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Abstract

A formal methodology is presented for the systematic evolution of modular Standard ML
programs from specifications by means of verified refinement steps, in the framework of the
Extended ML specification language. Program development proceeds via a sequence of design
(modular decomposition), coding and refinement steps. For each of these three kinds of steps,
conditions are given which ensure the correctness of the result. These conditions seem to be as
weak as possible under the constraint of being expressible as “local” interface matching require-
ments. Interfaces are only required to match up to behavioural equivalence, which is seen as vital

to the use of data abstraction in program development.
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TA later version will take into account the recent changes to ML described in [HMT 88]. The relevant changes
concern mainly functors with multiple arguments.
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1 Introduction

The ultimate goal of work on algebraic specification is to provide a formal basis for program develop-
ment to support a methodology for the systematic evolution of programs from specifications by means
of verified refinement steps.

In this paper we present such a methodology aimed at the development of programs in the Stand-
ard ML, programming language [HMM 86], [Har 86]. We are interested particularly in the semantic
and foundational underpinnings of modular program development and in formulating precise condi-
tions which ensure the correctness of refinement steps, rather than in informal rules governing good
programming practice. We build on previous work on the foundations of algebraic specifications,
on behavioural equivalence, on notions of specification refinement, on the wide-spectrum program-
ming/specification language Extended ML, and on data abstraction in modular programming. In
this introduction we will briefly review these topics and then give an overview of the methodology
as presented in this paper. We assume that the reader is familiar with the basic algebraic notions in
e.g. [GTW 78] (cf. [BG 82]). In this introduction we also assume a passing acquaintance with the
terminology of Standard ML, to be introduced in Section 2.

Algebraic specifications

The most fundamental assumption in work on algebraic specification is the view of software systems
as algebras, abstracting away from details of algorithms and code and focussing on data representation
and functional behaviour of programs. A specification is a document describing some class of algebras,
defining in this indirect way which programs are acceptable as realisations. So whatever specification
formalism we use, we assume that any specification SP determines an algebraic signature Sig[SP]
and a class of algehras Mod[S P] over this signature, called the models of SP. No further assumptions
are needed for most purposes. We view the use of equational logic and initial algebra semantics (as in
[GTW 78] and [EM 85]) as just one possible choice which happens to be very convenient for certain
purposes, e.g. rapid prototyping of specifications via term rewriting. See [SWi 83], [ST 85a] and
[ST 88a] for details of this point of view.

Behavioural equivalence

It may be argued that a software system should be accepted as a realisation of a specification SP
as long as it “behaves like” a model of SP even if it does not satisfy S P exactly. This intuition may
be made precise by introducing an appropriate notion of behavioural equivalence of algebras. Then
the interpretation of SP may be relaxed modulo this behavioural equivalence. Various notions of
behavioural equivalence have been studied in [GGM 76], [Rei 81], [GM 82], [ST 87], [NO 88] and
elsewhere; the idea goes back at least to work on automata theory in the 1950’s [Moo 56].

Specification refinement

A theory of formal program development by stepwise refinement of specifications requires a precise
definition of the notion of refinement and when a refinement step is considered to be correct. In the
following paragraph we summarize the work on this topic presented in [ST 88b]; other relevant papers
include [GB 80], [Ehr 82], [EKMP 82], [GM 82], [Wand 82], [Gan 83], [Lip 83], [Ore 83] and many
others.

Intuitively, refining a specification corresponds to making design decisions, thus restricting the

class of acceptable models. The simplest notion of refinement of one specification SP1 to another



S P2 would only require inclusion of model classes. i.e. Mod[SP2] C Mod[SP1]. A more realistic view
involves a construction & taking models of SP2 to models of SP1; we write SP1~ SP2. Here,
a construction is just a function & : Alg(Sig[SP2]) — Alg(Sig[SP1]) between classes of algebras;
examples include forgetting types/values and free extension (subsuming extension of an algebra by
“code”). Using these so-called constructor implementations, the program development process consists

of a sequence of consecutive implementation steps:
SFy > SP AR e SP,

where S F; is the original high-level specification of requirements. Then, the composition of construc-
tions ky; - - - ;ko;k1 forms a “parameterised program” (cf. [Gog 84]) which implements SFy in terms of
SP,.' This assumes that the class of constructions is closed under composition. If SP, is a specifica-
tion for which a realisation A, is already available, then the application of this composed construction
to A, yields a realisation of SF,.

Extended ML

We have proposed the specification language Extended MI, [ST 85b], [ST 86] as a vehicle for
formal development of programs in the programming language Standard ML. Extended ML is based
on the modularisation facilities for Standard ML proposed in [MacQ 86], which are designed to allow
large Standard ML programs to be structured into modules with explicitly-specified interfaces. In
Extended ML these are enhanced by allowing more information in module interfaces (axioms in ML
signatures) and less information in module bodies (axioms in place of code in ML structures and
functors). Standard ML forms a subset of Extended ML, since Standard ML datatype and function
definitions are just axioms of a certain special form. Thus Extended ML is a wide-spectrum language
in the spirit of CIP-L [Bau 85]. The semantics of Extended ML is defined in terms of the primitive
specification-building operations of the ASL kernel specification language [SWi 83], [ST 88a].

Data abstraction in modular programming

A general theory of modular program development using data abstraction, incorporating ideas
going back to [Hoa 72] and [Par 72], is presented in [Sch 86]. The main issue, referred to as “the
correctness problem of data abstraction”, is why it is possible for the implementor of a specification to
provide a realisation which is correct only up to behavioural equivalence, while users of the result may
view it as if it satisfied the specification exactly. A very rough explanation of this apparent paradox
is that users are not able to take advantage of the properties which distinguish “exact” models of a
specification from their behavioural approximations. It is argued that this property, called stability,
should be required of any programming language designed to support data abstraction.

A technical framework to deal with this phenomenon is developed in [Sch 86] which copes not just
with behavioural equivalence but more generally with any so-called “representation relation”. In this
paper we borrow many of the concepts and results formulated there, applying them in our context

where we deal with behavioural equivalence only.

The central observation which led us to the ideas presented in the current paper was that Stand-

ard ML functors may be used to code constructions in the above sense. Additionally, Extended ML

Please note that semicolon denotes function composition here, not sequential composition of commands. Also,

K1,...,Kkn are functions which operate on algebras, not on data values.



allows us to specify such constructions before they are actually coded. ML’s modularisation facilities
are designed to guarantee their composability by analogy with function composition. This gives rise
to a view of program development which is more complex but also methodologically more appealing
than the one presented in [ST 88b].

A programming task is presented as an Extended ML functor heading, i.e. an Extended ML
signature S P, specifying structures to which the functor may be applied, and an Extended ML
signature SFy specifying the required result structure. Recall that Extended ML signatures may
contain axioms. Rather than proceeding from SF, to SP;, and then from SF; to SF,, ..., and then
from SF, 1 to SP, as described above, we take a more global view with development steps of the

following kinds:

Design step: Sketch the implementation process SFPy npr> S Py ngys - - aev> S P, without coding the
constructions k1, ..., £,. This gives rise to specifications of functors sy, ..., k, which are then
viewed as separate programming tasks in their own right to which the same methodology applies.
The composition of these functors results in a construction which implements SF; in terms of
SP,. The design may have a more complex structure than this linear notation suggests, since

functors may have multiple arguments and the same functor may be used in different places.

Coding step: Code a construction by providing a functor body in the form of an encapsulated
structure containing type and value definitions. It is also possible to use an “abstract program”

here, i.e. an Extended ML functor body containing axioms.

Refinement step: Further refine abstract programs in a stepwise fashion by providing successively
more concrete (but possibly still non-executable) versions which fill in some of the decisions left

open by the more abstract version.

The paper is organized as follows. Section 2 gives an overview of the modularisation facilities of
the Standard ML programming language and reviews the main features of and motivations behind
the Extended ML specification language. This is mainly included in order to make this paper self-
contained. Section 3 recalls the notion of behavioural equivalence and introduces the new notion of
behavioural consequence which plays a basic role in verification conditions ensuring the correctness of
development steps. Some preliminary results are given for proving behavioural consequence between
loose specifications; as far as we know this topic has not been directly addressed in the literature.
Section 4 presents the semantics of Extended ML functors; this is different from the previous version
presented in [ST 85b]. The concept of universal correctness of an Extended ML functor with respect
to its interface specifications is introduced following [Sch 86]. A functor is universally correct if it
produces a result which satisfies the output interface up to behavioural equivalence whenever it is
given an argument satisfying the input interface up to behavioural equivalence.

Sections 5 and 6 present the methodology of program development. Section 5 discusses design steps
in which a functor is defined by decomposition into a collection of simpler functors. Three simple but
representative special situations are studied and verification conditions ensuring the correctness of
the decomposition are formulated and proved sound. The general case is also discussed. The longest
proofs from this section are left to the appendices. Section 6 is about coding and refinement steps.
Following [Sch 86]. we present universal correctness as the conjunction of three properties: simple
correctness, simple consistency and stability. A functor is simply correct if it produces a result which

satisfies the output interface up to behavioural equivalence whenever it is given an argument which



exactly satisfies the input interface (recall that for universal correctness, arguments which only satisfy
the input interface up to behavioural equivalence must also be considered). A further difference is
that universal correctness takes account of the global environment in which the functor is used. As
suggested above, stability is assumed to be ensured for Standard ML functors since Standard ML is
designed to support data abstraction, and simple consistency holds for any program. We formulate
verification conditions which guarantee simple correctness of directly coded functors and functors
produced by successive refinement steps. Thus, once a final Standard MI, functor is obtained it will
be simply correct, simply consistent and stable, and hence universally correct.

Section 7 presents an example of the application of this methodology. It is not intended to display
all of the most subtle points discussed in the paper, but rather to demonstrate how a software system
may be developed by means of a series of mostly very routine steps. Section 8 contains some conclusions
and discusses areas for further research.

2 An overview of Extended ML

The aim of this section is to review the main features of and motivations behind the Extended ML
specification language in an attempt to make this paper self-contained. A more complete introduction
to Extended ML is given in [ST 85b]. The version of Extended ML used in this paper is different
in certain details from the one presented in [ST 85b] and [ST 86] but the general motivation and
ideas and the overall appearance of specifications remains the same. The changes which have been
introduced were motivated by the methodological issues to be discussed in this paper. We indicate
the specific points of difference in this section; a revised formal semantics will be given in [ST 89].
Although the examples below will contain bits of Standard ML code, the reader need not be
acquainted with the features and syntactic details of Standard ML itself. It will be sufficient to know
that a sequence of Standard ML declarations defines a set of types and values, where some values are
functions and others are constants. A complete description of the language appears in [Mil 86], and

a formal semantics is in [HMT 87].2

Extended ML is based on the modularisation facilities for Standard ML proposed in [MacQ 86].
These facilities are designed to allow large Standard ML programs to be structured into modules with
explicitly-specified interfaces. Under this proposal, interfaces (called signatures) and their implement-
ations (called structures) are defined separately. Every structure has a signature which gives the names
of the types and values defined in the structure. Structures may be built on top of existing structures,
so each one is actually a hierarchy of structures, and this is also reflected in its signature. Components
of structures are accessed using qualified names such as A.B.n (referring to the component n of the
structure component B of the structure A). Functors® are “parameterised” structures; the application
of a functor to a structure yields a structure. A functor has an input signature describing structures
to which it may be applied, and an output signature describing the result of an application. A functor
may have several parameters. It is possible. and sometimes necessary to allow interaction between dif-
ferent parts of a program, to declare that certain substructures (or just certain types and/or values®)

in the hierarchy are identical or shared. This issue will be discussed later in this section.

2A new version of this semantics [IMT 88] incorporates changes to MT which have not been taken into account
here. The main changes of relevance here concern functors with multiple arguments.

3Functors were called modules in an early version of [MacQ 86] and in [ST 85b]. Category theorists should note that
ML functors have no morphism part, and that ML supports no explicit notion of morphism between structures.

1Standard ML does not support sharing declarations for values. Extended ML supports this on the grounds that it



An example of a simple program in Standard ML with modules is the following:

signature P0Sig =
sig type elem
val le : elem * elem -> bool
end

signature SortSig =
sig structure Elements : POSig
datatype sequence = empty | cons of Elements.elem * sequence
val sort : sequence -> sequence

end

functor Sort(PO : POSig) : SortSig =
struct structure Elements = PO
datatype sequence = empty | cons of Elements.elem * sequence
fun insert(a,empty) = cons(a,empty)
| insert(a,cons(b,s)) = if Elements.le(a,b)
then cons(a,cons(b,s))
else cons(b,insert(a,s))
fun sort empty = empty
| sort(cons(a,s)) = insert(a,sort s)
end

structure IntPO : POSig =
struct type elem = int
val le = op <=

end

structure SortInt = Sort(IntP0)
Now, SortInt.sort may be applied to the sequence
SortInt.cons(11,SortInt.cons(5,SortInt.cons(8, SortInt.empty)))

to yield
SortInt.cons(5,SortInt.cons(8,SortInt.cons(11, SortInt.empty))).

In this example. the types of the values sort and insert in the functor Sort are inferred by the ML

typechecker; the type of sort must be as declared in the signature SortSig while the value insert is

local to the definition of Sort since it is not mentioned in SortSig. Certain built-in types and values

are pervasive — that is, they are implicitly a part of every signature and structure. In this example, the

pervasive type int is used together with the pervasive value <= (i.e. <). The pervasive types and values

may be regarded as forming a structure Perv which is automatically included as an open substructure

of every signature and structure (“open” means that a component n of Perv may be accessed using

is easier and more uniform to treat types and values in the same way.



the name n rather than the name Perv.n). The declaration datatype sequence =... defines a new
type sequence having as values all terms built using the constant empty : sequence and the function
cons : Elements.elem * sequence -> sequence (empty and cons are called constructors). This
allows us to define insert and sort by cases using empty and cons for case selection and variable
binding.

The information in a signature is sufficient for the use of Standard ML as a programming lan-
guage, but when viewed as an interface specification a signature does not generally provide enough
information to permit proving program correctness (for example). To make signatures more useful as
interfaces of structures in program specification and development, we allow them to include azioms
which put constraints on the permitted behaviour of the components of the structure. An example of
such a signature’ is the following more informative version of the signature POSig above:

signature P0Sig =
sig type elem
val le : elem * elem -> bool
axiom le(x,x)
axiom le(x,y) & le(y,x) => x=y
axiom le(x,y) & le(y,z) => le(x,z)
end

This includes the previously-unexpressible precondition which IntPQO must satisfy if Sort (IntP0) is
to behave as expected, namely that IntP0.1le is a partial order on IntP0.elem.

Axioms are expressions of type bool. Using such an expression as an axiom amounts to an assertion
that the value of the expression is true for all values of its free variables. Axioms may be built using
functions such as &, => and <=> and quantifiers such as exists and forall (with the usual precedences
of these symbols), and the function = may be used to compare values of any type. This is equivalent
to using first-order equational logic. Of course, Standard ML code will not contain quantifiers or use
= except on types which admit equality according to Standard ML.

Formal specifications can be viewed as abstract programs. Some specifications are so completely
abstract that they give no hint of an algorithm (e.g. the specification of the inverse of a matrix A as
that matrix A7" such that A x A™' = I) and often it is not clear if an algorithm exists at all, while
other specifications are so concrete that they amount to programs (e.g. Standard ML programs, which
are just equations of a certain form which happen to be executable). In order to allow different stages
in the evolution of a program to be expressed in the same framework, we allow structures to contain
a mixture of M. code and non-executable axioms. Functors can include axioms as well since they are
simply parameterised structures. For example, a stage in the development of the functor Sort might
be the following:

functor Sort(PO : P0Sig) : SortSig sharing Elements=P0 =
struct structure Elements = PO
datatype sequence = empty | cons of Elements.elem * sequence
fun append(empty,s) = s
| append(cons(a,sl),s2) = cons(a,append(sl,s2))

"We retain the term “signature” although this new version of POSig looks much more like a theory or specification
than a signature (as these words are used in algebraic specification). We will use the term algebraic signature to refer
to ordinary many-sorted signatures.



fun member(a,empty) = false
| member(a,cons(b,s)) = if le(a,b) andalsoc le(b,a)
then true else member(a,s)
val insert : Elements.elem * sequence -> sequence
axiom member(a,insert(a,s))
axiom insert(a,s) = append(sl, (cons(a,s2)))
=> append(si,s2) = s
& (member(al,sl) => Elements.le(al,a))
& (member(a2,s2) => Elements.le(a,a2))
fun sort empty = empty
| sort(cons(a,s)) = insert(a,sort s)
end

In this functor declaration, the function sort has heen defined in an executable fashion in terms of
insert which is so far only constrained by an axiom. The sharing constraint sharing Elements=P0
in the functor heading asserts that the substructure Elements of the structure built by the functor is
identical to the actual parameter structure.

In Standard ML and in the version of Extended ML described in [ST 85b] and [ST 86], the interface
of a functor is taken to be the signatures in the heading augmented by inferred sharing (sharing by
construction in [MacQ 86]). For methodological reasons which will be clarified in later sections, we
view the interface of a functor as containing no more information than is explicitly given in the functor
heading. (This means that functors in Extended ML are actually parameterised abstractions in the
sense of [MacQ 86].) Sharing constraints of the kind used in the heading of Sort (which actually play
the role of sharing declarations here) help to make this regime work in practice.

Standard ML allows signatures to include sharing constraints which refer to the external structure
environment [HMT 87]. We will assume that Extended ML signatures used as functor result specific-
ations do not include such references to external structures. This assumption is purely for simplicity
of presentation; our methodology (including all correctness results) can be extended to handle this
case. Signatures with such external references are not really necessary anyway since any Standard ML
system of functors may be transformed to the form we require by including the external structures in
question as explicit functor parameters.

Extended ML is the result of extending the modularisation facilities of Standard ML as indicated
above, that is by allowing axioms in signatures and in structures. Syntactically, the only signific-
ant change apart from the new kind of sharing declaration discussed above is to add the construct
axiom ax to the list of alternative forms of elementary specifications (i.e. declarations allowed inside a
signature body) and elementary declarations (declarations allowed inside a structure body). We also
allow signatures to contain hidden types and values which sometimes must be added to specify other
types and values. We draw a box around hidden types and values (and the axioms which specify
them) as syntactic sugar for ML’s local declaration construct. Signatures and structures both denote
classes of algebras.® To be more exact, each signature or structure determines a many-sorted algebraic
signature where sorts are type names and operation names are value names and the typing of values
determines the rank of operation names. Because of type definitions like type t = s in structures

and sharing constraints in signatures, in general there may be several names for a single type or value.

5The standard notion of algebra is not sufficient to handle features of Standard ML such as polymorphism, higher-
order functions or exceptions — see comments at the end of this section on this point.



We cope with this by assuming that the names which occur in the algebraic signature associated with
a structure or signature are unique internal semantic-level names which are associated with one or
more external identifiers which may appear in Extended ML text. Two types or values share iff they
have the same internal identifier. A structure or signature determines the class of algebras over its
associated (internal) algebraic signature which satisfy its axioms; recall that code in structures is just
a sequence of axioms of a certain special form.

The role of signatures as interfaces suggests that they should be regarded only as descriptions
of the externally observable behaviour of structures. This amounts to not distinguishing between
behaviourally equivalent algebras in which computations produce the same results of “external” types.
(See [ST 87] for more motivation for the use of this notion here and for much more technical detail.) In
the version of Extended ML in [ST 85b] and [ST 86] this led us to define the semantics of signatures
by first obtaining the class of algebras which “literally” satisfy the axioms and then behaviourally
abstracting (closing under behavioural equivalence with respect to a certain fixed subset of the types
in the signature) to obtain the class of algebras which “behaviourally” satisfy the axioms (cf. [Rei 84]).
In the current version of Extended ML we use different technicalities to implement these ideas. The
semantics of signatures does not include the behavioural abstraction step; axioms in signatures are
treated literally. just as in structures. When a signature is used as an interface. behavioural abstraction
is invoked to relax its interpretation. The advantage of this treatment is that the types which are to
be regarded as external depend on the context in which the signature is used. This extra flexibility
turns out to be crucial for the methodology we develop in this paper. See the sequel for details.

As was outlined in [S'T 86], Extended ML is actually entirely independent of Standard ML (al-
though not of Standard MI.’s modularisation facilities, which we regard as separate from Standard ML
itself). This is due to the fact that the semantics of Extended ML in [ST 86] was parameterised by
an arbitrary institution [GB 84] which means that we are free to adopt any logical system for writing
specifications. (More precisely, we can select any notion of algebraic signature, algebra and axiom and
any definition of the satisfaction of an axiom by an algebra, provided that a few simple consistency
conditions hold.) This not only allows us to use any desired specification style (taking equations, first-
order formulae or maybe Horn clauses as axioms and taking ordinary many-sorted algebras, continuous
algebras or perhaps polymorphic error algebras as algebras) but also to adopt any programming lan-
guage with an algebraic-style formal definition for writing code. We are not going to follow this line
in this paper: we present our ideas in the framework of total many-sorted algebras with first-order
equational formulae as axioms as above, using a purely functional subset of Standard MI. without
polymorphism or higher-order functions for writing code. This is mainly to take advantage of the
reader’s intuition and to simplify some technicalities. We discuss in the conclusion how the concepts
we develop may be generalized to an arbitrary institution.

The above paragraphs sketched some of the main ideas behind the formal semantics of Exten-
ded ML [ST 86], [ST 89]. The detailed treatment of the external/internal identifier distinction and
sharing, a consequence of Standard ML’s naming conventions, makes the semantics a little involved.
In this paper we will not belabour this distinction: external names will be implicitly identified with
their corresponding internal names when convenient. Because internal names are used to keep track
of sharing, this means that sharing is implicitly taken into account as appropriate. The semantics is
defined entirely in terms of the ASL kernel specification language [SWi 83], [Wir 86], [ST 88a]. This
means that work in the context of ASL on implementation or refinement of specifications [ST 88b],
observational and behavioural equivalence [ST 87] and proving theorems in specifications [ST 88a]



provides a rich theoretical background for the methodology we present here.

3 Behavioural equivalence

In the previous section we mentioned the notion of behavioural equivalence in connection with program
interfaces (Extended ML signatures). Intuitively, we don’t care exactly how a program works if we
are going to use it as a component in a larger system; we only care about the behaviour the program
exhibits, where the behaviour is determined just by the answers which are obtained from computations
the program may perform. We say (informally) that two X-algebras are behaviourally equivalent with
respect to a set OBS of observable sortsif it is not possible to distinguish between them by evaluating
Y-terms which produce a result of observable sort. For example, suppose Y contains the sorts nat, bool
and bunch and the operations empty: — bunch, add: nat. bunch — bunch and €: nat, bunch — bool

(as well as the usual operations on nat and bool), and suppose A and B are X-algebras with

\Apunen| = the set of finite sets of natural numbers
\Byunern| = the set of finite lists of natural numbers

with the operations and the remaining carriers defined in the obvious way (but B does not contain
operations like cons, car and c¢dr). Then A and B are behaviourally equivalent with respect to {bool}
since every term of sort bool has the same value in both algebras (the interesting terms are of the form
m € add(ay,...,add(a,, empty)...)). Note that A and B are not isomorphic.

The idea of behavioural equivalence may be formalized as follows.

Definition 3.1 Let ¥ be a many-sorted algebraic signature with a distinguished set OBS C sorts(¥)
of observable sorts. Suppose A, B are Y-algebras with |A|, = |B|s for all s € OBS. A and B
are behaviourally equivalent with respect to OBS, written A =ppg B, if for any term ¢ of a sort in
OBS containing only variables X of sorts in OBS and any valuation v: X — |A|ops (= |Bloss).
ta(v) =1tp(v) (we use the notation t4(v) for the value of ¢ in A under v).

There is a model-theoretic formulation of this definition due to [Sch 86] (Theorem 4.4.6, p. 244):

Lemma 3.2 Given an algebraic signature ¥ with a distinguished set OBS C sorts(¥) and Y-algebras
A and B, A =ops B iff there exists a sorts(X)-sorted relation R = (Ry C |Als X |Bls)sesorts(x)
which is the identity on sorts in OBS and which satisfies the usual congruence property: for any
frsix--xs, = sin X, if (a1,b1) € Ry, ..., {an, by) € Ry, then (fa(ar,...,a,), fe(b1,....b,)) € Ry,
|

This model-theoretic criterion is useful for proving that two specific algebras are behaviourally
equivalent. However, in formal program development we are rarely faced with this problem. Rather, we
want to know that a certain loose specification (which may have many non-isomorphic models) matches
another loose specification up to behavioural equivalence. That is, given two loose specifications SP1
and SP2 over the same signature and a distinguished set OBS of observable sorts, we want to prove
that SP2 is a behavioural consequence of SP1 with respect to OBS in the following sense:

Definition 3.3 Let ¥ be an algebraic signature with a distinguished set of observable sorts OBS C
sorts(X). Let SP1 and SP2 be specifications over X, let A be a Y-algebra, and let K be a class of
Y -algebras.



o A satisfies SP2 up to behavioural equivalence with respect to OBS, written A \:OBS SP2, if there
exists an algebra B € Mod[SP2] such that A =pps B.

o K satisfies SP2 up to behavioural equivalence with respect to OBS, written K |:OBS SP2, if
every algebra in K satisfies SP2 up to behavioural equivalence w.r.t. OBS.

o SP2 is a behavioural consequence of SP1 with respect to OBS, written SP1 |:OBS SP2, if
Mod[SP1] =955 5P2.

A typical situation which involves proving behavioural consequence is checking whether an Exten-
ded ML structure fits an Extended ML signature. Since the signature is viewed as an interface defining
the externally observable behaviour of the structure, we do not require that the structure satisfies the
axioms in the signature literally, but only up to behavioural equivalence with respect to an appropriate
set of observable sorts. For top-level structures the sorts corresponding to pervasive types are taken
as observable. For structures occurring inside functor bodies, it is appropriate to take additionally
some sorts in the functor parameters as observable. In both cases, we require the signature (which
is a specification) to be a behavioural consequence of the structure (which is a specification as well),
except that we permit the algebraic signature associated with the structure to be “larger” than the
one associated with the signature; more on this point later.

As far as we know, the important problem of proving that one specification is a behavioural con-
sequence of another has not been addressed directly in the literature although of course the “pointwise”
characterization of behavioural equivalence given in Lemma 3.2 may be used in proving facts of this
kind and some related material may be found in [Gan 83], [ST 87] and [NO 88]. The work of Reichel
[Rei 84] on a logic for behavioural validity seems relevant here as well. The following results address
this problem by giving proof-theoretic sufficient conditions for behavioural equivalence. More work
needs to be done here but the theorems below cover the most obvious cases including those which are
normally considered in work on algebraic specification. These results may be viewed as reformula-
tions of known connections between behavioural equivalence, terminal models, and characterisations
of formulae which hold in the terminal model of a specification.

Let us consider two specifications S P1 and S P2 over the same algebraic signature ¥ (i.e. Sig|[SP1] =
Sig|[SP2] = ¥) and a set OBS C sorts(X) of observable sorts. First, notice that behavioural con-
sequence is weaker than ordinary consequence. Although trivial, this result treats the most common

case and so it is worth stating:
Proposition 3.4 If SP1 |= SP2 then SP1 [=°F% SP2. m

In order to formulate further results we have to recall some standard notation and terminology.

For any sorts(X)-sorted set X of variables, Tx,(X) denotes the sorts(X)-sorted set of ¥-terms with
variables X. If x is a variable of a sort s € sorts(X) such that # ¢ X then Tx(X U {a:s}) is the
set of contexts for sort s. For any context I' € Tx(X U {z:s}) and term t € Tx(X),, I'(t) denotes
the term resulting from I' by substituting ¢ for all occurrences of x. A substitution (of terms with
variables Y for variables X) is a sorts(X)-sorted map 6 : X — Tx(Y), where Y is a sorts(X)-sorted
set of variables. For any term ¢ € Tx(X), t[0] € Tx(Y) denotes the term with variables Y resulting
from ¢ by substituting 6(x) for each occurrence of every variable x € X.

A conditional X-equation with variables X is a closed formula of the form

VX (Nti=t)=>t="1
el
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where ¢,t" € Ts(X), for some s € sorts(X), I is an arbitrary set of indices, and for i € I, t;,1, € Tx(X)s,
for some s; € sorts(X). We say that a conditional equation of the above form has premises of observable
sorts if for all © € I, s; is observable (i.e. s; € OBS); we say that it is observable if it has premises
of observable sorts, the conclusion is of an observable sort (i.e. s € OBS) and all variables are of
observable sorts (i.e. X, =0 for r ¢ OBS).

For any conditional equation ¢ of the above form with premises of observable sorts, observable
consequences of ¢ are defined “syntactically” as observable conditional equations of the form

VY. (A l0] = £[0]) = T(1[0]) = 1(1'[0])
iel

where Y is a set of variables of observable sorts (i.e. Y, = @ for r ¢ OBS), I' € Tx(Y U {z:s})y
is a context of an observable sort s € OBS for the sort s of ¢ and ¢', and § : X — Tu(Y) is a
substitution. The set of all observable consequences of ¢ will be denoted by ObsCon(g). For any set
® of conditional equations with observable premises, the set ObsCon(®) of observable consequences
of @ is defined “pointwise”, i.e. ObsCon(®) = U, e ObsCon(e).

Now, the idea is that a Y.-algebra A satisfies a set of conditional equations with observable premises
up to behavioural equivalence if and only if it satisfies its observable consequences in the usual sense.
This is the essence of the following theorem:

Theorem 3.5 Consider two specifications SP1 and SP2 over the same algebraic signature ¥ and
a set OBS C sorts(X) of observable sorts. Suppose that SP2 is given as a set ¢ of conditional
S-equations with observable premises. Then SP1 =925 SP2 iff SP1 |= ObsCon(®).

Proof For the “only if” part, note that the observable consequences of a conditional equation are
indeed consequences of it in the usual sense and, moreover, observable consequences of a conditional
equation with observable premises are “observable” (if two -algebras are behaviourally equivalent
w.r.t. OBS then they satisfy exactly the same observable conditional equations).

For the “if” part, consider an arbitrary model A € Mod[SP1]. From the assumption we have
A = ObsCon(®). We have to construct a Y-algebra Z which is a model of SP2, i.e. Z = &, and
which is behaviourally equivalent to A.

Consider the class of Y-algebras which are generated by their carriers of observable sorts and which
are behaviourally equivalent to A. It is well-known that this class contains a terminal algebra Z (cf.
e.g. [BPW 84]). Z may be constructed as follows:

1. Consider the subalgebra (A)ops of A generated by |A|ops. The carriers of (A)ops may be

defined as follows:

[{A)opsls = {ta(v) |t € Ty(Y)s, Y is a set of variables of observable sorts,v : Y — |A|pps}.

2. Define the Nerode congruence on (A)ops, i.e. the sorts(X)-sorted congruence = such that for any
s € sorts(Y) and any a,a’ € [(A)opsls, a =, ' if and only if for all contexts I' € Tx(Y U {x:s})
of an observable sort, where Y is a set of variables of observable sorts, and all valuations
v:Y — [(A)ossloss,

D(a)(a)055(0) = T(a) (4055 (v).
(Here, I'(a) 4y, 55 (v) stands for T'iay,,.(9), where ¢ is the extension of v to ¥V U {x:s} given by
o(x) = a, and similarly for T'(a’)a),,.(v).) It is easy to see that the relation = so defined is a

congruence, and moreover, that it is the identity on observable sorts.
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3. Define Z as the quotient of (A)pps by =.

It easily follows from the above construction that A =pgs Z. So, to complete the proof it is
enough to show that Z = ®. Suppose that this does not hold. That is, for some ¢ € ® of the form

VX. (Nti=t)=t=1
el
there is a valuation v : X — |Z] such that (£;)z(v) = (t.)z(v) for all ¢ € I, but tz(v) # t(v). By
the construction of Z, there is a set Y of variables of observable sorts, a valuation w : Y — |Z| and a
substitution § : X — Ty (Y') such that for € X, 0(x)z(w) = v(x). Then for all ¢ € I. (¢;[0])z(w) =
(t]6]) z(w), and (¢[0])z(w) # (¥'[0])z(w). Hence, there exists a context I' € Tx(Y1 U {a:s}) and
valuation u : Y1 — |Z|, where Y1 is a set of variables of observable sorts (we can assume that Y and
Y1 are disjoint), such that T'((¢[0])z(w))a(u) # T((t'[0])2(w))a(u). Let wUwu: Y UY1 — |Z] be the
union of the valuations w and u. Then, in the algebra A, for all i € I, (4;[0])a(wUwu) = (£:[0]) a(wUu),
and T(¢[0]) 4(wUu) # T(¢'[0])a(wUu). That is, A does not satisfy the following observable consequence
of ¢:
VY UYL (A0 =1[0]) = U(t[0]) = I(¢'[0])

iel

which contradicts the assumption that A = ObsCon(®). O

The condition that the axioms in S P2 have observable premises is essential here; there are well-known
examples of conditional equational specifications with non-observable premises which do not have a
terminal model as used in the above proof. The same assumption appears in [GM 82] and [BW 82];
we can see no way to avoid this either.

An important special case of the situation when S P2 is given as a list of conditional equations with

observable premises is when there are no premises at all, i.e. when S P2 is given as a list of equations.

Corollary 3.6 Consider two specifications SP1 and SP2 over the same algebraic signature Y. and a
set OBS C sorts(X) of observable sorts. Suppose that SP2 is given as a set ® of YX-equations. Then
SP1 =85 P2 iff SP1 = ObsCon(®). O

In practice it is often the case that some of the axioms of the specification S P2 may be proved

directly from the specification SFP1. Then there is no need to look at their observable consequences:

Corollary 3.7 Consider two specifications SP1 and SP2 over the same algebraic signature ¥ and
a set OBS C sorts(X) of observable sorts. Suppose that SP2 is given as a set ® of conditional ¥-
equations with observable premises. Let ® = &1 U &2, Then, if SP1 = ®1 and SP1 | ObsCon($2)
then SP1 [=°P% SP2.

Proof Trivially follows from Theorem 3.5, since observable consequences are consequences in the

usual sense. O

Counterexample  The assumption that all the premises in the conditional axioms in ® are of
observable sorts is essential in Corollary 3.7, i.e. we cannot allow conditional equations with non-
observable premises even in ®1. Consider:
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¥ = 3XBoolU
sorts s,obs
opns a,b:s
c,d: obs

f:obs — s
OBS = {obs,bool}

¢1 = {a=b= true= false}
¢2 = {f(c)=a,f(d) =1}

Suppose now that SP1 is a Y-specification which ensures that all its models interpret the Boolean
part in the standard way, and moreover, in all models of SP1 the equality a = b does not hold. But
suppose that there are models of SP1 in which ¢ = d holds.

Then, SP1 |= @1 and also SP1 = ObsCon(®2), since there are no observable consequences of the
equations in ®2. However, SP1 %2P% &1 U ®2: if B is a model of SP1 such that cg = dg then no
model of ®1 U ®2 is behaviourally equivalent to B. O

As we mentioned earlier, checking that an Extended ML structure STR fits an Extended ML signa-
ture SIG involves proving behavioural consequence between two specifications over different algebraic
signatures. According to the Standard ML matching rules, STR may contain more components then
SIG, hence the algebraic signature ¥ grp associated with STR may be larger than the algebraic signa-
ture g7 associated with SIG. Moreover, because STR is permitted to share more than SIG requires,
the real requirement is that a quotient of ¥g76 is a sub-signature of X grg. It is important to decide
which of the two algebraic signatures will provide the operations we can use to build observable terms.

It turns out that the appropriate choice is almost always Y gr¢.

Definition 3.8 Given two specifications SP1 and SP2, an algebraic signature morphism o: Sig[SP2] —
Sig[SP1], and a set of sorts OBS C sorts(Sig[SP2]), we say that SP2 is a behavioural consequence of
SP1 with respect to OBS via o, written SP1 \:C?BS SP2, if

derive from SP1 by o |=%%° §pP2

where, as in [ST 88a], for any specification SP" and 0:Y — Sig[SP’'], derive from SP' by o is a

specification with semantics given by:

Sig[derive from SP' by 0] = X

Mod[derive from SP' by o] = {A'|, | A" € Mod[SP']}
where A"U is the o-reduct of the algebra A’.

Another possibility would be to consider a set of observable sorts OBS’ C sorts(Sig[SP1]), and
define
SP1 =P8 5p2 «— SP1 =" translate SP2 by o

where, as in [ST 88a], for any specification SP and o: Sig[SP] — X', translate SP by ¢ is a specific-

ation with semantics given by:

Sig[translate SP by 0] = ¥’
Mod|translate SP by o] = {A € Alg(Y') | Als € Mod[SP]}.

We have chosen the more permissive of the two possibilities:
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Fact 3.9 Given two specifications SP1 and SP2, an algebraic signature morphism o: Sig[SP2] —
Sig[SP1], and a set of sorts OBS C sorts(Sig[SP2]),

if  SP1 \:g(OBS) translate SP2 by o then derive from SP1 by o %% 5P2.

Proof Let Al € Mod[SP1]. Since SP1 [="(°P%) translate SP2 by o, there exists B1 € Alg(Sig[SP1])
such that Bl =,(0ps) Al and Bl € Mod[translate SP2 by o], that is, Bl|a € Mod|SP2|. Since re-
duct functors preserve behavioural equivalence (this follows from Fact 5 of [ST 87]), Al |g =pps Bl

(2]

so Al‘g |:OBS SP2, which completes the proof. O

Notation In the rest of this paper we write SP1 ‘:gg[sspz} SP2 or even SP1 =°%% $P2 since o will
be unambiguously determined by the context and the way that names are handled in the semantics
of Extended ML. We use a similar convention for individual algebras. If A € Alg(Sig[SP1]), we write
A =9P% SP2 to denote A‘g =0F% 5 p2.

The following well-known fact (proved for equations in [BG 80] and for sentences of first-order
equational logic in [GB 84]) allows us to use Proposition 3.4, Theorem 3.5 and Corollaries 3.6 and 3.7
to prove behavioural consequence between specifications over different signatures as well:

Lemma 3.10 (Satisfaction Lemma) Ifo: X — X' is a signature morphism, ¢ is a closed S-formula
and A’ is a X' -algebra, then A" = o(p) iff A'|,, E . O

As a consequence of this, Proposition 3.4 may be used to check that SP1 =9%% SP2 (notation as
in the above definition), if SP2 is given by a list of axioms over Sig[SP2|. This is always the case
if SP2 is an Extended ML signature without hidden types or values. We translate these axioms to
Sig[SP1] and show that they hold in any model of SP1. Similarly, Theorem 3.5 and its corollaries may
be used by translating the observable consequences of axioms in SP2 to Sig[SP1] and proving that
they hold in any model of SP1. Our definition allows the set of observable consequences of axioms in
SP2 to be formed in Sig[SP2] which is more permissive than forcing them to be formed in Sig[SP1]
after translating the axioms (this would correspond to the other choice for behavioural consequence
mentioned above).

This is just a special case (but an important one) of the general problem of proving behavioural
consequence between structured specifications. For example, the above comments do not apply dir-
ectly to the situation when SP2 has a non-trivial structure. More on this topic may be found in
[Far 89]. Appendix A contains two technical lemmas which will be used later to prove satisfaction up

to behavioural equivalence in some important specific situations.

4 Semantics of functors
4.1 Standard ML functors
Consider a Standard ML functor

functor F(X :SIG,,): SIG,, sharing sharing-decl = BODY

The Standard ML signatures S{G,, and ST, determine algebraic signatures Y;, and X, respect-

ively. These are not disjoint in general. Their common part Y4, = X, N2, with signature inclusions
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lin @ Yishr < Dip and toys @ Xghy <> Mou expresses the sharing requirements sharing-decl in the functor
heading. The internal names used in ¥,,; other than those inherited from ¥;, are new.

Since BODY is just Standard ML code, it determines the basic semantics of the functor F' as
a function Fyee : Alg(Y:,) — Alg(¥..) which for any algebra A € Alg(X;,), builds an algebra
Frsem(A) € Alg(X,4:) such that Fbsem(A)|ZghT = A|E§h,T~

The complete picture is a bit more complex. The argument for ' may be a much larger structure
ST' Ryypg with algebraic signature ¥,,,, which may in addition contain more sharing than required by the
functor input signature. The matching rules of the language (which are the same for Extended ML as
for Standard ML) will determine an algebraic signature morphism o : ¥;, — ¥,,,. Any identification o
makes on 3;, must be preserved when the functor /' is applied to ST R,,,. The following technicalities
capture this idea.

For any algebraic signature morphism o : ¥,, — X,,,, the translation of ¥,., by F' via 0. written
F(X4r4[0]), and the translation of o by F, written F[o], are such that the following diagram

'
12
Zam&»F(ng[a])

g

v o]

lin,

U
Esh7°(_—> b

out
Lout

is a pushout in the category of algebraic signatures (where all the hooked arrows represent algebraic
signature inclusions).

For those who dislike the simplicity of the language of category theory, let us point out that the
signature F(Y,,4[c]) may be constructed as the disjoint union of the signature X,,, and the difference
(Xout \ Xspr) with ranks of operations renamed accordingly. Then F[o] is the union of the inclusion
of (X,ur \ Xin) into F(X.rg[0]) and the morphism o restricted to Xy,

Any X,.,-algebra A may be “fitted” as an argument for the functor /' using the morphism o:
namely, A‘{, is a Y;,-algebra to which we can apply Fisem. The requirement on Fi,.,, ensures that
Fbsem(A‘(,)‘zshr = (A‘,,)‘zshr. Thus, there exists a unique F(X,,,[0])-algebra Fy,.;(Alo]) (the amal-
gamated union of A and Fbsem(A‘,,) — cf. [EM 85], [ST 88b]) such that

o Fyes(Alo]) = A, and

Eqrg

b FqTfS(A[U])‘F[G} = Fbsem(A‘a)-

We refer to the F'(X,.4[0])-algebra F,..(Alc]) as the global result of the application of F' to A (along
the fitting morphism o).

Again, Fy.;(Alo]) may be constructed more explicitly by combining its components in A and
Foem(A]).

The global result of functor application is “larger” than indicated in Section 2. We expect a
structure over the output signature as a result. However, as mentioned above, the sharing between
those components of the actual parameter that occur in the output must be preserved. Thus, the result

of applying F' to A (along the fitting morphism o), written F,.;(A[o]), is the reduct Fi,.s(A[o]) ‘F[JMEMA,T)
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of the global result to the signature F[o](¥,,) which is the image of the output signature ¥,,; under
the signature morphism Fo].

In the above presentation of functor semantics, we have adopted what may be thought of as
a “local” view of the algebraic signature X,,, and algebra A, in which they model the structure to
which the functor is actually applied. There is an alternative “global” view, suggested by the fact that
we develop a modular Standard ML program by defining a collection of interrelated structures. The
resulting structure environment may be viewed as a single structure having all the top-level structures
as substructures. Its algebraic signature is the union of the algebraic signatures of the individual
structure components, and the algebra it denotes is the amalgamated union of the algebras denoted
by the components. With this in mind we may interpret the algebra A and its algebraic signature X,,,
in the above as representing this whole structure. It seems to be necessary to adopt this view since
sharing may take place between two separate structures in the environment, and thus some structure
which is not included in the actual parameter explicitly passed to a functor may nonetheless provide
some additional means of manipulating values of the shared types.

4.2 Extended ML functors

The semantics of Standard ML functors in the previous subsection may be carried over to Extended ML
functors as well, but we have to cope with a few additional issues.
Consider an Extended ML functor

functor F(X :S1G;,): SIG,, sharing sharing-decl = BODY

Recall that SIG;,, SIG,; and BODY may contain axioms, and so are in fact specifications with
algebraic signatures X, = Stg[S1G,p], Yow = S19[ST1G o] and Xpoqy, = Sig[BODY], respectively, and
classes of models Mod[S1G;,] C Alg(X;,), Mod[S1G o] C Alg(Xou:) and Mod[BODY| C Alg(YXhedy),
respectively. The comments in the previous subsection concerning the relationship between 3;, and
Yout still apply. Moreover, we have an algebraic signature morphism 7 : X, — Ypoq, (this allows the
body to contain more components than required by the output signature and for extra sharing between
the components the output will contain) and an algebraic signature inclusion ¢ : Xy, — Yj0q, such
that the following diagram commutes:

Ebody
2] T
Zshr Lout Zom‘,

(the only way that the output can share with the input is via the body). Note that, as in Standard ML,
the input is not automatically included in the body and so ¥;, N ¥;.4, may be a proper subsignature
of ¥;, (but by the above assumption, .4, has to contain Xy, = ¥;, N X,.4).

As with Standard ML functors, we require that the shared part of the input is preserved by the
body. In particular if ¥;, is a subsignature of ¥,,; then this constraint means that we force the
basic semantics of Extended ML, functors to be persistent [EM 85]. This was a trivial requirement
for Standard MI, functors since Standard ML code does not allow the programmer to modify the
input. In Extended MI., however, this may lead to inconsistency since the body may impose new

requirements on the input.
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The basic semantics Fygern @ Alg(X,) — Pow(Alg(X,.:)) of the above Extended ML functor assigns
to any X;,-algebra a class of ¥,,-algebras determined by BODY such that for any A € Alg(%,,):

Fosem(A) = {B‘T | B € Mod[BODY] and B

EinNEpody }

Eznmzbody = A

The domain of F'is defined as follows:
Dom(F)={A € Alg(X:) | Frsem(A) # 0}.

In the following, we will identify the function Fis.,, with the family of all the partial functions Fygep, :
Alg(X:,) = Alg(X,.) such that Fyg.,,(A) is defined exactly when A € Dom(F') and then Fy.n, (A) €
Frsem(A). Hence, Fisem(A) will stand for an arbitrary algebra in Fisem(A). We will refer to both
Frsemn and any Fpe,, as basic semantic functions, where the context and the font will determine which
notion is being used.

Note that for any Fisem € Foser, and A € Dom(F), Als,,, = Fbsem(A)‘gshr, as with Standard ML
functors. 1In fact, if BODY contains only Standard ML code, then the family Fi,.,, has exactly

one element Fi,.,,, which is the basic semantics of the corresponding Standard ML functor. Thus,

the above definition of the basic semantics of Extended ML functors properly generalises the basic
semantics of Standard ML functors. The only difference is that in Extended ML the code need not he
executable, and it need not define the result unambiguously (it may even be inconsistent, in which case
no result exists). Just as before, we can extend each of the basic semantic functions Fiser, € Foserm to
the partial semantic functions Fj,.s and F,., operating on any algebra matching the input signature.
The result of applying £ to an Extended ML structure ST R matching ¥, via a fitting morphism
o : Y, — Sig[STR] determined by the ML, matching rules is a specification with semantics defined

“pointwise”:

SiglF(STR)] = Flo](Xouw)
Mod[F(STR)] = {F.(Alo])| A€ Mod[STR] and Fiser, € Fserm }-

Notation For any Extended ML functor

functor F(X :S1G;,): SIG,, sharing sharing-decl = BODY

we use all the notation introduced above without recalling it explicitly. For example, ¥;, will always
denote Sig[ST1G;,], Xy, will denote X, N Y0, Frsem is the family of basic semantic functions defined

above, and so on. We will also feel free to modify the above notation by using indices, primes, etc.

The above basic semantics of Extended ML functors completely disregards the fact that signatures
may contain axioms and indeed takes account only of the axioms given in the functor body. Axiomsin
structures and functor bodies in Extended ML play the role of non-executable code. This is in contrast
with the axioms in the signatures, which are important only as specifications of the (executable or not)
code. Rather than take them into consideration when defining the above “operational” semantics of
functors, we introduce a notion of correctness meant to model the intuitive idea that functors should
fulfill the requirements stated in their headings.

For a functor to be correct we will require that if the input structure satisfies the requirements
imposed by the input signature then the functor produces result structure(s) which satisfy the require-
ments stated in the output signature. As we have indicated previously, axioms in signatures should

be considered only up to behavioural equivalence w.r.t. a pre-specified set of primitive types that the
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user may directly observe. In Extended ML we take those to be exactly the built-in pervasive types
sorts(Perv) (with their interpretation inherited from Standard ML). We require that the structure
produced by applying a functor to a given input structure satisfies the output requirements not ne-
cessarily literally but only up to behavioural equivalence. Consequently, however, we have to accept
the possibility that the requirements in the input signature are not satisfied literally, but again only
up to behavioural equivalence. The reader should be warned here against interpreting this statement
in an oversimplified manner: it is not enough to consider the input and output signature separately
from contexts in which the functor may potentially be used”. Looking just at the input or output
signature as it stands yields very few non-trivial “observations” (terms of primitive types) for most of
the types in the signature. However, when the functor is used and the input types are instantiated in
a richer context, the user usually has many more ways to observe the types of the resulting structure.
Thus, behavioural equivalence must be considered at a global level: at the level of the environment
in which the actual input structure resides and to which the result structure is added. The global
view of functor parameters (see the discussion following the semantics of Standard ML functors in
the previous subsection) provides an appropriate framework to formalise these ideas. The following
definition follows almost directly the notion of universal implementation of [Sch 86].

Definition 4.1 An Extended ML functor of the form
functor F(X :S1G;,): SIG,, sharing sharing-decl = BODY

is universally correct if for any algebraic (argument) signature ¥,,, and fitting morphism o : ¥;, —
Yarg. any X,,,-algebra A such that A |:””S(Pe”) translate SIG;, by o and any Fieem € Frsem:

1. A|g € Dom(F);
2. Fyes(Alo]) =P translate SI1G..; by F|o); and

3. for any ¥,,4-algebra B such that B =,,,i(perv) A and B‘U E SIG,,, there exists a F(X,,.,[c])-
algebra B such that B = B, B = orts(Perv) Fyres(Alo]) and B‘pm E STGu.

/
Yout

A careful reader may have realized that condition 3 entails condition 2 (and more implicitly, condition 1
as well). We have stated these conditions separately since conditions 1 and 2 are what one intuitively
expects while condition 3 turns out to be required for technical reasons in situations in which a
programming task is decomposed into separate but interacting subtasks (see for example the proof of
Proposition 5.3 in Appendix D).

In our methodology. a programming task is presented as an Extended ML functor heading. The
programmer is to produce a functor body consisting of Standard ML code such that the functor is
universally correct. In the rest of this paper we present some methods for achieving this goal by
modular decomposition (Section 5) and stepwise refinement (Section 6) with explicit conditions which
ensure the correctness of the result.

"In fact, in [ST 85b] we have proposed a semantics for Extended ML based on such a view of functors and signatures
as “closed” entities. We now consider this to be a methodological mistake and propose a different view, hetter suited

as a basis for the methodology we develop.
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4.3 Multi-argument functors

In the previous subsection we have only considered functors having a single argument. The case of
multiple arguments is a little more complicated, but as in Standard ML any functor with multiple
arguments may be reduced to a one-argument functor by combining the input signatures into a single

signature. Below are the technicalities for the case of a two-argument functor of the following form:

functor G(Y1:S51G1,,.Y2:S1G2,, sharing sharing-constr) : S1G oy

sharing sharing-decl,

Arbitrary multi-argument functors may be handled in a similar way.

Let ¥1;,, X224, and X, be algebraic signatures corresponding to S1G1;,, ST1G2,, and STG,,,
respectively. As before, the sharing declarations in the functor heading force them to overlap. Define
Yeom = 2lin N 225, Ylgp, = X1y N Yoy and 22, = 22, N X, with algebraic signature inclusions

as indicated in the following diagram:

I/Qcom
Zcom ZQ’LTL
inn
Llcom
EQS}'LT
Y1,
Lzout
le
Elshr Llout Eouzf

The basic semantics of G maps any two algebras Al and A2, over algebraic signatures ¥1;, and
¥2;, respectively, to a Y,-algebra. But since the heading of GG requires its arguments to share on
Y om, this basic semantics is defined only for algebras Al and A2 that coincide on X,,,. Moreover,
the components shared between input and output must be preserved, as discussed in the previous

subsection for one-argument functors. Thus, the basic semantics of G is a function G7,_, defined on

{{A1, A2) | Al € Alg(S1,,). A2 € Alg(32:,), Als.,, = A2|x,..}

Econ’l

such that for any Al € Alg(X1;,) and A2 € Alg(¥2;,) satisfying Al|s,. = A2|s..., Grom (Al, A2)
(A1, A2) € G}, (Al, A2) (recall the convention of

identifying Fpse,, with a family of partial functions Fye,, ),

2
bsem

is a class of ¥,,-algebras such that for any G

Croem (AL, A2)[51,, = Al|s,,  and Gy (AL A2)|s),, = A2[sa,,, .

bsem bsem

Alternatively, G may be viewed as a one-argument functor by combining S1G1;, and ST1G2,, into
a single signature. This combined signature must incorporate the sharing required by sharing-constr
so that algebras over the corresponding algebraic signature correspond exactly to pairs of algebras

which coincide on Y. Consider the following diagram:
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(‘071’]

Z com

com ZTL

I3
Sl /?com S22,
n Lls}”«
S]’LT
L20ut
A LQS% w\
lehr out
out

where we require that the two sub-diagrams

LQcom
Ecom 221:77, 22.9}17"
o
1 Ll,(:om ZShT
Llcom
E?ﬁn LQshr
Sl Ziom S

are (respectively) a pushout and a coproduct in the category of algebraic signatures®, and where the
morphisms ¢;, @ Xp, — i and oy @ Yepr — Yowe are defined using the coproduct property of ..
There is a natural 1-1 correspondence between the partial functions G, as above and basic

semantic functions

Gbsem : Alg(zzn) s Alg(zout)
such that for any A € Alg(X;,), if Gpsen(A) is defined then A‘géhr = Gbsem(A)‘gshr.
In fact. the heading of the functor G may be equivalently rewritten as:
functor G(Y : SIG,,): SIG,,: sharing sharing-decl®
where
S1GG, =405 translate S1G1;, by /QCom U translate S1G2;, by /]com

We use here the operation of union of specifications over the same algebraic signature formally defined
as follows (cf. [ST 88a]): for any specifications SP and SP’ such that Sig[SP] = Sig[SP'], SPUSP'

is a specification with semantics given by:

Sig[SP U SP" Sig[SP] (= Sig[SP")
Mod[SP U SP'] = Mod[SP] N Mod[SP].

8Since we assume that all signatures contain the pervasives of Standard ML which are preserved by all signature
morphisms, the coproduct here corresponds to a pushout in the category of algebraic signatures, where the signature
of Perv is shared.

“The sharing declaration here should actually be the one obtained from sharing-decl by converting references to Y1

and Y2 into Y references as appropriate.
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Of course, neither union nor translate is available in Extended ML, but if SIG1;, and SIG2,,
are Extended ML signatures then it is clear that we can write an Extended ML signature which is
equivalent to STG;, defined as above.

Although the two versions of (G are equivalent at the level of their basic semantics, and have
identical “computational” properties, their correctness properties are not necessarily the same when
interfaces are considered up to behavioural equivalence. Given the above situation, for any algebraic

signature Y., ., fitting morphism o : ¥;, — Y,,, and X, -algebra A:

if A ‘:SEUQT:;(PHV) translate S/G;, by o
then A ‘:sortb‘(PeTV) translate SIG1;, by LQ’Com;O'

and
A [=2ortsPer) translate S1G2;, by 1), 0.

The opposite implication does not hold in general. If there are non-observable sorts shared by ¥1,,
and X»2;,. then A may satisfy both SIG1;, and SIG2;, separately up to behavioural equivalence
without satisfying them “jointly” up to behavioural equivalence. In fact, A may satisfy SIG1;, and
S1G2;, separately up to behavioural equivalence when SI(;, is inconsistent!

This gives two possible notions of universal correctness of multi-argument functors. It seems
appropriate to choose the weaker of the two, which puts more restrictions on the admissible input
by requiring that it satisfies the two components of the input signature jointly. Thus we define a
multi-argument functor to be universally correct if its one-argument version constructed as above is

universally correct.

5 System design: functor decomposition

In the next two sections we discuss how to develop functors which are universally correct with respect
to a given functor heading. In this section we concentrate on defining functors as a composition of
simpler functors, i.e. by modular decomposition. The idea is very simple: just come up with a bunch
of other functors, and define the functor being implemented as an expression over these functors. Of

course, we need to impose appropriate verification conditions to ensure that:

e The expression is well-formed: functors in the expression are always applied to structures whose
signatures match their input signatures, and the result signature matches the output signature.

e The functor definition is correct: roughly, for any argument satisfying the input signature, the
result produced satisfies the output signature (modulo the discussion concerning behavioural
equivalence in Section 4.2).

We will analyze three simple but increasingly complex cases of functor decomposition. For each of
these cases we give formal statements of the above informal conditions and prove that they ensure

correctness of the functor. We then discuss the general situation in a more sketchy way.

5.1 Unitary decomposition

We begin with the simplest case, when a functor is implemented by directly calling another functor.
Consider an Extended ML functor

functor F(X :S1G;,): SIG,u sharing sharing-decl = F1(X)
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where F'1 is a functor with heading
functor F1(X :SIGL,,): SIG1,, sharing sharing-decll

This defines the basic semantics of F' as roughly the same as that of F'1 (see the proof of the theorem
in Appendix B for details).

To ensure that the definition of F'is correct, we have to verify that two conditions are satisfied:
o The definition of F' is well-formed according to the Standard ML typechecking rules:

— A quotient of ¥1;, is a subsignature of ¥;, (given by a morphism 7, : ¥1;, — ;).

— A quotient of ¥,,; is a subsignature of X1,,; (given by a morphism 7oy @ Xour — Xlout).

— The sharing between Y,, and X, follows from the sharing between X1;, and X1, (as
indicated by a morphism p : ¥, — Xl ).

This gives rise to the following commutative diagram:

Ein
Tin
Zlin
Lin Llin
lehr 1 E1out
v v Loyt
Y
\d Tout
y P
v
Zshr Zomﬁ

Lout

e The requirements stated in the functor interfaces match one another:

— S1G;, entails S1G1;, up to behavioural equivalence.
— S1G1,,; entails SIG,.,; up to behavioural equivalence.

Here is the formal statement of the correctness result:

Theorem 5.1 Consider Fetended ML functors F' and F'1 as above. Suppose that the definition of F' is
well-formed according to the Standard ML typechecking rules, determining a commutative diagram as

above. Suppose the following conditions are satisfied (we use here the notation introduced in Section 3):

1. SIGy, =yttt CEa)) grqy,,
2. SIGL,., |:;DO7:j(lout(Zshr)) SIG, .

Then, if F'1 is universally correct then F' is universally correct.

Proof See Appendix B. O
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5.2 Sequential decomposition

Another simple case is when the functor is defined by composing two other functors.
Consider an Extended ML functor

functor F(X : SIG,,): SIG,, sharing sharing-decl = G2(G1(X))
where G1 and G2 are functors with headings
functor G1(Y1:S51G1,,): SIG1,, sharing sharing-decll

and

functor G2(Y2:51G2,,): SIG2,, sharing sharing-decl2

This defines the basic semantics of F' as (roughly — see the proof of the theorem in Appendix C for
details) the composition of the basic semantics of G1 and G2.

To ensure that the definition of F' is correct, we have to verify that two conditions are satisfied:

e The definition of F'is well-formed according to the Standard ML typechecking rules:

— A quotient of X1;, is a subsignature of ¥;, (given by a morphism 7, : ¥1;, — ¥;,).
— A quotient of ¥2;, is a subsignature of ¥1,,; (given by a morphism 7j,ze, © X2;, — Xlou).
— A quotient of ¥, is a subsignature of X2,,; (given by a morphism 7o, : Yoyt — X24¢).

— The sharing between Y, and X,,; follows (by composition) from the sharing between ¥1,,
and X1,,; and between ¥2,, and ¥2,,; (as indicated by morphisms pl : ¥, — X1, and
Pl : Eshr - E2shr)-

This gives rise to the following commutative diagram:

Y,
i1 in
Llout
21 shr X1 out
Lin Tinter
Y2in
/71 //22'71
2
ZQS}LT out 22out
p2 Tout
Es}w Eout

Lout
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e The requirements stated in the functor interfaces match one another:

— 511G, entails S1G1;, up to behavioural equivalence.
— S1G1,,; entails ST1G2;, up to behavioural equivalence.
— SI1G2,,; entails STG,,; up to behavioural equivalence.

Here is the formal statement of the correctness result:

Theorem 5.2 Consider Extended ML functors ', G1 and G2 as above. Suppose that the definition
of I' is well-formed according to the Standard ML typechecking rules, determining a commutative
diagram as above. Suppose that the following conditions are satisfied:

1. SIGy, EyretntEeD) gran,,
2. STG gy 2Ea)) g1 o,
3. S1G2,, e ) g1,

Then, if G1 and G2 are universally correct then so is F'.

Proof See Appendix C. O

5.3 Parallel decomposition

Another simple case of modular decomposition is when part of the task is split into two more or less
independent subtasks which are performed by two functors in parallel.
Consider an Extended ML functor

functor F(X : SIG;,): SIG,, sharing sharing-decl = GO(G1(X).G2(X))

where G0 is a two-argument functor with a heading of the form

functor GO(YO01:S/G01,,,Y02: S1G02,, sharing sharing-constrQ) : ST1G0y,
sharing sharing-decl0,

and G'1 and G2 are functors with headings

functor G1(Y1:SIG1,,): SIG1,,: sharing sharing-decll

and
functor G2(Y2:51G2,,): SIG2,, sharing sharing-decl?

For the definition of F' to be well-formed, we have to ensure that the appropriate signatures match,

that is (recall the notation concerning two-argument functors introduced in Section 4.3):
e A quotient of X1;, is a subsignature of ¥;, (given by a morphism 71;, : ¥1;, — 3;,).
o A quotient of ¥2,, is a subsignature of ¥;, (given by a morphism 72;, : ¥2,, — ¥,,).

e A quotient of ¥01;, is a subsignature of ¥1,,; (given by a morphism 715, + ¥01;, — X1o01).
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e A quotient of ¥02;, is a subsignature of ¥2,,, (given by a morphism 72, : £02;, — ¥2,,¢).
e A quotient of ¥, is a subsignature of X0, (given by a morphism T, : ¥our — X000 ).

Moreover, we have to make sure that the required sharing between the arguments of GO follows
from the sharing information passed by G1 and G2 (using morphisms plinier @ X0e0m — Xlg;, and
P2inter @ 20com — X245, ). Thus, the matching rules of ML must determine the following commutative

diagram in the category of algebraic signatures:

Zin

7'27:71,
Y2in
Tlm
LQin
620117‘
Zlin ZQshr—>220uf
T22ﬂt67‘
1in
L pQZILtCI
ShT ZUQm
Llom ,Olznte7 2Oﬂom LOQin
Lin
E1ou75 ZOQShT
£01;, 10201
L()lm
01
2015}”« I(] out Zoout
w
Zsh? Lot EOUt

The basic semantics of F', Figem : Alg(Xin) — Pow(Alg(X,u)), is defined as follows: for any
Yin-algebra A,

Frsem(A) = {A0

721nter

Tout | AO E gogsem(A]“T]znter7A2‘
for some Al € Glysem( A‘ﬂm )and A2 € gzbsem(A|72m)}

Omitting all the problems of definedness of the partial functions involved,'” any choice of basic se-
mantic functions Glyeep. G2pser, and GOthm for G1, G2 and GO respectively, determines a basic
semantic function Fysep, @ Alg(X;,) = Alg(X,4:) as follows: for any ¥;,-algebra A,

Fbsem (A) - Gogsem( Glbsem (A ‘71”1) ‘71 inter 9 szsem (A‘TZW) ‘T?mter )

Tout *

10The verification conditions for this case of decomposition will ensure that this is not a problem.
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To see that this is well-defined we have to verify that the arguments of Gozm coincide on X0.y.,:

(Glisem (Al r10) [#tinee) [01com = (Glosen (A]71,)) | 10w [ p1onter
= ((A|Tlin)“1in)‘plznter
= ((A|72m) 20 ) P2umter
((G2sem (A r2;,))
(21 (A2,

We still have to ensure the required sharing between ¥,, and ¥,,; (described by the signature

LQout) |021nter

721',771‘,&1“)

t02com *

Yenr with algebraic signature inclusions ¢;, and ¢4, ). Since there are two possible paths by which the
output may inherit a part of the input, one via G1 and the other via G2, the shared subsignature
may be split into two (possibly non-disjoint) subsignatures. More formally, there must be a pushout

!
by shr by shr
shr "
Zcom shr

and two pairs of morphisms, p' : Z’sm — Yl and p” - E;'M — Y24, and p0' : Z;m — 2014, and
p0" : X7 — 302, (determined by the ML matching rules) such that the above diagram augmented
by these morphisms commutes. That is:
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sz

ZQin
Tlin
LQm

620112‘
E25h74’220ut

Zlin
T2inter
1 in
! ,02777197«
shr

/ EUQWL

Llout plmfﬁr Ocom 102
Lin
E1ou7f ZOQshr ‘ﬁ
’ com
P T%
Lozout
7" LOlin
P
pol LOl +
E;hr Y01 shr = ZOO“t
‘\Zsm w
EshT Eout
Lout
K \EC{ po// /

The commutativity of the above diagram ensures that the semantics of I as defined above indeed

satisfies the sharing property: for any A € Dom(F), A|Esm =

I’Fbsem(A |Zshr)'

Recall that ML views the two-argument functor G0 as a one-argument functor as defined in

Section 4.3. Similarly, we can collapse the two “parallel” functors G1 and G2.

Let ¥12;,, Y124, and X12,,; be algebraic signatures defined by the following pushouts:

1, clin $19, Y1, clonr $12,,
plinf&T;Llin CQin plinter 025}”«
) .
Ocom innter ,ngn Ean ZOcam innter 22shr
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cl out

Elout 212out
plimﬁcr;Llout CQout
ZOcom 22out

inn ter ;[/207“‘,

Define algebraic signature morphisms 12, @ X124, — Y12, and 124, + X124, — X125, by the
pushout property of X12,,, as the unique morphisms such that

— ;112 = el and 24,3012, = 12;,3¢2;,, and

- Clshr:,LlQout — Llout;010ut &Dd CQShr;leout — LQout;Czout-

The following diagram may be helpful in visualising the construction so far:

c

zn 12 in

212, Y2, msmwi \
il o / S 20ut
Y1, Y12,
w 2ot
hin clopr

ZlQout

Y shr %{ P2inter

E1011,25

K p]intsr S0,

Further, define
S1G12;, = translate SIG1;, by cl;, Utranslate STG2;, by ¢2,,, and

S1G12,,; = translate STG1,,; by ¢l Utranslate STG2,,; by ¢2,.;.

(As in Section 4.3, the fact that Extended ML does not include union or translate is unimportant
since it is clear that we can construct Extended ML signatures which are equivalent to STG12;, and
STG12,4,; as defined above.)

The result of collapsing 1 and G2 is a functor G12 with heading

functor G12(Y12:S51G12,,): SIG12,,, sharing sharing-decll U sharing—decZZH

and with a body such that the basic semantics G124, is defined by combining the basic semantics
of G1 and (G2: for any Y12-algebra A,

gl?bsem(A) = {AlQ S Alg(2120ut) | A12 clout S glbsem(A cl,;,,,) and AlQ c2out S ngsem(A c2m)}-

Hhe sharing declaration here should actually be sharing-decll’ and sharing-decl2’, where sharing-decll’ is obtained
from sharing-decll by converting references to Y1 into Y 12 references as appropriate, and likewise for sharing-decl2’.
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Proposition 5.3 G12 is universally correct provided that G1 and G2 are.

Proof See Appendix D.

It is easy to see that the functor /' may be equivalently rewritten as

functor F(X :SIG;,): SIG,, sharing sharing-decl = GO(G12(X))

with the corresponding algebraic signature diagram

Ein
Tin
Y12,
Ll?m
el 201“5
Y1 25]17“ Y1 20ut
Lin Tinter
0,
p Loin
’/Oout
ZOshr EOout
po Tout
Eshr Lout Zout

where the morphisms 7;, : £12;, — Y, p @ Zenr — 212600, Tinter + 20 — X124 and p0 @ Y, —
Y044, are constructed using the pushout properties of their source signatures in the obvious way as

. . ! 4 ¢
the “unions” of, respectively, 71, and 72;,, p'iclsn and p75c240, TlinteriClows and T24u10036200t, and

p0':001,p,, and p0”:002,, .

Theorem 5.2 may now be used to prove the universal correctness of F':

Corollary 5.4 Consider Extended ML functors F', GO, G1 and G2 as above. Suppose that the defin-
ition of F' is well-formed according to the Standard ML typechecking rules, which determine algebraic
signature morphisms as above. Suppose that the following conditions are satisfied:

1. SIG;, \:;"g;(b”2’”(”(25}”))) translate SIG1;, by cl;, U translate SIG2;, by ¢2;,

2. translate S1G1,,; by cl,; Utranslate S1G2,,; by 2., \:50”5(‘0""(”0(2""7)))

translate S/G01;, by 102

3. S]Goout |:§:DO7::(ES}”) S]Gout

20777,
U translate S/G02;, by 01’

com com

Then, if GO, G1 and G2 are universally correct then so is F'.
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Proof  Follows directly from Theorem 5.2 and Proposition 5.3 (and the definitions of STG12;,,
ST1G12,, and STGO,,). O

This is not quite satisfactory: the verification conditions of Corollary 5.4 force us to consider some
interfaces jointly, even though they are presented separately. The following theorem removes this de-
ficiency. The separate verification conditions must additionally take into account the required sharing
between the signatures to which they directly apply and the environment in which the signatures are
used. More specifically, since the functors G1 and G2 are expected to produce overlapping results, the
verification conditions must not allow the overlapping parts to be treated (or modified) in different

ways.

Theorem 5.5 Consider Fxtended ML functors F', GO, G1 and G2 as above. Suppose that the defin-
ition of F' is well-formed according to the Standard ML typechecking rules, which determine algebraic

signature morphisms as above. Suppose that the following conditions are satisfied:
7 ((1) g[pzn |_;olrtns Ain(p '(Eﬁhr)))UsoHs(le(:plmter(zocom))) SIGH .
(b) S]Gzn |_;:027°17‘: (12in (P (BY,, )N Us0rts(12in (p2inter (Z0com))) S]GZML

9. (Cl) S]Glout ‘_;aorfjn/OLn(pO (275, ) Us07t5(101 com (E0com ) SIGOlWL
(1) 1G240 g O ) Gy

3 S]G()out |_sorts E hr S]Gout

Then, if GO, G1 and G2 are universally correct then so is F'.

Proof See Appendix D. O

The reader should not be alarmed by the complexity of the expressions defining the observable sorts
in the verification conditions of the above theorem. First, in practice the signature morphisms do not
result in non-trivial renaming at the level of external names, which are the ones the user has to deal
with. Second, the ML typechecker may easily be modified to compute them mechanically.

5.4 Modular decomposition: the general case

The three special cases presented in the preceding subsections are intended to provide a clear illus-
tration of the way that the definition of a functor by modular decomposition should be verified. We
will not attempt here to formulate precisely an appropriate general theorem, since this would require
richer technical apparatus. We believe that the development of appropriate notation and terminology
which would allow such a general verification condition to be expressed in a precise and understand-
able form, in the presence of non-trivial sharing requirements on module interfaces, is an important
research task.

Very roughly, the definition of a functor by modular decomposition gives rise to a finite directed
acyclic graph with one maximal node, where the graph nodes are labelled with Extended ML signatures
and the graph edges are of two distinct kinds. First, there are edges corresponding to applications of
functors used in the decomposition; then the source node (resp. target node) of the edge is labelled
with the input (resp. output) signature of the functor. Second. there are edges between nodes labelled

with a functor output signature and nodes labelled with a functor input signature, which correspond
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to matching the output signature against the input signature. Then. we add to this graph a node
labelled with the input signature of the decomposed functor and edges matching it against all the
(input) signatures in the minimal nodes of the decomposition graph, and another node labelled with
the output signature of the decomposed functor, with an edge matching the (output) signature in the
maximal node of the graph against it.

As in the examples above, such a decomposition graph determines a diagram in the category of
algebraic signatures. The nodes of the decomposition graph induce nodes of the diagram labelled
with the algebraic signatures determined by the Extended ML signatures labelling the graph nodes.
The signature matching edges in the graph induce corresponding edges (but going into the opposite
direction) in the diagram labelled by algebraic signature morphisms determined by the ML matching
rules. Fach functor application edge in the graph decomposes into a pair of algebraic signature
inclusions with a common source expressing the sharing declaration in the functor heading, and with
the functor input and output signatures, respectively, as their targets.

On the resulting diagram we superimpose pairs of morphisms with a common source expressing
the sharing requirements present in the decomposition (like the signature 0., with morphisms
(01 com @ X0c0m — X01;, and 102, : X0, — X02;, in Subsection 5.3). The required sharing between
the input and output signatures of the decomposed functor is included in the same way. Then,
we have to determine algebraic signature morphisms from the algebraic signatures expressing the
sharing requirements such that the commutativity of the resulting diagram ensures that the sharing
requirements are satisfied via structures arising in the functor body as a result of functor application
(like the signature morphisms plisie, @ X0com — Xlgp and p2ipter @ X000 — X245, in Subsection 5.3,
which guarantee the sharing represented by the signature ¥0..,,). An additional complication is that
there may he more than one way to ensure that some sharing requirement is satisfied, and so we have
to allow some algebraic signatures expressing sharing requirements to be decomposed (as the algebraic
and X7, in Subsection 5.3).

Although this construction seems complicated, it is mechanisable and so would be carried out

signature Y, was decomposed into X/,
by computer-based support tools. In fact, most of this construction is implicitly performed by the
Standard ML typechecker already.

Finally, assuming that the definition of the functor is correct according to the ML typechecking
rules, which determines the algebraic signature diagram sketched above, we can check the following
verification condition: for each edge in the decomposition graph which matches a signature STG1 (the
signature labelling the source of the edge) against STG2 (the signature labelling the target of the edge),
STGT must entail STG2 via the algebraic signature morphisms determined by the ML matching rules
up to behavioural equivalence w.r.t. a set of observable sorts consisting of all the sorts in the algebraic
signature of STG2 corresponding to sorts in the algebraic signatures expressing sharing requirements
(via the morphisms in the algebraic signature diagram going into the corresponding diagram node
determined as sketched above). This ensures that whenever the functors used in the decomposition

are universally correct, so is the decomposed functor.

The results in [Sch 86] concerning modular decomposition are weaker than the general result
sketched above and Theorems 5.1, 5.2 and 5.5 in that he requires interfaces to match exactly, except
that the actual inputs and outputs are permitted to be larger than required by the corresponding
interfaces. In particular, an actual input or output is not permitted to share more than required,
and (much more significantly) interfaces must match “literally” rather than only up to behavioural
equivalence as we require (this is the upshot of condition (b) of Definition 3.2.10 in [Sch 86]). We
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have given verification conditions which seem to be as weak as possible under the constraint of being
expressible as “local” signature matching requirements, while still guaranteeing the correctness of the

decomposition.

In this section we have discussed conditions under which functors can be correctly implemented
by decomposition into simpler functors. These functors can then themselves be implemented using
the same technique of modular decomposition or by supplying an “abstract program” (see Section 6).

Of course, we would not expect the formal development of realistic programs to proceed in practice
without backtracking, mistakes and iteration, and we do not claim to remove the possibility of unwise
design decisions. One problem is that it is often very difficult to get interface specifications right the
first time and so for example when implementing a functor by decomposition into simpler functors it
may well be necessary to adjust the interfaces both in order to obtain a decomposition which is correct
according to the theorems above and to resolve problems which arise later while implementing the
simpler functors. If a decomposition has been proved correct then some changes to the interfaces may
be made without affecting correctness: for example, in any of the simpler functors the output interface
may be strengthened or the input interface weakened without problems (provided the required sharing
between input and output is preserved). It is also possible to modify the interfaces of the functor
being decomposed by weakening its output signature or strengthening its input signature. This will
preserve the correctness of the decomposition but since it changes the specification of the functor
such changes must be cleared with the functor’s clients (higher-level functors which use it and/or
the customer). Once we have made such a change to an interface we can also change interfaces it
is required to match in order to take advantage of the modification. Then, provided we are able to
prove that the syntactic and semantic correctness conditions referring to these interfaces hold, overall
correctness is still assured since the remaining interfaces are unaffected.

Functors correspond to (parameterised) abstract data types. We are free to change the implement-
ation (body) of a functor at any time. As long as the new implementation is universally correct with
respect to the functor heading, this change is invisible to the rest of the program. This is ensured

since explicit interfaces insulate a functor implementation from its use.

6 System design: refinement of abstract programs

The previous section discussed conditions under which functors can be correctly implemented by
decomposition into simpler functors. At some point it is necessary to actually write code to implement
a functor. In this section we discuss how correct code can be developed gradually by means of stepwise
refinement of loose abstract programs (Extended ML structures containing a mixture of Standard ML
function and type definitions and non-executable axioms). Our goal is to arrive at a functor body

containing only executable code which is universally correct with respect to the given functor heading.

6.1 Simple correctness and stability

Although the notion of universal correctness expresses the correctness property one should aim at in
program development, it is very inconvenient as a basis for verification of abstract programs as pointed
out in [Sch 86]. There are at least two unexpected problems. First of all, we are not allowed to rely
on the input specification literally, but only on its observable consequences. Second, we are required
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to consider all possible structures to which the functor may be applied rather than considering just
structures over the input signature.
A solution presented in [Sch 86] is to split universal correctness into three properties which will be

ensured separately:

Definition 6.1 Consider an Extended ML functor of the form:
functor F(X :S1G;,): SIG,, sharing sharing-decl = BODY

1. F'is simply correct if for any ¥;,-algebra A € Mod[SIG;,], Fosem(A) |:;”m(25’”) SIG .

out

2. Fis simply consistent if Mod[S1G;,] € Dom(F).

3. I is stable if for any algebraic signature 3,., and fitting morphism o : 3,;, — ¥,,, any
Yarg-algebras A, B such that A =, spery) B, and for any A" € F,,.,(A[o]) there exists B' €
Fyres(Blo]) such that A" =, i peryy B’ (recall that all Extended ML signatures implicitly contain

Perv).

The main idea behind the definition of stability is that a functor is stable if and only if it preserves
behavioural equivalence. The apparent asymmetry whereby the choice of B’ depends on the choice of

I . . e .
A" is unimportant since the preconditions are symmetric.

Theorem 6.2 An Erxtended ML functor is universally correct whenever it is simply correct, simply

consistent and stable.

Proof Consider an Extended ML functor of the form
functor F(X :S1G;,): SIG,, sharing sharing-decl = BODY

which is simply correct, simply consistent and stable. Consider any algebraic (argument) signature
Yarg, fitting morphismo : ¥, — ¥,,,, and any ¥, -algebra A such that A |:SO”S(P8”) translate S1G;, by o.
Let B be any Y, -algebra such that A =, i perv) B and R|g € Mod[S1G;,] (such a B exists by the
definition of behavioural satisfaction). By the simple consistency of F, R|a € Dom(F). That is,
Fyres(B[o]) # 0, hence by the stability of F' (with A and B interchanged), F,,.s(A[o]) # 0, i.e.
Als € Dom(F).

Then, consider an arbitrary A" € F,,.(A[c]). By the stability of F, there exists B' € F,...(B|o])
such that A’ = orts(Perv) B'. By the definition of F,,. B/‘F[g] € fbsem(B|g). Hence, by the simple

__sorts(Xeny)

correctness of F, B’|F[g] | STG oyt By the definition of hehavioural satistfaction, there exists

a You-algebra € such that O =5, R/|F[0']‘
Now, consider the unique F(X,,,[o])-algebra B such that B — Band B ‘ Flo] = C. The existence
and uniqueness of B is ensured by the construction of F(X,,,[0]) and the fact that (B’|F[C"1)|Zshr =

O‘Exh,r' By Lemma A.1. B = soris(Perv) B’ and so B = soris(Perv) A’. This also proves that A’ \:S”T“(Pe”)
translate S1G,,; by Flo]. O

/
Yout

Simple correctness is a property which can be verified “statically” in the sense that we do not have
to consider all the different ways in which the functor can be applied. It is enough to consider only

structures over the input signature. Moreover, while verifying simple correctness we are allowed to
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pretend that the input structure satisfies the input signature literally. This is therefore a condition
which we will expect a user of our methodology to verify for each of the functors he defines.
Stability is a different matter. It is not reasonable to expect a user to verify the stability of
his functors one by one. This property should be guaranteed by the designer of the programming
language used. Any language which is designed to support data abstraction should ensure that only
stable functors (modules, packages, clusters, etc.) are definable. See [Sch 86] for a much more complete

discussion of this issue.

Working hypothesis Every functor definable in Standard ML is stable.

Discussion We could turn this working hypothesis into a theorem for the purely functional subset
of Standard ML we are using here, under the type discipline described in Section 2. The proof would
be based on a formal algebraic semantics of this language and would involve a lot of tedious work.
To prove the corresponding theorem, or even state it precisely, for full Standard ML would require
developing an integrated algebraic view of (at least) exceptions, polymorphism, higher-order functions,
imperative features, partial functions and non-terminating functions. This is an important long-term
goal which we are confident may be achieved, but it is orthogonal to the issues discussed in this paper.
O

Under the above hypothesis, any simply correct functor whose body is coded in Standard ML
is universally correct (recall that every Standard ML functor is defined for all structures over its
algebraic input signature, and so is obviously simply consistent). However, this is not guaranteed for
Extended ML functors in general, and it would not be reasonable to expect this of any specification
language. The power and flexibility of algebraic specification languages are in fundamental conflict
with the requirement of stability. Extended ML functors arising during the development process need
not be universally correct; our methodology guarantees only that they are simply correct by requiring
refinement steps to preserve this property. Consequently, when we arrive at a Standard ML functor,
which is always our goal, it will be simply correct and simply consistent, and it will be stable by the
above working hypothesis, and hence by Theorem 6.2 it will be universally correct.

One might argue that simple consistency is a requirement which should be imposed on every
Extended ML functor which arises in the program development process. This would seem to prevent
blind alleys in program development. But since even a total functor may have no computable (or
acceptably efficient) realisation, we cannot hope to avoid blind alleys in general anyway. It might be
advisable to check for simple consistency at each stage of development but this is not required for
correctness and is not a part of our methodology.

The concepts of universal correctness and stability are a bit different from the corresponding ones
in [Sch 86]. If we were to exactly translate his definitions to the context of Extended ML we would
have to require the fitting morphism o to be injective. Thus, it may seem that our notions of universal
correctness and stability are more restrictive than his. But as we accept the above view that stability
is to be ensured by the programming language in use, the two notions of stability coincide since for
any given application of a functor to a structure we can add sharing constraints to the input signature
of the functor so as to make the fitting morphism injective without affecting the correctness of the
code in the functor body.
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6.2 Abstract programs

The conclusion of the discussion in the previous subsection is that the user’s only obligation is to
produce code for the functor body in such a way that the resulting functor definition is simply
correct. The user may begin by writing a loose abstract program containing a mixture of axioms and
executable code and then gradually refine this in a stepwise manner until a version containing only
Standard ML code is obtained.

The following theorem gives the condition which the first version (and in fact all versions) of the

body must satisfy in order to ensure simple correctness of the functor.

Theorem 6.3 An Fxtended ML functor of the form
functor F(X :S51G,,): SIG,, sharing sharing-decl = BODY
is simply corvect if and only if
(translate (derive from S/G, by t) by ts) U BODY |:;°O7::(L°”t(2“hr)) SIG

. . . . 9
where tg X N Vpogy — Xin and tg @ i 0 Xioay — Xipody are the algebraic signature inclusions.'?

Proof Directly from the definition of the basic semantics of Extended ML functors. O

We could employ this theorem to check the simple correctness of each version of the functor body
obtained as a result of successive refinement steps. But in practice this is inconvenient since subsequent
versions of the body will become increasingly more detailed and lower level, making it difficult to relate
them in a simple way to the output interface. It is much more natural to relate each new version of
the functor body directly with the previous one. Then we can exploit the simple correctness of the
previous version to establish the simple correctness of the new version as follows:

Corollary 6.4 If an Extended ML functor of the form
functor F(X :S1G;,): SIG,, sharing sharing-decl = BODY

is simply correct and

(translate (derive from SIG;, by i) by ;) U BODY' \zsom(t""(zmﬁz"”dy)) BODY

2boaly

where L;i : Zm M Ebody/ — Em and L;b : Zm N Ebody‘ — Ebody’; then
functor F(X : SIG,,): SIG,,: sharing sharing-decl = BODY'

s simply correct as well.

Proof 'rivial, by Theorem 6.3 and the definition of translate. O

The conditions required in the above theorem and its corollary may be established using the results

given in Section 3.

2The horrible expression on the left-hand side of the entailment should be thought of as SIG;, U BODY (and
similarly for Corollary 6.4). Since all the morphisms here are unambiguously determined by the context, we will use
this simplified form in presenting the verification of coding steps in Section 7.
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The refinement process sketched above is reminiscent of the use of abstractor implementations as
discussed in [ST 88b]. The condition in the above corollary may be rephrased as the requirement
that BODY ~2& BODY' (in the context of STG,;,) where « is an abstractor corresponding to the
behavioural equivalence involved and & is a derive step which forgets any new auxiliary types and
operations introduced by BODY'. The technicalities concerning the use, composition, etc. of ab-
stractor implementations developed in [ST 88b] may be used directly here. Recall that abstractor
implementations correspond to “tailor-made” implementations which are specially developed to fit
into some particular context. For example, suppose that BODY = BODY;; BODY,;. Then BODY
may be refined to BODY' = BODY{; BODY; where BODYI/ is a refinement of BODY,. If BODY,
is already Standard ML code, then when refining BODY; we can take advantage of our knowledge of
BODY; which is the only context in which the final realisation of BODY] will be used. For correctness
of the refinement it is sufficient to require that BODY, entails BODY; up to the equivalence which
results when = sorts(r b (SinMSh0dy)) is “pushed through” BODY;. See [ST 88b] for details; we only note
here that the resulting equivalence might not be a behavioural equivalence with respect to any set
of sorts, and so the results of Section 3 may not apply directly. This represents one extreme in the
tradeoff between making the verification conditions as weak as possible and making them uniform
enough so that general proof methods are easily applicable.

Instead of refining the functor body, we could refine the output signature of the functor. At
some point this would result in executable code which could then be used as the functor body. But
this is inappropriate for two reasons. First of all, it seems important to clearly separate specification
from realisation. Second, refinement of the body and refinement of the output signature have different
consequences for the way the functor may be used. Refinement of the body is a local decision visible to
the programmer who implements the functor and invisible to clients who may want to use the functor.
This allows later changes of representation, etc. In contrast, refinement of the output signature is a
higher-level design decision which is intended to be exploited by clients.

6.3 Hierarchically structured abstract programs

The previous subsection only treated the special case of “flat” abstract programs. i.e. abstract pro-
grams not containing substructures. Substructures provide a way to structure functor bodies into
conceptual units, in additional to the means already provided by functor decomposition. Structuring
functor bodies in this way also gives a corresponding structure to the verification process.

Hitherto we have strictly adhered to a regime of insulating system units from their clients by
means of interfaces (Extended ML signatures). Now, the units of interest are substructures of functor
bodies and their clients are the functor bodies themselves. Syntactically, this naturally leads to the
requirement that Extended ML substructure declarations always explicitly include the Extended ML
signature which the substructure is supposed to fit. Just as before, we view this signature as containing
all the information available about the substructure. Consequently, Extended ML substructures can
be seen as abstractions in the sense of [MacQ 86].

This view of substructures means that we can view them as (calls of) locally-defined parameterless
functors. The verification conditions are thus very much reminiscent of those we stated for functor
decomposition. The only difference is that substructures implicitly import the part of the functor
body which precedes the substructure declaration. There is no interface at this point insulating the

substructure from the details of the preceding code.
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Thus. for an Extended ML functor declaration of the form

functor F(X :S1G;,): SIG,, sharing sharing-decl
= struct

partl
structure A : SIG sharing sharing-declA = STR

part2

end

we have to verify that:

e The structure ST R together with partl entails the signature STG up to behavioural equivalence.
e The structure consisting of partl, part2 and the substructure declaration

structure A : SIG

entails S1G,.,; up to behavioural equivalence.

If S1G,,: contains a substructure A with signature Sleut, then S[G’fut must be a behavioural

consequence of STG.
There is a sense in which the first of these conditions amounts to establishing a lemma which is then

used in checking the correctness of the functor body as a whole in the second condition. Moreover,
this lemma is the only information available about the substructure A while doing this check.

It should be clear that the above functor /' may be rewritten as follows:

functor F(X :S51G;,): SIG,, sharing sharing-decl
= let structure Bl = Partl(X) in
Part2(X, Bl. SubA(X. B1)) end

where Partl, SubA and Part2 are functors defined as follows:

functor Partl(X : SIG,,): PART'1 sharing sharing-decll

= struct partl end

functor SubA(X : SIG,;,, Bl: PART1 sharing sharing-decll) : SIG sharing sharing-declA
= local open Bl
in STR

end

and
functor Part2(X : SIG,,. Bl : PART1,A: SIG sharing sharing-decll U sharing-declA)
: SIG oy sharing sharing-decl
= struct
open Bl
structure A=A
part2

end
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In the above, PART1 denotes an Extended ML signature corresponding exactly to the structure
formed from partl, and sharing-decll describes all of the sharing which arises by construction between
types and values in partl and the input structure X. The names in the sharing declarations must
be adjusted appropriately to make these functor declarations well-formed; for example, references in
sharing-declA to names in partl must be converted into corresponding references to B1.

In the above decomposition of F', all the interfaces fit exactly and so by the results of Section 5 the
universal correctness of F' is ensured if the functors Partl, SubA and Part2 are universally correct.
As in Subsection 6.1, universal correctness of these functors is achieved when they are stable, simply
correct and simply consistent. Under the working hypothesis in Subsection 6.1, and recalling that
Standard ML functors are always simply consistent, we can concentrate on simple correctness. By

Theorem 6.3:
e Partl is (trivially) simply correct;
o SubA is simply correct if SIG;, U PART1 U STR =3 g1
o Part2 is simply correct if STG;, U PART1U SIG U part2 =) §TG, .,

In the last two conditions we have omitted the ugly but formally necessary translations of specifications
to the union signature determined by the ML typechecking rules. The exact formulation would follow
the pattern of Theorem 6.3. The algebraic signatures Zf;:rbA and thr embody the sharing between
the input and output signatures of functors SubA and F respectively.

These considerations result in the following corollary:

Corollary 6.5 Consider an Extended ML functor F' as above together with its decomposition into
functors Partl, SubA and Part2. Suppose that the following verification conditions hold:

1. SIG;, UPART1USTR ") §1¢;
2. §1Gy U PARTTU STG U part2 =*"0) S167,
Then, if Partl, SubA and Part2 are stable and simply consistent then F' is uniwversally correct. O

The assumption of simple consistency for SubA and Part2 hides the requirement that the original
split of the functor body was sensible in the sense that the axioms in ST'R and part2 do not further
constrain types and values introduced already in partl, and likewise for part2 w.r.t. the types/values
of STR.

It is perhaps surprising that conditions 1 and 2 of the above corollary do not by themselves
guarantee the simple correctness of F'. This is because a non-stable part2 may take advantage of
non-observable consequences of STG. This does not cause problems since stepwise refinement using
an appropriate modification of the verification condition in Corollary 6.4 preserves conditions 1 and 2
and ultimately results in stable code. This means that we can start with loose versions of partl,
ST R and part2 which satisfy conditions 1 and 2 (but which may not be stable) and then refine them,
independently if desired, to eventually produce Standard ML code which will yield a universally correct
definition for F.

Structure ST R may be an arbitrary structure expression, not necessarily an abstract program. So
we can decompose ST'R into simpler functors just as in Section 5. Then condition 1 of Corollary 6.5
should be replaced by the appropriate verification condition for the decomposition, with S/G as the
output signature for the decomposition and S{G;, U PART'1 as the input signature.
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We have chosen to view substructures as abstractions, which means that the substructure body
is insulated from the rest of the functor body by its interface. It is possible to consider ordinary
non-abstract structures instead. Then substructures serve only to package collections of type and
value definitions. An explicitly-declared interface may then be useful to summarise the properties of
these types and values, but it is not an absolute barrier between the substructure and the rest of
the functor body. An advantage of using abstract substructures is that we may come back later and

choose another implementation; as long as the interface is unchanged the program will still work.

7 An example

In this section the development of a complete Standard ML program from a high-level Extended ML
specification is exhibited. To keep the proofs simple we will assume that all functions are total (this

is indeed the case in the resulting program).

Informal specification  An inventory control system for a warehouse is required. This should
keep track of the number currently in stock of each item in the warehouse. Items are taken out of
the warehouse one at a time but they may be brought to the warehouse in larger batches. Certain
items in the warehouse are usable as replacements for other items which may be temporarily out of
stock. In case some item is currently out of stock the system should be able to locate an appropriate
replacement item which is in stock.

There is a fixed (but arbitrary) collection of different items which may be stored in the warehouse.

The decision as to which of these items may be replaced by which other items is also fixed but arbitrary.

Step O

The initial formal specification of the required system is given by the following Extended ML functor
heading:

functor Warehouse(I:ITEM) :WAREHOUSE sharing Item = I
where ITEM and WAREHOUSE are Extended ML signatures as follows:

signature ITEM =
sig eqtype item
val replaces : item * item -> bool
axiom replaces(i,i)
end

signature WAREHOUSE =
sig structure Item : ITEM

type warehouse
val empty : warehouse
val put : Item.item * nat * warehouse -> warehouse
val amount : Item.item * warehouse -> nat
val exists_replacement: Item.item * warehouse -> bool
val find_replacement : Item.item * warehouse -> Item.item

val take : Item.item * warehouse -> warehouse
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axiom put(i,0,w) = w
axiom put(i,m,put(j,n,w)) = put(j,n,put(i,m,w))

axiom put(i,m,put(j,n,w)) put(i,n+m,w) if i=j

axiom amount (i,empty) = O

axiom amount(i,put(j,n,w)) amount (i,w)+n if i=j

amount (1,w) if i<>]
axiom exists_replacement(i,w) <=>
exists j. (Item.replaces(j,i) & amount(j,w)>0)
axiom exists_replacement(i,w) =>
(Item.replaces(find_replacement (i,w),1)
& amount (find_replacement (i,w))>0)
axiom amount(i,w)>0 => find_replacement(i,w) = 1
axiom take(i,empty) = empty
axiom take(i,put(j,n,w)) = put(j,n-1,w) if i=j & n>0
= put(j,n,take(i,w)) if i<>j
end

In this specification, values of type warehouse represent states of the warehouse. The empty ware-
house is represented by empty, and the functions put and take update the state of the warehouse by
adding more of an item and by removing one of an item. The functions amount, exists_replacement
and find-replacement may be used for querying the current state of the warechouse. The set of items
which may be stored in the warehouse is taken to be a parameter of the system along with the replaces
relation. By using the Standard ML declaration eqtype itemrather than type itemin the signature
ITEM, we require that item admits equality, i.e. that it comes equipped with the equality function

=:item*item->bool which can be used in code as well as axioms.

Step 1

Design decision (decomposition) We implement put using a function putone which adds just a

single item to the warehouse. Exactly how put is expressed using putone is left open for now.

We need two functors:

Warehouse’ (I:ITEM) :WAREHOUSE’ sharing Item = I
Put (W:WAREHOUSE’) : WAREHOUSE sharing Item = W.Item

where WAREHOUSE’ is just like WAREHOUSE except with
putone : Item.item * warehouse -> warehouse
in place of
put : Item.item * nat * warehouse -> warchouse
and axioms involving put replaced by axioms involving putone, viz:

axiom putone(i,putone(j,w)) = putone(j,putone(i,w))

axiom amount(i,empty) = 0
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axiom amount (i,putone(j,w)) amount (i,w)+1 if i=j

amount (1i,w) if i<>]
axiom take(i,empty) = empty
axiom take(i,putone(j,w)) = w if i=j

= putone(j,take(i,w)) if i<>j

where the axioms for exists_replacement and find_replacement are just as before.

Then we can implement Warehouse in terms of these functors as follows:

functor Warehouse(I:ITEM):WAREHOUSE sharing Item = I
= Put(Warehouse’ (I))

Verification Typechecks okay. All interfaces match exactly so conditions 1-3 of Theorem 5.2 are

satisfied as a consequence of Proposition 3.4. O

Step 2

Design decision (coding) Implement the functor Put hy coding put using putone in the obvious

way.

functor Put(W:WAREHOUSE’) :WAREHOUSE sharing Item = W.Item
= struct structure Item : ITEM = W.Item
open W
fun put(i,0,w) = w
| put(i,n+1,w) = put(i,n,putone(i,w))
end

Verification Typechecks okay. According to Theorem 6.3, we have to show that

sorts(ITEM)

!
WAREHOUSE' U body =4 \nenoysey WAREHOUSE

where body is the body of Put. This follows by Proposition 3.4 since we can show by induction on the
natural numbers that the axioms in WAREHOUSE involving put hold, and the rest hold trivially. O

Step 3

Design decision (decomposition) Decompose Warehouse’ into three functors. The first functor
provides bags (multisets) of items which will be used to represent the contents of the warehouse, the
second functor handles warehouse queries (amount, exists_replacement and find_replacement),
and the third functor combines these to implement Warehouse’.

We need three functors:

Bag(I:SMALLITEM) :BAG sharing Item = I
Queries(B:SMALLBAG,I:ITEM sharing B.Item.item = I.item)
:QUERIES sharing Item = I and warehouse B.bag and amount = B.count
Combine(B:BAG,R:QUERIES sharing B.Item.item = R.Item.item
and B.bag = R.warehouse and B.count = R.amount)
:WAREHOUSE’ sharing Item = R.Item
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where SMALLITEM, BAG, SMALLBAG and QUERIES are as follows

signature SMALLITEM =
sig eqtype item
end

signature BAG =
sig structure Item : SMALLITEM

type bag
val empty : bag
val add : Item.item * bag -> bag
val count : Item.item * bag -> nat
val remove : Item.item * bag -> bag
axiom add(i,add(j,b)) = add(j,add(i,b))
axiom count(i,empty) = 0

axiom count(i,add(j,b)) count(i,b)+1 if i=j
count(i,b) if i<>]

axiom remove(i,b) = b 1if count(i,b)=0

axiom remove(i,add(j,b)) = b if i=j]
= add(j,remove(i,b)) 1if i<>j
end

signature SMALLBAG =
sig structure Item : SMALLITEM
type bag
val count : Item.item * bag -> nat
end

signature QUERIES =
sig structure Item : ITEM
type warehouse
val amount : Item.item * warehouse -> nat
val exists_replacement : Item.item * warehouse -> bool
val find_replacement : Item.item * warehouse -> Item.item
axiom exists_replacement(i,w) <=>
exists j. (Item.replaces(j,i) & amount(j,w)>0)
axiom exists_replacement(i,w) =>
(Item.replaces(find_replacement (i,w),1)
& amount (find_replacement (i,w) ,w)>0)
axiom amount(i,w)>0 => find_replacement(i,w)=1i
end

Then we can implement Warehouse’ in terms of these functors as follows:

functor Warehouse’ (I:ITEM) :WAREHOUSE’ sharing Item = I
= let structure B = Bag(I) in
Combine (B,Queries(B,I)) end
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Verification Typechecks okay. All interfaces fit exactly except that I is used by Bag as a SMALLITEM
so we have to show that ITEM fits SMALLITEM and B:BAG is used by Queries as a SMALLBAG so we have
to show that BAG fits SMALLBAG (both obvious). O

Step 4

Design decision (coding) Implement Combine by changing the names of the values in the input

structure B appropriately.

functor Combine(B:BAG,R:QUERIES sharing B.Item.item = R.Item.item
and B.bag = R.warehouse and B.count = R.amount)
:WAREHOUSE’ sharing Item = R.Item
= struct open R
val empty = B.empty
val putone = B.add
val take = B.remove

end

Verification  Typechecks okay. Note that open R turns all the components of R, including the
substructure Item:ITEM, into parts of the body. It is easy to verify that the axioms of WAREHOUSE’
are implied by the axioms of BAG, QUERIES and the body of Combine. O

Step 5

Design decision (coding) Implement Queries using a function £ind, which finds a suitable re-
placement if there is one, to implement exists_replacement and find_replacement.

functor Queries(B:SMALLBAG,I:ITEM sharing B.Item.item = I.item)
:QUERIES sharing Item = I and warehouse = B.bag and amount = B.count
= struct structure Item : ITEM = I
type warehouse = B.bag
val amount = B.count
val find : Item.item * warehouse -> Item.item
axiom Item.replaces(find(i,w),1i)
axiom (exists j. (Item.replaces(j,i) & amount(j,w)>0)) =>
amount (find(i,w),w)>0
fun exists_replacement(i,w) = amount(find(i,w),w)>0
fun find_replacement(i,w) = if amount(i,w)>0 then i
else find(i,w)

end

Verification  Typechecks okay. According to Theorem 6.3 (and the definition of correctness for
multi-argument functors), we have to show that

sorts(SMALLBAG)Usorts(ITEM

SMALLBAG U ITEMU body |=, (ugares) ) QUERIES

where body is the body of Queries. This follows by Proposition 3.4. O
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OOPS!

One way to implement find involves stepping through the domain of items until an allowable re-
placement is found which is in stock. But this requires adding a function to ITEM, which changes the
original specification. The customer agrees to this change. We can add this now and continue the
development after checking that the steps taken so far are still valid.

Redeclare ITEM to be just like the previous ITEM except with the addition of

val next : item -> item

val iternext : mnat * item -> item

axiom iternext(0,i) = i

axiom iternext(n+1,1) = iternext(n,next(i))
axiom forall i,j. exists n. (n>0 & iternext(n,i)=j)

Here, iternext is a hidden value which is handy for specifying next.

Verification Since the new version of ITEM is stronger than the old version, the only verification

conditions from the previous steps we have to check are those of the form ... = ... ITEM.... In each
case, the specification on the left-hand side of the entailment contains a “matching” occurrence of
ITEM, so this reduces to ITEM = ITEM. 0
Step 6

Design decision (refinement) Refine Queries by coding find as a search through the domain of

items using the function next.

functor Queries(B:SMALLBAG,I:ITEM sharing B.Item.item = I.item)
:QUERIES sharing Item = I and warehouse = B.bag and amount = B.count
= struct structure Item : ITEM = I
type warehouse = B.bag
val amount is B.count
fun find’(i,j,w) = if i=j then i
else if amount(j,w)>0 andalso Item.replaces(j,i)

then j

else find’ (i,Item.next(j) ,w)
fun find(i,w) = find’(i,Item.next(i),w)
fun exists_replacement(i,w) = amount(find(i,w),w)>0
fun find_replacement(i,w) = if amount(i,w)>0 then i

else find(i,w)

end

Verification Typechecks okay. It is routine but messy to prove that the code for £ind (together with
the axioms in ITEM) entails the axioms in the previous version of Queries. Thus by Proposition 3.4

we can apply Corollary 6.4. |
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Step 7

Design decision (coding) Implement Bag using ML’s datatype definition facility. (In practice,
common types such as this one would have one or more pre-verified implementations in the library,
and so this step would consist of selecting one and ensuring that the interfaces match. This might

require renaming input and result types and values.)

functor Bag(I:SMALLITEM):BAG sharing Item = I
= struct structure Item : SMALLITEM = I
datatype bag = empty | add of Item.item * bag
fun count(i,empty) = 0
| count(i,add(j,b)) = if i=j then count(i,b)+1
else count(i,b)
fun remove(i,empty) = empty
| remove(i,add(j,b)) = if i=j then b
else add(j,remove(i,b))

end

Verification Typechecks okay. According to Theorem 6.3, we have to show

sorts(SMALLITEM)

SMALLITEMU body =5/ ba) BAG

where body is the body of Bag.

We can apply Corollary 3.7 to split the axioms of BAG into a set which follow directly from
SMALLITEMU body (i.e. all but the first one) and a set whose observable consequences must be shown
to follow from SMALLITEMU body (the first axiom).

The observable consequences of the first axiom
add(7,add(j, b)) = add(y, add(z, b))
are all the equations of the form
count(k,I'(add(s,add(j,t)))) = count(k,'(add(y. add(7.1))))

where I' is a context of sort bag yielding a result of sort bag. and ¢ is a term of sort bag containing

variables of sort Item.item only.

Lemma From SMALLITEMU body it follows thal for any b, b : bag such that count(i, b) = count(i, b")
for all ¢:

(a) count(i, remove(j,b)) = count(s, remove(y, ')
(b) count(i,add(j,b)) = count(s, add(},d"))
(¢) count(i,add(j,add(k,b))) = count(s, add(k, add(j,d)))

for all 1,7 and k.

45



Proof By cases on i=j, after establishing for (a) that

count(i, remove(j, ")) = count(x,b”) —1 if i=j and count(x,b"”) >0

= count(z,b”) otherwise

for any b”. O

Using this lemma it is easy to show by induction on the structure of the context I' that the desired
equations follow from SMALLITEMU body. O

All functor bodies are now expressed entirely in Standard ML, so we are finished. The functors
appearing in the final program are given above under steps 1, 2. 3, 4. 6 and 7. The following tree

shows the dependencies between the development steps:

Step 0
Initial specification

of Warehouse,

modulo OOPS

Step 1
Decompose into
Put and Warehouse’

T

Step 3
Step 2 .
Decompose Warehouse’ into
Code Put i )
Bag, Queries and Combine
Step 5 \
Step 4 P Step 7
} Abstract code
Code Combine Code Bag

for Queries

Step 6
Refine Queries

8 Conclusions and future work

In this paper we have sketched a methodology for the formal development of programs supported
by the modularisation facilities of Standard ML [MacQ 86|, [HMT 87]. Our starting point was the
specification language Extended ML [ST 85b], [ST 86], [ST 89] which incorporates these facilities.
The present work may be viewed as an adaptation to the Extended ML framework of some of the
ideas in [Sch 86] amalgamated with our ideas on implementation of specifications [S'T 88h] developed
in the context of ASL [SWi 83], [ST 88a]. An important principle which unifies all this work is the

central role of behavioural equivalence in program specification and development.
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We have borrowed from [Sch 86] the technical concepts of universal correctness (Section 4.2) and
simple correctness and stability (Section 6) together with the thesis that it is proper to demand that
stability be guaranteed by the programming language. We have generalised his results on composition
of universally correct functors by allowing interfaces to match up to behavioural equivalence rather
than requiring them to match literally (Section 5). We have also provided some results useful for
proving that interfaces match up to behavioural equivalence (Section 3). Although these results are
sufficient to handle many cases of interest, we regard them as first attempts in this direction; more
work remains to be done here, especially in the context of specifications having a non-trivial structure.

From [ST 88b] we take the concept of constructor implementation and the idea that constructors
play a central role in program development. As hinted in the conclusion of [ST 88b], constructors
correspond to Standard ML functors. In the Extended ML framework developed here we allow such
constructors to be specified before they are actually coded. Implementing an Extended ML functor
heading by functor decomposition amounts to sketching the entire constructor implementation process
for that functor. Because the constructors involved are specified, the correctness of this decomposition
may be verified before any code is written.

In this paper we have considered only a restricted subset of the Standard ML core language,
excluding features like polymorphism which are not directly available within the standard algebraic
framework. A way to circumvent this limitation is to generalise the work presented here to the
framework of an arbitrary institution [GB 84] which formalises the informal concept of an arbitrary
logical system. We can see no obvious obstacles to such a generalisation — in fact, most of the work
has already been done: the basic methodological ideas in [Sch 86] and [ST 88b] were developed to
work in an arbitrary institution, and the institution-independent semantics of (a previous version of)
Extended ML was given in [ST 86]. It remains to ensure that everything fits together properly.

In contrast, the technical results on proving behavioural consequence in Section 3 are very much
specific to the particular institution used here. It would be interesting to investigate the extension
of these results in the framework of institutions enriched with some additional structure, such as so-
called abstract algebraic institutions [Tar 85], [Tar 86a], which would seem to support the concepts
involved.

Once the generalisation to an arbitrary institution is established, we can instantiate it to the
context of an institution which covers all the features of Standard ML. The result would be a framework
to support the development of programs in full Standard ML. Constructing such an institution is a
separate (and very non-trivial) job. There are many features in Standard ML which have not yet been
given an adequate algebraic treatment. Even if they could all be treated separately, it may turn out
to be difficult to combine them in a single institution. This is an example of the general problem of
how to put institutions together addressed in a preliminary way in [GB 84], [Tar 86b] and [HST 89].
It is intriguing to observe that other programming languages can be accommodated in this framework
in a similar way; see [SWa 87] where the modularisation facilities of Standard ML were adapted for
Prolog by instantiating an institution-independent version of ML, modules.

As explained in Section 6, the soundness of our methodology depends on the stability of the target
programming language. This must be checked in detail for the subset of ML, we use in this paper and
for other potential target languages. Even formulating the stability result requires an algebraic-style
semantics for the language, as would be given in the definition of the corresponding institution.

The aims of this work are broadly similar to those of work on rigorous program development by
the VDM school (see e.g. [Jones 80]). VDM is a method for software specification and development,
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based on the use of explicitly-defined models of software systems, which has been widely applied in
practice. However, it lacks formal mathematical foundations and explicit structuring mechanisms.
The RAISE project [BDMP 85] is attempting to fill these gaps. This can be seen as converging
with our current work which builds on formal mathematical foundations with a strong emphasis on
structure of specifications, and attempts to address problems of practical usability. At a technical level,
two advantages of our approach are the use of behavioural equivalence which handles the transition
between data specification and representation in a more general way than VDM’s retrieve functions,
and the use of institutions to obtain independence from the underlying logical framework and target
programming language.

A notion of modular specification related to the one in Extended ML is developed in a series of
papers beginning with [EW 85]. The exact relationship is yet to be investigated. The underlying
semantic notions seem to be close although there are numerous technical differences and the main
issues of concern differ as well. While [EW 85] and later papers mainly discuss the module concept
itself and operations for manipulating modules with compatibility results, in Extended ML these are
taken as given since they are inherited directly from Standard MIL.. Recent work on system development
in that framework [EFHLP 87] builds around notions of realization and refinement which seem to be
based on different intuitions than the ones we try to model here.

The eventual practical feasibility of formal program development depends on the existence of an

integrated support system. There is a need for (at least) the following:

e A parser and typechecker for Extended ML specifications

This would allow specifications to be checked for silly mistakes, and produce abstract syntax
trees in a form suitable for processing by other components of the system. It would also provide
the information on sharing required to generate appropriate verification conditions for refinement
steps.

e A theorem prover

Most proofs encountered in proving properties of specifications and programs are routine, albeit
sometimes long and intricate. This makes them good candidates for automated proof using
methods such as those described in [BM 79], but it is important to have the possibility of
proceeding interactively as in LCF [GMW 79] if automated methods fail.

e A refinement step verifier

Given a refinement step to be verified, a number of conjectures to be proved will be generated
and fed to the theorem prover. If these conjectures can be proved (either automatically or
interactively) then the correctness of the refinement step follows. It will often be unnecessary
to consult the theorem prover since interfaces will match exactly. On the other hand, in case
a conjecture generated while verifying a refinement step turns out to be non-trivial to prove, it
should be possible to leave it aside at least until it becomes apparent that the line of development

is the right one.

e A rapid prototyping capability

In order to ensure that a specification captures all the required properties of a program, it is
important to have some way of exploring its consequences as early as possible in the program
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development process. We do not agree with the idea that the expressive power of the specific-
ation languages should be restricted so as to guarantee that all specifications are “executable”.
However, we can take advantage of the technology developed in systems like OBJ2 [FGJM 85],
REVE [Les 83] and RAP [Hus 85] to allow specifications which happen to be in the appropriate
form to be tested. The consequences of specifications not in this form can be explored using the

theorem prover.

e Environmental tools

An advantage of adopting a specification language which is a variant of Standard ML is that we
will be able to make use of environmental tools for Standard ML (structure editors, version con-
trol, cross-referencing facilities, etc.) as they become available. However, some tools which are
particular to the formal program development enterprise will be needed. including for example

some mechanism for keeping track of verified refinement steps.

Most of the technology on which such a system depends has already been developed so that construct-
ing it would mostly be a matter of applying and integrating existing techniques rather than inventing
new ones.

One thing which is not at all clear is how such a system can be made to accommodate the
instantiation of Extended ML and our program development methodology to different institutions.
It seems clear that some parts of the system are very much specific to particular logical systems. for
example the parser and nearly everything concerned with rapid prototyping. Some other aspects will
generalise easily, for example the refinement step verifier, although it is still open how exactly this
will work in practice. The problem of generalising specific techniques to arbitrary logical systems
has been addressed in a number of other research projects; for example, theorem provers which work
in arbitrary logics include EFS [Gri 87] based on the Edinburgh Logical Framework [HHP 87] and
[sabelle [Pau 86]. The relation between institutions and LF is under investigation; see [HS'T" 89] for

the current status of this work.
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A Two technical lemmas about behavioural equivalence

The following two rather technical facts allow us to prove satisfaction up to behavioural equivalence

in some important specific situations.

!
)
Lemma A.1 Let 1 2 >
!
31 21
ES}LT 2
L2

be a pushout in the category of algebraic signatures. Let OBS1 C sorts(X1) and OBS2 C sorts(X2)
be sets of observable sorts that contain the entire common part X, of X1 and X2, i.e. such that
sorts(11(Xs,)) € OBS1 and sorts(1a(X,,)) € OBS2. Consider Al, Al" € Alg(X1) and A2, A2’ €
Alg(¥2) such that Al‘OBgl = All‘OBgl and AQ‘OBSl = AQ/‘OBSQ, and moreover Al|, = Al'|,
A2, = A2'|&2. Let A, A" € Alg(X) be the amalgamated union of Al and A2 and of Al and A2’
respectively, i.e. A|L; = Al, A|L/1 = A2 and A'|L; = Al A'|L/1 = A2'. Then, if Al =ops1 Al" and
A2 =opss A2' then A =pps A', where OBS = 5(OBS1) U [ (OBS2).

Proof Let X be an OBS-sorted set of variables, and let v : X — |Alogs (= |A'|ops) be a valuation.
By the construction of pushouts in the category of algebraic signatures, for any s € OBS and any
sl € sorts(X1) such that iy(s1) = s (resp., s2 € sorts(X2) such that (j(ss) = s), sy € OBS1 (resp.
sy € OBS2). Consider ¢ € T(X),, s € OBS. We have to prove that t*(v) = t*'(v). We proceed by

induction on the structure of ¢:

Case 1: There is a term ¢; € Ty (X1),, such that /5(s;) = s and &,(¢;) = ¢, where X1 is an OBS1-
sorted set of variables such that X1, C X () for r € OBS1. By an obvious sublemma of

. . A Al A1 A’ A, A1’
the Satisfaction Lemma, t%(v) = ¢, *(vl) = t7 (vl) and t* (v) = ¢, *(vl) =17 (vl) where
vl : X1 — |Allogs: (= |Al'|ops1) is defined by: for r € OBS1, z € X1,, vl (2) = 1)4(.7:). Now,
since Al =pps1 Al', tf]‘(vl) = ¢ (v1), and so indeed t*(v) = tA‘(v).

Case 2: There is a term ¢, € Tsy(X2),, such that ¢ (sy) = s and ¢ (¢;) = ¢, where X2 is an OBS2-
sorted set of variables such that X2, C X () Proof as above.

Case 3: Otherwise, ¢ must have a subterm, which is not a variable, of a sort in ¢(¥,,) which satisfies
one of the above conditions. Without loss of generality, assume that ¢ has a non-trivial subterm
1" € Te(X)y such that there is a term ¢} € Tx;(X1),, where t5(s1) = s and 5(¢}) = ', and X1
is an OBS1-sorted set of variables, X1, C X//Q(T).

We can rewrite t as t[t'/x] where t € Tx(X U {2:5'}),. Now, as in case 1 above, t'*(v) = t/A/(v).
Let o : X U{x:s'} — |Alops (= |A'|oss) be an extension of v given by (x) = #;(v). We
have t4(v) = (i[t'/z])*(v) = i4(5) and t*(v) = ({[t'/=])* (v) = i*($). But by the induction
hypothesis i*(6) = fAl(/[)), and thus t*(v) = tA‘(’u).

O

(Another proof may be extracted from the proofs of Proposition 5.2.2 and 5.3.2 (and Theorem 4.4.6)
in [Sch 86].)
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Lemma A.2 Consider the following commutative diagram:

2)sh7’4p>xQ

(i.e. pit = ). Let SP1,SP2 be specifications with Sig[SP1] = X1 and Sig[SP2] = X2 such that
SP1 EreteEa) §P2 (ihat is, derive from SP1 by 7 =iy 9po) Then, let OBS C

sorts(Xsp.) be a set of observable sorts such that all signature morphisms considered are identities
on OBS, and let A € Alg(Y) be an algebra such that A |=°P° translate SP1 by o. Construct a

pushout: o /
pX X
0o ol
Yshr Y2
§ p

Consider the amalgamated union of A and A‘TW written A + A‘T;g; i.e. the unique Y'-algebra such
that (A4 Alr,)| s = A and (A+ A|ry)|o1 = Alryo. Then, A+ Alr, 77" translate SP2 by ol.
Moreover, if A =ops B and B‘U = SP1, then there exists a ¥'-algebra B' such that B'|, = B,
(A+ A‘T;U) =ops B’ and B"gl E SP2.

Proof Consider an arbitrary Y-algebra B such that B =pgps A and B | translate SP1 by o, i.e.
B|, = SP1. Such an algebra B exists since A =°P% translate SP1 by o. Since SP1 \:;”2”3(”(25”))
SP2, B|m \ZSEOQTtS(p(E‘““)) SP2,1.e. there exists a model C' € Mod[S P2] such that B|T;g =sorts(p(Sonr)) O
In particular, /—?|m = (B|T;0')|p = C|p. Consider the amalgamated union B’ = B + (', i.e. the unique
Y'-algebra such that B'|, = B and B/|01 = (. Clearly, B' |= translate SP2 by o1. To complete

the proof that A 4+ A‘T;g \:()BS translate SP2 by o1, we will show that B’ =pps A + A‘T;g.

By the construction, there exists a unique algebraic signature morphism 7' : ¥’ — ¥ such that the

following diagram commutes:

X2

Zshr
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That is, p';7’ = id and o1:7" = 730,

Warning The following diagram does not commute in general:
!

-
by ﬁ_,E'
P

o
Y1 ol
. T

Esh?‘

pEQ

In general, 7';p" # id. Intuitively, to construct ¥’ we took the signature ¥ and then removed all
identification of symbols coming from Y2 which are not inherited from ¥.,,,.. Consequently, A + A‘m
is just the “same” algebra as A, but with some types and values duplicated rather than shared.

O(Warning)
Sublemma For any Y-algebra D, D|T: =D+ D|T;U.

)

Now, since A =pps B. we also have A

Proof Just notice that (

7’)
-~ =oBs Bl 1.e. (A—I—A‘T;g) =0BS (B—I—B|T;g). However, by
LemmaA.], (R+B|T;o) ESOTtS(Jl(p(ZEhT))) B/ which 1mp]1€s B+B|T;o' =0BS B/ and so A+A|T;o' =0BS B/.
O(Lemma A.2)

ol = D|2’d = D and (

ol :D|01;7’:D|T:a~ a

P =

B Unitary decomposition theorem

Theorem 5.1 Consider an Fxtended ML functor F':
functor F(X :SIG,,): SIG,, sharing sharing-decl = F1(X)
where I'] is a functor with heading:
functor FI1(X :SIGL;,): SIG1,, sharing sharing-decll

Suppose that the definition of F is well-formed according to the Standard ML typechecking rules,
determining a commutative diagmm as in Section 5.1. Suppose the following conditions are satisfied:

quzn ‘_;O{vi: Lin(p(Eenr) QI(Y] n
2. SIG,,, Eyroten ) g1q,,,

Then, if F'1 is universally correct then F' is universally correct.

Proof Let Flysem € Flisem. The corresponding basic semantics of F'. Fisep + Alg(Xi) =2 Alg(Xout)
is defined as follows: for any A € Alg(X:.). Frsem(A) = Flipsem(AlL,) 1

rout - (Since the diagram
3Here, and in similar situations, such a definitional equation implicitly says that the left-hand side is defined if and
only if the right-hand side is defined.
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of Section 5.1 commutes, the fact that Alx,,, = Fien(A)|s,,, follows easily from (A|;, )|z, =
F]‘bSEm(A Tm,) Z)lshr')

Consider any algebraic signature ¥,,,. fitting morphism o : ¥;, — ¥, ,. and ¥, ,-algebra A.
Suppose that A =*"*®e™) translate STG;, by 0. We have to prove that

A‘U € Dom(F) and F.(A[g]) \:SOM(P”V) translate S/G,,; by Flo]

where the signature of F,.s(A[o]) and the morphism F[o] are defined by the pushout:
!
t

out
Yarg = F(Zary[o])
g
S Flo]
lin,

Zshr Eom‘,

Lout

and F,.(Alo]) = A+ Fbsem(A|g) is the amalgamated union as in Section 4.1.

Let the following diagram be a pushout in th(; category of algebraic signatures:

P
E(1,7°g Zlm"g
g
Zm ol
bin,
Zg r Elzn
sh p

romior) € Alg(X1,,4). By Lemma A2, Al \:”m(%rv)
translate S/G1,, by ol. Hence, we can apply F1to A+ A
particular, Al|s1 = (A|s)|r, € Dom(F'1) by universal correctness of /'l and hence A|, € Dom(F).

By definition, we obtain the following pushout /diagram:
1

Consider the amalgamated union Al =4¢ (A4 A

rzo using the fitting morphism o1. In

Sy e F1(S 00y [o1])

ol

Sl 1[o1]
vl

X1 shr T’ X1 out

and the global result of F'1, which is the amalgamated union F1,,..,(Aljol]) = Al + Flygenm(A
(recall that Al |01 =(A+ A

Tzn:,o-)

Tz.n;g)|01 = A|Tm;0). By the universal correctness of F'1,

Fl,.0(Alol]) £ translate ST, by Fl[ol].

We still have to coerce the result to the output signature. Let the following diagram be a pushout:
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F1(X1,4,4[01]) 2
F1[o1]

Xout
o2

I/] out

X]ShT

p

Esh7°

Eout

Lout

Consider the amalgamated union A2 =4¢¢ (F'1,,c5(Al[o1]) + Fl,e5(Alfol])

Lemma A.2, A2 |:S”“(Pe”) translate SIG,,; by o2.
It may be helpful at this point to study the commutative diagram in the category of algebraic

TOuL;Fl[al]) € Alg(ZQ) By

signatures which we have constructed so far:

Lll p/l

Sarg—22 F1(X1 4, [01]) 2
! v ‘
p A
v ) L,
Earg ! F(Xarl0])
o ol
Tin F[O’] 0_2
¥1;,
Lin Llin
Elg o Elou,
7 v o 1out .
A4 Tout
y P
Esh,?" Eout J

bout

By the construction of F(X,,,[c]) as a pushout object, there exists a (unique) morphism 74, :

F(Xa400]) — X2 such that Flo]irp, = 02 and o ;7 = plill 50", We claim that A2|Tfm =

Fyres(Alo]). To verify this, just consider:
(A2|Tf”7) A2 Llout:rq—f”7
(Flgres(Allol]) + Flyes(Alfol])
= Fl,.s(Al[ol])
Ally = A

!
Lout

7nut§F1 [01] )

1. ’ .t
Pl e

pld!
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and

AQ‘

= AQ‘F[U]
A25s
Flgres(Al[o1])] 7501 [01)
(F'1gres(ALlo1]) | F11o17)
Flpsem ( A1|01)
= Flyen(( A‘
= Fhen(A|o)

which proves the claim by the construction of Fy,.s(A[o]) as an amalgamated union.

Tf?n Tfin

Tout

Tout

Ty n Tout

Finally, since A2 |:S°”S(Pe”) translate SI1G,,; by 02, there exists a X.2-algebra B2 such that
B2 =, i5(perv) A2 and BQ‘,,Q E SIG . So Fyes(Alo]) = AQ‘Tﬁn = oris(Perv) BQ‘UM and (BQ‘Tfm)‘F[,,] =
RQ|02 = SIG . Thus, it is indeed the case that F,..,(Alo]) \:‘wm(Perv) translate S1G,,: by Flo].

To verify the additional requirement imposed by universal correctness, consider a ¥,,,-algebra B
such that B =,,,4perv) A and B|g E SIG;,. We have to construct B e Alg(F(Xarg[o])) such that
Bl = B. B =,,,perv) Fyres(Alo]) and B‘F[U] E SI1G,.. The construction parallels the construction

out

of A2|Tfm. Namely:

e By Lemma A.2, there exists a X1,,,-algebra Bl such that Bl
Bl‘al E SIG1,,.

ol = B7 Bl Esorts(Perv) Al and

e Since F'1is universally correct, there exists an F1(X1,,,/01])-algebra BI such that BI
E\l Esorts(Perv) Flgres(Al[al]) and §\1|F1[01] ‘: SlGlout-

Llfmt = Bl,

e By Lemma A.2, there exists a ¥2-algebra B2 such that B2
B2|0—2 |: S]Gout-

pt = B\lv B2 Esorts(Perv?) A2 and

b =
YoutiTfin

O

Finally, let B = B2|., . Then B|p) = B2|pi)iry, = B2|os | S1Gou

ot =
out i

/luL = B2

C Sequential decomposition theorem

Theorem 5.2 Consider an Extended ML functors F':
functor F(X :S1G;,): SIGy sharing sharing-decl = G2(G1(X))

where G1 and G2 are functors with headings:

functor G1(Y1:SI1G1,,): SIG1,, sharing sharing-decll
functor G2(Y2:51G2,,): SIG2,, sharing sharing-decl2

Suppose that the definition of F' is well-formed according to the Standard ML typechecking rules,
determining a commutative diagram as in Section 5.2. Suppose that the following conditions are

satisfied:

1 kS]G”'L ‘_sorts(ulm pL(E ))) b]G .
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2. SIG1,, =yt Ead) grgo,,

3. S1G2 20D 16,
Then, if G1 and G2 are universally correct then so is F'.

Proof The basic semantics for F'is Fpger, @ Alg(X;,) — Pow(Alg(X,.:)) defined as follows: for any
A€ Alg(zm)7

Frsem(A) = { A2 | A2 € G2p5em (Al ) for some Al € glbsm(A‘Tm)}

Tout Tinter

or, with a slight abuse of notation,

Tout ‘ G] bsem € g]bsem and GQbsem S ngsem}-

Tinter )

7—in)

Consider any algebraic (argument) signature X,,, and fitting morphismo : ¥;, — X,,,. Proceeding
exactly as in the proof of Theorem 5.1, except this time repeating the basic construction twice, we

obtain the following commutative diagram in the category of algebraic signatures:

fbsem(A) = {GQbsem(G] bsem(A
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12! p

Y202 2(32400[02]) ¥3
v
p2’v
bllout ' ;
g G1( Sy [o1]) Tin
v
p] ! A
v ) )
Earg out F(EM’Q[O.D
o ol
G1[o1] o2
Ein
G2[o2]
Tin
o3
Elin
Llin
Llout F[O-}
X1 shr Y1 out
lin, Tinter
222'71
pl inn
ZQshr I/QOUt 22out
pQ Tout
Eshr Lout Zout /

In the above, the following diagrams are defined to be pushouts in the category of algebraic signatures
(each pushout is presented by naming the nodes on its two paths; the last morphism in each path

results from the pushout construction):

o Zshr — Ein - Zarg - Z1(17'_(] and
Zshr - lehr — Elm - Zlar,qv

o Yy, — ¥l — X4y — GL(X1,,,[0l]) and
leh,r — Elom‘, — Gl(zﬂﬁ”g[albt

o Yy — Mlgp — Yl — G1(X1,,,[01]) — X2,,, and
ZS;W — ZQS}M, — 22271 — 22

args
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o N2, > N2 — X2, — G2(X2,,,[02]) and
ZQshr — EQout - GQ(EQQTg[O-Q])v

o Yy — X2, — X2, — G2(X2,,,[02]) — X3 and
Zshr — Zout — 23

o ZShT — Ezn - Zarg — F(Ea’r’g[a}) and
Xshr — Your = F'(Yarg[o]),
and then 74, @ FI(X,,,[0]) — X3 is the unique algebraic signature morphism such that

!

T = plind! p2'2) p and Flolitsin = 03.

sorts(Perv)

Now, consider any ¥,,,-algebra A such that A |= translate S7G;, by o. For any choice of

Glysem € Glisem and G2pse, € G215, we proceed as follows:
Al =45 (A+ A|7m;0) € Alg(X1,,,),
then Al |:50”5(Pe”) translate SIG1;, by ol by Lemma A.2.

Glyres(Al[o1]) =ges (AL + Glisem (Alr,0)) € Alg(G1(ELarg[a1])),

then G1,,..5(Al[ol]) \:”m(Pe”) translate S1G1,,; by G1[o1] by universal correctness of G1.
A2 =45 (Glyes(Alol]) + Glbsem(A‘Tm;,,)) € Alg(X2,,4),
then A2 |:””5(Pe”) translate S1G2;, by 02 by Lemma A.2.

rinic))

then G2,,.5(A2[02]) \:SMS(PGN) translate S1G2,,; by G2[c2]| by universal correctness of G2.

Tzn:,o')) Tout) € Alg(23a79)7
then A3 |:””5(Per") translate S/G,,; by 03 by Lemma A.2.

G2gres(A2002]) =ies (A2 + G2sem (G lasem (A rinter) € Alg(G2(X241,[02]))

A3 —def (GQgTes(AQ[UQD + GQbsem(Glbsem(A

Moreover, we can verify that (A3|Tfm)|/0m = Aand (A3 |7f1n)
which shows that A|g € Dom(F'). We conclude:

Tin)

Tinter )

Flo] = GQbsem (Glbsem ((A |0)

Tout?

Fyes(Alo]) E2"7Pe™ translate S1G,., by F[o].

Finally, let B € Alg(¥a,y) such that B =,,perv) 4, B‘g E SIG;,. In parallel with the above

construction we can show the existence of the following algebras:

o Bl € Alg(X1,,,) such that B1|p1/ = B, Bl =, pis(perv) Al and Bl|01 E SIG1;, (by Lemma A.2).

e Ble Alg(G1(X14,4[01])) such that Bl ar,
STG1,y (by universal correctness of G'1).

= B17 E\ Eso’mfs(Perv) Glgres(Al[o-H) and E‘i|G1[c71} ‘:

o B2 ¢ Alg(X2,,,)such that B2|,0 = ]/—?T, B2 =,,,45(perv) A2 and BQ|(,2 = S1G2;, (by Lemma A.2).

o B¢ Alg(G2(X2,,4[02])) such that B2 2 = B2, B2 =orts(Perv) (12gres(A2[02]) and B2
S1G2,,: (by universal correctness of G2).

@202 =
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e B3 € Alg(X3) such that B3|, = E\Q, B3 =,,i5perv) A3 and 33‘03 = S1G,u (by Lemma A.2).

Let B = BS‘TW,. Similarly as in the proof of Theorem 5.1, it is easy to verify that B .., = Band

E |F[0} |: S]Gout- |

D Parallel decomposition results

Proposition 5.3 Consider Extended ML functors G1 and G2 with headings

functor G1(Y1:S5/G1,,): SIG1,,: sharing sharing-decll
functor G2(Y2:51G2,,): SIG2,,: sharing sharing-decl?

Let G112 be the functor formed by collapsing G1 and G2 as defined in Section 5.3. Then G12 is
universally correct provided that G1 and G2 are.

Proof The semantics of (G12, as defined in Section 5.3, may be restated as follows: for any
Glosemn € Glpsem and G2pserm € G2p5em, there is a corresponding basic semantic function G124, :
Alg(X12;,) = Alg(X12,,:) such that for any A € Dom(G12), G1245e,, (A) is the unique ¥12,,,-algebra
defined by
GlQbsem(A) clout — Glbsem(A

clm) and G12bsem(A) 2out — Gstem(A

czin)'

This is well-defined. since

Glpsem (Aler,) [otimieritons = (Glosem (A
= ((A
= Al

A P2interit2inic2in

((A 627:7;,) LQm)

(G2sem (Al c2,,)

= G2sem (A

To verify that for any A € Alg(X12;,), A|2125hr = G125 (A) |2125hr, it is enough to notice that:

(G12sem (A) 1200 ) et = GL2bserm (A) |1 30120
(12500 (A)
(G120 (A)
Glpsem (A
= (A
= (A

C11n)

llin) |plznter

lout ) ‘ plinter

Clin)

interitliniclin

P2inter

i2o0ut ) ‘ 02inter

(52171) ‘ P2inter;t2out *

Louticlout
clout )

Clin) dout

lym — A

tLout

Clvn) tloniclin = A

512171)

clenr;tl2em

clepyr
and similarly

(G12sem (A) 1200 ) |20, = (Ai12,,)
Consider an arbitrary Glisen, € Glisen, and G250 € G250 and let G120, € G1245,, be the

corresponding basic semantic function for G12.

2spyt

Consider any algebraic signature ¥,,,, fitting morphism o : ¥12;, — ¥,,, and ¥,,,-algebra A such
that A |:SZ°:;¢:(P6”) translate S/(G12;, by o. Let B be any ¥, -algebra such that B =,,45(perv) A and
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B‘U = S1G12;,. We have to show that A‘U € Dom(G12) and to construct a G12(X,,,[o])-algebra B
such that E‘d?ﬁm = B, B = orts(perv) (1125,c5(Afo]) and B|G12[U] E S1G12,, (this also implies that
(12,05 (Alo]) =275 translate ST1G12,,; by G12[0]).

In the following diagram, dashed arrows denote morphisms constructed in the course of the proof

below.

//Q'Out
G](an[din;g})— - _'GQ(Gl(ZaM[Clmv D[ngmg Llout])
"t

™

, Tfig

Ejﬂ“g— - —‘ o _’G]Q(TZ:TQ[U]) ‘ \

G2|c2ip5001! ] ‘

c? 12 ‘

12t 39, Y240 T‘

Clm

\ / - |

Y1 Y12p, ‘

4
C2out

LlQout
Llin
019}17’ 212 _ _ _ )

ou

21 Clout innter

len‘

21ouzf

K p]rinter S0,

By the definition of SIG12;,. Bla,,.. = SIG1;,. Hence, we can safely apply G1 to A via the fitting
morphism ¢l;,;0 1 ¥1;, — ¥,,,, and the universal correctness of G'1 ensures that Al.,, ., € Dom(G1)
and that there exists a G1(X,,,[c])-algebra B1 such that B1 ar,. = B, Bl =,6perv) Gl yres(Alclin;o])
and Bl‘Gl[cha] E STG,y,.

It follows that B1 |CQ ot = B |62m;0 = S1G2;,, and so we can safely apply G2 to G1,,.,(A[clin:0])
via the fitting morphism (‘2m,(f !
that G'l,,c5(Alclin;o ])|cgmml
algebra B2 such that

ut © 224 — G1(X44]clin:o]). Universal correctness of (G2 ensures

€ Dom(G2) and that there is a G2(G1(X,,4[clinio])[c2imi0:1],])-

out

e B2

L2:)ut = Bl.’
o 32 Esorts(:Perv) GQQT&S(GlgTES(A[CIan })[02271;0- Llout]); and

¢ B2|G2[62m;0;tlﬁm] = STG20y.

64



Now, since we have

plnﬂ‘ﬁmblmn‘ Gl[ ma };LQ’

out

lew Ll?ﬂa017n 0-61 2

out

/ !
= PtheT-,LQmaCQm-,O—Ll Lzout

= innter;LQOut;GQ[CQin;O—Llin]
by the construction of ¥12,,; as a pushout object, there exists a unique morphism

T ZlQOut — GQ(Gl(Earq[ D[CQ“MU Llnm‘])

such that
clowt;m = Glel ol /,2;7“ and 2 outiT = G’Q[ch;m/l;n].
Then, since we have:
Plintericlsny 124507 Llout,LQOut = pliptertlinicliy;o; olout,LQOut

= plinterstlon;Gllclinio]32)
= plinteritlousiclonsT
Plintersclsne;t1 200657
and similarly

/ !
p2inter ;CQShT L122n ;U;Llout;LQ(mt = innteT :,C25hr ;L120ut 5T

by the construction of ¥12,;,, as a pushout object,

112,50, 1’ L2 = 112,47,

out?

Hence, by the construction of G12(X,.,[o]) as a pushout object. there exists a unique morphism
Trin : G12(X004[0]) — G2(GL(Eary[0])[2in;0; Llout})

such that (12 i1, = (10,52, and G12[o];74i, = 7.

Claim: G24res(Glyres (Alclingo])[2ins0; Llout])|

In particular, this implies that A|, € Dom(G'12).
To verify the claim, we check that the reducts of the left-hand side to ¥,,, and X12,,; (via //12;1“5
and (712[o] respectively) are A and G’]Qbsem(%wg) (and that G’]Qbsem(A|J) is defined):

(G2 s Olgree (AleLini o) [2inia ] ) oy )12,
= (2ea (O (Alel o)) 2ol )
= Glyu(Alelyo])
= A

= (12,05 (Al0)).

Tfin

(1

. 1
out7&20ut

1!

out

Then, since

((G2res( Glyres(Alelinio))[€2insoil ] ) v )| G12007 )| 2
= G205 Glyes(Alclinio))[2in0ll ]
- GthFTn ( Glgrﬁs‘(A[617'n; ] )
- GQbsem A| |02m

out

7 [ 7] /1out1

c2imiol! oul

and
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((G2res( Glgres(Alelinio])[2inso301 0] ) |70 )| 612101 ) |,
G2res( Gl yres(Alclino])[2in;oi15,] )|
- Glgrﬁs( A[Clm; ‘(Vl [elin;o]
- Glbsem A| |{’1m .
we conclude that A|, € Dom(G12) and

[eleniolii2l,,,

(G2res( Glygres(Alelinio])[2inioi015] )| 7100 ) | G120 = G1205em (A[)

which proves the claim.

Now, consider B =def /7)2|7fm- We have

d B|z12’ .= BQ|¢12/ =B2\y o =B,
ou o

out’"“out

utiTfin
L B Esoﬂs(Perv) Gl?gTES(A[O-])7 since B2 Esorts(Perv) GQgres(Glgres(A[Clin;a})[02777aa- Llout])v and
° §|G12[U] = S1G12,,, since

— (B2
- (E’\Glz[o})

clout — BQ‘Gl[clm;a];ng = Bl‘G][C1,‘n;(T1 ‘: S]Glom‘,a and
2out — BQ‘G2[CQ7W;U;L1;ut] |: SIGQout-

This completes the proof of the proposition. O
Theorem 5.5 Consider an Extended ML functor F:

functor F(X :SI1G,,): SIG,, sharing sharing-decl = GO(G1(X), G2(X))
where GO, G1 and G2 are functors with headings:

functor GO(YO01:S/G01,,,Y02: S1G02,, sharing sharing-constrQ) : ST1G0,,

sharing sharing-decl
functor G1(Y1:S1G1;,): SIG1,, sharing sharing-decll
functor G2(Y2:S51G2;,): SIG2,,; sharing sharing-decl2

Suppose that the definition of F is well-formed according to the Standard ML typechecking rules,
which determine algebraic signature morphisms as described in Section 5.3. Suppose that the following
conditions are satisfied:

/ ((1) S’T(En |_;olrt: in (0" (B4, )))Usorts(t1in (plinter (E0com))) S]G]m
(b) S]Gzn |_s‘07’7‘9 /2m( “(Z”h )))Uenrfs(/an(pQMLter(Eocom S]GZML

9 (Cl) S]Glmn ‘_;norlfc 10145, (p0'(E2,,)))Us07t5(101 com (E0com ) SIGOlm
(b) S]GQOut ‘_;oorzts 1025 (p O“(Eghr)))Usorts(LOZCom(EOcom)) S]GOQZH

? g[ﬁoout |_so7°ts E hr gIGout

Then, if GO, G1 and G2 are universally correct then so is F.

Proof We show that the conditions above imply the corresponding conditions of Corollary 5.4. The
third conditions are the same in both cases. As for the other two:
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1. S]Gm ‘:;nlrgjr(bﬂQm(/)(zshr))) S]G12m
Consider any A € Mod[SIG,;,]. We have to construct a ¥12;,-algebra B such that

A Tin =s0rt8(112in(p(Senr))) B and B ‘: S]Gl?m.

By assumption la, there exists Bl € Mod[SIG1;,] such that

A ‘71”1 Esoﬂfs(/,]m(p’(z’shr)))u.eorts(ﬂm(/ﬂmter(ZOCom))) B1.

Similarly, by assumption 1b, there exists B2 € Mod[S1G2;,] such that

A ‘T?m Esorts(ﬂm(p”(E'S’hT)))Usorts(ﬂm(p2”,,f,er(20com))) B2.

It follows that

B1|Plznter§41in = A|plznter§tlin§71in = A|02inter¥2in§72in = '82‘921nter§l21n'

Hence, we can construct the amalgamated union of B1 and B2, i.e. the unique ¥12;,-algebra B
such that B|.,, = Bl and B‘Cgm = B2. By the definition of S1G12;,, B |E S1G12,,. Moreover,
since A|;,, is the amalgamated union of A1, and A|:s,,, by Lemma A.1 we have

A|Tm Esom‘s(clin(zlin(p’(Eihr))))Usorts(ch(zQin(p”(Zi’hr))):)U.“ B

which implies

A

Tin Esnrtﬁ(ﬂ?m(p(xshr))) B.

- SIG]QOMS ‘:gooit:(ﬂ(ﬂo(z,qh,r))) SIGozn
Consider A € Mod[STG12,,;]. We have to construct a ¥.0;,-algebra B such that

A Tinter Eswts(/,Om('pO(th,r‘))) B and B ‘: S[Gozn

By the definition of STG12,,;, A
Mod[STGO01,,] such that A‘ﬂmtmdom = s0rts(10Ln(p0(S!, )))Usorts(i01 com(E0com)) B1- Similarly, by
assumption 2b, there exists B2 € Mod[S1G02;,] such that

low: | STG1,y:, and so by assumption 2a, there exists Bl €

/4|7'2””57;620ut Esorts(tOQm(pO”(E’S’hT)))Usorts(uO?com(ZOCom)) B2.

As in the previous case, we can construct the amalgamated union B € Alg(X0;,) of Bl and B2
and then show that B = S1G0;, and A

Fonter =s0rts(10(p0(Sp,))) B
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