
Toward formal development of ML programs:foundations and methodology�| Preliminary versiony |Donald Sannella Andrzej TarleckiLaboratory for Foundations of Computer Science Institute of Computer ScienceDepartment of Computer Science Polish Academy of SciencesUniversity of Edinburgh WarsawAbstractA formal methodology is presented for the systematic evolution of modular Standard MLprograms from speci�cations by means of veri�ed re�nement steps, in the framework of theExtended ML speci�cation language. Program development proceeds via a sequence of design(modular decomposition), coding and re�nement steps. For each of these three kinds of steps,conditions are given which ensure the correctness of the result. These conditions seem to be asweak as possible under the constraint of being expressible as \local" interface matching require-ments. Interfaces are only required to match up to behavioural equivalence, which is seen as vitalto the use of data abstraction in program development.
Copyright c
 1989 by D. Sannella and A. Tarlecki. All rights reserved.�An extended abstract of this paper will appear in Proc. Colloq. on Current Issues in Programming Languages, JointConf. on Theory and Practice of Software Development (TAPSOFT), Barcelona, Springer LNCS (1989).yA later version will take into account the recent changes to ML described in [HMT 88]. The relevant changesconcern mainly functors with multiple arguments. i



Contents1 Introduction 12 An overview of Extended ML 43 Behavioural equivalence 94 Semantics of functors 144.1 Standard ML functors : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 144.2 Extended ML functors : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 164.3 Multi-argument functors : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 195 System design: functor decomposition 215.1 Unitary decomposition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 215.2 Sequential decomposition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 235.3 Parallel decomposition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 245.4 Modular decomposition: the general case : : : : : : : : : : : : : : : : : : : : : : : : : 306 System design: re�nement of abstract programs 326.1 Simple correctness and stability : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 326.2 Abstract programs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 356.3 Hierarchically structured abstract programs : : : : : : : : : : : : : : : : : : : : : : : 367 An example 398 Conclusions and future work 469 References 49A Two technical lemmas about behavioural equivalence 54B Unitary decomposition theorem 56C Sequential decomposition theorem 59D Parallel decomposition results 63
ii



1 IntroductionThe ultimate goal of work on algebraic speci�cation is to provide a formal basis for program develop-ment to support a methodology for the systematic evolution of programs from speci�cations by meansof veri�ed re�nement steps.In this paper we present such a methodology aimed at the development of programs in the Stand-ard ML programming language [HMM 86], [Har 86]. We are interested particularly in the semanticand foundational underpinnings of modular program development and in formulating precise condi-tions which ensure the correctness of re�nement steps, rather than in informal rules governing goodprogramming practice. We build on previous work on the foundations of algebraic speci�cations,on behavioural equivalence, on notions of speci�cation re�nement, on the wide-spectrum program-ming/speci�cation language Extended ML, and on data abstraction in modular programming. Inthis introduction we will brie
y review these topics and then give an overview of the methodologyas presented in this paper. We assume that the reader is familiar with the basic algebraic notions ine.g. [GTW 78] (cf. [BG 82]). In this introduction we also assume a passing acquaintance with theterminology of Standard ML, to be introduced in Section 2.Algebraic speci�cationsThe most fundamental assumption in work on algebraic speci�cation is the view of software systemsas algebras, abstracting away from details of algorithms and code and focussing on data representationand functional behaviour of programs. A speci�cation is a document describing some class of algebras,de�ning in this indirect way which programs are acceptable as realisations. So whatever speci�cationformalism we use, we assume that any speci�cation SP determines an algebraic signature Sig[SP ]and a class of algebras Mod[SP ] over this signature, called the models of SP . No further assumptionsare needed for most purposes. We view the use of equational logic and initial algebra semantics (as in[GTW 78] and [EM 85]) as just one possible choice which happens to be very convenient for certainpurposes, e.g. rapid prototyping of speci�cations via term rewriting. See [SWi 83], [ST 85a] and[ST 88a] for details of this point of view.Behavioural equivalenceIt may be argued that a software system should be accepted as a realisation of a speci�cation SPas long as it \behaves like" a model of SP even if it does not satisfy SP exactly. This intuition maybe made precise by introducing an appropriate notion of behavioural equivalence of algebras. Thenthe interpretation of SP may be relaxed modulo this behavioural equivalence. Various notions ofbehavioural equivalence have been studied in [GGM 76], [Rei 81], [GM 82], [ST 87], [NO 88] andelsewhere; the idea goes back at least to work on automata theory in the 1950's [Moo 56].Speci�cation re�nementA theory of formal program development by stepwise re�nement of speci�cations requires a precisede�nition of the notion of re�nement and when a re�nement step is considered to be correct. In thefollowing paragraph we summarize the work on this topic presented in [ST 88b]; other relevant papersinclude [GB 80], [Ehr 82], [EKMP 82], [GM 82], [Wand 82], [Gan 83], [Lip 83], [Ore 83] and manyothers.Intuitively, re�ning a speci�cation corresponds to making design decisions, thus restricting theclass of acceptable models. The simplest notion of re�nement of one speci�cation SP1 to another1



SP2 would only require inclusion of model classes, i.e.Mod[SP2] �Mod[SP1]. A more realistic viewinvolves a construction � taking models of SP2 to models of SP1; we write SP1 ����> SP2. Here,a construction is just a function � : Alg(Sig[SP2]) ! Alg(Sig[SP1]) between classes of algebras;examples include forgetting types/values and free extension (subsuming extension of an algebra by\code"). Using these so-called constructor implementations, the program development process consistsof a sequence of consecutive implementation steps:SP0 �1���>SP1 �2���> � � � �n���>SPnwhere SP0 is the original high-level speci�cation of requirements. Then, the composition of construc-tions �n; � � � ;�2;�1 forms a \parameterised program" (cf. [Gog 84]) which implements SP0 in terms ofSPn.1 This assumes that the class of constructions is closed under composition. If SPn is a speci�ca-tion for which a realisation An is already available, then the application of this composed constructionto An yields a realisation of SP0.Extended MLWe have proposed the speci�cation language Extended ML [ST 85b], [ST 86] as a vehicle forformal development of programs in the programming language Standard ML. Extended ML is basedon the modularisation facilities for Standard ML proposed in [MacQ 86], which are designed to allowlarge Standard ML programs to be structured into modules with explicitly-speci�ed interfaces. InExtended ML these are enhanced by allowing more information in module interfaces (axioms in MLsignatures) and less information in module bodies (axioms in place of code in ML structures andfunctors). Standard ML forms a subset of Extended ML, since Standard ML datatype and functionde�nitions are just axioms of a certain special form. Thus Extended ML is a wide-spectrum languagein the spirit of CIP-L [Bau 85]. The semantics of Extended ML is de�ned in terms of the primitivespeci�cation-building operations of the ASL kernel speci�cation language [SWi 83], [ST 88a].Data abstraction in modular programmingA general theory of modular program development using data abstraction, incorporating ideasgoing back to [Hoa 72] and [Par 72], is presented in [Sch 86]. The main issue, referred to as \thecorrectness problem of data abstraction", is why it is possible for the implementor of a speci�cation toprovide a realisation which is correct only up to behavioural equivalence, while users of the result mayview it as if it satis�ed the speci�cation exactly. A very rough explanation of this apparent paradoxis that users are not able to take advantage of the properties which distinguish \exact" models of aspeci�cation from their behavioural approximations. It is argued that this property, called stability,should be required of any programming language designed to support data abstraction.A technical framework to deal with this phenomenon is developed in [Sch 86] which copes not justwith behavioural equivalence but more generally with any so-called \representation relation". In thispaper we borrow many of the concepts and results formulated there, applying them in our contextwhere we deal with behavioural equivalence only.The central observation which led us to the ideas presented in the current paper was that Stand-ard ML functors may be used to code constructions in the above sense. Additionally, Extended ML1Please note that semicolon denotes function composition here, not sequential composition of commands. Also,�1; : : : ; �n are functions which operate on algebras, not on data values.2



allows us to specify such constructions before they are actually coded. ML's modularisation facilitiesare designed to guarantee their composability by analogy with function composition. This gives riseto a view of program development which is more complex but also methodologically more appealingthan the one presented in [ST 88b].A programming task is presented as an Extended ML functor heading, i.e. an Extended MLsignature SPn specifying structures to which the functor may be applied, and an Extended MLsignature SP0 specifying the required result structure. Recall that Extended ML signatures maycontain axioms. Rather than proceeding from SP0 to SP1, and then from SP1 to SP2, : : : , and thenfrom SPn�1 to SPn as described above, we take a more global view with development steps of thefollowing kinds:Design step: Sketch the implementation process SP0 �1���> SP1 �2���> � � � �n���>SPn without coding theconstructions �1, : : : , �n. This gives rise to speci�cations of functors �1, : : : , �n which are thenviewed as separate programming tasks in their own right to which the same methodology applies.The composition of these functors results in a construction which implements SP0 in terms ofSPn. The design may have a more complex structure than this linear notation suggests, sincefunctors may have multiple arguments and the same functor may be used in di�erent places.Coding step: Code a construction by providing a functor body in the form of an encapsulatedstructure containing type and value de�nitions. It is also possible to use an \abstract program"here, i.e. an Extended ML functor body containing axioms.Re�nement step: Further re�ne abstract programs in a stepwise fashion by providing successivelymore concrete (but possibly still non-executable) versions which �ll in some of the decisions leftopen by the more abstract version.The paper is organized as follows. Section 2 gives an overview of the modularisation facilities ofthe Standard ML programming language and reviews the main features of and motivations behindthe Extended ML speci�cation language. This is mainly included in order to make this paper self-contained. Section 3 recalls the notion of behavioural equivalence and introduces the new notion ofbehavioural consequence which plays a basic role in veri�cation conditions ensuring the correctness ofdevelopment steps. Some preliminary results are given for proving behavioural consequence betweenloose speci�cations; as far as we know this topic has not been directly addressed in the literature.Section 4 presents the semantics of Extended ML functors; this is di�erent from the previous versionpresented in [ST 85b]. The concept of universal correctness of an Extended ML functor with respectto its interface speci�cations is introduced following [Sch 86]. A functor is universally correct if itproduces a result which satis�es the output interface up to behavioural equivalence whenever it isgiven an argument satisfying the input interface up to behavioural equivalence.Sections 5 and 6 present the methodology of program development. Section 5 discusses design stepsin which a functor is de�ned by decomposition into a collection of simpler functors. Three simple butrepresentative special situations are studied and veri�cation conditions ensuring the correctness ofthe decomposition are formulated and proved sound. The general case is also discussed. The longestproofs from this section are left to the appendices. Section 6 is about coding and re�nement steps.Following [Sch 86], we present universal correctness as the conjunction of three properties: simplecorrectness, simple consistency and stability. A functor is simply correct if it produces a result whichsatis�es the output interface up to behavioural equivalence whenever it is given an argument which3



exactly satis�es the input interface (recall that for universal correctness, arguments which only satisfythe input interface up to behavioural equivalence must also be considered). A further di�erence isthat universal correctness takes account of the global environment in which the functor is used. Assuggested above, stability is assumed to be ensured for Standard ML functors since Standard ML isdesigned to support data abstraction, and simple consistency holds for any program. We formulateveri�cation conditions which guarantee simple correctness of directly coded functors and functorsproduced by successive re�nement steps. Thus, once a �nal Standard ML functor is obtained it willbe simply correct, simply consistent and stable, and hence universally correct.Section 7 presents an example of the application of this methodology. It is not intended to displayall of the most subtle points discussed in the paper, but rather to demonstrate how a software systemmay be developed bymeans of a series of mostly very routine steps. Section 8 contains some conclusionsand discusses areas for further research.2 An overview of Extended MLThe aim of this section is to review the main features of and motivations behind the Extended MLspeci�cation language in an attempt to make this paper self-contained. A more complete introductionto Extended ML is given in [ST 85b]. The version of Extended ML used in this paper is di�erentin certain details from the one presented in [ST 85b] and [ST 86] but the general motivation andideas and the overall appearance of speci�cations remains the same. The changes which have beenintroduced were motivated by the methodological issues to be discussed in this paper. We indicatethe speci�c points of di�erence in this section; a revised formal semantics will be given in [ST 89].Although the examples below will contain bits of Standard ML code, the reader need not beacquainted with the features and syntactic details of Standard ML itself. It will be su�cient to knowthat a sequence of Standard ML declarations de�nes a set of types and values, where some values arefunctions and others are constants. A complete description of the language appears in [Mil 86], anda formal semantics is in [HMT 87].2Extended ML is based on the modularisation facilities for Standard ML proposed in [MacQ 86].These facilities are designed to allow large Standard ML programs to be structured into modules withexplicitly-speci�ed interfaces. Under this proposal, interfaces (called signatures) and their implement-ations (called structures) are de�ned separately. Every structure has a signature which gives the namesof the types and values de�ned in the structure. Structures may be built on top of existing structures,so each one is actually a hierarchy of structures, and this is also re
ected in its signature. Componentsof structures are accessed using quali�ed names such as A.B.n (referring to the component n of thestructure component B of the structure A). Functors3 are \parameterised" structures; the applicationof a functor to a structure yields a structure. A functor has an input signature describing structuresto which it may be applied, and an output signature describing the result of an application. A functormay have several parameters. It is possible, and sometimes necessary to allow interaction between dif-ferent parts of a program, to declare that certain substructures (or just certain types and/or values4)in the hierarchy are identical or shared. This issue will be discussed later in this section.2A new version of this semantics [HMT 88] incorporates changes to ML which have not been taken into accounthere. The main changes of relevance here concern functors with multiple arguments.3Functors were called modules in an early version of [MacQ 86] and in [ST 85b]. Category theorists should note thatML functors have no morphism part, and that ML supports no explicit notion of morphism between structures.4Standard ML does not support sharing declarations for values. Extended ML supports this on the grounds that it4



An example of a simple program in Standard ML with modules is the following:signature POSig =sig type elemval le : elem * elem -> boolendsignature SortSig =sig structure Elements : POSigdatatype sequence = empty | cons of Elements.elem * sequenceval sort : sequence -> sequenceendfunctor Sort(PO : POSig) : SortSig =struct structure Elements = POdatatype sequence = empty | cons of Elements.elem * sequencefun insert(a,empty) = cons(a,empty)| insert(a,cons(b,s)) = if Elements.le(a,b)then cons(a,cons(b,s))else cons(b,insert(a,s))fun sort empty = empty| sort(cons(a,s)) = insert(a,sort s)endstructure IntPO : POSig =struct type elem = intval le = op <=endstructure SortInt = Sort(IntPO)Now, SortInt.sort may be applied to the sequenceSortInt:cons(11; SortInt:cons(5; SortInt:cons(8; SortInt:empty)))to yield SortInt:cons(5;SortInt:cons(8;SortInt:cons(11; SortInt:empty))):In this example, the types of the values sort and insert in the functor Sort are inferred by the MLtypechecker; the type of sort must be as declared in the signature SortSig while the value insert islocal to the de�nition of Sort since it is not mentioned in SortSig. Certain built-in types and valuesare pervasive| that is, they are implicitly a part of every signature and structure. In this example, thepervasive type int is used together with the pervasive value <= (i.e.�). The pervasive types and valuesmay be regarded as forming a structure Perv which is automatically included as an open substructureof every signature and structure (\open" means that a component n of Perv may be accessed usingis easier and more uniform to treat types and values in the same way.5



the name n rather than the name Perv.n). The declaration datatype sequence = : : : de�nes a newtype sequence having as values all terms built using the constant empty : sequence and the functioncons : Elements.elem * sequence -> sequence (empty and cons are called constructors). Thisallows us to de�ne insert and sort by cases using empty and cons for case selection and variablebinding.The information in a signature is su�cient for the use of Standard ML as a programming lan-guage, but when viewed as an interface speci�cation a signature does not generally provide enoughinformation to permit proving program correctness (for example). To make signatures more useful asinterfaces of structures in program speci�cation and development, we allow them to include axiomswhich put constraints on the permitted behaviour of the components of the structure. An example ofsuch a signature5 is the following more informative version of the signature POSig above:signature POSig =sig type elemval le : elem * elem -> boolaxiom le(x,x)axiom le(x,y) & le(y,x) => x=yaxiom le(x,y) & le(y,z) => le(x,z)endThis includes the previously-unexpressible precondition which IntPO must satisfy if Sort(IntPO) isto behave as expected, namely that IntPO.le is a partial order on IntPO.elem.Axioms are expressions of type bool. Using such an expression as an axiom amounts to an assertionthat the value of the expression is true for all values of its free variables. Axioms may be built usingfunctions such as &, => and <=> and quanti�ers such as exists and forall (with the usual precedencesof these symbols), and the function = may be used to compare values of any type. This is equivalentto using �rst-order equational logic. Of course, Standard ML code will not contain quanti�ers or use= except on types which admit equality according to Standard ML.Formal speci�cations can be viewed as abstract programs. Some speci�cations are so completelyabstract that they give no hint of an algorithm (e.g. the speci�cation of the inverse of a matrix A asthat matrix A�1 such that A� A�1 = I) and often it is not clear if an algorithm exists at all, whileother speci�cations are so concrete that they amount to programs (e.g. Standard ML programs, whichare just equations of a certain form which happen to be executable). In order to allow di�erent stagesin the evolution of a program to be expressed in the same framework, we allow structures to containa mixture of ML code and non-executable axioms. Functors can include axioms as well since they aresimply parameterised structures. For example, a stage in the development of the functor Sort mightbe the following:functor Sort(PO : POSig) : SortSig sharing Elements=PO =struct structure Elements = POdatatype sequence = empty | cons of Elements.elem * sequencefun append(empty,s) = s| append(cons(a,s1),s2) = cons(a,append(s1,s2))5We retain the term \signature" although this new version of POSig looks much more like a theory or speci�cationthan a signature (as these words are used in algebraic speci�cation). We will use the term algebraic signature to referto ordinary many-sorted signatures. 6



fun member(a,empty) = false| member(a,cons(b,s)) = if le(a,b) andalso le(b,a)then true else member(a,s)val insert : Elements.elem * sequence -> sequenceaxiom member(a,insert(a,s))axiom insert(a,s) = append(s1,(cons(a,s2)))=> append(s1,s2) = s& (member(a1,s1) => Elements.le(a1,a))& (member(a2,s2) => Elements.le(a,a2))fun sort empty = empty| sort(cons(a,s)) = insert(a,sort s)endIn this functor declaration, the function sort has been de�ned in an executable fashion in terms ofinsert which is so far only constrained by an axiom. The sharing constraint sharing Elements=POin the functor heading asserts that the substructure Elements of the structure built by the functor isidentical to the actual parameter structure.In Standard ML and in the version of Extended ML described in [ST 85b] and [ST 86], the interfaceof a functor is taken to be the signatures in the heading augmented by inferred sharing (sharing byconstruction in [MacQ 86]). For methodological reasons which will be clari�ed in later sections, weview the interface of a functor as containing no more information than is explicitly given in the functorheading. (This means that functors in Extended ML are actually parameterised abstractions in thesense of [MacQ 86].) Sharing constraints of the kind used in the heading of Sort (which actually playthe role of sharing declarations here) help to make this regime work in practice.Standard ML allows signatures to include sharing constraints which refer to the external structureenvironment [HMT 87]. We will assume that Extended ML signatures used as functor result speci�c-ations do not include such references to external structures. This assumption is purely for simplicityof presentation; our methodology (including all correctness results) can be extended to handle thiscase. Signatures with such external references are not really necessary anyway since any Standard MLsystem of functors may be transformed to the form we require by including the external structures inquestion as explicit functor parameters.Extended ML is the result of extending the modularisation facilities of Standard ML as indicatedabove, that is by allowing axioms in signatures and in structures. Syntactically, the only signi�c-ant change apart from the new kind of sharing declaration discussed above is to add the constructaxiom ax to the list of alternative forms of elementary speci�cations (i.e. declarations allowed inside asignature body) and elementary declarations (declarations allowed inside a structure body). We alsoallow signatures to contain hidden types and values which sometimes must be added to specify othertypes and values. We draw a box around hidden types and values (and the axioms which specifythem) as syntactic sugar for ML's local declaration construct. Signatures and structures both denoteclasses of algebras.6 To be more exact, each signature or structure determines a many-sorted algebraicsignature where sorts are type names and operation names are value names and the typing of valuesdetermines the rank of operation names. Because of type de�nitions like type t = s in structuresand sharing constraints in signatures, in general there may be several names for a single type or value.6The standard notion of algebra is not su�cient to handle features of Standard ML such as polymorphism, higher-order functions or exceptions | see comments at the end of this section on this point.7



We cope with this by assuming that the names which occur in the algebraic signature associated witha structure or signature are unique internal semantic-level names which are associated with one ormore external identi�ers which may appear in Extended ML text. Two types or values share i� theyhave the same internal identi�er. A structure or signature determines the class of algebras over itsassociated (internal) algebraic signature which satisfy its axioms; recall that code in structures is justa sequence of axioms of a certain special form.The role of signatures as interfaces suggests that they should be regarded only as descriptionsof the externally observable behaviour of structures. This amounts to not distinguishing betweenbehaviourally equivalent algebras in which computations produce the same results of \external" types.(See [ST 87] for more motivation for the use of this notion here and for muchmore technical detail.) Inthe version of Extended ML in [ST 85b] and [ST 86] this led us to de�ne the semantics of signaturesby �rst obtaining the class of algebras which \literally" satisfy the axioms and then behaviourallyabstracting (closing under behavioural equivalence with respect to a certain �xed subset of the typesin the signature) to obtain the class of algebras which \behaviourally" satisfy the axioms (cf. [Rei 84]).In the current version of Extended ML we use di�erent technicalities to implement these ideas. Thesemantics of signatures does not include the behavioural abstraction step; axioms in signatures aretreated literally, just as in structures. When a signature is used as an interface, behavioural abstractionis invoked to relax its interpretation. The advantage of this treatment is that the types which are tobe regarded as external depend on the context in which the signature is used. This extra 
exibilityturns out to be crucial for the methodology we develop in this paper. See the sequel for details.As was outlined in [ST 86], Extended ML is actually entirely independent of Standard ML (al-though not of Standard ML's modularisation facilities, which we regard as separate from Standard MLitself). This is due to the fact that the semantics of Extended ML in [ST 86] was parameterised byan arbitrary institution [GB 84] which means that we are free to adopt any logical system for writingspeci�cations. (More precisely, we can select any notion of algebraic signature, algebra and axiom andany de�nition of the satisfaction of an axiom by an algebra, provided that a few simple consistencyconditions hold.) This not only allows us to use any desired speci�cation style (taking equations, �rst-order formulae or maybe Horn clauses as axioms and taking ordinary many-sorted algebras, continuousalgebras or perhaps polymorphic error algebras as algebras) but also to adopt any programming lan-guage with an algebraic-style formal de�nition for writing code. We are not going to follow this linein this paper: we present our ideas in the framework of total many-sorted algebras with �rst-orderequational formulae as axioms as above, using a purely functional subset of Standard ML withoutpolymorphism or higher-order functions for writing code. This is mainly to take advantage of thereader's intuition and to simplify some technicalities. We discuss in the conclusion how the conceptswe develop may be generalized to an arbitrary institution.The above paragraphs sketched some of the main ideas behind the formal semantics of Exten-ded ML [ST 86], [ST 89]. The detailed treatment of the external/internal identi�er distinction andsharing, a consequence of Standard ML's naming conventions, makes the semantics a little involved.In this paper we will not belabour this distinction: external names will be implicitly identi�ed withtheir corresponding internal names when convenient. Because internal names are used to keep trackof sharing, this means that sharing is implicitly taken into account as appropriate. The semantics isde�ned entirely in terms of the ASL kernel speci�cation language [SWi 83], [Wir 86], [ST 88a]. Thismeans that work in the context of ASL on implementation or re�nement of speci�cations [ST 88b],observational and behavioural equivalence [ST 87] and proving theorems in speci�cations [ST 88a]8



provides a rich theoretical background for the methodology we present here.3 Behavioural equivalenceIn the previous section we mentioned the notion of behavioural equivalence in connection with programinterfaces (Extended ML signatures). Intuitively, we don't care exactly how a program works if weare going to use it as a component in a larger system; we only care about the behaviour the programexhibits, where the behaviour is determined just by the answers which are obtained from computationsthe program may perform. We say (informally) that two �-algebras are behaviourally equivalent withrespect to a set OBS of observable sorts if it is not possible to distinguish between them by evaluating�-terms which produce a result of observable sort. For example, suppose � contains the sorts nat, booland bunch and the operations empty:! bunch , add:nat ; bunch ! bunch and 2:nat ; bunch ! bool(as well as the usual operations on nat and bool), and suppose A and B are �-algebras withjAbunch j = the set of �nite sets of natural numbersjBbunch j = the set of �nite lists of natural numberswith the operations and the remaining carriers de�ned in the obvious way (but B does not containoperations like cons, car and cdr). Then A and B are behaviourally equivalent with respect to fboolgsince every term of sort bool has the same value in both algebras (the interesting terms are of the formm 2 add(a1; : : : ; add(an; empty) : : :)). Note that A and B are not isomorphic.The idea of behavioural equivalence may be formalized as follows.De�nition 3.1 Let � be a many-sorted algebraic signature with a distinguished set OBS � sorts(�)of observable sorts. Suppose A, B are �-algebras with jAjs = jBjs for all s 2 OBS . A and Bare behaviourally equivalent with respect to OBS, written A �OBS B, if for any term t of a sort inOBS containing only variables X of sorts in OBS and any valuation v:X ! jAjOBS (= jBjOBS),tA(v) = tB(v) (we use the notation tA(v) for the value of t in A under v).There is a model-theoretic formulation of this de�nition due to [Sch 86] (Theorem 4.4.6, p. 244):Lemma 3.2 Given an algebraic signature � with a distinguished set OBS � sorts(�) and �-algebrasA and B, A �OBS B i� there exists a sorts(�)-sorted relation R = hRs � jAjs � jBjsis2sorts(�)which is the identity on sorts in OBS and which satis�es the usual congruence property: for anyf : s1�� � ��sn ! s in �, if ha1; b1i 2 Rs1 ; : : : ; han; bni 2 Rsn then hfA(a1; : : : ; an); fB(b1; : : : ; bn)i 2 Rs.2 This model-theoretic criterion is useful for proving that two speci�c algebras are behaviourallyequivalent. However, in formal program developmentwe are rarely faced with this problem. Rather, wewant to know that a certain loose speci�cation (which may have many non-isomorphic models) matchesanother loose speci�cation up to behavioural equivalence. That is, given two loose speci�cations SP1and SP2 over the same signature and a distinguished set OBS of observable sorts, we want to provethat SP2 is a behavioural consequence of SP1 with respect to OBS in the following sense:De�nition 3.3 Let � be an algebraic signature with a distinguished set of observable sorts OBS �sorts(�). Let SP1 and SP2 be speci�cations over �, let A be a �-algebra, and let K be a class of�-algebras. 9



� A satis�es SP2 up to behavioural equivalence with respect to OBS, written A j=OBS SP2, if thereexists an algebra B 2 Mod[SP2] such that A �OBS B.� K satis�es SP2 up to behavioural equivalence with respect to OBS, written K j=OBS SP2, ifevery algebra in K satis�es SP2 up to behavioural equivalence w.r.t. OBS.� SP2 is a behavioural consequence of SP1 with respect to OBS, written SP1 j=OBS SP2, ifMod[SP1] j=OBS SP2.A typical situation which involves proving behavioural consequence is checking whether an Exten-ded ML structure �ts an Extended ML signature. Since the signature is viewed as an interface de�ningthe externally observable behaviour of the structure, we do not require that the structure satis�es theaxioms in the signature literally, but only up to behavioural equivalence with respect to an appropriateset of observable sorts. For top-level structures the sorts corresponding to pervasive types are takenas observable. For structures occurring inside functor bodies, it is appropriate to take additionallysome sorts in the functor parameters as observable. In both cases, we require the signature (whichis a speci�cation) to be a behavioural consequence of the structure (which is a speci�cation as well),except that we permit the algebraic signature associated with the structure to be \larger" than theone associated with the signature; more on this point later.As far as we know, the important problem of proving that one speci�cation is a behavioural con-sequence of another has not been addressed directly in the literature although of course the \pointwise"characterization of behavioural equivalence given in Lemma 3.2 may be used in proving facts of thiskind and some related material may be found in [Gan 83], [ST 87] and [NO 88]. The work of Reichel[Rei 84] on a logic for behavioural validity seems relevant here as well. The following results addressthis problem by giving proof-theoretic su�cient conditions for behavioural equivalence. More workneeds to be done here but the theorems below cover the most obvious cases including those which arenormally considered in work on algebraic speci�cation. These results may be viewed as reformula-tions of known connections between behavioural equivalence, terminal models, and characterisationsof formulae which hold in the terminal model of a speci�cation.Let us consider two speci�cations SP1 and SP2 over the same algebraic signature � (i.e. Sig[SP1] =Sig[SP2] = �) and a set OBS � sorts(�) of observable sorts. First, notice that behavioural con-sequence is weaker than ordinary consequence. Although trivial, this result treats the most commoncase and so it is worth stating:Proposition 3.4 If SP1 j= SP2 then SP1 j=OBS SP2. 2In order to formulate further results we have to recall some standard notation and terminology.For any sorts(�)-sorted set X of variables, T�(X) denotes the sorts(�)-sorted set of �-terms withvariables X. If x is a variable of a sort s 2 sorts(�) such that x 62 X then T�(X [ fx:sg) is theset of contexts for sort s. For any context � 2 T�(X [ fx:sg) and term t 2 T�(X)s, �(t) denotesthe term resulting from � by substituting t for all occurrences of x. A substitution (of terms withvariables Y for variables X) is a sorts(�)-sorted map � : X ! T�(Y ), where Y is a sorts(�)-sortedset of variables. For any term t 2 T�(X), t[�] 2 T�(Y ) denotes the term with variables Y resultingfrom t by substituting �(x) for each occurrence of every variable x 2 X.A conditional �-equation with variables X is a closed formula of the form8X: (î2I ti = t0i)) t = t010



where t; t0 2 T�(X)s for some s 2 sorts(�), I is an arbitrary set of indices, and for i 2 I, ti; t0i 2 T�(X)sifor some si 2 sorts(�). We say that a conditional equation of the above form has premises of observablesorts if for all i 2 I, si is observable (i.e. si 2 OBS); we say that it is observable if it has premisesof observable sorts, the conclusion is of an observable sort (i.e. s 2 OBS) and all variables are ofobservable sorts (i.e. Xr = ; for r 62 OBS).For any conditional equation ' of the above form with premises of observable sorts, observableconsequences of ' are de�ned \syntactically" as observable conditional equations of the form8Y: (î2I ti[�] = t0i[�])) �(t[�]) = �(t0[�])where Y is a set of variables of observable sorts (i.e. Yr = ; for r 62 OBS), � 2 T�(Y [ fx:sg)s0is a context of an observable sort s0 2 OBS for the sort s of t and t0, and � : X ! T�(Y ) is asubstitution. The set of all observable consequences of ' will be denoted by ObsCon('). For any set� of conditional equations with observable premises, the set ObsCon(�) of observable consequencesof � is de�ned \pointwise", i.e. ObsCon(�) = S'2�ObsCon(').Now, the idea is that a �-algebra A satis�es a set of conditional equations with observable premisesup to behavioural equivalence if and only if it satis�es its observable consequences in the usual sense.This is the essence of the following theorem:Theorem 3.5 Consider two speci�cations SP1 and SP2 over the same algebraic signature � anda set OBS � sorts(�) of observable sorts. Suppose that SP2 is given as a set � of conditional�-equations with observable premises. Then SP1 j=OBS SP2 i� SP1 j= ObsCon(�).Proof For the \only if" part, note that the observable consequences of a conditional equation areindeed consequences of it in the usual sense and, moreover, observable consequences of a conditionalequation with observable premises are \observable" (if two �-algebras are behaviourally equivalentw.r.t. OBS then they satisfy exactly the same observable conditional equations).For the \if" part, consider an arbitrary model A 2 Mod[SP1]. From the assumption we haveA j= ObsCon(�). We have to construct a �-algebra Z which is a model of SP2, i.e. Z j= �, andwhich is behaviourally equivalent to A.Consider the class of �-algebras which are generated by their carriers of observable sorts and whichare behaviourally equivalent to A. It is well-known that this class contains a terminal algebra Z (cf.e.g. [BPW 84]). Z may be constructed as follows:1. Consider the subalgebra hAiOBS of A generated by jAjOBS. The carriers of hAiOBS may bede�ned as follows:jhAiOBSjs = ftA(v) j t 2 T�(Y )s; Y is a set of variables of observable sorts; v : Y ! jAjOBSg:2. De�ne the Nerode congruence on hAiOBS, i.e. the sorts(�)-sorted congruence �= such that for anys 2 sorts(�) and any a; a0 2 jhAiOBSjs, a �=s a0 if and only if for all contexts � 2 T�(Y [ fx:sg)of an observable sort, where Y is a set of variables of observable sorts, and all valuationsv : Y ! jhAiOBSjOBS, �(a)hAiOBS(v) = �(a0)hAiOBS(v):(Here, �(a)hAiOBS(v) stands for �hAiOBS (v̂), where v̂ is the extension of v to Y [ fx:sg given byv̂(x) = a, and similarly for �(a0)hAiOBS (v).) It is easy to see that the relation �= so de�ned is acongruence, and moreover, that it is the identity on observable sorts.11



3. De�ne Z as the quotient of hAiOBS by �=.It easily follows from the above construction that A �OBS Z. So, to complete the proof it isenough to show that Z j= �. Suppose that this does not hold. That is, for some ' 2 � of the form8X: (î2I ti = t0i)) t = t0there is a valuation v : X ! jZj such that (ti)Z(v) = (t0i)Z(v) for all i 2 I, but tZ(v) 6= t0Z(v). Bythe construction of Z, there is a set Y of variables of observable sorts, a valuation w : Y ! jZj and asubstitution � : X ! T�(Y ) such that for x 2 X, �(x)Z(w) = v(x). Then for all i 2 I, (ti[�])Z(w) =(t0i[�])Z(w), and (t[�])Z(w) 6= (t0[�])Z(w). Hence, there exists a context � 2 T�(Y 1 [ fx:sg) andvaluation u : Y 1 ! jZj, where Y 1 is a set of variables of observable sorts (we can assume that Y andY 1 are disjoint), such that �((t[�])Z(w))A(u) 6= �((t0[�])Z(w))A(u). Let w [ u : Y [ Y 1 ! jZj be theunion of the valuations w and u. Then, in the algebra A, for all i 2 I, (ti[�])A(w[u) = (t0i[�])A(w[u),and �(t[�])A(w[u) 6= �(t0[�])A(w[u). That is, A does not satisfy the following observable consequenceof ': 8Y [ Y 1: (î2I ti[�] = t0i[�])) �(t[�]) = �(t0[�])which contradicts the assumption that A j= ObsCon(�). 2The condition that the axioms in SP2 have observable premises is essential here; there are well-knownexamples of conditional equational speci�cations with non-observable premises which do not have aterminal model as used in the above proof. The same assumption appears in [GM 82] and [BW 82];we can see no way to avoid this either.An important special case of the situation when SP2 is given as a list of conditional equations withobservable premises is when there are no premises at all, i.e. when SP2 is given as a list of equations.Corollary 3.6 Consider two speci�cations SP1 and SP2 over the same algebraic signature � and aset OBS � sorts(�) of observable sorts. Suppose that SP2 is given as a set � of �-equations. ThenSP1 j=OBS SP2 i� SP1 j= ObsCon(�). 2In practice it is often the case that some of the axioms of the speci�cation SP2 may be proveddirectly from the speci�cation SP1. Then there is no need to look at their observable consequences:Corollary 3.7 Consider two speci�cations SP1 and SP2 over the same algebraic signature � anda set OBS � sorts(�) of observable sorts. Suppose that SP2 is given as a set � of conditional �-equations with observable premises. Let � = �1 [ �2. Then, if SP1 j= �1 and SP1 j= ObsCon(�2)then SP1 j=OBS SP2.Proof Trivially follows from Theorem 3.5, since observable consequences are consequences in theusual sense. 2Counterexample The assumption that all the premises in the conditional axioms in � are ofobservable sorts is essential in Corollary 3.7, i.e. we cannot allow conditional equations with non-observable premises even in �1. Consider: 12



� = �Bool [sorts s; obsopns a; b : sc; d : obsf : obs! sOBS = fobs; boolg�1 = fa = b) true = falseg�2 = ff(c) = a; f(d) = bgSuppose now that SP1 is a �-speci�cation which ensures that all its models interpret the Booleanpart in the standard way, and moreover, in all models of SP1 the equality a = b does not hold. Butsuppose that there are models of SP1 in which c = d holds.Then, SP1 j= �1 and also SP1 j= ObsCon(�2), since there are no observable consequences of theequations in �2. However, SP1 6j=OBS �1 [ �2: if B is a model of SP1 such that cB = dB then nomodel of �1 [ �2 is behaviourally equivalent to B. 2As we mentioned earlier, checking that an Extended ML structure STR �ts an Extended ML signa-ture SIG involves proving behavioural consequence between two speci�cations over di�erent algebraicsignatures. According to the Standard ML matching rules, STR may contain more components thenSIG, hence the algebraic signature �STR associated with STR may be larger than the algebraic signa-ture �SIG associated with SIG. Moreover, because STR is permitted to share more than SIG requires,the real requirement is that a quotient of �SIG is a sub-signature of �STR. It is important to decidewhich of the two algebraic signatures will provide the operations we can use to build observable terms.It turns out that the appropriate choice is almost always �SIG .De�nition 3.8 Given two speci�cations SP1 and SP2, an algebraic signature morphism�:Sig [SP2]!Sig [SP1], and a set of sorts OBS � sorts(Sig [SP2]), we say that SP2 is a behavioural consequence ofSP1 with respect to OBS via �, written SP1 j=OBS� SP2, ifderive from SP1 by � j=OBS SP2where, as in [ST 88a], for any speci�cation SP 0 and �: � ! Sig [SP 0], derive from SP 0 by � is aspeci�cation with semantics given by:Sig [derive from SP 0 by �] = �Mod[derive from SP 0 by �] = fA0 � j A0 2 Mod[SP 0]gwhere A0 � is the �-reduct of the algebra A0.Another possibility would be to consider a set of observable sorts OBS 0 � sorts(Sig[SP1]), andde�ne SP1 j=OBS 0� SP2 () SP1 j=OBS 0 translate SP2 by �where, as in [ST 88a], for any speci�cation SP and �:Sig[SP ]! �0, translate SP by � is a speci�c-ation with semantics given by:Sig [translate SP by �] = �0Mod[translate SP by �] = fA 2 Alg(�0) j A � 2 Mod[SP ]g:We have chosen the more permissive of the two possibilities:13



Fact 3.9 Given two speci�cations SP1 and SP2, an algebraic signature morphism �:Sig[SP2] !Sig [SP1], and a set of sorts OBS � sorts(Sig [SP2]),if SP1 j=�(OBS) translate SP2 by � then derive from SP1 by � j=OBS SP2:Proof LetA1 2Mod[SP1]. Since SP1 j=�(OBS) translate SP2 by �, there existsB1 2 Alg(Sig[SP1])such that B1 ��(OBS) A1 and B1 2 Mod[translate SP2 by �], that is, B1 � 2 Mod[SP2]. Since re-duct functors preserve behavioural equivalence (this follows from Fact 5 of [ST 87]), A1 � �OBS B1 �,so A1 � j=OBS SP2, which completes the proof. 2Notation In the rest of this paper we write SP1 j=OBSSig[SP2] SP2 or even SP1 j=OBS SP2 since � willbe unambiguously determined by the context and the way that names are handled in the semanticsof Extended ML. We use a similar convention for individual algebras. If A 2 Alg(Sig[SP1]), we writeA j=OBS SP2 to denote A � j=OBS SP2.The following well-known fact (proved for equations in [BG 80] and for sentences of �rst-orderequational logic in [GB 84]) allows us to use Proposition 3.4, Theorem 3.5 and Corollaries 3.6 and 3.7to prove behavioural consequence between speci�cations over di�erent signatures as well:Lemma 3.10 (Satisfaction Lemma) If �: �! �0 is a signature morphism, ' is a closed �-formulaand A0 is a �0-algebra, then A0 j= �(') i� A0 � j= '. 2As a consequence of this, Proposition 3.4 may be used to check that SP1 j=OBS SP2 (notation asin the above de�nition), if SP2 is given by a list of axioms over Sig[SP2]. This is always the caseif SP2 is an Extended ML signature without hidden types or values. We translate these axioms toSig[SP1] and show that they hold in any model of SP1. Similarly, Theorem 3.5 and its corollaries maybe used by translating the observable consequences of axioms in SP2 to Sig[SP1] and proving thatthey hold in any model of SP1. Our de�nition allows the set of observable consequences of axioms inSP2 to be formed in Sig[SP2] which is more permissive than forcing them to be formed in Sig [SP1]after translating the axioms (this would correspond to the other choice for behavioural consequencementioned above).This is just a special case (but an important one) of the general problem of proving behaviouralconsequence between structured speci�cations. For example, the above comments do not apply dir-ectly to the situation when SP2 has a non-trivial structure. More on this topic may be found in[Far 89]. Appendix A contains two technical lemmas which will be used later to prove satisfaction upto behavioural equivalence in some important speci�c situations.4 Semantics of functors4.1 Standard ML functorsConsider a Standard ML functorfunctor F (X : SIGin) : SIGout sharing sharing-decl = BODYThe Standard ML signatures SIGin and SIGout determine algebraic signatures �in and �out, respect-ively. These are not disjoint in general. Their common part �shr = �in\�out with signature inclusions14



�in : �shr ,! �in and �out : �shr ,! �out expresses the sharing requirements sharing-decl in the functorheading. The internal names used in �out other than those inherited from �in are new.Since BODY is just Standard ML code, it determines the basic semantics of the functor F asa function Fbsem : Alg(�in) ! Alg(�out) which for any algebra A 2 Alg(�in), builds an algebraFbsem(A) 2 Alg(�out) such that Fbsem(A) �shr = A �shr .The complete picture is a bit more complex. The argument for F may be a much larger structureSTRarg with algebraic signature �arg, which may in addition contain more sharing than required by thefunctor input signature. The matching rules of the language (which are the same for Extended ML asfor Standard ML) will determine an algebraic signature morphism � : �in ! �arg. Any identi�cation �makes on �in must be preserved when the functor F is applied to STRarg. The following technicalitiescapture this idea.For any algebraic signature morphism � : �in ! �arg, the translation of �arg by F via �, writtenF (�arg[�]), and the translation of � by F , written F [�], are such that the following diagram�arg F (�arg[�])� -�0out
�shr �out� -�out 6F [�]6��in6[�inis a pushout in the category of algebraic signatures (where all the hooked arrows represent algebraicsignature inclusions).For those who dislike the simplicity of the language of category theory, let us point out that thesignature F (�arg[�]) may be constructed as the disjoint union of the signature �arg and the di�erence(�out n �shr) with ranks of operations renamed accordingly. Then F [�] is the union of the inclusionof (�out n �in) into F (�arg[�]) and the morphism � restricted to �shr.Any �arg-algebra A may be \�tted" as an argument for the functor F using the morphism �:namely, A � is a �in-algebra to which we can apply Fbsem. The requirement on Fbsem ensures thatFbsem(A �) �shr = (A �) �shr . Thus, there exists a unique F (�arg[�])-algebra Fgres(A[�]) (the amal-gamated union of A and Fbsem(A �) | cf. [EM 85], [ST 88b]) such that� Fgres(A[�]) �arg = A, and� Fgres(A[�]) F [�] = Fbsem(A �).We refer to the F (�arg[�])-algebra Fgres(A[�]) as the global result of the application of F to A (alongthe �tting morphism �).Again, Fgres(A[�]) may be constructed more explicitly by combining its components in A andFbsem(A �).The global result of functor application is \larger" than indicated in Section 2. We expect astructure over the output signature as a result. However, as mentioned above, the sharing betweenthose components of the actual parameter that occur in the output must be preserved. Thus, the resultof applying F to A (along the �tting morphism �), written Fres(A[�]), is the reduct Fgres(A[�]) F [�](�out)15



of the global result to the signature F [�](�out) which is the image of the output signature �out underthe signature morphism F [�].In the above presentation of functor semantics, we have adopted what may be thought of asa \local" view of the algebraic signature �arg and algebra A, in which they model the structure towhich the functor is actually applied. There is an alternative \global" view, suggested by the fact thatwe develop a modular Standard ML program by de�ning a collection of interrelated structures. Theresulting structure environment may be viewed as a single structure having all the top-level structuresas substructures. Its algebraic signature is the union of the algebraic signatures of the individualstructure components, and the algebra it denotes is the amalgamated union of the algebras denotedby the components. With this in mind we may interpret the algebra A and its algebraic signature �argin the above as representing this whole structure. It seems to be necessary to adopt this view sincesharing may take place between two separate structures in the environment, and thus some structurewhich is not included in the actual parameter explicitly passed to a functor may nonetheless providesome additional means of manipulating values of the shared types.4.2 Extended ML functorsThe semantics of Standard ML functors in the previous subsection may be carried over to Extended MLfunctors as well, but we have to cope with a few additional issues.Consider an Extended ML functorfunctor F (X : SIGin) : SIGout sharing sharing-decl = BODYRecall that SIGin, SIGout and BODY may contain axioms, and so are in fact speci�cations withalgebraic signatures �in = Sig[SIGin], �out = Sig[SIGout] and �body = Sig[BODY ], respectively, andclasses of modelsMod[SIGin] � Alg(�in),Mod[SIGout] � Alg(�out) and Mod[BODY ] � Alg(�body),respectively. The comments in the previous subsection concerning the relationship between �in and�out still apply. Moreover, we have an algebraic signature morphism � : �out ! �body (this allows thebody to contain more components than required by the output signature and for extra sharing betweenthe components the output will contain) and an algebraic signature inclusion �b : �shr ,! �body suchthat the following diagram commutes: �body�shr �out� -�out6[�b @@@@@I �(the only way that the output can share with the input is via the body). Note that, as in Standard ML,the input is not automatically included in the body and so �in \ �body may be a proper subsignatureof �in (but by the above assumption, �body has to contain �shr = �in \ �out).As with Standard ML functors, we require that the shared part of the input is preserved by thebody. In particular if �in is a subsignature of �out then this constraint means that we force thebasic semantics of Extended ML functors to be persistent [EM 85]. This was a trivial requirementfor Standard ML functors since Standard ML code does not allow the programmer to modify theinput. In Extended ML, however, this may lead to inconsistency since the body may impose newrequirements on the input. 16



The basic semanticsFbsem : Alg(�in)! Pow (Alg(�out)) of the above ExtendedML functor assignsto any �in-algebra a class of �out-algebras determined by BODY such that for any A 2 Alg(�in):Fbsem(A) = fB � j B 2Mod[BODY ] and B �in\�body = A �in\�bodyg.The domain of F is de�ned as follows:Dom(F ) = fA 2 Alg(�in) j Fbsem(A) 6= ;g.In the following, we will identify the function Fbsem with the family of all the partial functions Fbsem :Alg(�in)�!Alg(�out) such that Fbsem(A) is de�ned exactly when A 2 Dom(F ) and then Fbsem(A) 2Fbsem(A). Hence, Fbsem(A) will stand for an arbitrary algebra in Fbsem(A). We will refer to bothFbsem and any Fbsem as basic semantic functions, where the context and the font will determine whichnotion is being used.Note that for any Fbsem 2 Fbsem and A 2 Dom(F ), A �shr = Fbsem(A) �shr , as with Standard MLfunctors. In fact, if BODY contains only Standard ML code, then the family Fbsem has exactlyone element Fbsem, which is the basic semantics of the corresponding Standard ML functor. Thus,the above de�nition of the basic semantics of Extended ML functors properly generalises the basicsemantics of Standard ML functors. The only di�erence is that in Extended ML the code need not beexecutable, and it need not de�ne the result unambiguously (it may even be inconsistent, in which caseno result exists). Just as before, we can extend each of the basic semantic functions Fbsem 2 Fbsem tothe partial semantic functions Fgres and Fres operating on any algebra matching the input signature.The result of applying F to an Extended ML structure STR matching �in via a �tting morphism� : �in ! Sig[STR] determined by the ML matching rules is a speci�cation with semantics de�ned\pointwise": Sig[F (STR)] = F [�](�out)Mod[F (STR)] = fFres(A[�]) j A 2 Mod[STR] and Fbsem 2 Fbsemg.Notation For any Extended ML functorfunctor F (X : SIGin) : SIGout sharing sharing-decl = BODYwe use all the notation introduced above without recalling it explicitly. For example, �in will alwaysdenote Sig[SIGin], �shr will denote �in \�out, Fbsem is the family of basic semantic functions de�nedabove, and so on. We will also feel free to modify the above notation by using indices, primes, etc.The above basic semantics of Extended ML functors completely disregards the fact that signaturesmay contain axioms and indeed takes account only of the axioms given in the functor body. Axioms instructures and functor bodies in Extended ML play the role of non-executable code. This is in contrastwith the axioms in the signatures, which are important only as speci�cations of the (executable or not)code. Rather than take them into consideration when de�ning the above \operational" semantics offunctors, we introduce a notion of correctness meant to model the intuitive idea that functors shouldful�ll the requirements stated in their headings.For a functor to be correct we will require that if the input structure satis�es the requirementsimposed by the input signature then the functor produces result structure(s) which satisfy the require-ments stated in the output signature. As we have indicated previously, axioms in signatures shouldbe considered only up to behavioural equivalence w.r.t. a pre-speci�ed set of primitive types that the17



user may directly observe. In Extended ML we take those to be exactly the built-in pervasive typessorts(Perv) (with their interpretation inherited from Standard ML). We require that the structureproduced by applying a functor to a given input structure satis�es the output requirements not ne-cessarily literally but only up to behavioural equivalence. Consequently, however, we have to acceptthe possibility that the requirements in the input signature are not satis�ed literally, but again onlyup to behavioural equivalence. The reader should be warned here against interpreting this statementin an oversimpli�ed manner: it is not enough to consider the input and output signature separatelyfrom contexts in which the functor may potentially be used7. Looking just at the input or outputsignature as it stands yields very few non-trivial \observations" (terms of primitive types) for most ofthe types in the signature. However, when the functor is used and the input types are instantiated ina richer context, the user usually has many more ways to observe the types of the resulting structure.Thus, behavioural equivalence must be considered at a global level: at the level of the environmentin which the actual input structure resides and to which the result structure is added. The globalview of functor parameters (see the discussion following the semantics of Standard ML functors inthe previous subsection) provides an appropriate framework to formalise these ideas. The followingde�nition follows almost directly the notion of universal implementation of [Sch 86].De�nition 4.1 An Extended ML functor of the formfunctor F (X : SIGin) : SIGout sharing sharing-decl = BODYis universally correct if for any algebraic (argument) signature �arg and �tting morphism � : �in !�arg, any �arg-algebra A such that A j=sorts(Perv) translate SIGin by � and any Fbsem 2 Fbsem:1. A � 2 Dom(F );2. Fgres(A[�]) j=sorts(Perv) translate SIGout by F [�]; and3. for any �arg-algebra B such that B �sorts(Perv) A and B � j= SIGin, there exists a F (�arg[�])-algebra bB such that bB �0out = B, bB �sorts(Perv) Fgres(A[�]) and bB F [�] j= SIGout.A careful reader may have realized that condition 3 entails condition 2 (and more implicitly, condition 1as well). We have stated these conditions separately since conditions 1 and 2 are what one intuitivelyexpects while condition 3 turns out to be required for technical reasons in situations in which aprogramming task is decomposed into separate but interacting subtasks (see for example the proof ofProposition 5.3 in Appendix D).In our methodology, a programming task is presented as an Extended ML functor heading. Theprogrammer is to produce a functor body consisting of Standard ML code such that the functor isuniversally correct. In the rest of this paper we present some methods for achieving this goal bymodular decomposition (Section 5) and stepwise re�nement (Section 6) with explicit conditions whichensure the correctness of the result.7In fact, in [ST 85b] we have proposed a semantics for Extended ML based on such a view of functors and signaturesas \closed" entities. We now consider this to be a methodological mistake and propose a di�erent view, better suitedas a basis for the methodology we develop. 18



4.3 Multi-argument functorsIn the previous subsection we have only considered functors having a single argument. The case ofmultiple arguments is a little more complicated, but as in Standard ML any functor with multiplearguments may be reduced to a one-argument functor by combining the input signatures into a singlesignature. Below are the technicalities for the case of a two-argument functor of the following form:functor G(Y 1 : SIG1in; Y 2 : SIG2in sharing sharing-constr) : SIGoutsharing sharing-decl;Arbitrary multi-argument functors may be handled in a similar way.Let �1in, �2in and �out be algebraic signatures corresponding to SIG1in, SIG2in and SIGout,respectively. As before, the sharing declarations in the functor heading force them to overlap. De�ne�com = �1in \ �2in, �1shr = �1in \ �out and �2shr = �2in \ �out with algebraic signature inclusionsas indicated in the following diagram:�com �2in�1in �2shr�1shr �out
-�2com @@@@I �2in-�1out@@@@I�1in?�1com ?�2outThe basic semantics of G maps any two algebras A1 and A2, over algebraic signatures �1in and�2in respectively, to a �out-algebra. But since the heading of G requires its arguments to share on�com, this basic semantics is de�ned only for algebras A1 and A2 that coincide on �com. Moreover,the components shared between input and output must be preserved, as discussed in the previoussubsection for one-argument functors. Thus, the basic semantics of G is a function G2bsem de�ned onfhA1; A2i j A1 2 Alg(�1in); A2 2 Alg(�2in); A1 �com = A2 �comgsuch that for any A1 2 Alg(�1in) and A2 2 Alg(�2in) satisfying A1 �com = A2 �com , G2bsem(A1; A2)is a class of �out-algebras such that for any G2bsem(A1; A2) 2 G2bsem(A1; A2) (recall the convention ofidentifying Fbsem with a family of partial functions Fbsem),G2bsem(A1; A2) �1shr = A1 �1shr and G2bsem(A1; A2) �2shr = A2 �2shr :Alternatively, G may be viewed as a one-argument functor by combining SIG1in and SIG2in intoa single signature. This combined signature must incorporate the sharing required by sharing-constrso that algebras over the corresponding algebraic signature correspond exactly to pairs of algebraswhich coincide on �com. Consider the following diagram:19



�com �2in�1in �2shr�1shr �out�in �shr-�2com @@@@@@@I �2in
-�1out����*�20com @@@@@@@I �1in?�1com ?�2out

������ �10com@@@@I �in ������1shr@@@@R�out������2shrwhere we require that the two sub-diagrams�com �2in�1in �in-�2com����*�20com?�1com ������ �10com �2shr�1shr �shr ������1shr������2shrare (respectively) a pushout and a coproduct in the category of algebraic signatures8, and where themorphisms �in : �shr ! �in and �out : �shr ! �out are de�ned using the coproduct property of �shr.There is a natural 1{1 correspondence between the partial functions G2bsem as above and basicsemantic functions Gbsem : Alg(�in)�!Alg(�out)such that for any A 2 Alg(�in), if Gbsem(A) is de�ned then A �shr = Gbsem(A) �shr .In fact, the heading of the functor G may be equivalently rewritten as:functor G(Y : SIGin) : SIGout sharing sharing-decl 9where SIGin =def translate SIG1in by �20com [ translate SIG2in by �10com:We use here the operation of union of speci�cations over the same algebraic signature formally de�nedas follows (cf. [ST 88a]): for any speci�cations SP and SP 0 such that Sig[SP ] = Sig[SP 0], SP [ SP 0is a speci�cation with semantics given by:Sig[SP [ SP 0] = Sig[SP ] (= Sig[SP 0])Mod[SP [ SP 0] = Mod[SP ] \Mod[SP 0]:8Since we assume that all signatures contain the pervasives of Standard ML which are preserved by all signaturemorphisms, the coproduct here corresponds to a pushout in the category of algebraic signatures, where the signatureof Perv is shared.9The sharing declaration here should actually be the one obtained from sharing-decl by converting references to Y 1and Y 2 into Y references as appropriate. 20



Of course, neither union nor translate is available in Extended ML, but if SIG1in and SIG2inare Extended ML signatures then it is clear that we can write an Extended ML signature which isequivalent to SIGin de�ned as above.Although the two versions of G are equivalent at the level of their basic semantics, and haveidentical \computational" properties, their correctness properties are not necessarily the same wheninterfaces are considered up to behavioural equivalence. Given the above situation, for any algebraicsignature �arg, �tting morphism � : �in ! �arg and �arg-algebra A:if A j=sorts(Perv)�arg translate SIGin by �then A j=sorts(Perv) translate SIG1in by �20com;�andA j=sorts(Perv) translate SIG2in by �10com;�:The opposite implication does not hold in general. If there are non-observable sorts shared by �1inand �2in, then A may satisfy both SIG1in and SIG2in separately up to behavioural equivalencewithout satisfying them \jointly" up to behavioural equivalence. In fact, A may satisfy SIG1in andSIG2in separately up to behavioural equivalence when SIGin is inconsistent!This gives two possible notions of universal correctness of multi-argument functors. It seemsappropriate to choose the weaker of the two, which puts more restrictions on the admissible inputby requiring that it satis�es the two components of the input signature jointly. Thus we de�ne amulti-argument functor to be universally correct if its one-argument version constructed as above isuniversally correct.5 System design: functor decompositionIn the next two sections we discuss how to develop functors which are universally correct with respectto a given functor heading. In this section we concentrate on de�ning functors as a composition ofsimpler functors, i.e. by modular decomposition. The idea is very simple: just come up with a bunchof other functors, and de�ne the functor being implemented as an expression over these functors. Ofcourse, we need to impose appropriate veri�cation conditions to ensure that:� The expression is well-formed: functors in the expression are always applied to structures whosesignatures match their input signatures, and the result signature matches the output signature.� The functor de�nition is correct: roughly, for any argument satisfying the input signature, theresult produced satis�es the output signature (modulo the discussion concerning behaviouralequivalence in Section 4.2).We will analyze three simple but increasingly complex cases of functor decomposition. For each ofthese cases we give formal statements of the above informal conditions and prove that they ensurecorrectness of the functor. We then discuss the general situation in a more sketchy way.5.1 Unitary decompositionWe begin with the simplest case, when a functor is implemented by directly calling another functor.Consider an Extended ML functorfunctor F (X : SIGin) : SIGout sharing sharing-decl = F1(X)21



where F1 is a functor with headingfunctor F1(X : SIG1in) : SIG1out sharing sharing-decl1This de�nes the basic semantics of F as roughly the same as that of F1 (see the proof of the theoremin Appendix B for details).To ensure that the de�nition of F is correct, we have to verify that two conditions are satis�ed:� The de�nition of F is well-formed according to the Standard ML typechecking rules:{ A quotient of �1in is a subsignature of �in (given by a morphism �in : �1in ! �in).{ A quotient of �out is a subsignature of �1out (given by a morphism �out : �out ! �1out).{ The sharing between �in and �out follows from the sharing between �1in and �1out (asindicated by a morphism � : �shr ! �1shr).This gives rise to the following commutative diagram:�in �1in@@@@I �in�1shr6�1in �1out-�1out �out@@@@I �out�shr
6�in -�out�������� The requirements stated in the functor interfaces match one another:{ SIGin entails SIG1in up to behavioural equivalence.{ SIG1out entails SIGout up to behavioural equivalence.Here is the formal statement of the correctness result:Theorem 5.1 Consider Extended ML functors F and F1 as above. Suppose that the de�nition of F iswell-formed according to the Standard ML typechecking rules, determining a commutative diagram asabove. Suppose the following conditions are satis�ed (we use here the notation introduced in Section 3):1. SIGin j=sorts(�1in(�(�shr)))�1in SIG1in2. SIG1out j=sorts(�out(�shr))�out SIGoutThen, if F1 is universally correct then F is universally correct.Proof See Appendix B. 222



5.2 Sequential decompositionAnother simple case is when the functor is de�ned by composing two other functors.Consider an Extended ML functorfunctor F (X : SIGin) : SIGout sharing sharing-decl = G2(G1(X))where G1 and G2 are functors with headingsfunctor G1(Y 1 : SIG1in) : SIG1out sharing sharing-decl1and functor G2(Y 2 : SIG2in) : SIG2out sharing sharing-decl2This de�nes the basic semantics of F as (roughly | see the proof of the theorem in Appendix C fordetails) the composition of the basic semantics of G1 and G2.To ensure that the de�nition of F is correct, we have to verify that two conditions are satis�ed:� The de�nition of F is well-formed according to the Standard ML typechecking rules:{ A quotient of �1in is a subsignature of �in (given by a morphism �in : �1in ! �in).{ A quotient of �2in is a subsignature of �1out (given by a morphism �inter : �2in ! �1out).{ A quotient of �out is a subsignature of �2out (given by a morphism �out : �out ! �2out).{ The sharing between �in and �out follows (by composition) from the sharing between �1inand �1out and between �2in and �2out (as indicated by morphisms �1 : �shr ! �1shr and�1 : �shr ! �2shr).This gives rise to the following commutative diagram:�in �1in�1shr �1out �2in�2shr �2out �out�shr�����������
�������1������������������1�2

6
�in

-�out
@@@@I �in 6�1in -�1out @@@@I �inter6�2in -�2out @@@@@I �out23



� The requirements stated in the functor interfaces match one another:{ SIGin entails SIG1in up to behavioural equivalence.{ SIG1out entails SIG2in up to behavioural equivalence.{ SIG2out entails SIGout up to behavioural equivalence.Here is the formal statement of the correctness result:Theorem 5.2 Consider Extended ML functors F , G1 and G2 as above. Suppose that the de�nitionof F is well-formed according to the Standard ML typechecking rules, determining a commutativediagram as above. Suppose that the following conditions are satis�ed:1. SIGin j=sorts(�1in(�1(�shr)))�1in SIG1in2. SIG1out j=sorts(�2in(�2(�shr)))�2in SIG2in3. SIG2out j=sorts(�out(�shr))�out SIGoutThen, if G1 and G2 are universally correct then so is F .Proof See Appendix C. 25.3 Parallel decompositionAnother simple case of modular decomposition is when part of the task is split into two more or lessindependent subtasks which are performed by two functors in parallel.Consider an Extended ML functorfunctor F (X : SIGin) : SIGout sharing sharing-decl = G0(G1(X); G2(X))where G0 is a two-argument functor with a heading of the formfunctor G0(Y 01 : SIG01in; Y 02 : SIG02in sharing sharing-constr0) : SIG0outsharing sharing-decl0;and G1 and G2 are functors with headingsfunctor G1(Y 1 : SIG1in) : SIG1out sharing sharing-decl1and functor G2(Y 2 : SIG2in) : SIG2out sharing sharing-decl2For the de�nition of F to be well-formed, we have to ensure that the appropriate signatures match,that is (recall the notation concerning two-argument functors introduced in Section 4.3):� A quotient of �1in is a subsignature of �in (given by a morphism �1in : �1in ! �in).� A quotient of �2in is a subsignature of �in (given by a morphism �2in : �2in ! �in).� A quotient of �01in is a subsignature of �1out (given by a morphism �1inter : �01in ! �1out).24



� A quotient of �02in is a subsignature of �2out (given by a morphism �2inter : �02in ! �2out).� A quotient of �out is a subsignature of �0out (given by a morphism �out : �out ! �0out).Moreover, we have to make sure that the required sharing between the arguments of G0 followsfrom the sharing information passed by G1 and G2 (using morphisms �1inter : �0com ! �1shr and�2inter : �0com ! �2shr). Thus, the matching rules of ML must determine the following commutativediagram in the category of algebraic signatures:�in �1inBBBBBBBM �1in �2inPPPPPPPi �2in
�1shr@@@@I�1in �2shr@@@@I �2in
�1out?�1out �2out-�2out�0comPPPPPPi �1inter BBBBBBBM �2inter

�01in@@@@I�1inter �������
 �01com �02in@@@@I �2inter�������1�02com
�01shr@@@@I �01in �02shr@@@@I�02in

�0out-�01out ?�02out �out@@@@I �out�shr

6
�in

-�outThe basic semantics of F , Fbsem : Alg(�in) ! Pow(Alg(�out)), is de�ned as follows: for any�in-algebra A,Fbsem(A) = fA0 �out j A0 2 G02bsem(A1 �1inter; A2 �2inter)for some A1 2 G1bsem(A �1in) and A2 2 G2bsem(A �2in)g:Omitting all the problems of de�nedness of the partial functions involved,10 any choice of basic se-mantic functions G1bsem, G2bsem and G02bsem for G1, G2 and G0 respectively, determines a basicsemantic function Fbsem : Alg(�in)�!Alg(�out) as follows: for any �in-algebra A,Fbsem(A) = G02bsem(G1bsem(A �1in) �1inter ; G2bsem(A �2in) �2inter ) �out:10The veri�cation conditions for this case of decomposition will ensure that this is not a problem.25



To see that this is well-de�ned we have to verify that the arguments of G02bsem coincide on �0com:(G1bsem(A �1in) �1inter) �01com = ((G1bsem(A �1in)) �1out) �1inter= ((A �1in) �1in) �1inter= ((A �2in) �2in) �2inter= ((G2bsem(A �2in)) �2out) �2inter= (G2bsem(A �2in) �2inter) �02com:We still have to ensure the required sharing between �in and �out (described by the signature�shr with algebraic signature inclusions �in and �out). Since there are two possible paths by which theoutput may inherit a part of the input, one via G1 and the other via G2, the shared subsignaturemay be split into two (possibly non-disjoint) subsignatures. More formally, there must be a pushout�0shr �shr�shrcom �00shr--6 6and two pairs of morphisms, �0 : �0shr ! �1shr and �00 : �00shr ! �2shr , and �00 : �0shr ! �01shr and�000 : �00shr ! �02shr (determined by the ML matching rules) such that the above diagram augmentedby these morphisms commutes. That is:
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-'�0 �shrcomHHHHY ������00shrHHHHY�0shr������

�in �1inBBBBBBBM �1in �2inPPPPPPPi �2in
�1shr@@@@I�1in �2shr@@@@I �2in
�1out?�1out �2out-�2out�0comPPPPPPi �1inter BBBBBBBM �2inter

�01in@@@@I�1inter �������
 �01com �02in@@@@I �2inter�������1�02com
�01shr@@@@I �01in �02shr@@@@I�02in

�0out-�01out ?�02out �out@@@@I �out�shr

6
�in

-�outThe commutativity of the above diagram ensures that the semantics of F as de�ned above indeedsatis�es the sharing property: for any A 2 Dom(F ), A �shr = Fbsem(A �shr ).Recall that ML views the two-argument functor G0 as a one-argument functor as de�ned inSection 4.3. Similarly, we can collapse the two \parallel" functors G1 and G2.Let �12in, �12shr and �12out be algebraic signatures de�ned by the following pushouts:�1in �12in�0com �2in-c1in -�2inter;�2in6�1inter;�1in 6c2in �1shr �12shr�0com �2shr-c1shr -�2inter6�1inter 6c2shr27



�1out �12out�0com �2out-c1out -�2inter;�2out6�1inter;�1out 6c2outDe�ne algebraic signature morphisms �12in : �12shr ! �12in and �12out : �12shr ! �12out by thepushout property of �12shr as the unique morphisms such that{ c1shr;�12in = �1in;c1in and c2shr;�12in = �2in;c2in, and{ c1shr;�12out = �1out;c1out and c2shr;�12out = �2out;c2out.The following diagram may be helpful in visualising the construction so far:�12in�1in6c1in�1shr6�1in �2in�c2in �2shr� �2in�12shr@@@@I�12in
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�1outPPPPPPPq�1out

�2outPPPPPPPq�2out�12outHHHHHHHHHj�12out�������3c1out 






� c2out
�0com
$�

�2inter&6 �1interFurther, de�neSIG12in = translate SIG1in by c1in [ translate SIG2in by c2in, andSIG12out = translate SIG1out by c1out [ translate SIG2out by c2out.(As in Section 4.3, the fact that Extended ML does not include union or translate is unimportantsince it is clear that we can construct Extended ML signatures which are equivalent to SIG12in andSIG12out as de�ned above.)The result of collapsing G1 and G2 is a functor G12 with headingfunctor G12(Y 12 : SIG12in) : SIG12out sharing sharing-decl1 [ sharing-decl211and with a body such that the basic semantics G12bsem is de�ned by combining the basic semanticsof G1 and G2: for any �12-algebra A,G12bsem(A) = fA12 2 Alg(�12out) j A12 c1out 2 G1bsem(A c1in) and A12 c2out 2 G2bsem(A c2in)g:11The sharing declaration here should actually be sharing-decl10 and sharing-decl20, where sharing-decl10 is obtainedfrom sharing-decl1 by converting references to Y 1 into Y 12 references as appropriate, and likewise for sharing-decl20.28



Proposition 5.3 G12 is universally correct provided that G1 and G2 are.Proof See Appendix D. 2It is easy to see that the functor F may be equivalently rewritten asfunctor F (X : SIGin) : SIGout sharing sharing-decl = G0(G12(X))with the corresponding algebraic signature diagram�in �12in�12shr �12out �0in�0shr �0out �out�shr�����������
�������������������������1�0

6
�in

-�out
@@@@I �in 6�12in -�12out @@@@I �inter6�0in -�0out @@@@@I �outwhere the morphisms �in : �12in ! �in, � : �shr ! �12shr, �inter : �0in ! �12out and �0 : �shr !�0shr are constructed using the pushout properties of their source signatures in the obvious way asthe \unions" of, respectively, �1in and �2in, �0;c1shr and �00;c2shr, �1inter;c1out and �2inter;c2out, and�00;�01shr and �000;�02shr .Theorem 5.2 may now be used to prove the universal correctness of F :Corollary 5.4 Consider Extended ML functors F , G0, G1 and G2 as above. Suppose that the de�n-ition of F is well-formed according to the Standard ML typechecking rules, which determine algebraicsignature morphisms as above. Suppose that the following conditions are satis�ed:1. SIGin j=sorts(�12in(�(�shr)))�12in translate SIG1in by c1in [ translate SIG2in by c2in2. translate SIG1out by c1out [ translate SIG2out by c2out j=sorts(�0in(�0(�shr)))�0intranslate SIG01in by �020com [ translate SIG02in by �010com3. SIG0out j=sorts(�shr)�out SIGoutThen, if G0, G1 and G2 are universally correct then so is F .29



Proof Follows directly from Theorem 5.2 and Proposition 5.3 (and the de�nitions of SIG12in,SIG12out and SIG0in). 2This is not quite satisfactory: the veri�cation conditions of Corollary 5.4 force us to consider someinterfaces jointly, even though they are presented separately. The following theorem removes this de-�ciency. The separate veri�cation conditions must additionally take into account the required sharingbetween the signatures to which they directly apply and the environment in which the signatures areused. More speci�cally, since the functors G1 and G2 are expected to produce overlapping results, theveri�cation conditions must not allow the overlapping parts to be treated (or modi�ed) in di�erentways.Theorem 5.5 Consider Extended ML functors F , G0, G1 and G2 as above. Suppose that the de�n-ition of F is well-formed according to the Standard ML typechecking rules, which determine algebraicsignature morphisms as above. Suppose that the following conditions are satis�ed:1. (a) SIGin j=sorts(�1in(�0(�0shr)))[sorts(�1in(�1inter(�0com)))�1in SIG1in(b) SIGin j=sorts(�2in(�00(�00shr)))[sorts(�2in(�2inter(�0com)))�2in SIG2in2. (a) SIG1out j=sorts(�01in(�00(�0shr)))[sorts(�01com(�0com))�01in SIG01in(b) SIG2out j=sorts(�02in(�000(�00shr)))[sorts(�02com(�0com))�02in SIG02in3. SIG0out j=sorts(�shr)�out SIGoutThen, if G0, G1 and G2 are universally correct then so is F .Proof See Appendix D. 2The reader should not be alarmed by the complexity of the expressions de�ning the observable sortsin the veri�cation conditions of the above theorem. First, in practice the signature morphisms do notresult in non-trivial renaming at the level of external names, which are the ones the user has to dealwith. Second, the ML typechecker may easily be modi�ed to compute them mechanically.5.4 Modular decomposition: the general caseThe three special cases presented in the preceding subsections are intended to provide a clear illus-tration of the way that the de�nition of a functor by modular decomposition should be veri�ed. Wewill not attempt here to formulate precisely an appropriate general theorem, since this would requirericher technical apparatus. We believe that the development of appropriate notation and terminologywhich would allow such a general veri�cation condition to be expressed in a precise and understand-able form, in the presence of non-trivial sharing requirements on module interfaces, is an importantresearch task.Very roughly, the de�nition of a functor by modular decomposition gives rise to a �nite directedacyclic graph with one maximal node, where the graph nodes are labelled with Extended ML signaturesand the graph edges are of two distinct kinds. First, there are edges corresponding to applications offunctors used in the decomposition; then the source node (resp. target node) of the edge is labelledwith the input (resp. output) signature of the functor. Second, there are edges between nodes labelledwith a functor output signature and nodes labelled with a functor input signature, which correspond30



to matching the output signature against the input signature. Then, we add to this graph a nodelabelled with the input signature of the decomposed functor and edges matching it against all the(input) signatures in the minimal nodes of the decomposition graph, and another node labelled withthe output signature of the decomposed functor, with an edge matching the (output) signature in themaximal node of the graph against it.As in the examples above, such a decomposition graph determines a diagram in the category ofalgebraic signatures. The nodes of the decomposition graph induce nodes of the diagram labelledwith the algebraic signatures determined by the Extended ML signatures labelling the graph nodes.The signature matching edges in the graph induce corresponding edges (but going into the oppositedirection) in the diagram labelled by algebraic signature morphisms determined by the ML matchingrules. Each functor application edge in the graph decomposes into a pair of algebraic signatureinclusions with a common source expressing the sharing declaration in the functor heading, and withthe functor input and output signatures, respectively, as their targets.On the resulting diagram we superimpose pairs of morphisms with a common source expressingthe sharing requirements present in the decomposition (like the signature �0com with morphisms�01com : �0com ! �01in and �02com : �0com ! �02in in Subsection 5.3). The required sharing betweenthe input and output signatures of the decomposed functor is included in the same way. Then,we have to determine algebraic signature morphisms from the algebraic signatures expressing thesharing requirements such that the commutativity of the resulting diagram ensures that the sharingrequirements are satis�ed via structures arising in the functor body as a result of functor application(like the signature morphisms �1inter : �0com ! �1shr and �2inter : �0com ! �2shr in Subsection 5.3,which guarantee the sharing represented by the signature �0com). An additional complication is thatthere may be more than one way to ensure that some sharing requirement is satis�ed, and so we haveto allow some algebraic signatures expressing sharing requirements to be decomposed (as the algebraicsignature �shr was decomposed into �0shr and �00shr in Subsection 5.3).Although this construction seems complicated, it is mechanisable and so would be carried outby computer-based support tools. In fact, most of this construction is implicitly performed by theStandard ML typechecker already.Finally, assuming that the de�nition of the functor is correct according to the ML typecheckingrules, which determines the algebraic signature diagram sketched above, we can check the followingveri�cation condition: for each edge in the decomposition graph which matches a signature SIG1 (thesignature labelling the source of the edge) against SIG2 (the signature labelling the target of the edge),SIG1 must entail SIG2 via the algebraic signature morphisms determined by the ML matching rulesup to behavioural equivalence w.r.t. a set of observable sorts consisting of all the sorts in the algebraicsignature of SIG2 corresponding to sorts in the algebraic signatures expressing sharing requirements(via the morphisms in the algebraic signature diagram going into the corresponding diagram nodedetermined as sketched above). This ensures that whenever the functors used in the decompositionare universally correct, so is the decomposed functor.The results in [Sch 86] concerning modular decomposition are weaker than the general resultsketched above and Theorems 5.1, 5.2 and 5.5 in that he requires interfaces to match exactly, exceptthat the actual inputs and outputs are permitted to be larger than required by the correspondinginterfaces. In particular, an actual input or output is not permitted to share more than required,and (much more signi�cantly) interfaces must match \literally" rather than only up to behaviouralequivalence as we require (this is the upshot of condition (b) of De�nition 3.2.10 in [Sch 86]). We31



have given veri�cation conditions which seem to be as weak as possible under the constraint of beingexpressible as \local" signature matching requirements, while still guaranteeing the correctness of thedecomposition.In this section we have discussed conditions under which functors can be correctly implementedby decomposition into simpler functors. These functors can then themselves be implemented usingthe same technique of modular decomposition or by supplying an \abstract program" (see Section 6).Of course, we would not expect the formal development of realistic programs to proceed in practicewithout backtracking, mistakes and iteration, and we do not claim to remove the possibility of unwisedesign decisions. One problem is that it is often very di�cult to get interface speci�cations right the�rst time and so for example when implementing a functor by decomposition into simpler functors itmay well be necessary to adjust the interfaces both in order to obtain a decomposition which is correctaccording to the theorems above and to resolve problems which arise later while implementing thesimpler functors. If a decomposition has been proved correct then some changes to the interfaces maybe made without a�ecting correctness: for example, in any of the simpler functors the output interfacemay be strengthened or the input interface weakened without problems (provided the required sharingbetween input and output is preserved). It is also possible to modify the interfaces of the functorbeing decomposed by weakening its output signature or strengthening its input signature. This willpreserve the correctness of the decomposition but since it changes the speci�cation of the functorsuch changes must be cleared with the functor's clients (higher-level functors which use it and/orthe customer). Once we have made such a change to an interface we can also change interfaces itis required to match in order to take advantage of the modi�cation. Then, provided we are able toprove that the syntactic and semantic correctness conditions referring to these interfaces hold, overallcorrectness is still assured since the remaining interfaces are una�ected.Functors correspond to (parameterised) abstract data types. We are free to change the implement-ation (body) of a functor at any time. As long as the new implementation is universally correct withrespect to the functor heading, this change is invisible to the rest of the program. This is ensuredsince explicit interfaces insulate a functor implementation from its use.6 System design: re�nement of abstract programsThe previous section discussed conditions under which functors can be correctly implemented bydecomposition into simpler functors. At some point it is necessary to actually write code to implementa functor. In this section we discuss how correct code can be developed gradually by means of stepwisere�nement of loose abstract programs (Extended ML structures containing a mixture of Standard MLfunction and type de�nitions and non-executable axioms). Our goal is to arrive at a functor bodycontaining only executable code which is universally correct with respect to the given functor heading.6.1 Simple correctness and stabilityAlthough the notion of universal correctness expresses the correctness property one should aim at inprogram development, it is very inconvenient as a basis for veri�cation of abstract programs as pointedout in [Sch 86]. There are at least two unexpected problems. First of all, we are not allowed to relyon the input speci�cation literally, but only on its observable consequences. Second, we are required32



to consider all possible structures to which the functor may be applied rather than considering juststructures over the input signature.A solution presented in [Sch 86] is to split universal correctness into three properties which will beensured separately:De�nition 6.1 Consider an Extended ML functor of the form:functor F (X : SIGin) : SIGout sharing sharing-decl = BODY1. F is simply correct if for any �in-algebra A 2Mod[SIGin], Fbsem(A) j=sorts(�shr)�out SIGout:2. F is simply consistent if Mod[SIGin] � Dom(F ).3. F is stable if for any algebraic signature �arg and �tting morphism � : �in ! �arg, any�arg-algebras A;B such that A �sorts(Perv) B, and for any A0 2 Fgres(A[�]) there exists B 0 2Fgres(B[�]) such that A0 �sorts(Perv) B0 (recall that all Extended ML signatures implicitly containPerv).The main idea behind the de�nition of stability is that a functor is stable if and only if it preservesbehavioural equivalence. The apparent asymmetry whereby the choice of B 0 depends on the choice ofA0 is unimportant since the preconditions are symmetric.Theorem 6.2 An Extended ML functor is universally correct whenever it is simply correct, simplyconsistent and stable.Proof Consider an Extended ML functor of the formfunctor F (X : SIGin) : SIGout sharing sharing-decl = BODYwhich is simply correct, simply consistent and stable. Consider any algebraic (argument) signature�arg, �tting morphism� : �in ! �arg, and any �arg-algebra A such thatA j=sorts(Perv) translate SIGin by �.Let B be any �arg-algebra such that A �sorts(Perv) B and B � 2 Mod[SIGin] (such a B exists by thede�nition of behavioural satisfaction). By the simple consistency of F , B � 2 Dom(F ). That is,Fgres(B[�]) 6= ;, hence by the stability of F (with A and B interchanged), Fgres(A[�]) 6= ;, i.e.A � 2 Dom(F ).Then, consider an arbitrary A0 2 Fgres(A[�]). By the stability of F , there exists B 0 2 Fgres(B[�])such that A0 �sorts(Perv) B 0. By the de�nition of Fgres, B 0 F [�] 2 Fbsem(B �). Hence, by the simplecorrectness of F , B 0 F [�] j=sorts(�shr) SIGout. By the de�nition of behavioural satisfaction, there existsa �out-algebra C such that C �sorts(�shr) B0 F [�].Now, consider the unique F (�arg[�])-algebra bB such that bB �0out = B and bB F [�] = C. The existenceand uniqueness of bB is ensured by the construction of F (�arg[�]) and the fact that (B 0 F [�]) �shr =C �shr . By Lemma A.1, bB �sorts(Perv) B 0 and so bB �sorts(Perv) A0. This also proves that A0 j=sorts(Perv)translate SIGout by F [�]. 2Simple correctness is a property which can be veri�ed \statically" in the sense that we do not haveto consider all the di�erent ways in which the functor can be applied. It is enough to consider onlystructures over the input signature. Moreover, while verifying simple correctness we are allowed to33



pretend that the input structure satis�es the input signature literally. This is therefore a conditionwhich we will expect a user of our methodology to verify for each of the functors he de�nes.Stability is a di�erent matter. It is not reasonable to expect a user to verify the stability ofhis functors one by one. This property should be guaranteed by the designer of the programminglanguage used. Any language which is designed to support data abstraction should ensure that onlystable functors (modules, packages, clusters, etc.) are de�nable. See [Sch 86] for a muchmore completediscussion of this issue.Working hypothesis Every functor de�nable in Standard ML is stable.Discussion We could turn this working hypothesis into a theorem for the purely functional subsetof Standard ML we are using here, under the type discipline described in Section 2. The proof wouldbe based on a formal algebraic semantics of this language and would involve a lot of tedious work.To prove the corresponding theorem, or even state it precisely, for full Standard ML would requiredeveloping an integrated algebraic view of (at least) exceptions, polymorphism, higher-order functions,imperative features, partial functions and non-terminating functions. This is an important long-termgoal which we are con�dent may be achieved, but it is orthogonal to the issues discussed in this paper.2 Under the above hypothesis, any simply correct functor whose body is coded in Standard MLis universally correct (recall that every Standard ML functor is de�ned for all structures over itsalgebraic input signature, and so is obviously simply consistent). However, this is not guaranteed forExtended ML functors in general, and it would not be reasonable to expect this of any speci�cationlanguage. The power and 
exibility of algebraic speci�cation languages are in fundamental con
ictwith the requirement of stability. Extended ML functors arising during the development process neednot be universally correct; our methodology guarantees only that they are simply correct by requiringre�nement steps to preserve this property. Consequently, when we arrive at a Standard ML functor,which is always our goal, it will be simply correct and simply consistent, and it will be stable by theabove working hypothesis, and hence by Theorem 6.2 it will be universally correct.One might argue that simple consistency is a requirement which should be imposed on everyExtended ML functor which arises in the program development process. This would seem to preventblind alleys in program development. But since even a total functor may have no computable (oracceptably e�cient) realisation, we cannot hope to avoid blind alleys in general anyway. It might beadvisable to check for simple consistency at each stage of development but this is not required forcorrectness and is not a part of our methodology.The concepts of universal correctness and stability are a bit di�erent from the corresponding onesin [Sch 86]. If we were to exactly translate his de�nitions to the context of Extended ML we wouldhave to require the �tting morphism � to be injective. Thus, it may seem that our notions of universalcorrectness and stability are more restrictive than his. But as we accept the above view that stabilityis to be ensured by the programming language in use, the two notions of stability coincide since forany given application of a functor to a structure we can add sharing constraints to the input signatureof the functor so as to make the �tting morphism injective without a�ecting the correctness of thecode in the functor body. 34



6.2 Abstract programsThe conclusion of the discussion in the previous subsection is that the user's only obligation is toproduce code for the functor body in such a way that the resulting functor de�nition is simplycorrect. The user may begin by writing a loose abstract program containing a mixture of axioms andexecutable code and then gradually re�ne this in a stepwise manner until a version containing onlyStandard ML code is obtained.The following theorem gives the condition which the �rst version (and in fact all versions) of thebody must satisfy in order to ensure simple correctness of the functor.Theorem 6.3 An Extended ML functor of the formfunctor F (X : SIGin) : SIGout sharing sharing-decl = BODYis simply correct if and only if(translate (derive from SIGin by �si) by �sb) [BODY j=sorts(�out(�shr))�out SIGoutwhere �si : �in \ �body ,! �in and �sb : �in \ �body ,! �body are the algebraic signature inclusions.12Proof Directly from the de�nition of the basic semantics of Extended ML functors. 2We could employ this theorem to check the simple correctness of each version of the functor bodyobtained as a result of successive re�nement steps. But in practice this is inconvenient since subsequentversions of the body will become increasingly more detailed and lower level, making it di�cult to relatethem in a simple way to the output interface. It is much more natural to relate each new version ofthe functor body directly with the previous one. Then we can exploit the simple correctness of theprevious version to establish the simple correctness of the new version as follows:Corollary 6.4 If an Extended ML functor of the formfunctor F (X : SIGin) : SIGout sharing sharing-decl = BODYis simply correct and(translate (derive from SIGin by �0si) by �0sb) [BODY 0 j=sorts(�sb(�in\�body))�body BODYwhere �0si : �in \ �body0 ,! �in and �0sb : �in \ �body0 ,! �body0 , thenfunctor F (X : SIGin) : SIGout sharing sharing-decl = BODY 0is simply correct as well.Proof Trivial, by Theorem 6.3 and the de�nition of translate. 2The conditions required in the above theorem and its corollary may be established using the resultsgiven in Section 3.12The horrible expression on the left-hand side of the entailment should be thought of as SIGin [ BODY (andsimilarly for Corollary 6.4). Since all the morphisms here are unambiguously determined by the context, we will usethis simpli�ed form in presenting the veri�cation of coding steps in Section 7.35



The re�nement process sketched above is reminiscent of the use of abstractor implementations asdiscussed in [ST 88b]. The condition in the above corollary may be rephrased as the requirementthat BODY �����>BODY 0 (in the context of SIGin) where � is an abstractor corresponding to thebehavioural equivalence involved and � is a derive step which forgets any new auxiliary types andoperations introduced by BODY 0. The technicalities concerning the use, composition, etc. of ab-stractor implementations developed in [ST 88b] may be used directly here. Recall that abstractorimplementations correspond to \tailor-made" implementations which are specially developed to �tinto some particular context. For example, suppose that BODY = BODY1;BODY2. Then BODYmay be re�ned to BODY 0 = BODY 01 ;BODY2 where BODY 01 is a re�nement of BODY1. If BODY2is already Standard ML code, then when re�ning BODY1 we can take advantage of our knowledge ofBODY2 which is the only context in which the �nal realisation of BODY1 will be used. For correctnessof the re�nement it is su�cient to require that BODY 01 entails BODY1 up to the equivalence whichresults when �sorts(�sb(�in\�body)) is \pushed through" BODY2. See [ST 88b] for details; we only notehere that the resulting equivalence might not be a behavioural equivalence with respect to any setof sorts, and so the results of Section 3 may not apply directly. This represents one extreme in thetradeo� between making the veri�cation conditions as weak as possible and making them uniformenough so that general proof methods are easily applicable.Instead of re�ning the functor body, we could re�ne the output signature of the functor. Atsome point this would result in executable code which could then be used as the functor body. Butthis is inappropriate for two reasons. First of all, it seems important to clearly separate speci�cationfrom realisation. Second, re�nement of the body and re�nement of the output signature have di�erentconsequences for the way the functor may be used. Re�nement of the body is a local decision visible tothe programmer who implements the functor and invisible to clients who may want to use the functor.This allows later changes of representation, etc. In contrast, re�nement of the output signature is ahigher-level design decision which is intended to be exploited by clients.6.3 Hierarchically structured abstract programsThe previous subsection only treated the special case of \
at" abstract programs, i.e. abstract pro-grams not containing substructures. Substructures provide a way to structure functor bodies intoconceptual units, in additional to the means already provided by functor decomposition. Structuringfunctor bodies in this way also gives a corresponding structure to the veri�cation process.Hitherto we have strictly adhered to a regime of insulating system units from their clients bymeans of interfaces (Extended ML signatures). Now, the units of interest are substructures of functorbodies and their clients are the functor bodies themselves. Syntactically, this naturally leads to therequirement that Extended ML substructure declarations always explicitly include the Extended MLsignature which the substructure is supposed to �t. Just as before, we view this signature as containingall the information available about the substructure. Consequently, Extended ML substructures canbe seen as abstractions in the sense of [MacQ 86].This view of substructures means that we can view them as (calls of) locally-de�ned parameterlessfunctors. The veri�cation conditions are thus very much reminiscent of those we stated for functordecomposition. The only di�erence is that substructures implicitly import the part of the functorbody which precedes the substructure declaration. There is no interface at this point insulating thesubstructure from the details of the preceding code.36



Thus, for an Extended ML functor declaration of the formfunctor F (X : SIGin) : SIGout sharing sharing-decl= structpart1structure A : SIG sharing sharing-declA = STRpart2endwe have to verify that:� The structure STR together with part1 entails the signature SIG up to behavioural equivalence.� The structure consisting of part1, part2 and the substructure declarationstructure A : SIGentails SIGout up to behavioural equivalence.If SIGout contains a substructure A with signature SIGAout, then SIGAout must be a behaviouralconsequence of SIG.There is a sense in which the �rst of these conditions amounts to establishing a lemmawhich is thenused in checking the correctness of the functor body as a whole in the second condition. Moreover,this lemma is the only information available about the substructure A while doing this check.It should be clear that the above functor F may be rewritten as follows:functor F (X : SIGin) : SIGout sharing sharing-decl= let structure B1 = Part1(X) inPart2(X;B1; SubA(X;B1)) endwhere Part1, SubA and Part2 are functors de�ned as follows:functor Part1(X : SIGin) : PART1 sharing sharing-decl1= struct part1 endfunctor SubA(X : SIGin; B1 : PART1 sharing sharing-decl1) : SIG sharing sharing-declA= local open B1in STRendand functor Part2(X : SIGin; B1 : PART1; A : SIG sharing sharing-decl1 [ sharing-declA): SIGout sharing sharing-decl= structopen B1structure A = Apart2end 37



In the above, PART1 denotes an Extended ML signature corresponding exactly to the structureformed from part1, and sharing-decl1 describes all of the sharing which arises by construction betweentypes and values in part1 and the input structure X. The names in the sharing declarations mustbe adjusted appropriately to make these functor declarations well-formed; for example, references insharing-declA to names in part1 must be converted into corresponding references to B1.In the above decomposition of F , all the interfaces �t exactly and so by the results of Section 5 theuniversal correctness of F is ensured if the functors Part1, SubA and Part2 are universally correct.As in Subsection 6.1, universal correctness of these functors is achieved when they are stable, simplycorrect and simply consistent. Under the working hypothesis in Subsection 6.1, and recalling thatStandard ML functors are always simply consistent, we can concentrate on simple correctness. ByTheorem 6.3:� Part1 is (trivially) simply correct;� SubA is simply correct if SIGin [ PART1 [ STR j=sorts(�SubAshr ) SIG� Part2 is simply correct if SIGin [ PART1 [ SIG [ part2 j=sorts(�Fshr) SIGoutIn the last two conditions we have omitted the ugly but formally necessary translations of speci�cationsto the union signature determined by the ML typechecking rules. The exact formulation would followthe pattern of Theorem 6.3. The algebraic signatures �SubAshr and �Fshr embody the sharing betweenthe input and output signatures of functors SubA and F respectively.These considerations result in the following corollary:Corollary 6.5 Consider an Extended ML functor F as above together with its decomposition intofunctors Part1, SubA and Part2. Suppose that the following veri�cation conditions hold:1. SIGin [ PART1 [ STR j=sorts(�Ashr) SIG2. SIGin [ PART1 [ SIG [ part2 j=sorts(�Fshr) SIGoutThen, if Part1, SubA and Part2 are stable and simply consistent then F is universally correct. 2The assumption of simple consistency for SubA and Part2 hides the requirement that the originalsplit of the functor body was sensible in the sense that the axioms in STR and part2 do not furtherconstrain types and values introduced already in part1, and likewise for part2 w.r.t. the types/valuesof STR.It is perhaps surprising that conditions 1 and 2 of the above corollary do not by themselvesguarantee the simple correctness of F . This is because a non-stable part2 may take advantage ofnon-observable consequences of SIG. This does not cause problems since stepwise re�nement usingan appropriate modi�cation of the veri�cation condition in Corollary 6.4 preserves conditions 1 and 2and ultimately results in stable code. This means that we can start with loose versions of part1,STR and part2 which satisfy conditions 1 and 2 (but which may not be stable) and then re�ne them,independently if desired, to eventually produce Standard ML code which will yield a universally correctde�nition for F .Structure STR may be an arbitrary structure expression, not necessarily an abstract program. Sowe can decompose STR into simpler functors just as in Section 5. Then condition 1 of Corollary 6.5should be replaced by the appropriate veri�cation condition for the decomposition, with SIG as theoutput signature for the decomposition and SIGin [ PART1 as the input signature.38



We have chosen to view substructures as abstractions, which means that the substructure bodyis insulated from the rest of the functor body by its interface. It is possible to consider ordinarynon-abstract structures instead. Then substructures serve only to package collections of type andvalue de�nitions. An explicitly-declared interface may then be useful to summarise the properties ofthese types and values, but it is not an absolute barrier between the substructure and the rest ofthe functor body. An advantage of using abstract substructures is that we may come back later andchoose another implementation; as long as the interface is unchanged the program will still work.7 An exampleIn this section the development of a complete Standard ML program from a high-level Extended MLspeci�cation is exhibited. To keep the proofs simple we will assume that all functions are total (thisis indeed the case in the resulting program).Informal speci�cation An inventory control system for a warehouse is required. This shouldkeep track of the number currently in stock of each item in the warehouse. Items are taken out ofthe warehouse one at a time but they may be brought to the warehouse in larger batches. Certainitems in the warehouse are usable as replacements for other items which may be temporarily out ofstock. In case some item is currently out of stock the system should be able to locate an appropriatereplacement item which is in stock.There is a �xed (but arbitrary) collection of di�erent items which may be stored in the warehouse.The decision as to which of these itemsmay be replaced by which other items is also �xed but arbitrary.Step 0The initial formal speci�cation of the required system is given by the following Extended ML functorheading:functor Warehouse(I:ITEM):WAREHOUSE sharing Item = Iwhere ITEM and WAREHOUSE are Extended ML signatures as follows:signature ITEM =sig eqtype itemval replaces : item * item -> boolaxiom replaces(i,i)endsignature WAREHOUSE =sig structure Item : ITEMtype warehouseval empty : warehouseval put : Item.item * nat * warehouse -> warehouseval amount : Item.item * warehouse -> natval exists_replacement: Item.item * warehouse -> boolval find_replacement : Item.item * warehouse -> Item.itemval take : Item.item * warehouse -> warehouse39



axiom put(i,0,w) = waxiom put(i,m,put(j,n,w)) = put(j,n,put(i,m,w))axiom put(i,m,put(j,n,w)) = put(i,n+m,w) if i=jaxiom amount(i,empty) = 0axiom amount(i,put(j,n,w)) = amount(i,w)+n if i=j= amount(i,w) if i<>jaxiom exists_replacement(i,w) <=>exists j. (Item.replaces(j,i) & amount(j,w)>0)axiom exists_replacement(i,w) =>(Item.replaces(find_replacement(i,w),i)& amount(find_replacement(i,w))>0)axiom amount(i,w)>0 => find_replacement(i,w) = iaxiom take(i,empty) = emptyaxiom take(i,put(j,n,w)) = put(j,n-1,w) if i=j & n>0= put(j,n,take(i,w)) if i<>jendIn this speci�cation, values of type warehouse represent states of the warehouse. The empty ware-house is represented by empty, and the functions put and take update the state of the warehouse byadding more of an item and by removing one of an item. The functions amount, exists_replacementand find-replacementmay be used for querying the current state of the warehouse. The set of itemswhich may be stored in the warehouse is taken to be a parameter of the system along with the replacesrelation. By using the Standard ML declaration eqtype item rather than type item in the signatureITEM, we require that item admits equality, i.e. that it comes equipped with the equality function=:item*item->bool which can be used in code as well as axioms.Step 1Design decision (decomposition) We implement put using a function putone which adds just asingle item to the warehouse. Exactly how put is expressed using putone is left open for now.We need two functors:Warehouse'(I:ITEM):WAREHOUSE' sharing Item = IPut(W:WAREHOUSE'):WAREHOUSE sharing Item = W.Itemwhere WAREHOUSE' is just like WAREHOUSE except withputone : Item.item * warehouse -> warehousein place ofput : Item.item * nat * warehouse -> warehouseand axioms involving put replaced by axioms involving putone, viz:axiom putone(i,putone(j,w)) = putone(j,putone(i,w))axiom amount(i,empty) = 0 40



axiom amount(i,putone(j,w)) = amount(i,w)+1 if i=j= amount(i,w) if i<>jaxiom take(i,empty) = emptyaxiom take(i,putone(j,w)) = w if i=j= putone(j,take(i,w)) if i<>jwhere the axioms for exists_replacement and find_replacement are just as before.Then we can implement Warehouse in terms of these functors as follows:functor Warehouse(I:ITEM):WAREHOUSE sharing Item = I= Put(Warehouse'(I))Veri�cation Typechecks okay. All interfaces match exactly so conditions 1-3 of Theorem 5.2 aresatis�ed as a consequence of Proposition 3.4. 2Step 2Design decision (coding) Implement the functor Put by coding put using putone in the obviousway. functor Put(W:WAREHOUSE'):WAREHOUSE sharing Item = W.Item= struct structure Item : ITEM = W.Itemopen Wfun put(i,0,w) = w| put(i,n+1,w) = put(i,n,putone(i,w))endVeri�cation Typechecks okay. According to Theorem 6.3, we have to show thatWAREHOUSE0 [ body j=sorts(ITEM)Sig(WAREHOUSE) WAREHOUSEwhere body is the body of Put. This follows by Proposition 3.4 since we can show by induction on thenatural numbers that the axioms in WAREHOUSE involving put hold, and the rest hold trivially. 2Step 3Design decision (decomposition) Decompose Warehouse' into three functors. The �rst functorprovides bags (multisets) of items which will be used to represent the contents of the warehouse, thesecond functor handles warehouse queries (amount, exists_replacement and find_replacement),and the third functor combines these to implement Warehouse'.We need three functors:Bag(I:SMALLITEM):BAG sharing Item = IQueries(B:SMALLBAG,I:ITEM sharing B.Item.item = I.item):QUERIES sharing Item = I and warehouse = B.bag and amount = B.countCombine(B:BAG,R:QUERIES sharing B.Item.item = R.Item.itemand B.bag = R.warehouse and B.count = R.amount):WAREHOUSE' sharing Item = R.Item41



where SMALLITEM, BAG, SMALLBAG and QUERIES are as follows:signature SMALLITEM =sig eqtype itemendsignature BAG =sig structure Item : SMALLITEMtype bagval empty : bagval add : Item.item * bag -> bagval count : Item.item * bag -> natval remove : Item.item * bag -> bagaxiom add(i,add(j,b)) = add(j,add(i,b))axiom count(i,empty) = 0axiom count(i,add(j,b)) = count(i,b)+1 if i=j= count(i,b) if i<>jaxiom remove(i,b) = b if count(i,b)=0axiom remove(i,add(j,b)) = b if i=j= add(j,remove(i,b)) if i<>jendsignature SMALLBAG =sig structure Item : SMALLITEMtype bagval count : Item.item * bag -> natendsignature QUERIES =sig structure Item : ITEMtype warehouseval amount : Item.item * warehouse -> natval exists_replacement : Item.item * warehouse -> boolval find_replacement : Item.item * warehouse -> Item.itemaxiom exists_replacement(i,w) <=>exists j. (Item.replaces(j,i) & amount(j,w)>0)axiom exists_replacement(i,w) =>(Item.replaces(find_replacement(i,w),i)& amount(find_replacement(i,w),w)>0)axiom amount(i,w)>0 => find_replacement(i,w)=iendThen we can implement Warehouse' in terms of these functors as follows:functor Warehouse'(I:ITEM):WAREHOUSE' sharing Item = I= let structure B = Bag(I) inCombine(B,Queries(B,I)) end 42



Veri�cation Typechecks okay. All interfaces �t exactly except that I is used by Bag as a SMALLITEMso we have to show that ITEM �ts SMALLITEM and B:BAG is used by Queries as a SMALLBAG so we haveto show that BAG �ts SMALLBAG (both obvious). 2Step 4Design decision (coding) Implement Combine by changing the names of the values in the inputstructure B appropriately.functor Combine(B:BAG,R:QUERIES sharing B.Item.item = R.Item.itemand B.bag = R.warehouse and B.count = R.amount):WAREHOUSE' sharing Item = R.Item= struct open Rval empty = B.emptyval putone = B.addval take = B.removeendVeri�cation Typechecks okay. Note that open R turns all the components of R, including thesubstructure Item:ITEM, into parts of the body. It is easy to verify that the axioms of WAREHOUSE'are implied by the axioms of BAG, QUERIES and the body of Combine. 2Step 5Design decision (coding) Implement Queries using a function find, which �nds a suitable re-placement if there is one, to implement exists_replacement and find_replacement.functor Queries(B:SMALLBAG,I:ITEM sharing B.Item.item = I.item):QUERIES sharing Item = I and warehouse = B.bag and amount = B.count= struct structure Item : ITEM = Itype warehouse = B.bagval amount = B.countval find : Item.item * warehouse -> Item.itemaxiom Item.replaces(find(i,w),i)axiom (exists j. (Item.replaces(j,i) & amount(j,w)>0)) =>amount(find(i,w),w)>0fun exists_replacement(i,w) = amount(find(i,w),w)>0fun find_replacement(i,w) = if amount(i,w)>0 then ielse find(i,w)endVeri�cation Typechecks okay. According to Theorem 6.3 (and the de�nition of correctness formulti-argument functors), we have to show thatSMALLBAG[ ITEM [ body j=sorts(SMALLBAG)[sorts(ITEM)Sig(QUERIES) QUERIESwhere body is the body of Queries. This follows by Proposition 3.4. 243



OOPS!One way to implement find involves stepping through the domain of items until an allowable re-placement is found which is in stock. But this requires adding a function to ITEM, which changes theoriginal speci�cation. The customer agrees to this change. We can add this now and continue thedevelopment after checking that the steps taken so far are still valid.Redeclare ITEM to be just like the previous ITEM except with the addition ofval next : item -> itemval iternext : nat * item -> itemaxiom iternext(0,i) = iaxiom iternext(n+1,i) = iternext(n,next(i))axiom forall i,j. exists n. (n>0 & iternext(n,i)=j)Here, iternext is a hidden value which is handy for specifying next.Veri�cation Since the new version of ITEM is stronger than the old version, the only veri�cationconditions from the previous steps we have to check are those of the form : : : j= : : : ITEM : : :. In eachcase, the speci�cation on the left-hand side of the entailment contains a \matching" occurrence ofITEM, so this reduces to ITEM j= ITEM. 2Step 6Design decision (re�nement) Re�ne Queries by coding find as a search through the domain ofitems using the function next.functor Queries(B:SMALLBAG,I:ITEM sharing B.Item.item = I.item):QUERIES sharing Item = I and warehouse = B.bag and amount = B.count= struct structure Item : ITEM = Itype warehouse = B.bagval amount is B.countfun find'(i,j,w) = if i=j then ielse if amount(j,w)>0 andalso Item.replaces(j,i)then jelse find'(i,Item.next(j),w)fun find(i,w) = find'(i,Item.next(i),w)fun exists_replacement(i,w) = amount(find(i,w),w)>0fun find_replacement(i,w) = if amount(i,w)>0 then ielse find(i,w)endVeri�cation Typechecks okay. It is routine but messy to prove that the code for find (together withthe axioms in ITEM) entails the axioms in the previous version of Queries. Thus by Proposition 3.4we can apply Corollary 6.4. 244



Step 7Design decision (coding) Implement Bag using ML's datatype de�nition facility. (In practice,common types such as this one would have one or more pre-veri�ed implementations in the library,and so this step would consist of selecting one and ensuring that the interfaces match. This mightrequire renaming input and result types and values.)functor Bag(I:SMALLITEM):BAG sharing Item = I= struct structure Item : SMALLITEM = Idatatype bag = empty | add of Item.item * bagfun count(i,empty) = 0| count(i,add(j,b)) = if i=j then count(i,b)+1else count(i,b)fun remove(i,empty) = empty| remove(i,add(j,b)) = if i=j then belse add(j,remove(i,b))endVeri�cation Typechecks okay. According to Theorem 6.3, we have to showSMALLITEM[ body j=sorts(SMALLITEM)Sig(BAG) BAGwhere body is the body of Bag.We can apply Corollary 3.7 to split the axioms of BAG into a set which follow directly fromSMALLITEM[ body (i.e. all but the �rst one) and a set whose observable consequences must be shownto follow from SMALLITEM[ body (the �rst axiom).The observable consequences of the �rst axiomadd(i; add(j; b)) = add(j; add(i; b))are all the equations of the formcount(k;�(add(i;add(j; t)))) = count(k;�(add(j; add(i; t))))where � is a context of sort bag yielding a result of sort bag, and t is a term of sort bag containingvariables of sort Item.item only.Lemma From SMALLITEM[ body it follows that for any b; b0 : bag such that count(i; b) = count(i; b0)for all i:(a) count(i; remove(j; b)) = count(i; remove(j; b0))(b) count(i; add(j; b)) = count(i; add(j; b0))(c) count(i; add(j;add(k; b))) = count(i; add(k; add(j; b0)))for all i; j and k. 45



Proof By cases on i=j, after establishing for (a) thatcount(i; remove(j; b00)) = count(x; b00)� 1 if i=j and count(x; b00) > 0= count(x; b00) otherwisefor any b00. 2Using this lemma it is easy to show by induction on the structure of the context � that the desiredequations follow from SMALLITEM[ body. 2All functor bodies are now expressed entirely in Standard ML, so we are �nished. The functorsappearing in the �nal program are given above under steps 1, 2, 3, 4, 6 and 7. The following treeshows the dependencies between the development steps:Step 0Initial speci�cationof Warehouse,modulo OOPSStep 1Decompose intoPut and Warehouse'�����Step 2Code Put HHHHH Step 3Decompose Warehouse' intoBag, Queries and Combine������Step 4Code Combine Step 5Abstract codefor Queries HHHHHH Step 7Code BagStep 6Re�ne Queries8 Conclusions and future workIn this paper we have sketched a methodology for the formal development of programs supportedby the modularisation facilities of Standard ML [MacQ 86], [HMT 87]. Our starting point was thespeci�cation language Extended ML [ST 85b], [ST 86], [ST 89] which incorporates these facilities.The present work may be viewed as an adaptation to the Extended ML framework of some of theideas in [Sch 86] amalgamated with our ideas on implementation of speci�cations [ST 88b] developedin the context of ASL [SWi 83], [ST 88a]. An important principle which uni�es all this work is thecentral role of behavioural equivalence in program speci�cation and development.46



We have borrowed from [Sch 86] the technical concepts of universal correctness (Section 4.2) andsimple correctness and stability (Section 6) together with the thesis that it is proper to demand thatstability be guaranteed by the programming language. We have generalised his results on compositionof universally correct functors by allowing interfaces to match up to behavioural equivalence ratherthan requiring them to match literally (Section 5). We have also provided some results useful forproving that interfaces match up to behavioural equivalence (Section 3). Although these results aresu�cient to handle many cases of interest, we regard them as �rst attempts in this direction; morework remains to be done here, especially in the context of speci�cations having a non-trivial structure.From [ST 88b] we take the concept of constructor implementation and the idea that constructorsplay a central role in program development. As hinted in the conclusion of [ST 88b], constructorscorrespond to Standard ML functors. In the Extended ML framework developed here we allow suchconstructors to be speci�ed before they are actually coded. Implementing an Extended ML functorheading by functor decomposition amounts to sketching the entire constructor implementation processfor that functor. Because the constructors involved are speci�ed, the correctness of this decompositionmay be veri�ed before any code is written.In this paper we have considered only a restricted subset of the Standard ML core language,excluding features like polymorphism which are not directly available within the standard algebraicframework. A way to circumvent this limitation is to generalise the work presented here to theframework of an arbitrary institution [GB 84] which formalises the informal concept of an arbitrarylogical system. We can see no obvious obstacles to such a generalisation | in fact, most of the workhas already been done: the basic methodological ideas in [Sch 86] and [ST 88b] were developed towork in an arbitrary institution, and the institution-independent semantics of (a previous version of)Extended ML was given in [ST 86]. It remains to ensure that everything �ts together properly.In contrast, the technical results on proving behavioural consequence in Section 3 are very muchspeci�c to the particular institution used here. It would be interesting to investigate the extensionof these results in the framework of institutions enriched with some additional structure, such as so-called abstract algebraic institutions [Tar 85], [Tar 86a], which would seem to support the conceptsinvolved.Once the generalisation to an arbitrary institution is established, we can instantiate it to thecontext of an institution which covers all the features of Standard ML. The result would be a frameworkto support the development of programs in full Standard ML. Constructing such an institution is aseparate (and very non-trivial) job. There are many features in Standard ML which have not yet beengiven an adequate algebraic treatment. Even if they could all be treated separately, it may turn outto be di�cult to combine them in a single institution. This is an example of the general problem ofhow to put institutions together addressed in a preliminary way in [GB 84], [Tar 86b] and [HST 89].It is intriguing to observe that other programming languages can be accommodated in this frameworkin a similar way; see [SWa 87] where the modularisation facilities of Standard ML were adapted forProlog by instantiating an institution-independent version of ML modules.As explained in Section 6, the soundness of our methodology depends on the stability of the targetprogramming language. This must be checked in detail for the subset of ML we use in this paper andfor other potential target languages. Even formulating the stability result requires an algebraic-stylesemantics for the language, as would be given in the de�nition of the corresponding institution.The aims of this work are broadly similar to those of work on rigorous program development bythe VDM school (see e.g. [Jones 80]). VDM is a method for software speci�cation and development,47



based on the use of explicitly-de�ned models of software systems, which has been widely applied inpractice. However, it lacks formal mathematical foundations and explicit structuring mechanisms.The RAISE project [BDMP 85] is attempting to �ll these gaps. This can be seen as convergingwith our current work which builds on formal mathematical foundations with a strong emphasis onstructure of speci�cations, and attempts to address problems of practical usability. At a technical level,two advantages of our approach are the use of behavioural equivalence which handles the transitionbetween data speci�cation and representation in a more general way than VDM's retrieve functions,and the use of institutions to obtain independence from the underlying logical framework and targetprogramming language.A notion of modular speci�cation related to the one in Extended ML is developed in a series ofpapers beginning with [EW 85]. The exact relationship is yet to be investigated. The underlyingsemantic notions seem to be close although there are numerous technical di�erences and the mainissues of concern di�er as well. While [EW 85] and later papers mainly discuss the module conceptitself and operations for manipulating modules with compatibility results, in Extended ML these aretaken as given since they are inherited directly from Standard ML. Recent work on system developmentin that framework [EFHLP 87] builds around notions of realization and re�nement which seem to bebased on di�erent intuitions than the ones we try to model here.The eventual practical feasibility of formal program development depends on the existence of anintegrated support system. There is a need for (at least) the following:� A parser and typechecker for Extended ML speci�cationsThis would allow speci�cations to be checked for silly mistakes, and produce abstract syntaxtrees in a form suitable for processing by other components of the system. It would also providethe information on sharing required to generate appropriate veri�cation conditions for re�nementsteps.� A theorem proverMost proofs encountered in proving properties of speci�cations and programs are routine, albeitsometimes long and intricate. This makes them good candidates for automated proof usingmethods such as those described in [BM 79], but it is important to have the possibility ofproceeding interactively as in LCF [GMW 79] if automated methods fail.� A re�nement step veri�erGiven a re�nement step to be veri�ed, a number of conjectures to be proved will be generatedand fed to the theorem prover. If these conjectures can be proved (either automatically orinteractively) then the correctness of the re�nement step follows. It will often be unnecessaryto consult the theorem prover since interfaces will match exactly. On the other hand, in casea conjecture generated while verifying a re�nement step turns out to be non-trivial to prove, itshould be possible to leave it aside at least until it becomes apparent that the line of developmentis the right one.� A rapid prototyping capabilityIn order to ensure that a speci�cation captures all the required properties of a program, it isimportant to have some way of exploring its consequences as early as possible in the program48



development process. We do not agree with the idea that the expressive power of the speci�c-ation languages should be restricted so as to guarantee that all speci�cations are \executable".However, we can take advantage of the technology developed in systems like OBJ2 [FGJM 85],REVE [Les 83] and RAP [Hus 85] to allow speci�cations which happen to be in the appropriateform to be tested. The consequences of speci�cations not in this form can be explored using thetheorem prover.� Environmental toolsAn advantage of adopting a speci�cation language which is a variant of Standard ML is that wewill be able to make use of environmental tools for Standard ML (structure editors, version con-trol, cross-referencing facilities, etc.) as they become available. However, some tools which areparticular to the formal program development enterprise will be needed, including for examplesome mechanism for keeping track of veri�ed re�nement steps.Most of the technology on which such a system depends has already been developed so that construct-ing it would mostly be a matter of applying and integrating existing techniques rather than inventingnew ones.One thing which is not at all clear is how such a system can be made to accommodate theinstantiation of Extended ML and our program development methodology to di�erent institutions.It seems clear that some parts of the system are very much speci�c to particular logical systems, forexample the parser and nearly everything concerned with rapid prototyping. Some other aspects willgeneralise easily, for example the re�nement step veri�er, although it is still open how exactly thiswill work in practice. The problem of generalising speci�c techniques to arbitrary logical systemshas been addressed in a number of other research projects; for example, theorem provers which workin arbitrary logics include EFS [Gri 87] based on the Edinburgh Logical Framework [HHP 87] andIsabelle [Pau 86]. The relation between institutions and LF is under investigation; see [HST 89] forthe current status of this work.AcknowledgementsThe work presented here is based on the ideas developed by Oliver Schoett in [Sch 86]. Thanksto Jordi Farr�es, Mike Fourman and the anonymous TAPSOFT'89 referees for comments on a draft.This work has been partially supported by grants from the Polish Academy of Sciences and from theU.K. Science and Engineering Research Council. The bulk of the work was done during a visit by thesecond author to Edinburgh University under the support of an SERC Visiting Fellowship.9 References[ Note: LNCS n = Springer Lecture Notes in Computer Science, Volume n ][Bau 85] Bauer, F.L. et al (the CIP language group). The Wide Spectrum Language CIP-L. LNCS 183(1985).[BDMP 85] Bj�rner, D., Denvir, T., Meiling, E. and Pedersen, J.S. The RAISE project: fundamentalissues and requirements. Report RAISE/DDC/EM/1/V6, Dansk Datamatic Center (1985).[BM 79] Boyer, R.S. and Moore, J.S. A Computational Logic. Academic Press (1979).49
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A Two technical lemmas about behavioural equivalenceThe following two rather technical facts allow us to prove satisfaction up to behavioural equivalencein some important speci�c situations.Lemma A.1 Let �1 ��shr �2-�02 -�26�1 6�01be a pushout in the category of algebraic signatures. Let OBS1 � sorts(�1) and OBS2 � sorts(�2)be sets of observable sorts that contain the entire common part �shr of �1 and �2, i.e. such thatsorts(�1(�shr)) � OBS1 and sorts(�2(�shr)) � OBS2. Consider A1; A10 2 Alg(�1) and A2; A20 2Alg(�2) such that A1 OBS1 = A10 OBS1 and A2 OBS1 = A20 OBS2, and moreover A1 �1 = A10 �1 =A2 �2 = A20 �2 . Let A;A0 2 Alg(�) be the amalgamated union of A1 and A2 and of A10 and A20respectively, i.e. A �02 = A1, A �01 = A2 and A0 �02 = A10, A0 �01 = A20. Then, if A1 �OBS1 A10 andA2 �OBS2 A20 then A �OBS A0, where OBS = �02(OBS1) [ �01(OBS2).Proof Let X be an OBS-sorted set of variables, and let v : X ! jAjOBS (= jA0jOBS) be a valuation.By the construction of pushouts in the category of algebraic signatures, for any s 2 OBS and anys1 2 sorts(�1) such that �02(s1) = s (resp., s2 2 sorts(�2) such that �01(s2) = s), s1 2 OBS1 (resp.s2 2 OBS2). Consider t 2 T�(X)s, s 2 OBS. We have to prove that tA(v) = tA0(v). We proceed byinduction on the structure of t:Case 1: There is a term t1 2 T�1(X1)s1 such that �02(s1) = s and �02(t1) = t, where X1 is an OBS1-sorted set of variables such that X1r � X�02(r) for r 2 OBS1. By an obvious sublemma ofthe Satisfaction Lemma, tA(v) = tA �021 (v1) = tA11 (v1) and tA0(v) = tA0 �021 (v1) = tA101 (v1) wherev1 : X1 ! jA1jOBS1 (= jA10jOBS1) is de�ned by: for r 2 OBS1, x 2 X1r, v1r(x) = v�02(x). Now,since A1 �OBS1 A10, tA101 (v1) = tA11 (v1), and so indeed tA(v) = tA0(v).Case 2: There is a term t2 2 T�2(X2)s2 such that �01(s2) = s and �01(t2) = t, where X2 is an OBS2-sorted set of variables such that X2r � X�01(r). Proof as above.Case 3: Otherwise, t must have a subterm, which is not a variable, of a sort in �(�shr) which satis�esone of the above conditions. Without loss of generality, assume that t has a non-trivial subtermt0 2 T�(X)s0 such that there is a term t01 2 T�1(X1)s1 where �02(s1) = s0 and �02(t01) = t0, and X1is an OBS1-sorted set of variables, X1r � X�02(r).We can rewrite t as t̂[t0=x] where t̂ 2 T�(X [ fx:s0g)s. Now, as in case 1 above, t0A(v) = t0A0(v).Let v̂ : X [ fx:s0g ! jAjOBS (= jA0jOBS) be an extension of v given by v̂(x) = tA1 (v). Wehave tA(v) = (t̂[t0=x])A(v) = t̂A(v̂) and tA0(v) = (t̂[t0=x])A0(v) = t̂A0(v̂). But by the inductionhypothesis t̂A(v̂) = t̂A0(v̂), and thus tA(v) = tA0(v). 2(Another proof may be extracted from the proofs of Proposition 5.2.2 and 5.3.2 (and Theorem 4.4.6)in [Sch 86].) 54



Lemma A.2 Consider the following commutative diagram:��1�shr �2-�6� 6� @@@@@I �(i.e. �;� = �). Let SP1; SP2 be speci�cations with Sig[SP1] = �1 and Sig[SP2] = �2 such thatSP1 j=sorts(�(�shr))� SP2 (that is, derive from SP1 by � j=sorts(�(�shr))�2 SP2). Then, let OBS �sorts(�shr) be a set of observable sorts such that all signature morphisms considered are identitieson OBS, and let A 2 Alg(�) be an algebra such that A j=OBS translate SP1 by �. Construct apushout: � �0�shr �2-�0 -�6�;� 6�1Consider the amalgamated union of A and A � ;�, written A + A � ;�, i.e. the unique �0-algebra suchthat (A + A � ;�) �0 = A and (A + A � ;�) �1 = A � ;�. Then, A + A � ;� j=OBS translate SP2 by �1.Moreover, if A �OBS B and B � j= SP1, then there exists a �0-algebra B 0 such that B 0 �0 = B,(A+A � ;�) �OBS B0 and B 0 �1 j= SP2.Proof Consider an arbitrary �-algebra B such that B �OBS A and B j= translate SP1 by �, i.e.B � j= SP1. Such an algebra B exists since A j=OBS translate SP1 by �. Since SP1 j=sorts(�(�shr))�2SP2, B � ;� j=sorts(�(�shr))�2 SP2, i.e. there exists a model C 2Mod[SP2] such that B � ;� �sorts(�(�shr)) C.In particular, B �;� = (B � ;�) � = C �. Consider the amalgamated union B 0 = B + C, i.e. the unique�0-algebra such that B 0 �0 = B and B 0 �1 = C. Clearly, B 0 j= translate SP2 by �1. To completethe proof that A+A � ;� j=OBS translate SP2 by �1, we will show that B 0 �OBS A+A � ;�.By the construction, there exists a unique algebraic signature morphism � 0 : �0 ! � such that thefollowing diagram commutes: � �0�shr �2-�0 -�6�;� 6�1 �������������1id �������������� ;��� ���� 0
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That is, �0;� 0 = id and �1;� 0 = � ;�.Warning The following diagram does not commute in general:��1�shr �2-�6� 6� @@@@@I � �06�1-�0� � 0
In general, � 0;�0 6= id. Intuitively, to construct �0 we took the signature � and then removed allidenti�cation of symbols coming from �2 which are not inherited from �shr. Consequently, A+A � ;�is just the \same" algebra as A, but with some types and values duplicated rather than shared.2(Warning)Sublemma For any �-algebra D, D � 0 = D +D � ;�.Proof Just notice that (D � 0) �0 = D �0;� 0 = D id = D and (D � 0) �1 = D �1;� 0 = D � ;�. 2Now, sinceA �OBS B, we also haveA � 0 �OBS B � 0, i.e. (A+A � ;�) �OBS (B+B � ;�). However, byLemmaA.1, (B+B � ;�) �sorts(�1(�(�shr))) B 0 which impliesB+B � ;� �OBS B0 and so A+A � ;� �OBS B0.2(Lemma A.2)B Unitary decomposition theoremTheorem 5.1 Consider an Extended ML functor F :functor F (X : SIGin) : SIGout sharing sharing-decl = F1(X)where F1 is a functor with heading:functor F1(X : SIG1in) : SIG1out sharing sharing-decl1Suppose that the de�nition of F is well-formed according to the Standard ML typechecking rules,determining a commutative diagram as in Section 5.1. Suppose the following conditions are satis�ed:1. SIGin j=sorts(�1in(�(�shr)))�1in SIG1in2. SIG1out j=sorts(�out(�shr))�out SIGoutThen, if F1 is universally correct then F is universally correct.Proof Let F1bsem 2 F1bsem. The corresponding basic semantics of F , Fbsem : Alg(�in)�!Alg(�out)is de�ned as follows: for any A 2 Alg(�in), Fbsem(A) = F1bsem(A �in) �out13. (Since the diagram13Here, and in similar situations, such a de�nitional equation implicitly says that the left-hand side is de�ned if andonly if the right-hand side is de�ned. 56



of Section 5.1 commutes, the fact that A �shr = Fbsem(A) �shr follows easily from (A �in) �1shr =F1bsem(A �in) �1shr .)Consider any algebraic signature �arg, �tting morphism � : �in ! �arg, and �arg-algebra A.Suppose that A j=sorts(Perv) translate SIGin by �. We have to prove thatA � 2 Dom(F ) and Fgres(A[�]) j=sorts(Perv) translate SIGout by F [�]where the signature of Fgres(A[�]) and the morphism F [�] are de�ned by the pushout:�arg F (�arg[�])-�0out
�shr �out-�out 6F [�]6��in6�inand Fgres(A[�]) = A+ Fbsem(A �) is the amalgamated union as in Section 4.1.Let the following diagram be a pushout in the category of algebraic signatures:�arg �1arg-�0
�shr �1in-� 6�16��in6�inConsider the amalgamated union A1 =def (A+A �in;�) 2 Alg(�1arg). By Lemma A.2, A1 j=sorts(Perv)translate SIG1in by �1. Hence, we can apply F1 to A+ A �in;� using the �tting morphism �1. Inparticular, A1 �1 = (A �) �in 2 Dom(F1) by universal correctness of F1 and hence A � 2 Dom(F ).By de�nition, we obtain the following pushout diagram:�1arg F1(�1arg[�1])-�10out
�1shr �1out-�1out 6F1[�1]6�1�1in6�1inand the global result of F1, which is the amalgamated union F1gres(A1[�1]) = A1 + F1bsem(A �in;�)(recall that A1 �1 = (A+A �in;�) �1 = A �in;�). By the universal correctness of F1,F1gres(A1[�1]) j=sorts(Perv) translate SIG1out by F1[�1]:We still have to coerce the result to the output signature. Let the following diagram be a pushout:57



F1(�1arg[�1]) �2-�00
�shr �out-�out

6�26F1[�1]�1out6�1out�1shr6�Consider the amalgamated union A2 =def (F1gres(A1[�1]) + F1gres(A1[�1]) �out;F1[�1]) 2 Alg(�2). ByLemma A.2, A2 j=sorts(Perv) translate SIGout by �2.It may be helpful at this point to study the commutative diagram in the category of algebraicsignatures which we have constructed so far:
�in �1in@@@@I �in�1shr6�1in �1out-�1out �out@@@@I �out�shr
6�in -�out�������

�arg6� �1arg������0 6�1 F1(�1arg[�1])-�10out 6F1[�1] F (�arg[�])-�0out 6F [�]
�2-�00
%
6

�2
By the construction of F (�arg[�]) as a pushout object, there exists a (unique) morphism �fin :F (�arg[�]) ! �2 such that F [�];�fin = �2 and �0out;�fin = �0;�10out;�00. We claim that A2 �fin =Fgres(A[�]). To verify this, just consider:(A2 �fin) �0out = A2 �0out ;�fin= (F1gres(A1[�1]) + F1gres(A1[�1]) �out;F1[�1]) �0;�10out;�00= F1gres(A1[�1]) �0;�10= A1 �0 = A 58



and (A2 �fin) F [�] = A2 F [�];�fin= A2 �2= F1gres(A1[�1]) �out;F1[�1]= (F1gres(A1[�1]) F1[�1]) �out= F1bsem(A1 �1) �out= F1bsem((A �) �in) �out= Fbsem(A �)which proves the claim by the construction of Fgres(A[�]) as an amalgamated union.Finally, since A2 j=sorts(Perv) translate SIGout by �2, there exists a �2-algebra B2 such thatB2 �sorts(Perv) A2 and B2 �2 j= SIGout. So Fgres(A[�]) = A2 �fin �sorts(Perv) B2 �fin and (B2 �fin) F [�] =B2 �2 j= SIGout. Thus, it is indeed the case that Fgres(A[�]) j=sorts(Perv) translate SIGout by F [�].To verify the additional requirement imposed by universal correctness, consider a �arg-algebra Bsuch that B �sorts(Perv) A and B � j= SIGin. We have to construct bB 2 Alg(F (�arg[�])) such thatbB �0out = B, bB �sorts(Perv) Fgres(A[�]) and bB F [�] j= SIGout. The construction parallels the constructionof A2 �fin. Namely:� By Lemma A.2, there exists a �1arg-algebra B1 such that B1 �0 = B, B1 �sorts(Perv) A1 andB1 �1 j= SIG1in.� Since F1 is universally correct, there exists an F1(�1arg[�1])-algebradB1 such thatdB1 �10out = B1,dB1 �sorts(Perv) F1gres(A1[�1]) and dB1 F1[�1] j= SIG1out.� By Lemma A.2, there exists a �2-algebra B2 such that B2 �00 = dB1, B2 �sorts(Perv) A2 andB2 �2 j= SIGout.Finally, let bB = B2 �fin. Then bB F [�] = B2 F [�];�fin = B2 �2 j= SIGout and bB �0out = B2 �0out;�fin =B2 �0;�10out;�00 = B. 2C Sequential decomposition theoremTheorem 5.2 Consider an Extended ML functors F :functor F (X : SIGin) : SIGout sharing sharing-decl = G2(G1(X))where G1 and G2 are functors with headings:functor G1(Y 1 : SIG1in) : SIG1out sharing sharing-decl1functor G2(Y 2 : SIG2in) : SIG2out sharing sharing-decl2Suppose that the de�nition of F is well-formed according to the Standard ML typechecking rules,determining a commutative diagram as in Section 5.2. Suppose that the following conditions aresatis�ed:1. SIGin j=sorts(�1in(�1(�shr)))�1in SIG1in 59



2. SIG1out j=sorts(�2in(�2(�shr)))�2in SIG2in3. SIG2out j=sorts(�out(�shr))�out SIGoutThen, if G1 and G2 are universally correct then so is F .Proof The basic semantics for F is Fbsem : Alg(�in)! Pow (Alg(�out)) de�ned as follows: for anyA 2 Alg(�in),Fbsem(A) = fA2 �out j A2 2 G2bsem(A1 �inter) for some A1 2 G1bsem(A �in)gor, with a slight abuse of notation,Fbsem(A) = fG2bsem (G1bsem (A �in) �inter) �out j G1bsem 2 G1bsem and G2bsem 2 G2bsemg:Consider any algebraic (argument) signature �arg and �tting morphism� : �in ! �arg. Proceedingexactly as in the proof of Theorem 5.1, except this time repeating the basic construction twice, weobtain the following commutative diagram in the category of algebraic signatures:
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�arg6� �1arg������10 6�1 G1(�1arg[�1])-�10out 6G1[�1]
�2arg������20 6
�2

G2(�2arg[�2])-�20out 6
G2[�2] F (�arg[�])-�0out 6

F [�]
�3-�0������������fin

%

6
�3�in �1in�1shr �1out �2in�2shr �2out �out�shr�����������

�������1������������������1�2
6

�in
-�out

@@@@I �in 6�1in -�1out @@@@I �inter6�2in -�2out @@@@@I �outIn the above, the following diagrams are de�ned to be pushouts in the category of algebraic signatures(each pushout is presented by naming the nodes on its two paths; the last morphism in each pathresults from the pushout construction):� �shr ,! �in ! �arg ! �1arg and�shr ! �1shr ,! �1in ! �1arg,� �1shr ,! �1in ! �1arg ! G1(�1arg[�1]) and�1shr ,! �1out ! G1(�arg[�1]),� �shr ! �1shr ,! �1out ! G1(�1arg[�1])! �2arg and�shr ! �2shr ,! �2in ! �2arg, 61



� �2shr ,! �2in ! �2arg ! G2(�2arg[�2]) and�2shr ,! �2out ! G2(�2arg[�2]),� �shr ! �2shr ,! �2out ! G2(�2arg[�2])! �3 and�shr ,! �out ! �3� �shr ,! �in ! �arg ! F (�arg[�]) and�shr ,! �out ! F (�arg[�]),and then �fin : F (�arg[�])! �3 is the unique algebraic signature morphism such that�0out;�fin = �10;�10out;�20;�20out;�0 and F [�];�fin = �3.Now, consider any �arg-algebra A such that A j=sorts(Perv) translate SIGin by �. For any choice ofG1bsem 2 G1bsem and G2bsem 2 G2bsem we proceed as follows:A1 =def (A+A �in;�) 2 Alg(�1arg);then A1 j=sorts(Perv) translate SIG1in by �1 by Lemma A.2:G1gres(A1[�1]) =def (A1 +G1bsem(A �in;�)) 2 Alg(G1(�1arg [�1]));then G1gres(A1[�1]) j=sorts(Perv) translate SIG1out by G1[�1] by universal correctness of G1:A2 =def (G1gres(A1[�1]) +G1bsem(A �in;�)) 2 Alg(�2arg);then A2 j=sorts(Perv) translate SIG2in by �2 by Lemma A.2:G2gres(A2[�2]) =def (A2 +G2bsem(G1bsem(A �in;�)) �inter) 2 Alg(G2(�2arg[�2]));then G2gres(A2[�2]) j=sorts(Perv) translate SIG2out by G2[�2] by universal correctness of G2:A3 =def (G2gres(A2[�2]) +G2bsem(G1bsem(A �in;�)) �out) 2 Alg (�3arg);then A3 j=sorts(Perv) translate SIGout by �3 by Lemma A.2:Moreover, we can verify that (A3 �fin) �0out = A and (A3 �fin) F [�] = G2bsem(G1bsem((A �) �in) �inter) �out,which shows that A � 2 Dom(F ). We conclude:Fgres(A[�]) j=sorts(Perv) translate SIGout by F [�]:Finally, let B 2 Alg(�arg) such that B �sorts(Perv) A, B � j= SIGin. In parallel with the aboveconstruction we can show the existence of the following algebras:� B1 2 Alg(�1arg) such that B1 �10 = B,B1 �sorts(Perv) A1 and B1 �1 j= SIG1in (by LemmaA.2).� dB1 2 Alg(G1(�1arg[�1])) such thatdB1 �10out = B1,dB1 �sorts(Perv) G1gres(A1[�1]) anddB1 G1[�1] j=SIG1out (by universal correctness of G1).� B2 2 Alg(�2arg) such thatB2 �20 =dB1,B2 �sorts(Perv) A2 andB2 �2 j= SIG2in (by LemmaA.2).� dB2 2 Alg(G2(�2arg[�2])) such thatdB2 �20out = B2,dB2 �sorts(Perv) G2gres(A2[�2]) anddB2 G2[�2] j=SIG2out (by universal correctness of G2). 62



� B3 2 Alg(�3) such that B3 �0 =dB2, B3 �sorts(Perv) A3 and B3 �3 j= SIGout (by Lemma A.2).Let bB = B3 �fin. Similarly as in the proof of Theorem 5.1, it is easy to verify that bB �0out = B andbB F [�] j= SIGout. 2D Parallel decomposition resultsProposition 5.3 Consider Extended ML functors G1 and G2 with headingsfunctor G1(Y 1 : SIG1in) : SIG1out sharing sharing-decl1functor G2(Y 2 : SIG2in) : SIG2out sharing sharing-decl2Let G12 be the functor formed by collapsing G1 and G2 as de�ned in Section 5.3. Then G12 isuniversally correct provided that G1 and G2 are.Proof The semantics of G12, as de�ned in Section 5.3, may be restated as follows: for anyG1bsem 2 G1bsem and G2bsem 2 G2bsem, there is a corresponding basic semantic function G12bsem :Alg(�12in)�!Alg(�12out) such that for any A 2 Dom(G12), G12bsem(A) is the unique �12out-algebrade�ned byG12bsem(A) c1out = G1bsem(A c1in) and G12bsem(A) c2out = G2bsem(A c2in):This is well-de�ned, sinceG1bsem(A c1in) �1inter ;�1out = (G1bsem(A c1in) �1out) �1inter= ((A c1in) �1in) �1inter= A �1inter;�1in;c1in= A �2inter;�2in;c2in= ((A c2in) �2in) �2inter= (G2bsem(A c2in) �2out) �2inter= G2bsem(A c2in) �2inter;�2out :To verify that for any A 2 Alg (�12in), A �12shr = G12bsem(A) �12shr , it is enough to notice that:(G12bsem(A) �12out) c1shr = G12bsem(A) c1shr ;�12out= G12bsem(A) �1out;c1out= (G12bsem(A) c1out) �1out= G1bsem(A c1in) �1out= (A c1in) �1in = A �1in;c1in = A c1shr ;�12in= (A �12in) c1shrand similarly (G12bsem(A) �12out) c2shr = (A �12in) c2shr :Consider an arbitrary G1bsem 2 G1bsem and G2bsem 2 G2bsem and let G12bsem 2 G12bsem be thecorresponding basic semantic function for G12.Consider any algebraic signature �arg, �tting morphism � : �12in ! �arg and �arg-algebra A suchthat A j=sorts(Perv)�arg translate SIG12in by �. Let B be any �arg-algebra such that B �sorts(Perv) A and63



B � j= SIG12in. We have to show that A � 2 Dom(G12) and to construct a G12(�arg[�])-algebra bBsuch that bB �120out = B, bB �sorts(Perv) G12gres(A[�]) and bB G12[�] j= SIG12out (this also implies thatG12gres(A[�]) j=sorts(Perv) translate SIG12out by G12[�]).In the following diagram, dashed arrows denote morphisms constructed in the course of the proofbelow. �arg6� G1(�arg[c1in;�])�� �� �� ��3�10out 6G1[c1in;�] G2(G1(�arg [c1in;�])[c2in;�;�10out])-�20out 6G2[c2in;�;�10out]G12(�arg[�])-�120out 6G12[�] �� �� ����fin
�

QQQQQQQQk
��12in�1in6c1in�1shr6�1in �2in�c2in �2shr� �2in�12shr@@@@I�12in
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� c2out

�0com
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�2inter&6 �1interBy the de�nition of SIG12in, B c1in ;� j= SIG1in. Hence, we can safely apply G1 to A via the �ttingmorphism c1in;� : �1in ! �arg, and the universal correctness of G1 ensures that A c1in;� 2 Dom(G1)and that there exists a G1(�arg[�])-algebraB1 such that B1 �10out = B,B1 �sorts(Perv) G1gres(A[c1in;�])and B1 G1[c1in;�] j= SIG1out.It follows thatB1 c2in;�;�10out = B c2in;� j= SIG2in, and so we can safely applyG2 toG1gres(A[c1in;�])via the �tting morphism c2in;�;�10out : �2in ! G1(�arg[c1in;�]). Universal correctness of G2 ensuresthat G1gres(A[c1in;�]) c2in;�;�10out 2 Dom(G2) and that there is a G2(G1(�arg[c1in;�])[c2in;�;�10out])-algebra B2 such that� B2 �20out = B1;� B2 �sorts(Perv) G2gres(G1gres(A[c1in;�])[c2in;�;�10out]); and� B2 G2[c2in;�;�10out ] j= SIG2out. 64



Now, since we have�1inter;�1out;G1[c1in;�];�20out = �1inter;�1in;c1in;��10in�20out= �2inter;�2in;c2in;��10in;�20out= �2inter;�2out;G2[c2in;��10in]by the construction of �12out as a pushout object, there exists a unique morphism� : �12out ! G2(G1(�arg [�])[c2in;�;�10out])such that c1out;� = G1[c1in;�];�20out and c2out;� = G2[c2in;��10in]:Then, since we have:�1inter;c1shr;�12in;�;�10out;�20out = �1inter;�1in;c1in;�;�10out;�20out= �1inter;�1out;G1[c1in;�];�20out= �1inter;�1out;c1out;�= �1inter;c1shr;�12out;�and similarly �2inter;c2shr;�12in;�;�10out;�20out = �2inter;c2shr;�12out;�by the construction of �12shr as a pushout object,�12in;�;�10out;�20out = �12out;�:Hence, by the construction of G12(�arg [�]) as a pushout object, there exists a unique morphism�fin : G12(�arg [�])! G2(G1(�arg[�])[c2in;�;�10out])such that �120out;�fin = �10out;�20out and G12[�];�fin = � .Claim: G2gres(G1gres(A[c1in;�])[c2in;�;�10out]) �fin = G12gres(A[�]).In particular, this implies that A � 2 Dom(G12).To verify the claim, we check that the reducts of the left-hand side to �arg and �12out (via �120outand G12[�] respectively) are A and G12bsem(A �) (and that G12bsem(A �) is de�ned):(G2gres(G1gres(A[c1in;�])[c2in;�;�10out]) �fin) �120out= G2gres(G1gres(A[c1in;�])[c2in;�;�10out]) �10out;�20out= G1gres(A[c1in;�]) �10out= A:Then, since( (G2gres(G1gres(A[c1in;�])[c2in;�;�10out] ) �fin ) G12[�] ) c2out= G2gres(G1gres(A[c1in;�])[c2in;�;�10out] ) G2[c2in;�;�10out]= G2bsem(G1gres(A[c1in;�] ) c2in;�;�10out= G2bsem( (A �) c2in )and 65



( (G2gres(G1gres(A[c1in;�])[c2in;�;�10out] ) �fin ) G12[�] ) c1out= G2gres(G1gres(A[c1in;�])[c2in;�;�10out] ) G1[c1in;�];�20out= G1gres(A[c1in;�] ) G1[c1in;�]= G1bsem( (A �) c1in );we conclude that A � 2 Dom(G12) and(G2gres(G1gres(A[c1in;�])[c2in;�;�10out] ) �fin ) G12[�] = G12bsem(A �);which proves the claim.Now, consider bB =def B2 �fin. We have� bB �120out = B2 �120out;�fin = B2 �10out;�20out = B,� bB �sorts(Perv) G12gres(A[�]), since B2 �sorts(Perv) G2gres(G1gres(A[c1in;�])[c2in;�;�10out]), and� bB G12[�] j= SIG12out, since{ ( bB G12[�]) c1out = B2 G1[c1in;�];�20out = B1 G1[c1in;�] j= SIG1out, and{ ( bB G12[�]) c2out = B2 G2[c2in;�;�10out] j= SIG2out.This completes the proof of the proposition. 2Theorem 5.5 Consider an Extended ML functor F :functor F (X : SIGin) : SIGout sharing sharing-decl = G0(G1(X); G2(X))where G0, G1 and G2 are functors with headings:functor G0(Y 01 : SIG01in; Y 02 : SIG02in sharing sharing-constr0) : SIG0outsharing sharing-decl0functor G1(Y 1 : SIG1in) : SIG1out sharing sharing-decl1functor G2(Y 2 : SIG2in) : SIG2out sharing sharing-decl2Suppose that the de�nition of F is well-formed according to the Standard ML typechecking rules,which determine algebraic signature morphisms as described in Section 5.3. Suppose that the followingconditions are satis�ed:1. (a) SIGin j=sorts(�1in(�0(�0shr)))[sorts(�1in(�1inter(�0com)))�1in SIG1in(b) SIGin j=sorts(�2in(�00(�00shr)))[sorts(�2in(�2inter(�0com)))�2in SIG2in2. (a) SIG1out j=sorts(�01in(�00(�0shr)))[sorts(�01com(�0com))�01in SIG01in(b) SIG2out j=sorts(�02in(�000(�00shr)))[sorts(�02com(�0com))�02in SIG02in3. SIG0out j=sorts(�shr)�out SIGoutThen, if G0, G1 and G2 are universally correct then so is F .Proof We show that the conditions above imply the corresponding conditions of Corollary 5.4. Thethird conditions are the same in both cases. As for the other two:66



1. SIGin j=sorts(�12in(�(�shr)))�12in SIG12in:Consider any A 2 Mod[SIGin]. We have to construct a �12in-algebra B such thatA �in �sorts(�12in(�(�shr))) B and B j= SIG12in:By assumption 1a, there exists B1 2 Mod [SIG1in] such thatA �1in �sorts(�1in(�0(�0shr)))[sorts(�1in(�1inter(�0com))) B1:Similarly, by assumption 1b, there exists B2 2 Mod[SIG2in] such thatA �2in �sorts(�2in(�00(�00shr)))[sorts(�2in(�2inter(�0com))) B2:It follows that B1 �1inter ;�1in = A �1inter ;�1in;�1in = A �2inter ;�2in;�2in = B2 �2inter ;�2in:Hence, we can construct the amalgamated union of B1 and B2, i.e. the unique �12in-algebra Bsuch that B c1in = B1 and B c2in = B2. By the de�nition of SIG12in, B j= SIG12in. Moreover,since A �in is the amalgamated union of A �1in and A �2in, by Lemma A.1 we haveA �in �sorts(c1in(�1in(�0(�0shr))))[sorts(c2in(�2in(�00(�00shr))))[::: Bwhich implies A �in �sorts(�12in(�(�shr))) B:2. SIG12out j=sorts(�0(�0(�shr)))�0in SIG0in:Consider A 2 Mod[SIG12out]. We have to construct a �0in-algebra B such thatA �inter �sorts(�0in(�0(�shr))) B and B j= SIG0in:By the de�nition of SIG12out, A c1out j= SIG1out, and so by assumption 2a, there exists B1 2Mod[SIG01in] such that A �1inter ;c1out �sorts(�01in(�00(�0shr)))[sorts(�01com(�0com)) B1. Similarly, byassumption 2b, there exists B2 2 Mod[SIG02in] such thatA �2inter;c2out �sorts(�02in(�000(�00shr)))[sorts(�02com(�0com)) B2:As in the previous case, we can construct the amalgamated union B 2 Alg(�0in) of B1 and B2and then show that B j= SIG0in and A �inter �sorts(�0(�0(�shr))) B. 2
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