equations V@.exg(n) = m true in Ay is not r.e., where
n, m are ground terms (succ/(0) for some ;). Since for any
proof system I the set of theorems which can be derived from
a specification is r.e., there must be ground terms n, m such
that Ay |= Vg.exp(n) =m (so SPy |= V¢.exy(n) = m since Ay is
the only. model of SP¢) but SPy If V.ex(n) =m. ]
The key to this proof is the result of [3] which shows that
it is possible to encode existential (and universal) quantifiers
over the natural numbers in a data specification. This incom-
pleteness theorem applies to the specification language de-
scribed in [21] and the specification languages Clear [8] and
LOOK [31], as well as to specification languages adopting the
free generating constraints of [11] and [12].
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D. Completeness for Specifications with
Hierarchy Constraints

Certain specification languages employ a weaker version of
data constraints, sometimes called hierarchy constraints. While
a data constraint specifies that a certain subalgebra A’ of a
model must be a free extension of a certain smaller subalgebra
A—that is, that the model must satisfy the “no junk” and “no
confusion” conditions given in Section III-C—a hierarchy con-
straint requires only that the model satisfies the “no junk”
condition which says that it must be possible to generate all
values in A’ from the values in A using the operations in the
signature of A'. This in itself is not enough to eliminate all un-
desirable models since, e.g., degenerate models in which each
carrier is empty or contains only a single element (depending
on the signature) will satisfy any set of equations and hierarchy
constraints. Therefore, specification languages which employ
hierarchy constraints either allow specifications to contain
inequations (see [1], [28]) or require that all specifications
include the subspecification Bool (see Fig. 1) and that all
models satisfy the inequation V¢.true # false (see [27]). We
will adopt the latter approach. Like data constraints, hierarchy
constraints make it possible to construct parameterized speci-
fications and loose specifications. An advantage of hierarchy
constraints over data constraints is that they make it much
easier to write certain kinds of loose specifications; this point
is discussed in a comment near the end of this section. On the
other hand, it is sometimes necessary to include some extra
operators and equations in a specification with hierarchy con-
straints in order to eliminate trivial models.

Technically, the difference between data constraints and
hierarchy constraints is solely in the way that satisfaction of a
constraint by an algebra is defined. Compare the following
definition of an (SP C SP')-hierarchical algebra (adapted from
[13]) with the definition of an (SP C SP')-free algebra in Sec-
tion ITI-C. 7 ‘

Definition: Suppose SP=(Z, EYand SP' =(Z', E") are speci-
fications with SP C SP' and A’ is a model of SP". Let4=A'|g,
let FA be the free SP"-model on 4, and let €4’ = (id4)*: FA >
A'. Then A’ is (SP C SP')-hierarchical if € 4 is a surjection.

Definition: Given a signature X, a Z-hierarchy constraint
hc is a pair of specifications SP, SP' such that SP C SP' and
sig(SP") C Z. A Z-algebra A satisfies a Z-hierarchy constraint
SP C SP' if Alsig(sp') is (SP C SP')-hierarchical.

Definition: A hierarchical specification is a specification
(Z, E) together with a set of Z-hierarchy constraints HC, where
Bool C(Z, E) and (® C Bool) EHC. A X-algebra A satisfies
‘a hierarchical specification (SP, HC) if it satisfies SP and every
hierarchy constraint in HC, and true 4 # false 4.

The models of the hierarchical specifications in Fig. 6 are
exactly the same as the models of the corresponding data spec-
ifications in Fig. 5 (except HNat models have an extra opera-
tion, of course). HNat needs < and the equations which define
it in order to eliminate trivial models [otherwise some models
will satisfy, e.g., V$.0 = succ(0)]. The same result could have
been accomplished by adding instead > or an equality predicate.
HSet needs no extra operations to eliminate trivial models
(satisfying, e.g., Vn:element.¢ = add(n, ¢)); € is enough to in-
duce the inequations necessary to make all models isomorphic
to the standard model.
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Bool "= as in figure 1
hcBool = ¢ ¢ Bool
HBool = (Bool,{hecBool})
Nat’ = enrich Bool by
sorts nat
opns 0 : nat
succ : nat - nat
+, x, - : nat,nat -+ nat
< : nat,nat - bool
eqns Vnmat. 0 + n=n
¥m,n:nat. suce(n) + m = suce(n + m)
vn:nat. 0 xn = 0
Vm,n:nat. suce(n) xm = (n xm) + m
¥nmat. 0 -n =0
vn:nat. n -0 = n
¥m,n:nat. suce(n) - suce(m) = n-m
¥n:nat. 0 < n = true
¥n:nat. suce(n) < 0 = false
¥m,n:nat. suce(n) < suce(m) = n < m
hcNat = ¢ ¢ Nat’
HNat = (Nat',{hcBool,hcNat})
Ident = as in figure 5
Hident = (Ident,{hcBool})
Set = as in figure 5
hcSet = Ident C Set
HSet = (Set,{hcBool hcSet})
SetChoose = as in figure 5
HSetChoose = (SetChoose,{hcBool hcSet})

Fig. 6. Hierarchical specifications.

It is interesting to note what would have happened if we had
omitted the first two equations of Set (i.e., Va, b:element,
S:set.add(a, add(b, S)) = add(b, add(a, S)) and Va:element,
S:set.add(a, add(e, S)) =add(e, S)). All the models of DSet
would then be isomorphic to the standard model of lists. But
the models of HSet would not form an isomorphism class.
They would include models which satisfy both equations (sets),
models satisfying neither equation (lists), models satisfying
only the first equation (bags), models which satisfy only the
second equation (a strange hybrid of sets and lists) and also
models which satisfy either or both of the equations only for
some values. Note that all these models satisfy the equations
defining €, and trivial models are excluded. It is possible to
construct a data specification having this class of models (with
some auxiliary sorts and operators) but the construction is
rather unnatural.

The proof of the incompleteness theorem of Section III-C
remains valid for specification languages which use hierarchy
constraints rather than data constraints since the crucial result
from [3] used in the proof holds in this case as well. Hence,
the theorem holds for the specification languages CIP-L [1],
hierarchical Clear [27] and ASL [28]. It also holds for more
general notions of hierarchy constraints, such as the generating
constraints of [11] and [12].

IV. CONCLUSION

Table I summarizes the results we have discussed.

Although the discussion has been confined to equational
specifications, it is clear that all the incompleteness results
presented also apply in the context of logical systems such as
first-order logic with equality and Horn-clause logic in which
equations are expressible. They also hold when algebras are
allowed to contain partial functions as in [7], provided the
logic includes definedness constraints in some form. The partic-
ular form of data/hierarchy constraints and the restriction to
initial models are also not of essential importance to these re-
sults; incompleteness with respect to all equations depends
only on the ability to restrict in some way to models satisfying
“no junk” (needed, e.g., to specify the standard model of the
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TABLE I
Complete Proof
System with Complete Proof
Respect to System with
Ground Respect to All

Equations Equations
One-Sorted Specifications feg feq
Many-Sorted Specifications oM re3y|
Initial Models of

Specifications M None Exists

Data Specifications None Exists None Exists
Hierarchical Specifications None Exists None Exists

natural numbers), while incompleteness with respect to ground
equations requires the ability to restrict to models having a
given subalgebra satisfying “no junk” (needed for building
specifications in a hierarchical fashion).

The incompleteness results presented here are of practical as
well as theoretical interest. A central issue in any methodology
for program development from specifications is the problem
of proving the correctness of programs with respect to their
specifications, which may sometimes be decomposed into prov-
ing the correctness of a number of refinement steps. - This
problem reduces to that of performing proofs in specifications.
Another use of theorem proving in program development is in
analyzing and understanding specifications, as suggested in
[19]. A different application is the incestuous one of check-
ing the semantic well-formedness of specifications, for ex-
ample making sure that parameterized specifications are only
applied to appropriate arguments (the analog of type checking
at this level requires a theorem proving capability).

The incompleteness results say that under any reasonable
specification formalism, an equation may be satisfied in all
models of a specification even though it cannot be proved to
follow from the specification. Incompleteness with respect to
ground equations has more serious consequences. For ex-
ample, in testing whether a program satisfies its specification
by checking the outputs obtained for particular input values, a
given output may be correct although there may be no way of
determining from the specification that it is correct. However,

these incompleteness results do not demonstrate the infeasibil- -

ity of using specifications in program development. They only
indicate certain limitations which must be taken into account,
just as the halting problem places a limit on our ability to
formally reason about programs.
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Atomic Actions and Resource Coordination Problems
Having Nonunique Solutions

MUKUL K. SINHA

Abstract—The concept of atomic actions is decomposed into database-
dependent atomic actions and application-dependent atomic actions.
There is a broad class of application-dependent atomic actions that can
have nonunique solutions. These are resource coordination problems
and are classified as problems of NU class. It is argued that a transac-
tion modeling a problem of NU class provides lower concurrency. A
concept of coordination is proposed which can model a broad range of
NU class problems. An object model and a protocol are suggested
which utilize the nonunique character of the solution to provide higher
concurrency.

Index Terms—Access synchronization, algorithms, atomic actions,
concurrency control, crash recovery, design, performance.

I. INTRODUCTION

' N atomic action is composed of a set of primitive actions
Aon different data items which cannot be decomposed
from the point of view of computation outside of the atomic
action [8], i.e., the intermediate states of data items must not
be visible outside the computatior of the atomic action. An
atomic action remains atomic in face of failure. Thus, an
atomic action has to be a unit of concurrency control [1] as
well as a unit of recovery [9] .
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In a database system, users access shared data under the as-
sumption that the database is in consistent state, i.e., the val-
ues of data items satisfy a set of assertions, the consistency
constraints of the database. A user of a database may need to
temporarily violate the consistency of the database, but at the
end of a set of actions he must restore the database to a consis-
tent state. For this reason, actions are grouped together to
form a transaction [4]. Transactions are units of consistency
and the consistency constraints must apply at the start and the
end of transaction processing, not necessarily during the trans-
action processing. Thus, in general, intermediate states of the
database must not be visible outside the transaction, i.e., a
transaction is an atomic action as well. Since a transaction sat-
isfies the consistency constraints of a database, it is a database-
dependent atomic action.

In literature, whenever techniques for synchronization and
recovery in decentralized computer system are discussed [7],
[10], they always refer to one type of atomic actions, that is
the transaction. There is a broad class of problems in a distrib-
uted system environment which requires atomicity at applica-
tion level. Consider an atomic action composed of two primi-
tive actions {update X; update Y} which updates data items X
and Y. If updating the data item X independently (or updat-
ing the data item Y independently) does not violate any integ-
rity/consistency constraint of the database, the database is
never inconsistent during the execution of the atomic action.
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