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Preface

Extended ML (EML) is a framework for the formal development of programs in the
Standard ML (SML) programming language from high-level specifications of their
required behaviour. The Extended ML language is a “wide-spectrum” language
which encompasses both specifications and executable programs in a single unified
framework. This allows all stages in the development of a program to be expressed
in the Extended ML language, from the initial high-level specification to the final
code itself and including intermediate stages in which specification and code are
intermingled.

The Extended ML language is an extension of a large subset of Standard ML.
This subset excludes references, assignment, input/output and imperative poly-
morphism, requires structure declarations and functor declarations to include ex-
plicit signatures, and restricts structures and functors to behave as abstractions'
and parameterised abstractions respectively. Thus, Extended ML can only be used
to specify/develop programs written in this subset of Standard ML. The Exten-
ded ML language extends this subset by permitting axioms in module interfaces
(for specifying required properties of module components) and in place of code in
module bodies (for describing functions in a non-algorithmic way prior to their
implementation as Standard ML code).

The principles behind the design of the Extended ML language and devel-
opment framework, details of its theoretical underpinnings and examples of its
use may be found in [ST85], [ST86], [ST89], [San90] and [STI1]. The interested
reader should consult these for background information. This document is a formal
definition of the syntax and semantics of the Extended ML language; the other
components of the Extended ML framework are disregarded here.

In order for Extended ML to serve its purpose as a framework for specitying
and formally developing Standard ML programs, it is essential that the definition
of the Extended ML language should appropriately “match” the published defin-
ition of Standard ML [MTH90]. Given the size of language definitions, such a
match is practically impossible to achieve (let alone demonstrate in any convin-
cing way) by post hoc comparison of two independent definitions. For this reason,
the definition of Extended ML is based directly on the relevant parts of [MTH90],
amended to correct errors and infelicities as described in Appendix D of [MT91]
and as suggested in [Kah93] and [Kah94]. In order to make the relationship with
Standard ML manifest, the structure of this document is as close as possible to
that of [MTH90]. In places where the two languages are identical, the text of
[MTHI0] (with the indicated amendments) is used without change. For the most
part, even the rule numbers and section numbers used in [MTH90] have been
retained here. In detail:

'The term “abstraction” is taken from [MacQ86], the original description of the modules
facilities of Standard ML. The idea is that only the information that is explicitly recorded in the
signature(s) of a structure/functor is available to its clients.
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e Sections 27 of this document correspond directly to Sections 2-7 of [MTH90].
Although there are a few more rules here than in [MTH90], corresponding
rules appear with the same numbers for ease of comparison.

e Sections 8 and 9 are completely new.
e Section 10 here corresponds to Section 8 in [MTH90].
e Appendix A here corresponds directly to Appendix B there.

e Appendix B here is a reformulation of Appendix A there, which also takes
care of identifier status (Appendix B of [MT91]) and infix directives.

o Appendix C here corresponds to Appendices C and D there.

The intention is that a “proof” that Extended ML is compatible with Stand-
ard ML, if such a thing could ever be constructed, would be based in large part
on a simple textual comparison of the two definitions.

Because of the intimate relationship between [MTH90] and this document,
familiarity with the former (for which study of [MT91] is strongly recommended!)
is almost a prerequisite to achieving a deep understanding of the latter. The length
and necessary formality of a definition such as this one makes it rather difficult to
penetrate. For this reason an informal overview of the definition, which explains
most of the main issues involved and justifies some of the choices taken, is provided

in [KST94).
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1 Introduction

This document formally defines the Extended ML language. As explained in
the Preface, its structure closely follows that of the definition of Standard ML
[MTH90]. Thus, apart from the usual separation between the definition of syntax
and semantics, the semantics is divided into several parts:

e The static semantics deals with types (defining when a phrase elaborates to
a type or an assembly containing types). It checks that phrases are well-
typed, that they do not make reference to unbound identifiers, etc. We claim
that the relations defined here are decidable, which means that mechanical
type inference is possible.

e The dynamic semantics deals with values (defining when a phrase evaluates
to a value). In Extended ML, phrases may specify values without defining
them in an executable fashion. The result of evaluation in Extended ML is
the same as in Standard ML, provided that such “undefined” values are not
used in computing the result; otherwise a special exception is raised. Axioms
in signatures and in structure/functor bodies are treated as formal comments
by the dynamic semantics. We claim that the relations defined here are
semi-decidable, which means that evaluation is implementable although (of
course) it may fail to terminate.

o The verification semantics deals with the constraints imposed by axioms
(defining when a phrase verificates® to a value or set of values). This includes
checking that each structure and functor satisfies the axioms in its interface
signature(s). Since axioms are not present in Standard ML, there is nothing
in [MTHO90] corresponding to the verification semantics. We claim that some
of the relations defined here are not semi-decidable, which means that no
complete proof system can exist for Extended ML.

Both syntax and semantics are further subdivided by treating the Core and Mod-
ules separately. The definition of syntax is also divided into the definition of the
Bare language, which can be viewed as abstract syntax, and the definition of the
Full language by (computable) translation of derived forms into the Bare lan-
guage. The initial basis gives names and meanings to all the predefined identifiers
in Extended ML. Finally, the semantics of “programs” completes the definition
of the Extended ML language by combining the other parts of the definition.
Figure 1 shows where all these parts appear in this document, and indicates the
direct dependencies between the parts (A — B means that A directly depends
on B, i.e. A explicitly “calls” B). There are further indirect dependencies which
must be kept in mind when reading the definition. The dynamic semantics de-
pends on the static semantics, since evaluation of phrases is only guaranteed to
be well-defined for phrases that elaborate. The verification semantics depends on

2A more obvious term is “verify”, but this carries connotations we would like to avoid.
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Figure 1: Parts of the definition of Extended ML



1.1 Behavioural equivalence 3

the static semantics in exactly the same fashion, with the difference that inform-
ation is explicitly passed from the static semantics to the verification semantics
via the program semantics. The initial basis depends on the dynamic semantics,
the verification semantics and the derived forms in the sense that it contains se-
mantic objects of classes defined in these sections. Since the metalanguage used
for presenting the semantics is non-standard, it is presented later in this section.

1.1 Behavioural equivalence

The verification semantics defines what it means for a structure body to match
its interface signature. Roughly speaking, this requires any model of the struc-
ture body to satisfy the axioms in the signature. Following ideas concerning the
use of axioms to specify encapsulated abstractions, it is possible to relax this re-
quirement by allowing the axioms to be satisfied not “literally”, but only “up to
behavioural equivalence” with respect to an appropriate set of “observable types”
[ST89]. Similar remarks apply to functor declarations.

The present definition requires literal satistfaction of axioms. We intend to
eventually change this to permit satisfaction up to behavioural equivalence, but
further study is required before this can be done. Unfortunately, the approach used
in previous work on the foundations of formal development in Extended ML, via a
definition of behavioural equivalence between models, will not achieve the desired
effect because of our use of models incorporating a rather concrete representation
of types and values. We believe that a small modification to the meaning of
quantification (rules 211-214) and logical equality (rules 231-232) is all that will
be required. Before making this change we hope to show that there is a satisfactory
relationship between what this yields and the behavioural equivalence relation used
for the foundations of formal development, following [BHW94].

1.2 Metalanguage

The semantics of Extended ML is presented in a style known as Natural Semantics
[Kah88], or rather an extended version of it. The metalanguage for the presenta-
tion of the semantics has rules of the form

Ul e ka

W

where the conclusion v is a sentence and each premise (or hypothesis) v; is either
a sentence or a rule. In particular we allow for the use of higher-order rules (with
rules as premises).

In the presentation of the rules, phrases within single angle brackets () are
called first options, and those within double angle brackets (({)) are called second
options. To reduce the number of rules, we have adopted the following convention:
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In each instance of a rule, the first options must be either all present
or all absent; similarly the second options must be either all present
or all absent.

Thus, a rule abbreviates four rules if both first and second options occur in its
presentation.

Primitive sentences are defined in the various sections of the semantics and are
mostly of the form B+ P = M where B and M are (tuples of) semantic objects
and P is a syntactic object. Such a primitive sentence can be read as “against
background B, the phrase P may be given the meaning M”. The schema _F _ = _
can be seen as a family of ternary predicate symbols, which are defined by the
semantics. These predicate symbols are overloaded for various phrase classes, but
the context always resolves this ambiguity: the predicate symbol in the conclusion
of a rule is always introduced by a rule section header, e.g. (cf. Section 4.10)

Expressions Clkexp=r1U-~

introduces a predicate symbol I, in the static semantics of the Core. The follow-
ing rules (up to the next rule section, in this particular case rules 9 to 14) all use
this predicate symbol in their conclusion. The premises on the other hand use the
“closest-fitting” predicate symbol, which will always be uniquely determined. For
instance, rule 9 on page 30 in the static semantics seems to have identical premise
and conclusion, but I in the conclusion refers to ., and I- in the premise to 4.4 .
The meaning of “closest-fitting” is formalised by ordering the phrase classes of the
syntax (languages generated by non-terminals of the grammar) by set inclusion,
giving us a partial order on the mentioned predicate symbols: 0y < oy, be-
cause each atomic expression is an expression as well.

We also allow several other forms of primitive sentences (e.g. @ € A) and
combine primitive sentences using logical connectives and quantifiers to form non-
primitive sentences.

Metavariables within sentences range over syntactic and semantic objects. The
name of a metavariable indicates the class of objects it ranges over. The name of a
metavariable for a syntactic object is closely linked to the name of the correspond-
ing phrase class, the language generated by the non-terminal. For example, the
metavariable exp ranges over syntactic objects of the phrase class Exp, see Section
2.8. Concerning metavariables for semantic objects, the corresponding convention
is introduced in the definition of the semantic objects, e.g. ¢ € TyName in Figure
11 on page 22 introduces ¢t as a metavariable ranging over semantic objects from
TyName. This convention extends to priming and subscripting of metavariables,
e.g. t] is also a metavariable ranging over TyName. Finally, we write v/p for a
metavariable which ranges over the (disjoint) union of the semantic object classes
over which v and p range; they are called compound metavariables.

We interpret rules by translating them into formulae of many-sorted higher-
order logic and then interpreting these formulae intuitionistically. Therefore, as
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a whole, the semantics can be understood as a specification in higher-order logic.
[ts meaning is the set of consequences of this specification (derivable sentences) in
higher-order intuitionistic logic. This approach sidesteps problems with the usual
interpretation of such rules as giving an inductive definition of the predicates
- _ = _, since our use of negated premises and higher-order rules renders this
interpretation potentially meaningless. However, it appears that the hierarchical
structure of the semantics and the particular way in which the offending constructs
are used make it possible to show that such an “inductive” interpretation would
be unproblematic and would coincide with the interpretation we formally use here.

For the sake of legibility, the rules do not contain explicit quantifiers on all
variables, but we employ instead a number of principles for inserting these in
the course of the translation into higher-order logic. Besides the usual binding
constructs (quantifiers) in logic, we understand rules (and set comprehensions) as
guarding variables. If a variable is guarded by a rule then this fact corresponds to
an implicit universal quantifier, provided the variable does not occur unguarded
outside the rule. Thus, in contrast to usual binding, guarding operates top-down
rather than bottom-up. Unguarded variables are free variables in the usual sense,
but guarded variables can also be free, provided they are unguarded in the context
of the formula. For instance, if we take implication = as a guarding operator
in first-order logic then the formula (P(z) = Q(x,y)) = R(y) is shorthand for
Vy. (V. (P(z) = Q(z,y)) = R(y)), i.e. the variable « is bound at the inner
implication, because it is not unguarded in the context - = R(y).

Let us make this precise. If v is a rule or sentence and V' a set of variables,
then [u]y is a pair (V',T), where V' is a set of variables and T a formula in
higher-order logic; we say that the variables in V' occur unguarded in v. The set
V in [u]v serves here as the context of v; it should be understood as the set of
variables occurring unguarded outside v. Similarly, if ¢ is a term and V' a set of
variables, then [t]v is a pair (¢, V') where ¢’ is a term and V' a set of variables.

We translate a top-level rule ¢ (i.e. one that is not being used as a rule premise)
to a formula @, where [¢]v, = (#, ®) (rules have no unguarded variables, see below)
and Vg are names for (the components of ) the initial basis, see Appendix C. The
properties maintained by the definition of [v]y are that for [v]y = (V', ¢), the
free variables of ¢ are contained in VU V', and if [o]w = (W', ¢') then V' = W,

i.e. the set of unguarded variables does not depend on the second argument.

[[“1'1;}'“"]]V = (0,Var.- Vo (Y1 A AT, = U))
(Vi, X)) = [vilw
(Vlvq}) = [W)]]W
W = u---uv,uv'uv
{x1,...,21} = WAV

where

V1Tt Un

The above definition uniquely determines [ Jv up to permutation of bound
variables. The cyclic dependency present in the definition can be resolved by first
computing the first component of the result for each v;, the set of unguarded
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variables — this does not depend on W. The symbol = in the definition refers
to logical implication; it differs from = which is part of our notation for primitive
sentences.

For any sentence ¢, we put [y = (V',¥), where ¥ is defined to be the
same as Y except that quantification in set comprehension is made explicit, see
below; V' are the unguarded variables in ¢ (w.r.t. V), where quantification and set
comprehension are the only connectives that may guard variables. For a quantified
sentence like Jz.¢) the unguarded variables w.r.t. V are V'\ {a}, where V' are the
unguarded variables of ¢ w.r.t. V. The unguarded variables of a primitive sentence
p(A1,..., A,) wa.t. V are the union of the unguarded variables of the A; (w.r.t.
the same V'); the same principle applies to terms f(Aq,...,A,). Each variable
occurs unguarded in itself: [z]v = ({x}, ©), regardless of whether x is in V' or not.

In contrast to the SML semantics, we allow rules as premises of rules. Based
on the above translation scheme, such higher-order rules abbreviate formulae con-
taining nested quantifiers, very much in the spirit of Hannan’s “Extended Natural
Semantics” [Han93]. Satisfaction of such a premise requires the rule to be admiss-
ible. Higher-order rules can be used to express “principality” and other infinitary
requirements, as in the following rule 57 of the static semantics for Modules. Prin-

cipality was described in English in [MTH90].

Cof Bt dec = F,~v N = namesy \ N of B %ﬁf’w'
Bl dec= F~y

Applying the translation [ ]y, to this rule, we obtain the following formula:

VB.Vdec. VE.Vv.¥YN.
(Cof BF dee = E,v AN N =names~\ Nof B A
VE' VY. (Cof Bt dec = E',y' = (N)y =+)
= BF dec = FE,v)

In expressions (of the metalanguage) such as C of B, C' is not a variable but the
name of a component of B-like objects. In the metalanguage, “C'of” is a function
symbol, the corresponding projection; see Section 4.3.

The important thing to remember about the translation from the metalanguage
into formulae is how variables are scoped. In the example, E’ and ~' are scoped at
the local rule because they do not occur unguarded in any of the other components
of the top-level rule. On the other hand, B, v and N have such unguarded
occurrences and so no quantifier is introduced for them at the local rule. This
scoping principle of the metalanguage corresponds very closely to the scoping
principle of explicit type variables in the object language (EML), where value
declarations guard type variable occurrences; see Section 4.6.

Writing higher-order rules requires care in one special case, as the given trans-
lation scheme does not produce the formulae one might intuitively expect. It is
the situation when a metavariable occurs in the conclusion of a local rule. Here is
an example taken from rule 297 of the verification semantics for Modules:



1.2 Metalanguage 7

(SlaE) =
8. 5,,BE E, ¥ F strezp = S

5,B,v-~"F let strdec in strezp end =
{(52,9) | (51, F) € E, 51, B E, ¥ | streap = S, (s9,5) € S}

s, B,y F strdec = £

The problematic metavariable is §. The existential quantifier in the conclusion of
the premise is necessary to give the rule the intended meaning “we do not care
what § is”; without this the meaning would be “we can do this for any §”. The
same problem does not arise with premises of local rules: Va.(P(x) = @) is the
same as (Jz.P(x)) = Q). The above pattern of a higher-order rule combined with
an existential quantifier in the conclusion of a premise occurs quite frequently in
the verification semantics.

In the verification semantics for Modules, we use another form, having similar
scoping principles as rules have, for describing certain semantic objects: set com-
prehension. A set comprehension denotes a semantic object (a possibly infinite
set) and is of the form {A | '} where A denotes a semantic object and ¢ is a
sentence. It is translated as follows:

{Al ¢}y = (0. {y | ey Fap(y = A Ay}
V) = [¥lw
(leA/) = [[A]]W

W = V'uw'uv

{x1,...,2} = WAV

where

where y is a fresh variable. Like rules, set comprehensions have no unguarded
variables.

We can remove set comprehensions entirely from the translated formulae as
follows: a set comprehension {y | 1} is replaced by a fresh variable Y and the
sentence in which it occurs is supplied with an additional premise Vy.(y € ¥ <—
). As a second-order rewrite rule:

oy |3/l — VY(Vy(yeY = ¢) = ¢[Y/a]).

As our underlying logic is intuitionistic, these “sets” should be interpreted in a
topos, see for instance [Gol84]. The difference is subtle but it matters as we shall
encounter “sets” the membership predicate of which is undecidable.
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2 Syntax of the Core

2.1 Reserved Words

The reserved words of Fxtended ML can be divided into two groups, namely:
1. those that are necessary for presenting the grammar of the Core; and

2. those additional reserved words that are needed for presenting the grammar

for Modules.

Below we list reserved words of the first group; the rest are listed in Section 3.1.
Reserved words may not (except =) be used as identifiers.

abstype and andalso as case do

datatype else end eqtype exception  exists
forall fn  fun handle if implies 1n  1infix
infixr let local nonfix of op open orelse
proper raise railses rec terminates

then type wval with withtype while

¢y [»1 {43, 5 o0 - 1= =

> # %) 7 == =/=

2.2 Special constants

An integer constant is any non-empty sequence of digits, possibly preceded by a
negation symbol (7). A real constant is an integer constant, possibly followed by a
point (.) and one or more digits, possibly followed by an exponent symbol E and
an integer constant; at least one of the optional parts must occur, hence no integer
constant is a real constant. Examples: 0.7 3.32E5 3E"7 . Non-examples:
23 .3 4.E5 1E2.0 .

We assume an underlying alphabet of 256 characters (numbered 0 to 255) such
that the characters with numbers 0 to 127 coincide with the ASCII character set.
A string constant is a sequence, between quotes ("), of zero or more printable
characters (i.e., numbered 33-126), spaces or escape sequences. Each escape se-
quence starts with the escape character \ , and stands for a character sequence.
The escape sequences are:

\n A single character interpreted by the system as end-of-line.

\t Tab.

\"¢ The control character ¢, where ¢ may be any character with
number 64-95. The number of \"¢ is 64 less than the number
of e.

\ddd The single character with number ddd (3 decimal digits de-
noting an integer in the interval [0, 255]).
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Var (value variables) long
Con (value constructors) long
ExCon (exception constructors) long
TyVar (type variables)

TyCon (type constructors) long
Lab (record labels)
(

Strld

structure identifiers) long

Figure 2: Identifiers

\Il "

\\ \

\f---f\  This sequence is ignored, where f---f stands for a sequence of

one or more formatting characters.

The formatting characters are a subset of the non-printable characters includ-
ing at least space, tab, newline, formfeed. The last form allows long strings to be
written on more than one line, by writing \ at the end of one line and at the
start of the next.

We denote by SCon the class of special constants, i.e., the integer, real, and
string constants; we shall use scon to range over SCon.

2.3 Comments

A comment is any character sequence within comment brackets (* *) in which
comment brackets are properly nested, i.e. the rules for forming lexical items do
not apply within a comment. An unmatched comment bracket should be detected
and rejected by the compiler.

No space is allowed between the two characters which make up a comment
bracket (* or *). Even an unmatched *) should be detected by the compiler.
Thus the expression (op *) 1is illegal. But (op * ) is legal; so is op* .
Furthermore (op **) is legal because of the longest match principle for lexical
analysis (see Section 2.5).

2.4 Identifiers

The classes of identifiers for the Core are shown in Figure 2. We use var, tyvar to
range over Var, TyVar etc. For each class X marked “long” there is a class longX
of long identifiers; if x ranges over X then longz ranges over longX. The syntax of
these long identifiers is given by the following:

longr == = identifier
stridy .-+ .strid, .« qualified identifier (n > 1)

The qualified identifiers constitute a link between the Core and the Modules.
Throughout this document, the term “identifier”, occurring without an adjective,
refers to non-qualified identifiers only.
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An identifier is either alphanumeric: any sequence of letters, digits, primes ()
and underbars () starting with a letter or prime, or symbolic: any non-empty
sequence of the following symbols

b & 8+ -/ o< = > 7 @ \ " < " | o x

In either case, however, reserved words are excluded. This means that for example
# and | are not identifiers, but ## and |=| are identifiers. The only exception
to this rule is that the symbol =, which is a reserved word, is also allowed as an
identifier to stand for the equality predicate. The identifier = may not be bound
by the user; this precludes any syntactic ambiguity.

A type variable tyvar may be any alphanumeric identifier starting with a prime;
the subclass EtyVar of TyVar, the equality type variables, consists of those which
start with two or more primes. We exclude® identifiers from TyVar that start
with one or two primes followed by an underbar. The other six classes (Var, Con,
ExCon, TyCon, Lab and Strld) are represented by identifiers not starting with a
prime. However, * is excluded from TyCon, to avoid confusion with the derived
form of tuple type (see Figure 22). The class Lab is extended to include the
numeric labels 1 2 3 --- i.e. any numeral not starting with 0.

Identifiers in the classes Var, Con, ExCon, TyCon and Strld all belong to
the syntactic class Id. Within syntactic phrases (of the Bare Language), these
subclasses are considered to be disjoint: for example, each var € Var has the
form id", being an identifier id € Id labelled with its status information — see
Appendix B. Within other semantic objects, the labelling information has no
significance. It is used, however, to disambiguate various overloaded forms of
environment application: if an environment E contains a structure environment
SE and a variable environment VE, then E(id®)is SE(id) and E(id") is VE(id),

etc.

2.5 Lexical analysis

Each item of lexical analysis is either a reserved word, a numeric label, a special
constant or a long identifier. Comments and formatting characters separate items
and are otherwise ignored. An exception from this rule are formatting characters
within string constants; see Section 2.2. At each stage the longest next item is
taken.

2.6 Infixed operators

An identifier may be given infix status by the infix or infixr directive, which
may occur as a declaration. These declaration are not treated here, but see Ap-
pendices A and B.

3The reason for this exclusion is compatibility with Standard ML. The type variables in
question are the imperative type variables of Standard ML.
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atomic expressions
expression rows
expressions
matches

match rules

declarations

value bindings

type bindings
datatype bindings
constructor bindings
exception bindings

atomic patterns
pattern rows
patterns

type expressions
type-expression rows

Figure 3: Core Phrase Classes

2.7 Derived Forms

There are many standard syntactic forms in ML whose meaning can be expressed
in terms of a smaller number of syntactic forms, called the Bare language. These
derived forms, and their equivalent forms in the Bare language, are given in Ap-
pendix B. The rest of this document defines the syntax and semantics of the
Bare language, with the exception of Appendices A (the full syntax) and B. The
program semantics (Section 10) links the Full language with the semantics of the
Bare language.

2.8 Grammar

The phrase classes for the Core are shown in Figure 3. We use the variable atexp
to range over AtExp, etc.

The grammatical rules for the Core are shown in Figures 4, 5 and 6.

The following conventions are adopted in presenting the grammatical rules,
and in their interpretation:

e The brackets () enclose optional phrases.

e For any syntax class X (over which & ranges) we define the syntax class Xseq
(over which zseq ranges) as follows:
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2 SYNTAX OF THE CORE

rseq = x (singleton sequence)
(empty sequence)
(#1,--+,2,) (sequence, n > 1)

Note that the “---” used here, meaning syntactic iteration, must not be
confused with “...” which is a reserved word of the language. To range
over all three alternatives for sequences in semantic rules we write xy-- -2,
(with n > 0), which suppresses the syntactic commas and parentheses. The

ambiguity for n = 1 will be harmless whenever we use this notation.

Alternative forms for each phrase class are in order of decreasing ; this
resolves ambiguity in parsing, as explained in Appendix A.

Longest match: Suppose FyF, is an alternative form of a phrase class. A
natural number ¢ is called a split index w.r.t. Fi I3 for a lexical sequence
Ly Lp it 0 <e < kand Ly---L; reduces to Fy and L;yq---L reduces to Fb.
It for a given lexical sequence [, = Ly---Lj there are different split indices
w.r.t. F1F;, then L reduces to [y F, by reducing Ly---L; to Fy, where j is
either the maximal split index, or — iff the alternative form is labelled (R),
indicating a right associative infix construct — the minimal split index.

For any syntax class X (over which @ ranges) we define the syntax class X*
(over which x® ranges) as the same as X, except that phrases of class X*
may not contain the lexical item 7.

Notice that there is a difference between question marks for values and types:

question marks for types have to be named, using the second form of typbind,

while question marks for values can be anonymous. But a declaration of the form

val pat = 7 is possible, because one form of expression exp is a question mark.

As a consequence of the refined disambiguation principle for precedence (see

Appendix A) sequential declarations are given higher precedence than empty de-
clarations. This is different from SML, but the definition of SML [MTH90] does

not fully explain how parsing is affected by precedence.
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atexp =

ETProw Ii=

exp =

match =

mrule =

scon
longvar

longcon

longexcon

{ (exprow) %}

let dec in exp end
(exp)

?
lab = exp ( , exprow)

atexp

exp alexp

exp : ly

cap} == eap
exists match®
forall match®
exp® terminates
exp handle match
raise exp

fn match

mrule { | match)

pat => exp

Figure 4: Grammar:

special constant
value variable

value constructor
exception constructor
record

local declaration

undefined value
expression row

atomic

application

typed

comparison (R)
existential quantifier
universal quantifier
convergence predicate
handle exception
raise exception
function

Expressions and Matches

13
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dec

valbind

typbind

datbind

conbind

exbind

val valbind

type typbind

eqtype typbind

datatype datbind

abstype datbind with dec end
exception exbind

local decy in decy end

open longstrid, --- longstrid,,

decy () decy

pat = exp (and valbind)
rec valbind

tyvarseq tycon = ty (and typbind)
tyvarseq tycon = 7 (and typbind)

tyvarseq tycon = conbind
(and datbind)

con (of ty) ( | conbind)

excon (of ty) (and exbind)
excon = longexcon (and exbind)

2 SYNTAX OF THE CORE

value declaration

type declaration
equality type declaration
datatype declaration
abstype declaration
exception declaration
local declaration

open declaration (n > 1)
sequential declaration
empty declaration

type binding
question mark type binding

Figure 5: Grammar: Declarations and Bindings



2.9 Syntactic Restrictions

alpat

patrow

pat

ty

tyrow

scon
var

longcon
longexcon

{ {patrow) %
( pat )

lab = pat { , patrow)

alpat

longcon atpat
longexcon atpat
pat : ly

var{: ty) as pat
tyvar

{ (tyrow) %
tyseq longtycon
ty -> tyf

(ty)

lab : ty ( , tyrow)

wildcard

special constant
variable

constant

exception constant
record

wildcard
pattern row

atomic

value construction
exception construction
typed

layered

type variable
record type

type construction
function type (R)

type-expression row

Figure 6: Grammar: Patterns and Type Expressions

2.9 Syntactic Restrictions
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e No pattern may contain the same var twice. No expression row, pattern row

or type row may bind the same lab twice.

e No binding valbind, typbind, datbind or exbind may bind the same identifier

twice; this applies also to value constructors within a datbind.

o In the left side tyvarseq tycon of any typbind or datbind, tyvarseq must not

contain the same tyvar twice. Any tyvar occurring within the right side

must occur in tyvarseq.

e For each value binding pat = erp within rec, exp must be of the form

fn match®. The derived form of function-value binding given in Appendix B,
rule 373, necessarily obeys this restriction.

“The SML definition adds here “possibly constrained by one or more type expressions”. This

is a void extension, because an expression fn pat => exp : {y parses as fn pat => (exp : ty).
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3 Syntax of Modules

For Modules there are further reserved words, identifier classes and derived forms.
There are no further special constants; comments and lexical analysis are as for
the Core. The derived forms for modules concern mainly functors and appear in
Appendix B.

3.1 Reserved Words

In addition to the listed in Section 2.1, Extended ML reserves the following words,
which are used in the grammar for Modules:

axiom functor include sharing
sig signature struct structure

They may not be used as identifiers.

3.2 Identifiers

The additional identifier classes for Modules are (signature identifiers) and (functor
identifiers); they may be either alphanumeric — not starting with a prime — or
symbolic. Henceforth, we consider all identifier classes to be disjoint.

3.3 Infixed operators

Fixity directives and their scope are treated in Appendix B.

3.4 Grammar for Modules

The phrase classes for Modules are shown in Figure 7. We use the variable strexp
to range over StrExp, etc. The conventions adopted in presenting the grammatical
rules for Modules are the same as for the Core. The grammatical rules are shown in
Figures 8, 9 and 10. Note that functor bindings and undefined structure bindings
are required to include explicit (output) signatures.

Specification expressions specerp occur in axiom descriptions, i.e. in axioms
within signatures. This is the only construct of the language in which structures
can be declared as local to expressions. This is useful when one wants to express
a property that depends on a functor instantiation.

3.5 Syntactic Restrictions

e No binding strbind, sigbind, or funbind may bind the same identifier twice.

e No description valdesc, typdesc, datdesc, exdesc or strdesc may describe the
same identifier twice; this applies also to value constructors within a datdesc.
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SglStrBind
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structure expressions
structure-level declarations
axioms

axiomatic expressions

structure bindings

single structure bindings
signature expressions

(principal) signature expressions
signature declarations

signature bindings

specifications

value descriptions

type descriptions
datatype descriptions
constructor descriptions
exception descriptions
axiom descriptions
specification expressions
structure descriptions
sharing equations

functor declarations
functor bindings
top-level declarations

Figure 7: Modules Phrase Classes

o In the tyvarseq tycon in any typdesc or datdesc, tyvarseq must not contain
the same tyvar twice. Any tyvar occurring on the right side of the datdesc

must occur in tyvarseq.

e In a single structure binding of the form strid = strexp, strexp must be

guarded. A structure expression is called guarded if it is of the form longstrid,

funid ( strexp ) or let strdec in strexp end, provided (in the last case) that

strexp is guarded.

The last restriction is for purely methodological reasons: we want each struc-

ture to come equipped with an explicit signature. The reason why we include a
single structure binding of the form strid = strexp in the language at all is the need

to provide a way of realising structure sharing specifications, see [KST94]. The
semantic rules for structure bindings do not exploit the guarding requirement.
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3.6 Closure Restrictions

The semantics presented in later sections requires no restriction on reference to
non-local identifiers. For example, it allows a signature expression to refer to
external signature identifiers and (via sharing or open) to external structure
identifiers; it also allows a functor (or structure expression) to refer to external
identifiers of any kind.

However, implementers who want to provide a simple facility for separate com-
pilation may want to impose the following restrictions (ignoring references to iden-
tifiers bound in the initial basis By, which may occur anywhere):

1. In any signature binding sigid = psigexp , the only non-local references in
psigexp are to signature identifiers.

2. In any functor binding funid ( strid : psigexp ) : psigexrp’ = strexp , the only
non-local references in psigerp, psigexp’ and strexp are to functor and signa-
ture identifiers, except that both psigexp’ and strexp may refer to strid and
its components.

In the second case the final qualification allows, for example, sharing constraints
to be specified between functor argument and result. (For a completely precise
definition of these closure restrictions, see the comments to rules 66 (page 48) and
96 (page H3) in the static semantics of modules, Section 5.)

The significance of these restrictions is that they may ease separate compilation
and verification; this may be seen as follows. If one takes a module to be a sequence
of signature declarations and functor declarations satisfying the above restrictions
then the elaboration of a module can be made to depend on the initial static basis
alone (in particular, it will not rely on structures outside the module). Moreover,
the elaboration of a module cannot create new free structure or type names, so
consistency (as defined in Section 5.2, page 39) is automatically preserved across
separately compiled modules. On the other hand, imposing these restrictions may
force the programmer to write many more sharing equations than is needed if
functors and signature expressions can refer to free structures.
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strexp

strdec

az
arexp
strbind

sglstrbind

stgexp

psigexp
sigdec

sigbind

struct strdec end
longstrid

funid ( strexp )

let strdec in strexp end

dec

axiom azr

structure sirbind

local sirdec; in strdecs end
strdecy () strdecs

azerp (and ax)
exp®
sglstrbind (and strbind)

strid : psigexp = strexp
strid : psigexp = 7
strid = strexp

sig spec end
sigid
stgexp

signature sighind
sigdecy ;) sigdec,

sigid = psigexp (and sigbind)

generative
structure identifier
functor application
local declaration

declaration
axiom
structure
local
sequential
empty

axiom
axiomatic expression
structure binding

single structure binding
undefined structure binding
unguarded structure binding

generative
signature identifier

principal signature

single
sequential
empty

Figure 8: Grammar: Structure and Signature Expressions
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spec = val valdesc

type typdesc

eqtype typdesc

datatype datdesc

exception exdesc

axiom axdesc

structure strdesc

sharing shareq

local spec; in spec, end

open longstrid, --- longstrid,,

include sigid, --- sigid,,

specy () specy
valdesc = war : ty (and valdesc)
typdesc = tlyvarseq tycon (and typdesc)
datdesc = tyvarseq tycon = condesc (and datdesc)
condesc == con (of ty) ( | condesc)
exdesc = excon (of ty) (and exdesc)
ardesc = specexp (and axdesc)
specerp = let strdec in arerp end
strdesc = strid : sigexp (and strdesc)
shareq = longstrid, = --- = longstrid,,

type longtycon, = --- = longtycon,,

shareq, and shareq,

Figure 9: Grammar: Specifications

value

type

eqtype
datatype
exception
axiom
structure
sharing

local

open (n > 1)
include (n > 1)
sequential
empty

structure sharing
(n > 2)

type sharing
(n>2)

multiple



3.6 Closure Restrictions
fundec  ::= functor funbind single
fundecy (;) fundec, sequence
empty
funbind = funid ( strid : psigexp ) : psigexp’
= strexp (and funbind) functor binding
funid ( strid : psigexp ) : psigexp
= 7 (and funbind) undefined functor binding
topdec = strdec structure-level declaration
stgdec signature declaration
fundec functor declaration

Note: No topdec may contain, as an initial segment, a shorter top-
level declaration followed by a semicolon.

Figure 10: Grammar: Functors and Top-level Declarations
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4 Static Semantics for the Core

Our first task in presenting the semantics — whether for Core or Modules, static or
dynamic — is to define the objects concerned. In addition to the class of syntactic
objects, which we have already defined, there are classes of so-called semantic
objects used to describe the meaning of the syntactic objects. Some classes contain
simple semantic objects; such objects are usually identifiers or names of some kind.
Other classes contain compound semantic objects, such as types or environments,
which are constructed from component objects.

4.1 Simple Objects

All semantic objects in the static semantics of the entire language are built from
identifiers and two further kinds of simple objects: type constructor names and
structure names. Type constructor names are the values taken by type construct-
ors; we shall usually refer to them briefly as type names, but they are to be clearly
distinguished from type variables and type constructors. Structure names play
an active role only in the Modules semantics; they enter the Core semantics only
because they appear in structure environments, which (in turn) are needed in the
Core semantics only to determine the values of long identifiers. The simple object
classes, and the variables ranging over them, are shown in Figure 11. We have
included TyVar in the table to make visible the use of « in the semantics to range
over TyVar.

a or tyvar € TyVar type variables
t € TyName type names
m € StrName structure names

Figure 11: Simple Semantic Objects

The sets TyName and StrName are arbitrary infinite sets, except that TyName
is a superset of Ty (type names of the initial basis), see Section C.3.

Each a € TyVar possesses a boolean equality attribute, which determines
whether or not it admits equality, i.e. whether it is a member of EtyVar (defined
on page 10). There is a distinguished type variable num; it is in EtyVar, but it has
no syntactic representation in EML.

Each t € TyName has an arity £ > 0, and also possesses an equality attribute.
We denote the class of type names with arity k& by TyName(k).
With each special constant scon we associate a type name type(scon) which is
either int, real or string as indicated by Section 2.2.
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4.2 Compound Objects

When A and B are sets Fin A denotes the set of finite subsets of A, and A fin B
denotes the set of finite maps (partial functions with finite domain) from A to B.
The domain and range of a finite map, f, are denoted Dom f and Ran f. A finite
map will often be written explicitly in the form {a; — by, -+, ap — br}, k& > 0;
in particular the empty map is {}. We shall use the form {z — ¢ ; ¢} — a form
of set comprehension — to stand for the finite map f whose domain is the set of
values x which satisfy the condition ¢, and whose value on this domain is given by
f(z) = e. This notation slightly differs from those set comprehensions denoting
sets (see page 7), for which we use a | to separate the condition.

When f and ¢ are finite maps the map f + g, called f modified by g, is the
finite map with domain Dom f U Dom ¢ and values

(f +9)(a) =if a € Dom g then g(a) else f(a).

For any semantic object class A, we define Tree(A) to be the finite binary
trees of elements taken from A, i.e. Tree(A) is the smallest solution of the domain
equation Tree(A) = {e} W AW {z -y | x,y € Tree(A)}. We take - to be left-
associative, i.e. @ - y - z stands for (x - y) - 2.

The compound objects for the static semantics of the Core Language are shown
in Figure 12. We take W to mean disjoint union over semantic object classes. We
also understand all the defined object classes to be disjoint.

Note that A and V bind type variables. For any semantic or syntactic object
A, tynames A and tyvars A denote respectively the set of type names and the set
of type variables occurring free in A.

4.3 Projection, Injection and Modification

Projection: We often need to select components of tuples — for example, the
variable-environment component of a context. In such cases we rely on variable
names to indicate which component is selected. For instance “VFE of E” means
“the variable-environment component of £”7 and “m of S” means “the structure
name of S”.

Moreover, when a tuple contains a finite map we shall “apply” the tuple to an
argument, relying on the syntactic class of the argument to determine the relevant
function. For instance C'(tycon) means (TFE of C')tycon.

A particular case needs mention: C(con) is taken to stand for (VE of C')con.
The type scheme of a value constructor is held in VE as well as in TFE (where
it will be recorded within a CE). Thus the re-binding of a constructor is given
proper effect by accessing it in VE, rather than in TFE.

Finally, environments may be applied to long identifiers. For instance if
longcon = stridy .- . stridy . con then E(longcon) means

(VE of (SE of ---(SE of (SE of E)stridy)stridy---)stridy)con.
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Type = TyVar W RecType W FunType & ConsType

Type®

TyVar®

RecType = Lab fin Type

FunType = Type x Type

ConsType = &JkZOConsType(k)

ConsType(k) = Type" x TyName(k)

Typelcn = LierZOTyVark x Type

TypeScheme = WysoTyVar® x Type

Str = StrName x Env

TyStr = TypeFen x ConkEnv

StrEnv = Strld 22 Str

TyEnv = TyCon fin TyStr

ConEnv = Id 18 TypeScheme

VarEnv = Id 2 TypeScheme

Env = StrEnv x TyEnv x VarEnv

TyNameSet = Fin(TyName)

TyVarSet = Fin(TyVar)

Context = TyNameSet x TyVarSet x Env

TyRea = TyName — TypeFcn

Trace = Tree(SimTrace W TraceScheme)

SimTrace = Type W Env ¥ (Context x Type) &
(Context x Env) W TyEnv W (VarEnv x TyRea)

TraceScheme = & konraceScheme(k)

TraceScheme!®) = TyVar® x Trace

Figure 12: Compound Semantic Objects
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Injection: Components may be injected into tuple classes; for example,
“VE in Env” means the environment ({},{},VFE). The default values for the
missing components are always (), {}, or tuples of these. Injection into disjoint
union classes is usually left implicit, with a few exceptions where we also use the
“In” notation for it. For brevity, we often express the composition of injections
by a single injection.

Modification: The modification of one map f by another map ¢, written
f + g, has already been mentioned. It is commonly used for environment modi-
fication, for example £ + E'. Often, empty components will be left implicit in a
modification; for example £ + VE means £ + ({},{}, VE). For set components,
modification means union, so that C' 4 (T, VE) means

((Tof CYUT, Uof C, (Eof C)+VE)

We frequently need to modify a context C' by an environment £ (or a type
environment TFE say), at the same time extending T of C' to include the type
names of F (or of TE say). We therefore define C' @ TE, for example, to mean
C + (tynames TE, TE).

4.4 Types and Type functions

A type 7 is an equality type, or admits equality, if it is of one of the forms
e «, where a admits equality;
o {laby — 7, -+, lab, — 7,}, where each 7; admits equality;
° T(k)t, where ¢ and all members of 7®) admit equality.

A type function 0 = Aa® .1 has arity k; it must be closed — i.e. tyvars(r) C a®)
— and the bound variables must be distinct. Two type functions are considered
equal if they only differ in their choice of bound variables (alpha-conversion). In
particular, the equality attribute has no significance in a bound variable of a type
function; for example, Ac.av — o« and AB.J — f are equal type functions even
if o admits equality but 4 does not. If ¢ has arity k, then we write ¢ to mean
Aat® oFy (eta-conversion); thus TyName C TypeFcn. § = Aa® .7 is an equality
type function, or admits equality, if when the type variables o™ are chosen to
admit equality then 7 also admits equality.

We write the application of a type function 8 to a vector 78 of types as g,
If 0 = Aa™ .7 we set 70 = 7{7"M/aP} (beta-conversion).

We write 7{8®) /1)) for the result of substituting type functions 8% for type
names t*) in 7. Here and for other forms of substitution maps, we use the notation
{t/x; ¢} instead of {x — 1 ; ¢}. We assume that all beta-conversions are carried
out after substitution, so that for example

(B {AaW 7t} = 7 {7 P o)},
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4.5 Type Schemes

A type substitution is a finite map ¢ € TyVar fin Type, where ¥(«) admits equality
if o does, and where J(num) is either int or real (provided num is in the domain
of ¥). Type substitutions extend to functions on other semantic objects, e.g. to
functions between types by mapping a type 7 to 7{d(a)/a ; o € Domd}.

A type scheme o = Val® 7 generalises a type 7', written ¢ = 7', if there
exists a type substitution ¥ with domain ¥ N tyvars(7) such that J(7) = 7'
We make the type substitution of a generalisation explicit by writing o =g 7. If
o' = VAW 7 then o generalises o', written o = o', if ¢ = 7" and 3" contains
no free type variable of o. It can be shown that o = o iff, for all 7", whenever
o' = 7" then also o = 7".

Two type schemes o and ¢’ are considered equal if they can be obtained from
each other by renaming and reordering of bound type variables, and deleting type
variables from the prefix which do not occur in the body. Here, in contrast to the
case for type functions, the equality attribute must be preserved in renaming; for
example Va.a — « and V3.3 — [ are only equal if either both a and § admit
equality, or neither does. It can be shown that o = ¢’ iff 0 = ¢’ and ¢’ > 0.

We consider a type 7 to be a type scheme, identifying it with V().7.

Traces and Trace Schemes

Traces record objects of the static semantics. The purpose of this recording is
twofold: (i) it reifies choices that have been made during static analysis, making it
possible to talk about all possible choices for the elaboration of a phrase; and (ii)
semantic objects that are involved in the elaboration of a phrase become visible
for verification purposes. One can informally view traces as information hung on
the syntax tree by static analysis for use by the verification semantics.

Traces can contain bound type variables: in traces of the form Voz(k).’y the type
variables a®) bind occurrences of those variables in ~. The definition of equality
of trace schemes is analogous to that of type schemes.

4.6 Scope of Explicit Type Variables

In the Core language, a type or datatype binding can explicitly introduce type
variables whose scope is that binding. In the modules, a description of a value,
type, or datatype may contain explicit type variables whose scope is that descrip-
tion. However, we still have to account for the scope of an explicit type variable
occurring in the “: ty” of a typed expression or pattern. For the rest of this
section, we consider such occurrences of type variables only.

We call value declarations, axiom declarations and specifications, quantifier
expressions and expressions of the form exp] == exp) guarding constructs. Every
occurrence of a guarding construct is said to scope a set of explicit type variables

determined as follows.
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First, an occurrence of v in a guarding construct phrase is said to be unguarded
if the occurrence is not part of a smaller guarding construct within phrase. In this
case we say that o occurs unguarded in the guarding construct.

Then we say that « is scoped at a particular occurrence O of a guarding
construct in a program if (1) o occurs unguarded in this construct, and (2) o does
not occur unguarded in any larger guarding construct containing the occurrence O.

The inference rules in Section 4.10 make this explicit (in contrast to the SML
static semantics in [MTH90]). If phrase is a guarding construct, then its sentences
are typically derived with premises of the form C' + U F phrase = A,U,~ for
some metavariable A. The two occurrences of U mean that every type variable
occurring unguarded in phrase cannot be locally bound within phrase.

4.7 Non-expansive Expressions

Deleted

4.8 Closure

Let 7 be a type and A a semantic object. Then Clos4(7), the closure of T with
respect to A, is the type scheme Va®.7, where o¥) = tyvars(7) \ tyvars A. Com-
monly, A will be a context C'. We abbreviate the total closure Closg(7) to Clos(7).
If the range of a variable environment VE contains only types (rather than arbit-
rary type schemes) we set

ClosaVE = {id — Closa(7) ; VE(id) = 1}

with a similar definition for Clos,4CFE.
There is also a similar closure operation for traces: Clossy = Voz(k).’y, where

R = tyvars(y) \ tyvars A.

ol

4.9 Type Structures and Type Environments

A type structure (0, CF) is well-formed if either CE = {}, or § is a type name
t. (The latter case arises, with CE # {}, in datatype declarations.) All type
structures occurring in elaborations are assumed to be well-formed.

A type structure (¢, CE) is said to respect equality if, whenever ¢ admits equal-
ity, then for each CE(con) of the form VOé(k).(T — oz(k)t), the type function Aa'® .7
also admits equality. (This ensures that the SML equality predicate = will be
applicable to a constructed value (con,v) of type 7k only when it is applicable
to the value v itself, whose type is T{T(k)/a(k)}.) A type environment TF respects
equality if all its type structures do so.

Let TE be a type environment, and let T" be the set of type names ¢ such that
(t,CFE) occurs in TE for some CFE # {}. Then TF is said to maximise equality
if (a) TE respects equality, and also (b) if any larger subset of T were to admit
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equality (without any change in the equality attribute of any type names not in
T') then TE would cease to respect equality.
For any TE of the form

TE = {tycon, — (1;,CE;) ; 1 <1 <k},

where no CFE; is the empty map, and for any £ we define Absc(TE, F) to be the
environment obtained from F and TF as follows. First, let Absc(TFE) be the type
environment {tycon; — (¢;,{}); 1 < <k} in which all constructor environments
CE; have been replaced by the empty map. Let #;,... %, be new distinct type
names (“new” means that ¢}, ...} are not in T'of '), none of which admit equality.
Then Absc(TE, E) is the result of simultaneously substituting ¢! for ¢;, 1 < < k,
throughout Absc(TFE) + E. (The effect of the latter substitution is to ensure that
the use of SML equality on an abstype is restricted to the with part.) Let ¢, be
the type realisation with Supp(ery) C {t],.... 1.} and w1, (1)) = 1;, 1 <i < k; we
write Absg(TE, E) =, E'to say that Absc(TE, E) = E’ via the type realisation

¢Ty. Type realisations are defined in Section 5.6.

4.10 Inference Rules

Each rule of the semantics allows inferences among sentences of the form
AF phrase = A’

where A is usually a context, phrase is a phrase of the Core, and A’ is a semantic
object — usually a type or an environment or assembly of such objects, together
with a trace. It may be pronounced “phrase elaborates to A’ in (context) A”.
Some rules have extra hypotheses not of this form; these hypotheses are called
side conditions.

Atomic Expressions CF atexp = 7,U,~

C'F scon = type(scon),l, e

C(longvar) = 1
C F longvar = 7,0, 7

C(longecon) > T
C'+ longcon = 7,0, 7

C(longexcon) =T

C F longexcon = 7,0, ¢

(CF exprow = o,U,~)
CF { (eaprow) T = {1+ &) in Type, B{UTY, ()
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CkFdec= E,~ COEF erp=1,U4
tynamesT C T of C

C I let dec in exp end = 7, U, v - v/

Ckerp=r1U~ ()
CkCexp)=rU~

CF?2=70,(C1)

Comments:

(2),(3) The instantiation of type schemes allows different occurrences of a single
longvar or longcon to assume different types.

(6) The use of @, here and elsewhere, ensures that type names generated by
the first sub-phrase are different from type names generated by the second
sub-phrase.

The third premise is not present in the SML definition. Simply omitting
it would compromise the soundness of type inference, because type names
introduced by different let expressions could become equal. This was an
oversight in the definition of SML [MTH90] which was not fixed in [MT91];
see also [Kah93]. Some Standard ML implementations have a less restrictive
method for type-checking let-expressions which is still sound but allows
local datatypes to escape from the scope of the let.

Notice that there are no unguarded occurrences of explicit type variables
in declarations, as the form of sentences for declarations indicates. This
differs from SML, which permits (unguarded) imperative type variables in
exception declarations.

(7.1) A 7 can have any type. The context C is stored in the trace to enable
verification to type-check the chosen replacement for 7 in a given model, see
rule 201.

Expression Rows C' F exprow = o,U,~

Clkexp=rU~ (C'F exprow = o, U, ~")
CFiab = cxp ( caprow) = {lab 1 70 2}, U{U U], 307)

(8)
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Expressions Clkexp=r1U-~r

CF atexp = 7,U,~
CF atexp = 7,U,~

Crhep=1—1U~x C+ atexp = 7, U+
CF exp atexp = 7, UU U v -+

Clkexp=rU~ Chkty=r U' = tyvars ty
Crerp: ty=7,UUU" ~

CH4+U€k exp] = 7,Up,y CH+UF expy = 7,0y~ U=U Ul

C F exp] == expj = bool, ), Closc((C,7) v - ~')

C +UF match® = 7 — bool,U,~
C' F exists malch® = bool, ), Closc((C,7) - 7)

C +UF match® = 7 — bool,U,~
C' F forall match® = bool, ), Closc((C,7) - v)

CFerp®=r1U-~
C't exp® terminates = bool, U, ¢

Ckewp=r1U-~ C't+ match = exn — 7,U',~/
C' I exp handle match = 7, U U U’ v -~

CF exp = exn, U~y
CF raiseexp=7,U,7 -7

C F match = 7,U,~
C+ fn match = 7,U,(C,7) -~

Comments:

(9)

(10)

(11)

(11.1)

(11.2)

(11.3)

(11.4)

(12)

(13)

(14)

(9) The relation symbol F is overloaded for all syntactic classes (here atomic
expressions and expressions). Thus, the relational symbol F refers in the

premise to the predicate for atomic expressions as defined in rules 1 to 7.1.

(11) Here 7 is determined by C' and ty. Notice that type variables in ty cannot
be instantiated in obtaining 7; thus the expression 1:’a will not elaborate
successfully, nor will the expression (fn x=>x):’a->’b. The effect of type

variables in an explicitly typed expression is to indicate exactly the degree

of polymorphism present in the expression.
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(11.1)—(11.3) Equality and quantification are guarding constructs, i.e. any type
variable occurring in them is guarded. Any type variable occuring unguarded
within a guarding construct is scoped at that construct, provided it is not
already scoped in the context: this is expressed by extending the context
with +U which prohibits these type variables from being bound locally by
the closure operator.

Storing (' and 7 in the trace is necessary for the verification semantics, to
select appropriate witnesses for the quantifiers, and to compare values. We
require quantification and comparison in the verification semantics to behave
uniformly: abstracting type variables via Clos¢ here allows the verification
semantics to instantiate the traces arbitrarily.

(11.4) The expression exp® will not be subject to verification; only its termination
behaviour in the dynamic semantics is of interest. The dynamic semantics
does not need any type information, thus the empty trace ¢ in the result.

(13) Note that 7 does not occur in the premise; thus a raise expression has
“arbitrary” type. For the same reason, its type has to be recorded in the
trace.

(14) The context €' is part of the result trace so that match can be type-checked
after replacing all its question marks with the corresponding choices of a
given model.

Matches C' F match = 7,U,~
C F mrule = 7,U,~ (C'F match = 7,U",+') (15)

C = mrule { | mateh) = 7,U{UJU"),~v{-v")
Match Rules C Fmrule = 7,U,~
CF pat = (VE77)7U77 CaVELF exp = Tlv U/77/ (16)

Crkopat=>exp =>7—7, UUU, v -~

Comment: This rule allows new free type variables to enter the context. These
new type variables will be chosen, in effect, during the elaboration of pat (i.e., in
the inference of the first hypothesis). In particular, their choice may have to be
made to agree with type variables present in any explicit type expression occurring
within exp (see rule 11).

Notice that rule 16 uses ' & VE in contrast to the SML definition, which uses
C' 4 VE here. The reason for this change is another soundness problem, similar
to the one mentioned for rule 6, but a bit more involved. This problem was not

mentioned in [MT91] or [Kah93], see [Kah94].
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Declarations CkFdec= E, v

C+UtF valbind = VE, U,~ VE' = Clos¢VE
C' + val valbind = VE' in Env, Closcy

C F typbind = TE,~
C I type typbind = TFE in Env,TE - ~

C F typbind = TE,~ V(0,CF) € Ran TE, 6 admits equality
C I eqtype typbind = TFE in Env, TE - ~

C @ TEF datbind = VE,TE, v V(t,CE) € RanTE, t ¢ (T of C)
FE =(VE,TE) in Env TE maximises equality

C' t datatype datbind = E, E -~

C @ TEF datbind = VE,TE, v V(t,CE) € RanTE, t ¢ (T of C)
C & (VE,TE) \ dec = E,+ TE maximises equality
Absc(TE,E) =, E'

C | abstype datbind with dec end = £/, (VE, o1y) -7y -+

C & exbind = VE,~
C F exception exbind = VE in Env, ~

Cl_d601:>E1,"}/1 C@Ell_d602:>E2,72
C' I local decqy in decy end = Fo, vy - 7

C(longstrid,) = (mq, Ey) -+ C(longstrid,) = (my,, E,)
C I open longstrid, --- longstrid, = E1 4+ ---+ E,, €

CF = {} in Env, ¢

Cl_d601:>E1,"}/1 C@Ell_d602:>E2,72
Ct decy (;) decz = E1 4 Eaym - 72

Comments:

(17)

(18)

(18.1)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(17) Here VE will contain types rather than general type schemes. The closure of

VE is exactly what allows variables to be used polymorphically, via rule 2.

(18) Within typbind there might be ?-types, i.e. there might be newly introduced
type names. Notice that their equality attributes are not affected by this

rule, but that principality of environments can affect it later (rule 57) — a

type with equality attribute is more specific.
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(18),(18.1) The verification semantics exploits type information; storing the type
environment TFE in the trace is one way to make the needed information
accessible for later verification purposes.

(19),(20) The side conditions express that the elaboration of each datatype bind-
ing generates new type names and that as many of these new names as
possible admit equality. Adding TE to the context on the left of the - in
the first premise captures the recursive nature of the binding.

To see why an environment £ etc. is stored in the trace, one has to look
at these rules in connection with the corresponding rules of the verification
semantics, here 241 and 242.

(20) The Absc operation was defined in Section 4.9, page 28.

(21) No closure operation is used here, since exception bindings do not contain
type variables.

Value Bindings C' Fwalbind = VE, U, ~

Ct pat = (VE, 7),U,y Cterp=rU, ~
(C F valbind = VE', U",4")
C' & pat = exp {and valbind) = VE {(+ VE'), UUU{UU"), ~-~'{-4")
C'+ VEF valbind = VE, U, ~
C F rec valbind = VE, U, ~

(26)

(27)

Comments:

en the option is present we have Dom om = e syntactic
26) When the option is p t we have Dom VENDom VE' = (§ by the syntact;
restrictions.

(27) Modifying C' by VE on the left of the premise captures the recursive nature
of the binding. From rule 26 we see that any type scheme occurring in VE
will have to be a type. Thus each use of a recursive function in its own body
must be ascribed the same type.

Type Bindings C'F typbind = TE,~
tyvarseq = o'® Chily=r (C F typbind = TFE,~)
: (28)
C + tyvarseq tycon = ty (and typbind) =
{tyeon v (87, (1)} {+ TE), <)
tyvarseq = o® t¢ (Tof C), arityt =k
C +{t} F typbind = TE

C + tyvarseq tycon = 7 (and typbind) =
{tycon — (1,{})} (+ TE), (C,1)(-7)
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Comments:

(28) The syntactic restrictions ensure that the type function Aa® 7 satisfies the
well-formedness constraints of Section 4.4 and that tycon ¢ Dom TFE.

(28.1) Question mark types are treated as new types for the purposes of static
analysis (premise ¢t ¢ (T of C')). In a given model (verification semantics),
the type name ¢ will be replaced by an appropriate type function, see rule
252; €' and T' are stored in the trace for the purposes of that replacement.

Data Type Bindings C F datbind = VE,TE,~

tyvarseq = o® C, o™ik conbind = CE,~
(C'F datbind = VE,TE,~"  V(t',CE) € RanTE,t # 1)
C F tyvarseq tycon = conbind (and datbind) =
ClosCE (+ VE), {tycon — (1,ClosCE)} (+ TE), v{-+")

(29)

Comment: The syntactic restrictions ensure Dom VE N Dom CE = () and tycon ¢
Dom TE.

Constructor Bindings C, 1 F conbind = CE,~
con = id® (C, 7+ conbind = CE,~) (30)
C,7F con (| conbind) = {id — 7} (+ CE), 7{(-y)
con = id® Ckty=71 =7 7
(C,7 F conbind = CE,~) (30.1)
C,7F con of ty { | conbind) = {id — 7"} (+ CE), 7"(-7) '
Comments:
(30),(30.1) By the syntactic restrictions con ¢ Dom CE.
Exception Bindings C  exbind = VE.vy
excon = id® (C F exbind = VE,v) (31)
C | excon (and exbind) = {id — exn} (+ VE), €(-y)
excon = id® Chily=r tyvars(ty) = 0
(CF exbind = VE,v) (311)

C | excon of ty (and exbind) = {id — 7 — exn} (+ VE), 7(-v)
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excon = id® C(longexcon) =T (C F exbind = VE,~)
C + excon = longexcon (and exbind) = {id — 7} (+ VE), €(-¥)

(32)

Comments:

(31.1) Notice that ty must not contain any type variables. This is slightly stricter
than to require tyvars 7 = (}, as the corresponding rule in [MTH90] does, and
it rules out some pathological cases. Type variables occurring in exception
bindings are unguarded (in SML) and affect the scoping mechanism even if
they do not occur in the type obtained from that binding. In Extended ML,
declarations never have unguarded type variables; the restriction makes sure
that there is no difference in type variable scoping between Standard ML
and Extended ML.

(31),(31.1),(32) There are unique VFE and ~, for each €' and exbind, such that
CF exbind = VI, ~.

Atomic Patterns C't+ atpat = (VE,7),U, v
CF = (T )
(34)
C F scon = ({},type(scon)),, e
var = id" 35
Ctovar= ({id—71},7),0,7 (35)
C(longecon) > k) (36)
C'+ longcon = ({},T(k)t), 0, 7"y
C(longexcon) = exn 47
C' + longexcon = ({},exn),, ¢ (37)
(C F patrow = (VE, p),U,~) (38)
O F AL (patrow) } = ( {}{+ VE), {}{(+ o) in Type), 0(UU), €(-7)
Ctpat= (VE,7),U,~ (39)

Ct (pat) = (VE,7),U,~

Comments:

(35) Note that var can assume a type, not a general type scheme.
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Pattern Rows C' + patrow = (VE, ), U,~

(40)

Ck...=({},0),0,0in Trace

Ctpat= (VE,7),U,~
(C'F patrow = (VE', p), U’ ,+ lab ¢ Dom p)

(41)
CF lab = pat { , patrow) =
(VE(+ VE'), {lab— 7H+ o)), U(UU"), v{7)
Comments:
(41) By the syntactic restrictions, Dom VE N Dom VE' = .
Patterns Ct pat = (VE,7),U,y
C+ atpat = (VE,7),U,~ (42)
C+ atpat = (VE,7),U,~
C(longcon) =" =7"— 1 CF atpat = (VE,7'),U,~ (43)
C  longcon atpat = (VE,7),U, 7"~
C(longexcon) = 7 — exn CF atpat = (VE, 7),U,~ (44)
C + longexcon atpat = (VE, exn), U, ~
Ct pat = (VE, 7),U, v Chily=r U' = tyvars ty (45)
Ctopat: ty= (VE,7),UUU"~
Ctwar= (VE,7),U,~ C'F pat = (VE' 7),U",+
(CHty=r U" = tyvars ty) (16)

C'+ var(: ty) as pat = (VE + VE',7),UU0U{UU"), ~ -+

Comments:

(46) By the syntactic restrictions, Dom VE N Dom VE' = ). In the first premise,
var is viewed as an atomic pattern.

Type Expressions Ckhty=r

tyvar = «

4
CF tyvar = « (47)

(C F tyrow = p)

C+{ (tyrow) ¥ = {}{+ o) in Type (48)
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tyseq = ty,-ty,  CFHly, =7 (1<i<k)
C(longtycon) = (0, CFE) arity 0 = k

49
C F tyseq longtycon = r*g (49)
Chkty=r Chty =1 (50)
Chly->t/=17—1
Ft
Crly=r (51)
CH(ty)=r

Type-expression Rows C F tyrow = o

Chily=r (C F tyrow = p)
(52)

Ctlab : ty (, tyrow) = {lab — 7}{+ o)
Comment: The syntactic constraints ensure lab ¢ Dom p.
4.11 Further Restrictions

In a match of the form pat;, => exp, | --- | pat, => exp, the pattern sequence
paty,...,pat, should be irredundant; that is, each pat; must match some value

(of the right type) which is not matched by pat; for any ¢ < j. In the context
fn match, the match must also be exhaustive; that is, every value (of the right
type) must be matched by some pat;. The compiler must give warning on violation
of these restrictions, but should still compile the match. The restrictions are
inherited by derived forms; in particular, this means that in the function binding
var atpaty --- atpat,(: ty) = exp (consisting of one clause only), each separate
atpat,; should be exhaustive by itself.

This text originates from [MTH90]. In the context of Extended ML, this (and
other references to compilers below) should be taken as referring to an Exten-
ded ML parser/typechecker, which of course is not a compiler in the usual sense.
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5 Static Semantics for Modules

5.1 Semantic Objects

The simple objects for Modules static semantics are exactly as for the Core. The
compound objects are those for the Core, augmented by those in Figure 13.

M € StrNameSet = Fin(StrName)
N or (M,T) € NameSet = StrNameSet x TyNameSet
Yor (N)S € Sig = NameSet x Str
® or (N)(S,(N')S") € FunSig = NameSet x (Str x Sig)
G € SigEnv = Sigld 5 Sig
F € FunEnv = Funld 28 FunbSig
Bor N,F.G,FE € Basis = NameSet x FunkEnv x Sigknv x Env
wstr € StrRea = StrName — StrName
@ or (¢1y, psee) € Rea = TyRea x StrRea
v € Trace = Tree(SimTrace & TraceScheme W BoundTrace)
(N)y € BoundTrace = NameSet x Trace

SimTrace = SimTracecor & StrName ¥ Rea W VarEnv

Figure 13: Further Compound Semantic Objects

The prefix (V), in signatures and functor signatures, binds both type names
and structure names. We shall always consider a set N of names as partitioned
into a pair (M, T') of sets of the two kinds of name.

It is sometimes convenient to work with an arbitrary semantic object A, or
assembly A of such objects. As with the function tynames, strnames(A) and
names(A) denote respectively the set of structure names and the set of names
occurring free in A.

Certain operations require a change of bound names in semantic objects; see
for example Section 5.7. When bound type names are changed, we demand that
all of their attributes (i.e. equality and arity) are preserved.

For any structure S = (m,(SE,TE,VE)) we call m the structure name or
name of S; also, the proper substructures of S are the members of Ran SFE and
their proper substructures. The substructures of S are S itself and its proper sub-
structures. The structures occurring in an object or assembly A are the structures
and substructures from which it is built. The type structures of S are all members
of RanTE and all type structures of substructures of 5.

The operations of projection, injection and modification are as for the Core.
Moreover, we define C'of B to be the context (T'of B, ), Fof B), i.e. with an empty
set of explicit type variables. Also, we frequently need to modify a basis B by an
environment F (or a structure environment SE say), at the same time extending
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N of B to include the type names and structure names of F (or of SE say). We
therefore define B @& SE, for example, to mean B + (names SE, SE).

For the purposes of the module semantics, we extend the notion of simple
trace and introduce another form of trace, the bound trace. SimTracecor refers
to SimTrace as defined in Figure 12 on page 24, i.e. the simple traces of the Core.

In traces of the form (N)y, the names N are bound. Type substitution and
realisations have to respect variable binding when applied to a trace, i.e. their ap-
plication may involve renaming of bound names and bound type variables. When
applying a realisation ¢ to a trace consisting of a realisation ', then ¢ affects the

results of ', i.e. (' )(2) = p(P'(2)).

5.2 Consistency
A set of type structures is said to be consistent if, for all (6;, CFE1) and (6, CFE5)
in the set, if #; = 65 then

CE1 ={} or CEy = {} or Dom CE; = Dom CFE,

A semantic object A or assembly A of objects is said to be consistent if (after
changing bound names to make all nameset prefixes in A disjoint) for all S; and
Sy occurring in A and for every longstrid and every longtycon

L. If mof S; = mof Sy, and both S;(longstrid) and Sy(longstrid) exist, then

m of Sy(longstrid) = m of Sy(longstrid)

2. If mof S; = mof Sy, and both Sy(longtycon) and Sy(longtycon) exist, then

6 of Sy(longtycon) = 6 of Sy(longtycon)

3. The set of all type structures in A is consistent

As an example, a functor signature (N)(S,(N')S") is consistent if, assuming
first that N N N' = 0, the assembly A = {5, 5’} is consistent.

We may loosely say that two structures Sy and Sy are consistent if {57, 5;} is
consistent, but must remember that this is stronger than the assertion that Sy is
consistent and S5 is consistent.

Note that if A is a consistent assembly and A" C A then A’ is also a consistent
assembly.

5.3 Well-formedness

A signature (N)S is well-formed if N C namesS, and also, whenever (m, F)
is a substructure of S and m ¢ N, then N N (names k) = (), and whenever
(t,CE) is a type structure of S and t ¢ N, then N N (namesCFE) = (. A functor
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signature (N)(S,(N')S") is well-formed if (N)S and (N')S" are well-formed, and
also, whenever (m', E') is a substructure of S and m’ ¢ N U N', then (N UN')N
(names E') = (), and whenever (¢, CE') is a type structure of S" and t' ¢ N U N’
then (N U N') N (names CE') = 0.

An object or assembly A is well-formed if every signature and functor signature
occurring in A is well-formed.

5.4 Cycle-freedom

An object or assembly A is cycle-free it it contains no cycle of structure names;
that is, there is no sequence

mo, -+, Mg—1,m = mo (k> 0)

of structure names such that, for each 7 (0 < ¢ < k) some structure with name m;
occurring in A has a proper substructure with name ;.

5.5 Admissibility

An object or assembly A is admissible if it is consistent, well-formed and cycle-
free. Henceforth it is assumed that all objects mentioned are admissible. We also
require that

1. In every sentence A - phrase = A’ inferred by the rules given in Section 5.14,
the assembly {A, A’} is admissible.

2. In the special case of a sentence B F sigexp = S,~, we further require
that the assembly consisting of all semantic objects occurring in the entire
inference of this sentence be admissible. This is important for the definition
of principal signatures in Section 5.13.

In our semantic definition we have not undertaken to indicate how admissibility
should be checked in an implementation.

5.6 Type Realisation

A type realisation is a function @1y : TyName — TypeFcen such that ¢ and o1y (#)
have the same arity, and if £ admits equality then so does @1y ().
The support Supp @1y of a type realisation @1y is the set of type names ¢ for

which o1y (t) # 1.

5.7 Realisation

A realisation is a function ¢ of names, partitioned into a type realisation @1y :
TyName — TypeFcn and a function g, : StrName — StrName. The support
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Supp ¢ of a realisation ¢ is the set of names n for which ¢(n) # n. The yield
Yield ¢ of a realisation ¢ is the set of names which occur in some (n) for which
n € Supp .

Realisations ¢ are extended to apply to all semantic objects; their effect is to
replace each name n by ¢(n). In applying ¢ to an object with bound names, such
as a signature (N)S, first bound names must be changed so that, for each binding
prefix (N),

NN (Suppe U Yieldp) =0 .

We assume realisations to have finite support, i.e. the last sentence does not affect
the applicability of realisations.
The semantic class of realisations is called Rea.

Traces

We extend the definition of generalisation to traces. The relation > is the smallest
binary relation on traces satisfying the following properties:

ol -y <= v € SimTrace

oY R N = e A -

Valtl 4 - J(y) <= Domd = a®)

(N)y > »ly) <= SupppCN

" 3 <= there exists 73 such that 44 = v Ay =73
7 ~ 2 <= for all Y3,Y2 — Y3 — Y1~ V3

It can be shown that generalisation between type schemes is a special case of
generalisation between traces.

Stripping Axioms

Axioms should not influence elaboration; in particular, the successful elaboration
of a phrase should not depend on the presence of axioms. For this purpose, we
define a family of partial functions

(SigExp x Trace) — (SigExp x Trace)
strip : ¢ (StrDesc x Trace) — (StrDesc x Trace)
(Spec x Trace) — (Spec x Trace)

which “strip” axioms from signature expressions and perform the corresponding
removal in the trace. These functions are partial because e.g. the trace v in an
argument (spec,v) of strip is expected to be an elaboration result of spec. More
precisely, strip is defined as follows:

strip : (SigExp x Trace) — (SigExp x Trace)

strip(sig spec end,m-~) = (sig spec’ end,m -4")
where strip(spec,v) = (spec’, ")

strip(sigid,v) = (sigid,~)
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strip : (StrDesc x Trace) — (StrDesc x Trace)
strip(strid : sigexp (and strdesc),y1(-72)) =
(strid : sigexp’ (and strdesc’),vi(-v3))
strip(sigexp,v1) = (sigeap’, )
where { (strip(strdesc,vy2) = (strdesc’,~5))

strip : (Spec x Trace) — (Spec x Trace)

strip(axiom axdesc,v) = ( ,€)

strip(structure strdesc,y) = (structure strdesc’,y’)
where strip(strdesc, ) = (strdesc’, ")

strip(local spec; in spec, end, v, - v2) = (local spec) in specy end,v; - ;)
where strip(spec;,v;) = (spect,~1), i € {1,2}

strip(specy (5) specy, 71+ 72) = (spec (5) specy, 7y - 72)
where strip(spec;,v:) = (spect, ), 1 € {1,2}

strip(spec,y) = (spec,v) otherwise

5.8 Type Explication

A signature (NV)S is type-explicit if, whenever t € N and t occurs free in 5, then
some substructure of S contains a type environment TE such that TE(tycon) =
(t, CF) for some tycon and some CE.

5.9 Signature Instantiation

A structure Sy is an instance of a signature ¥y = (N7)S7, written ¥4 >S5, if there
exists a realisation ¢ such that ¢(S7) = 53 and Supp ¢ € N;. We write ¥1>,55
if we want to make ¢ explicit. (Note that if ¥; is type-explicit then there is at
most one such .) A signature ¥y = (N3)5; is an instance of ¥y = (N1)Sy, written
Y>3y, if ¥1>5; and N> N (names X)) = . It can be shown that %>, iff, for
all S, whenever 3> then ¥,>5.

5.10 Functor Signature Instantiation

A pair (S, (N)S") is called a functor instance. Given ® = (N;)(Sy, (N])S]), a
functor instance (Sy, (N5)S5) is an instance of @, written ®> (S, (N,)S5), if there
exists a realisation ¢ such that ¢(Sy, (N])S]) = (S2, (N;)S;) and Suppe C Nj.
Again we write ®> (S, (N;)S;) to make o explicit.

5.11 Enrichment

In matching a structure to a signature, the structure will be allowed both to
have more components, and to be more polymorphic, than (an instance of) the
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signature. Precisely, we define enrichment of structures, environments and type
structures by mutual recursion as follows.
A structure Sy = (mq, Fy) enriches another structure Sy = (ma2, F»), written

Sy = Sy, if
1. mi = my
2. By > Iy

An environment F, enriches another environment Fy, F; = (SE;, TE;, VE;), writ-
ten By > Fsy, if

1. Dom SE; 2 Dom SE;, and Vstrid € Dom SE;y. SEq(strid) > SEq(strid)
2. DomTE; O Dom TE,, and Ytycon € Dom TE;. TE,(tycon) > TEy(tycon)
3. Dom VE; D Dom VE;, and Vid € Dom VE,. VE1(id) > VEy(id)

Finally, a type structure (61, CE;) enriches another type structure (6y, CFEs),
written (01, CE1) = (02, CEy), if

1. 01 :02

2. Either CFy = CE, or CE, = {}

5.12 Signature Matching

A structure S matches a signature 3 if there exists a structure S~ such that
¥y > 57 < S. Thus matching is a combination of instantiation and enrichment.
There is at most one such S™, given ¥; and S. Moreover, writing ¥; = (/Nq)S57,
if ¥1 > S7 then there exists a realisation ¢ with Suppe C Ny and ¢(S7) = 5™
We shall then say that S matches ¥ via ¢. (Note that if ¥; is type-explicit then
¢ is uniquely determined by ¥; and S.)

A signature ¥y matches a signature ¥ if for all structures S, if S matches ¥,
then S matches ¥;. It can be shown that Y5 = (N3)S2 matches ¥y = (N7)S; if
and only if there exists a realisation ¢ with Suppe C Ny and ¢(S57) < Sz and
Ny Nnames ¥y = 0.

5.13 Principal Signatures

The definitions in this section concern the elaboration of signature expressions;
more precisely they concern inferences of sentences of the form B F sigexp = 5,7,
where S is a structure and B is a basis. Recall, from Section 5.5, that the assembly
of all semantic objects in such an inference must be admissible.

For any basis B and any structure S, we say that B covers S if for every
substructure (m, E) of S such that m € N of B:
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1. For every structure identifier strid € Dom FE, B contains a substructure
(m, E') with m free and strid € Dom F’

2. For every type constructor tycon € Dom F, B contains a substructure
(m, E') with m free and tycon € Dom £’

(This condition is not a consequence of consistency of { B, S}; informally, it states
that if S shares a substructure with B, then S mentions no more components of
the substructure than B does.)

We say that a signature (N)S with a trace v is principal for sigexp in B if,
choosing N so that (Nof B)N N =0,

1. B covers S
2. BF sigexp = S,

3. Whenever B t sigexp = S',~', then (N)S>,5" and ©'(v) = ', for some
realisations ¢ and ¢’ such that Supp ¢’ N (N of B) = () and such that ¢’
restricted to N is the same as .

We claim that if sigexp elaborates in B to some structure covered by B, then it
possesses a principal signature in B (with some trace).5

Analogous to the definition given for type environments in Section 4.9, we say
that a semantic object A respects equality if every type environment occurring in
A respects equality.

Now let us assume that sigexp possesses a principal signature ¥y = (Np)So
with 79 in B. We wish to define, in terms of ¥, another signature ¥ with v which
provides more information about the equality attributes of structures which will
match Yg. To this end, let Ty be the set of type names ¢ € Ny which do not admit
equality, and such that (¢,CE) occurs in Sy for some CE # {}. Then we say ¥
with v is equality-principal for sigexp in B if

1. ¥ respects equality

2. ¥ and v are obtained from ¥, and vy just by making as many members of
To admit equality as possible, subject to 1. above.

It is easy to show that, if any such a pair (X, ) exists, it is determined uniquely
by (X0,70); moreover, ¥ exists if ¥y itself respects equality.

We do not express equality-principality of signature elaboration by higher-order
rules, in spite of comments in Section 1.2 which suggest this. The problem is that
the obvious higher-order rule is on the one hand (slightly) incompatible with SML
and on the other hand makes signature elaboration undecidable. One can repair
the undecidability flaw by making a few rather innocent-looking changes to the
semantics, but this would widen the gap between SML and EML.

®This claim must be slightly qualified, since it may be ill-formed in a mild sense. This is
discussed at the end of Section 11.3 of [MT91].
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5.14 Inference Rules

As for the Core, the rules of the Modules static semantics allow sentences of the

form

to be

AF phrase = A’

inferred, where in this case A is usually either a basis or a context and A’ is

a semantic object or an assembly of such objects.

Structure Expressions B F strexp = S,
B & strdec = E, v m ¢ (N of B) U names F (53)
B F struct strdec end = (m, E),m -~
B(longstrid) = S (54)
B F longstrid = S, ¢
B strexp = S, v
B(funid)> (5", (N")S"), S = 5" (Nof BYN N =1 (55)
B & funid C strexp ) = S, ¢ -~
B F strdec = FE.,~ B @ E & strexp = 5,9/ (56)
B let strdec in strexp end = S,y -4/
Comments:
(53) The side condition ensures that each generative structure expression receives

(55)

a new name. If the expression occurs in a functor body the structure name
will be bound by (N') in rule 99; this will ensure that for each application of
the functor, by rule 55, a new distinct name will be chosen for the structure
generated.

The side condition (N of B)N N’ = () can always be satisfied by renaming
bound names in (N')S’ thus ensuring that the generated structures receive
new names.

Let B(funid) = (N)(Sy,(N')S}). Assuming that (IV)Sy is type-explicit, the
realisation ¢ for which o(S¢, (N')S}) = (57, (N')S’) is uniquely determined
by S, since S = S” can only hold if the type names and structure names
in S and S” agree. Recall that enrichment = allows more components and
more polymorphism, while instantiation > does not.

Sharing between argument and result specified in the declaration of the
functor funid is represented by the occurrence of the same name in both
Sy and S}, and this repeated occurrence is preserved by ¢, yielding sharing
between the argument structure S and the result structure S’ of this functor
application.
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(56) The use of @, here and elsewhere, ensures that structure and type names
generated by the first sub-phrase are distinct from names generated by the
second sub-phrase.

Structure-level Declarations B F strdec = E.v

Cof B deec= FE,~ N = namesy \ Nof B COfB'_dec:iE/’Pyl
(N)y =7 (57)
Bl dec= F,y

Bt ar =7
BFar =~ Closy = ' (57.1)
B F axiom az = {} in Env, Closy '

B &= strbind = SE,~

58

B structure strbind = SE in Env,~y (58)

B F strdecy = Ei, v B @ E, & strdecy = Fy, 7, (59)
B local strdecy in strdecy end = Fy, 71 - 72

60

BF = {} in Env, ¢ (60)

B F strdecy = Ei, v B @ E, & strdecy = Fy, 7, (61)

B F strdecy (;) strdecg = Fi + Fa,v1 - 72

Comments:

(57) The last premise can be seen as requiring principality of the trace v (for
dec in B), which implies principality of the environment E in the sense of
the SML definition; it is a stronger condition, as v may also include types
which are not in F£.

(57.1) The second premise ensures principality of the trace ~.

Axioms BFar =~y

B & azerp = ~ (BF ax = ')
B F azexp (and ax) = ~(-v")

(61.1)

Comment: Axioms are not implicitly universally quantified over all their free vari-
ables. Such implicit quantification is convenient for presenting small examples,
but the redundancy introduced by requiring variables to be explicitly quantified
is helpful in detecting typographical errors in larger examples.
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Axiomatic Expressions B F axexp = v

Cof BtF exp® = bool, ),y
B exp® =~

(61.2)

Comment: Axiomatic expressions must be of type bool and are not allowed to
contain unguarded explicit type variables.

Structure Bindings B F strbind = SE, v
B | sglstrbind = SE, v (B + names SE b strbind = SE',+") (62)
B | sglstrbind (and strbind) = SE (+SE'), v{-y")
Single Structure Bindings B F sglstrbind = SE. v
B F psigexp = (N)S,~ B & strexzp = S, 4
NNNof B=1{ (N)S > S" <5 (62.1)
B F strid : psigexp = strexp = {strid — S}, v -+ '
B F psigexp = (N)S,~ NNNof B=1{ (62.2)
B & strid : psigexp = 7 = {strid — S}, ~ '
BF st
strexp = S,y (62.3)

B F strid = strexp = {strid — S}, ~

Comments:

(62.1) In EML, structures are like abstractions [MacQ86]: the signature of a
structure is taken to be exactly the explicit signature. Any additional
sharing present in the structure body is invisible outside the body. The
type/structure names in S” are not accessible outside the body and so they
may be safely reused (in contrast to SML, where strid is bound to S”).

(62.1),(62.2) The only difference between these two rules is that in the case where
a body is present, it is required to elaborate and to fit the signature given.
However, this does not effect the overall result of elaboration, which depends
only on the signature given.

The side-condition N NN of B = () can always be satisfied by an appropriate
a-conversion of (N)S.
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Signature Expressions B F sigexp = S,
B F spec = E.~ (63)

BF sig spec end = (m, E),m -y
B(sigid)>,5 (64)

B osigid = S, ¢

Comments:

(63) In contrast to rule 53, m is not here required to be new. The name m
may be chosen to achieve the sharing required in rule 88, or to achieve the
enrichment side conditions of rule 62.1 or 99. The choice of m must result
in an admissible object.

(64) The instance S of B(sigid) is not determined by this rule, but — as in rule 63
— the instance may be chosen to achieve sharing properties or enrichment
conditions.

Principal Signatures B F psigexp = X, v

(N)S with v equality-principal for sigexp in B (N)S type-explicit
strip(sigeap,v) = (sigexp’,v")
(N)S with 4" equality-principal for sigexp’ in B
B F sigexp = (N)S, (N)y

Comment: B F sigexp = S, follows from the definition of equality-principality
of (N)S with v for sigexp in B. The purpose of the second equality-principality
requirement is to ensure that dropping axioms from sigexrp does not change the

(65)

result of elaboration. We also need principality of the second elaboration to get a
unique trace v. In an implementation, the two equality-principality requirements
will probably correspond to two passes of static analysis: the first pass elaborates
the signature expression stripped of its axioms; the second pass then includes the
axioms and checks that no further identification of type names is required for
elaboration to succeed.

Signature Declarations B F sigdec = G,y
B | sighind = G~ (66)
B I signature sigbind = G~
BE = {},¢ (67)
B & sigdec; = Gi,m B+ G1 F sigdecy = Gy, 72 (68)

B F sigdecy (;) sigdecy, = G 4+ Gayy1 - 72
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Comments:

(66) The first closure restriction of Section 3.6 can be enforced by replacing the
B in the premise by (BN By) + G of B.

(68) A signature declaration does not create any new structures or types; hence
the use of + instead of @.

Signature Bindings B F sigbind = G,y

B & psigexp = X, v (B & sigbind = G,~")
B F sigid = psigexp (and sigbind) = {sigid — X} (+ G), v{(-v)

(69)

Comment: The condition that ¥ be equality-principal, implicit in the first premise,
ensures that the signature found is as general as possible given the sharing con-
straints present in psigexp.

Specifications B F spec = E.,v
C ot B valdesc = VE (70)
B F val valdesc = ClosVE in Env, ClosVE in Trace
C' of Bt typdesc = TE (11)
B F type typdesc = TE in Env, TFE in Trace
C' of Bt typdesc = TE V(0,CF) € Ran TE, 6 admits equality (72)
B eqtype typdesc = TE in Env, TF in Trace
Cof B+ TE & datdese = VE,TE E={},TE,VE) (73)
B - datatype datdesc = F, F in Trace
Cof BF exdesc = VE E={}{},VE) (74)
B - exception exdesc = F, E in Trace
| B ardesc = ’y (7T4.1)
B F axiom azdesc = {} in Env, v
B strdesc = SE, v (75)
B |- structure strdesc = SE in Env, ~
B & shareq = {} (76)
B F sharing shareq=- {} in Env, ¢
B F specy = Ei,m B+ Ei F specy = Fa, 72 (17)

B I local spec, in spec, end = Ey,v1 - 72
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B(longstrid,) = (my, Ey) -+ B(longstrid,) = (my, E,)

78
B |- open longstrid, --- longstrid, = Ey + -+ I, € (78)
B(Slgldl)zw(mlvEl) B(Slgldn)ZWn(mmEn) (79)

B - include sigid, -+~ sigid, = Ey + -+ E,, ©1-... ¢n
80
BF = {} in Env, € (80)
B spec; = Fi,m B+ Ey F specy = Eo, 72 (81)

B\ specy () specy = B+ Eoyyr - 72

Comments:

(70) VE is determined by B and wvaldesc.

(71)=(73) The type functions in TE may be chosen to achieve the sharing hy-
pothesis of rule 89 or the enrichment conditions of rules 62.1 and 99. In
particular, the type names in TFE in rule 73 need not be new. Also, in
rule 71 the type functions in TE may admit equality.

(74) VE is determined by B and exdesc and contains monotypes only.

(79) The names m; in the instances may be chosen to achieve sharing or enrich-
ment conditions.

Value Descriptions |C' F valdesc = VE |
var = id" Chily=r (C F valdese = VE)

C't var : ty (and valdesc) = {id — 7} (+ VE) (82)
Type Descriptions C F typdesc = TE
tyvarseq = o® (C F typdesc = TE) arity = k (83)

C F tyvarseq tycon (and typdesc) = {tycon — (0,{})} (+ TE)

Comment: Note that any 6 of arity & may be chosen but that the constructor
environment in the resulting type structure must be empty. For example,

datatype s=c
type t
sharing type s=t

is a legal specification, but the type structure bound to t does not bind any value
constructors.
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Datatype Descriptions C' datdesc = VE,TE
tyvarseq = o® C, o™t + condesec = CE (C F datdesc = VE,TE) (84)
C + tyvarseq tycon = condesc (and datdesc) =
ClosCE(+ VE), {tycon — (t,ClosCE)} (+ TFE)
Constructor Descriptions C, 1t condesc = CE
con = id® (C,7F condesc = CFE) (85)
C,7F con (| condesc) = {id — 7} (+ CF)
con = id® Chity=r1 (C, 7 condesc = CFE) (85.1)
C,7F con of ty (| condesc) = {id — 7' — 7} (+ CE) '
Exception Descriptions |C'+ exdesc = VE|
excon = id® (C F exdesc = VE) (86)
C + excon (and exdesc) = {id — exn} (+ VE)
Chily=r tyvars(ty) = 0
excon = id® (C F exdesc = VE)
(86.1)

C | excon of ty (and exdesc) = {id — 7 — exn}(+ VFE)

Comments:

(86.1) The requirement that there are no type variables in ty (rather than in 7,
as in rule 31.1 or in rule 86 of [MTH90]) was suggested in Appendix D in
[MT91]. The problem with the requirement in [MTH90] is that principality
is lost because of the existence of type functions like Aa.int; see [MT91].
Here is an example:

type ’a t
exception e of ’a t

This specification does not elaborate because of the side-condition in 86.1.
The weaker side-condition tyvars(7) = @) would still allow successful elabor-
ations with e.g. t — Aa.int.

Axiom Descriptions B F azxdesc = v

Axiom descriptions, specification expressions, etc. do not add components to the
basis, hence the only outcome of elaboration is the trace.

B+ specexp = v (B axdesc = +')

86.2
B F specexp (and axdesc) = v(-v') ( )
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Specification Expressions B F specexp = v
B &= strdec = E,~ B3 EF averp = 4 (86.3)
B F let strdec in azerp end = 7 -~/ '
Structure Descriptions B F strdesc = SE,
B sigexp = S,y (B | strdesc = SE, ") (87)
B F strid : sigexp (and strdesc) = {strid — S} (+ SE), ~v{-v")
Sharing Equations B F shareq = {}
m of B(longstrid,) = --- = m of B(longstrid,,) (5)
B+ longstrid, = -+ = longstrid, = {}
 of B(longtycon,) = --- = 6 of B(longtycon,,) (89)
B F type longtycon, = --- = longtycon, = {}
B F shareq, = {} B F shareq, = {}
(90)
B F shareq, and shareq, = {}
Comments:
(88) The premise is weaker than B(longstrid,) = --- = B(longstrid,). Two

different structures with the same name may be thought of as representing
different views. The requirement that B is consistent forces different views
to be consistent.

(89) The premise is weaker than B(longtycon,) = --- = B(longtycon,). A
type structure with empty constructor environment may have the same
type name as one with a non-empty constructor environment; the former
could arise from a type description, and the latter from a datatype descrip-
tion. However, the requirement that B is consistent will prevent two type
structures with constructor environments which have different non-empty
domains from sharing the same type name.

Functor Specifications etc.

Several rules have been removed here, because EML does not support functor
specifications, functor descriptions or functor signature expressions. In SML these
constructs are assigned semantics although they cannot appear in programs.

Deleted (91)
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Deleted (92)
Deleted (93)
Deleted (94)
Deleted (95)
Functor Declarations B F fundec = F,~
B F funbind = F,~ (96)
B I functor funbind = F,~
BF = {},¢ (97)
B F fundec, = Fy, v B+ Fy F fundecy = Fy, 7 (98)

BF fundeey () fundecy = Fy + Fo,y1 - 72

Comments:

(96) The second closure restriction of Section 3.6 can be enforced by replacing

the B in the premise by (BN By) + (G of B)+ (F of B).

Functor Bindings B F funbind = F,~

B F psigexp = (N)S, % NNNof B=1 B' = B @ {strid — S}
Bt psigerp’ = X, 7, Bt strexp = S, 5
N>8"< 5 (B & funbind = F,~4)

99
B & funid ( strid : psigexp ) : psigexp’ = strexp (and funbind) = (99)
{funid — (N)(5,5)} (+ F), 7172 73(-74)
B F psigexp = (N)S,m B @ {strid — S} F psigexp’ = %, v,
NNNof B=1 (B F funbind = F,~s) (99.1)

B & funid ( strid : psigexp ) : psigexp’ = ? (and funbind) =
{funid — (N)(5,5)} (+ F), 11 -72(73)
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Comments:

(99) In EML, functors are like parameterised abstractions [MacQ86]: the output
signature of a functor is taken to be exactly the explicit output signature.
Any additional sharing present in the functor body is invisible outside the

body. Compare rule 99 of [MTH90].

(99),(99.1) The requirement that (N)S be equality-principal, implicit in the first
premise, forces (N)S to be as general as possible given the sharing con-
straints in psigexp. The requirement that (N)S be type-explicit ensures
that there is at most one realisation via which an actual argument can match
(N)S. Since & is used, any structure name m and type name ¢ in S acts like
a constant in the functor body and in the functor result signature; in partic-
ular, it ensures that further names generated during elaboration of the body
are distinct from m and ¢. The only difference between these two rules is
that in the case where a body is present, it is required to elaborate and to fit
the output signature. This does not affect the overall result of elaboration,
which depends only on the input and output signatures.

Top-level Declarations B topdec = B,y
B strdec = E,~
A (100)
B F strdec = (names F, E') in Basis, v
B & sigdec = G,y
: S (101)
B F sigdec = (names (¢, ) in Basis, v
Bt fund F
fundec = F.~ (102)

B F fundec = (names F, F') in Basis, v
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6 Dynamic Semantics for the Core

6.1 Reduced Syntax

Since types are fully dealt with in the static semantics, the dynamic semantics
ignores them. The Core syntax is therefore reduced by the following transforma-
tions, for the purpose of the dynamic semantics:

o All explicit type ascriptions “: ty” are omitted, and qualifications “of ty”

are omitted from constructor and exception bindings.

o Any declaration of the form “type typbind”or “eqtype typbind” is replaced
by the empty declaration.

e The Core phrase classes TypBind, Ty and TyRow are omitted.

6.2 Simple Objects

All objects in the dynamic semantics are built from identifier classes together
with the simple object classes shown (with the variables which range over them)
in Figure 14.

en € ExName exception names
b € BasVal basic values
sv € SVal special values
sp € Bit={-,T} flags
{FAIL} failure

Figure 14: Simple Semantic Objects

ExName is an infinite set; it is totally ordered, i.e. every subset A of ExName
has a smallest element min A. BasVal is described below in Section 6.4. SVal is the
class of values denoted by the special constants SCon. Each integer or real constant
denotes a value according to usual conventions for decimal numbers with limited
precision; each string constant denotes a sequence of characters as explained in
Section 2.2. The value denoted by scon is written val(scon). The values — and T
are only used as Boolean flags. If a semantic object = contains a Bit component,
we write z_ to denote the same object, but with the Bit component set to —. On
Bit, we define the operation A as the greatest lower bound of the order — < T its
generalisation to finite index sets [ is written A;c;. FAIL is the result of a failing
attempt to match a value and a pattern. Thus FAIL is neither a value nor an
exception, but simply a semantic object used in the rules to express operationally
how matching proceeds.
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v € Val = SValW BasVal & Con
W (Con x Val) W ExVal
W Record ¥ Closure W {Incomplete}

Record = Lab fin Val

(N~
e € ExVal = ExName W (ExName x Val)
[e]or p € Pack = ExVal
(match, E,VE) € Closure = Match x Env x VarEnv
ens € ExNameSet = Fin(ExName)
(sp,ens) or s € State = Bit x ExNameSet
(SE,VE)or E € Env =StrEnv x VarEnv
SE € StrEnv = Strld ™ Env
VE € VarEnv=Id 2 val

Figure 15: Compound Semantic Objects

Exception constructors evaluate to exception names, unlike value constructors
which simply evaluate to themselves. This is to accommodate the generative
nature of exception bindings; each evaluation of a declaration of an exception
constructor binds it to a new unique name.

6.3 Compound Objects

The compound objects for the dynamic semantics are shown in Figure 15. Many
conventions and notations are adopted as in the static semantics; in particu-
lar projection, injection and modification all retain their meaning. The value
Incomplete is used to represent the “value” associated with a variable having an
undefined value (e.g. because it was bound using “?”).

We take W to mean disjoint union over semantic object classes. We also un-
derstand all the defined object classes to be disjoint. A particular case deserves
mention; ExVal and Pack (exception values and packets) are isomorphic classes,
but the latter class corresponds to exceptions which have been raised, and there-
fore has different semantic significance from the former, which is just a subclass
of values.

Although the same names, e.g. F for an environment, are used as in the static
semantics, the objects denoted are different. This need cause no confusion since
the static and dynamic semantics are presented separately. An important point
is that structure names m have no significance at all in the dynamic semantics;
this explains why the object class Str = StrName x Env is absent here — for the
dynamic semantics the concepts structure and environment coincide.
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6.4 Basic Values

The basic values in BasVal are the values bound to predefined variables. These
values are denoted by the identifiers to which they are bound in the initial basis
(see Appendix C), and are as follows:

abs floor real sqrt sin cos arctan exp 1ln
size chr ord explode implode div mod
[ ¥+ - = <> <> K==

The meaning of basic values (all of which are functions) is represented by the
function

APPLY : BasVal x Val — Val & Pack
which is detailed in Appendix C.

6.5 Basic Exceptions

A subset BasExName C ExName of the exception names are bound to predefined
exception constructors. These names are denoted by the identifiers to which all
but the last are bound in the initial basis (see Appendix C), and are as follows:

Abs 0Ord Chr Div Mod Quot Prod
Neg Sum Diff Floor Sqrt Exp Ln
Match Bind Interrupt NoCode Abuse

The exceptions on the first two lines are raised by corresponding basic functions,
where ™ / * + - correspond respectively to Neg Quot Prod Sum Diff. The details are
given in Appendix C. The exceptions Match and Bind are raised upon failure
of pattern-matching in evaluating a function £n match or a valbind, as detailed in
the rules to follow. Interrupt is raised by external intervention. The exception
NoCode is raised to signal an attempt to evaluate a specification construct, see
below. Finally, Abuse is raised in the verification semantics only, to signal abuse
of the convergence predicate (rule 216).

Recall from Section 4.11 that in the context fn match, the match must be
irredundant and exhaustive and that the compiler should flag the match if it
violates these restrictions. The exception Match can only be raised for a match
which is not exhaustive, and has therefore been flagged by the compiler.

For each value binding pat = exp the compiler must issue a report (but still
compile) if either pat is not exhaustive or pat contains no variable. This will (on
both counts) detect a mistaken declaration like val nil = exp in which the user
expects to declare a new variable nil (whereas the language dictates that nil is
here a constant pattern, so no variable gets declared). However, these warnings
should not be given when the binding is a component of a top-level declaration
val valbind; e.g. val x::1 = exp, and y = exp, is not faulted by the compiler
at top level, but may of course generate a Bind exception.
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The exception NoCode is raised when evaluation encounters an expression hav-
ing an undefined value (i.e. an atomic expression of the form 7, an expression of the
form “exists match®”, “forall match®”, “exp® terminates”, “exp] == exp3”, or
accessing a variable which has been bound to Incomplete). This exception is not
bound in the initial basis (but NoCode, Abuse € BasExName to avoid erroneous
reuse of these names for user-declared exceptions). Rule 121.1 and premises on
rules 120 and 121 guarantee that the exception NoCode cannot be caught by an
explicit handler in the program. This is required to ensure that replacing “?” by
code will not change the result of an evaluation, except from [NoCode] to something
else, provided the evaluation of the new code yields a value. The exception NoCode
is handled as a special case in one of the rules for value binding (rule 135.1) —
if evaluation of the expression on the right-hand side of a value binding raises

NoCode, then the binding is done with the value Incomplete.

6.6 Closures

The informal understanding of a closure (match, E,VE) is as follows: when the
closure is applied to a value v, match will be evaluated against v, in the envir-
onment F modified in a special sense by VE. The domain Dom VFE of this third
component contains those function identifiers to be treated recursively in the eval-
uation. To achieve this effect, the evaluation of match will take place not in K+ VE

but in £ + Rec VE, where
Rec : VarEnv — VarEnv

is defined as follows:

e Dom(Rec VE) = Dom VE
o If VE(id) ¢ Closure, then (Rec VFE)(id) = VE(id)
o If VE(id) = (match', E', VE") then (Rec VE)(id) = (match', E', VE)

The effect is that, before application of (match, F,VE) to v, the closure values
in Ran VE are “unrolled” once, to prepare for their possible recursive application
during the evaluation of mateh upon v.

This device is adopted to ensure that all semantic objects are finite (by con-
trolling the unrolling of recursion). The operator Rec is invoked in just two
places in the semantic rules: in the rule for recursive value bindings of the form
“rec valbind”, and in the rule for evaluating an application expression “exp atexp”
in the case that erp evaluates to a closure.

States and Flags

A state consists of a set of exception names and a flag. The set of exception names
records the exceptions introduced so far. The flag indicates whether or not a spe-
cification construct (e.g. a quantified expression) has been encountered during the
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evaluation so far; this includes specification constructs within values, see the next
section. Initially, this component is T and each specification construct makes it
—. The meaning of specification constructs in dynamic and verification semantics
differs in a significant way. The purpose of the flag is to relate dynamic and veri-
fication semantics, see Section 8.7 and the rules for the convergence predicate in
the verification semantics, rules 215 to 217. It is also used in the definition of the
meaning of quantification in the verification semantics (rules 211-214) where we
want to quantify over ML-definable values only.

Let s = (sp, ens). We define the notation s A sp’ as abbreviation for the state
(sp A sp’, ens).

In contrast to SML, states do not contain a map from “addresses” to values.

Pure Values

We define a function Al : Val — Bit to indicate whether or not a value is pure,
meaning that it does not depend on specification constructs. For example, the
expression (fn y=>y terminates) evaluates to an impure value. Impure values
can only arise if functional types are involved, since specification constructs in
values can occur only within closures. Therefore, the function Al is used directly
only in rules 123 (where closures are formed) and 104 (where closures may be
extracted from an environment).

Al(v) = T means that the value v neither directly nor indirectly depends on
specification constructs, Al(v) = — means that there may be such a dependency.
Because values include closures, we need corresponding auxiliary functions for
various syntactic phrases; for simplicity, we call them all Al as well. The con-
nection is (for expressions): if s, F F exp = v,s’ is a derivable sentence in the
dynamic semantics then AI(F, exp) A spof s < Al(v) A spof s'. The functions
Al can be seen as an abstract interpretation, very much in the style of abstract
interpretation for strictness analysis.

Another auxiliary function for Al is Rec : VarEnv — VarkEnv, defined as
follows:

o Dom(ﬁe\c VE) = Dom VE
o If VE(id) ¢ Closure, then (Ee\CVE)(id) = VE(id)
o If VE(id) = (match', E', VE') then
(Rec VE)(id) = (match', E', VE + {id — 1}).
The operation Rec is very similar to Rec except that each identifier id in the

variable environment of a closure will be “unrolled” at most once, which is achieved
by binding id after one unrolling to the value 1, disregarding its type.
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On values, we have Al(v) = — if v either contains Incomplete or is a closure
that contains specification constructs or refers to incompletely defined identifiers:

AT: Val — Bit
Al(Incomplete) = -—

(
Al(v) = T if v € SVal W BasVal & Con W ExName
Al(con,v) = Al(v)
Al(en,v) = Al(v)
Al(r) = Aubepoms Al(r(lab))
(

Al(match, E,VE) = AIl(F 4 Rec VE, match)

The function AT on the right-hand side of the last equation has the form Al :
Env x Match — Bit. Similarly, we have a function Al : Env x Exp — Bit for the
phrase class Exp, etc. We adopt the notation of options in syntactic phrases for
the definition of functions by equations: the option is either present in both sides
of an equation or in neither.

Al: Env x Match — Bit
AI(E, mrule { | mateh)) = AI(E, mrule) ( A AI(E, match))

ATl: Env x Mrule — Bit
AI(FE, pat => exp) = AI(E + Al(pat), exp)

The abstract interpretation of a pattern (defined further below) is a variable en-
vironment that maps each var in pat to the dummy value 1. It does not depend
on the environment because identifiers in patterns of the Bare language already
come equipped with their status, i.e. a dynamic environment is neither necessary
nor helpful to distinguish value variables from value constructors and exception
constructors.

AT: Env x Exp — Bit
E, atexp) = AI(FE, atexp)

AI(E, exp) N AL(E, atexp)

et == el = -

FE,exists match®)

Al(
Al(
Al(
Al(
AI(F, forall match®)
Al(
Al(
Al(
Al(

E, exp atexp)

FE,exp® terminates) = -—
FE, exp handle match) = AI(E, exp) N AI(E, match)
FE,raise exp) AI(E, exp)

E,fn match) = AI(FE, match)

In the first equation, the AI on the right-hand side refers to the corresponding
function for atomic expressions. Equality, quantification, and the convergence
predicate are considered specification constructs.
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Al: Env x AtExp — Bit

AI(F, scon) = T
AI(E longvar) = (E(longvar))

AI(E, longeon) = Al(E(longcon))

AI(E, longexcon ) = (E(longexcon))
AI(E,{ (exprow) }) = T (AAI(E, exprow))
AI(E,let dec in exp end) = spAAI(E + £, exp)

where (sp, E') = AI(E, dec)

AI(E, Cexp)) = Al(E, exp)
AI(E,?) = —

The abstract interpretation of a let-expression let dec in exp end is — if dec
depends on specification constructs, even if the corresponding identifier is not
used in exp. This reflects the call-by-value nature of evaluation.

Question marks are considered specification constructs when they are used as
expressions.

Al: Env x ExpRow — Bit
AI(E, lab = exp ( , exprow)) = AIl(E, exp) ( AAI(E, exprow))

The abstract interpretation of an (atomic) pattern is a variable environment
mapping each value variable that occurs in the pattern to 1, regardless of its type.
The value 1 is an arbitrary choice here; any value v with Al(v) = T would do.

Al: Pat — VarEnv

[(atpat) = Al(atpat)
Al(longcon atpat) = Al(atpat)
Al(longexcon atpat) = Al(atpat)
[(var as pat) = {id — 1} + Al(pat), where var = id"

Al: AtPat — VarEnv

Al = {J

Al(scon) = {}

Al(var) = {id — 1}, where var = id"
Al(longcon) = {}

Al(longexcon) = {}

AI({ (patrou) }) — () (+ Al(patrow)

AI(C pat ) = Al(pat)

Al: PatRow — VarEnv

AI(...) = {}
Al(lab = pat { , patrow)) = Al(pat) { + Al(patrow))
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For declarations, Al has the form Env x Dec — Bit x Env. The first component
of the result indicates whether the declaration depends on specification constructs.

Al: Env x Dec — Bit x Env
AI(FE,val valbind)

AI(F,datatype datbind)
AI(F, abstype datbind with dec end)

AI(F, exception exbind)
AI(F,local dec; in decy end)

AI(FE, open longstrid, --- longstrid,,)

AI(F, decy (;) decs)

ALE, )

Al: F x ValBind — Bit x VarEnv
AI(FE, pat = exp (and valbind))

AI(FE, rec valbind)

(sp, VE in Env)
where (sp, VE) = AI(E, valbind)

= (T,Al(datbind) in Env)

(sp,(VE in Env) + E')

L VE = Al(datbind)
YR (sp. E') = AI(E 4 VE, dec)
= (T, Al(exbind) in Env)
= (Spl N spy, EQ)
(Splv El)
(sz, EQ)

AI(E, decy)
AI(E + El, dGCQ)

where

(T, E1+ -+ E,)
where F; = E(longstrid;), 1 <i<n
= (Spl N spy, By + E2)

Ey) = Al(E, decy)

h (Sp17 1 )

where (spy, Bo) = Al(F + Eiq, decs)
= (T.{})

(AL(E, exp) (A sp), Al(pat) (+ VE))
where (sp, VE) = AI(F, valbind)

(sp, VE)

where (sp, VE) = AI(E 4+ VE, valbind)

The cyclic dependency of VE in the definition of AI(E, rec valbind) is unproblem-
atic: we have VE(id) = 1 for all identifiers id defined in valbind.

Al: DatBind — VarEnv

Al(tyvarseq tycon = conbind (and datbind))

Al: ConBind — VarkEnv
Al(con (lconbind))

Al: ExBind — VarEnv
Al(excon (and exbind))

Al(excon = longexcon (and exbind))

Al(conbind) ( + Al(datbind))

{id — 1} (+ Al(conbind))

where con = id’

{id — 1} (+ Al(exbind))
where excon = id®
{id — 1} (+ Al(exbind))

where excon = id®
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6.7 Inference Rules

The semantic rules allow sentences of the form
s, Al phrase = A’ s’

to be inferred, where A is usually an environment, A’ is some semantic object and
5,5’ are the states before and after the evaluation represented by the sentence.
Some hypotheses in rules are not of this form; they are called side-conditions.

In most rules the states s and s’ are omitted from sentences; they are only
included for those rules which are directly concerned with the state — either
referring to its contents or changing it. When omitted, the convention for restoring
them is as follows. If the rule is presented in the form

Ay b phrase, = A} Ay b phrase, = A,
A, b phrase, = Al
AF phrase = A’
then the full form is intended to be
sg, A1 b phrase; = Al s, s1, Ay b phrase, = A, sy
Sp_1, An F phrase, = A s,
S0, A - phrase = A', s,
(Any side-conditions are left unaltered). Thus the left-to-right order of the hypo-
theses indicates the order of evaluation. Note that in the case n = 0, when there

are no hypotheses (except possibly side-conditions), we have s,, = so; this implies
that the rule causes no side effect. The convention is called the state convention,

and must be applied to each version of a rule obtained by inclusion or omission of
its options.

A second convention, the exception convention, is adopted to deal with the
propagation of exception packets p. For each rule whose full form (ignoring side-
conditions) is

s1, Ay b phrase, = Al s] Sn, Ay b phrase, = Al s
s, AF phrase = A’, s

and for each k, 1 <k < n, for which the result A} is not a packet p, an extra rule
is added of the form

s1, A1 b phrase, = Al s8] s, Ay F phrase, = p, s
s, AF phrase = p', s

where p’ does not occur in the original rule.® This indicates that evaluation of
phrases in the hypothesis terminates with the first whose result is a packet (other

®There is one exception to the exception convention in the definition of SML; no extra rule
is added for rule 119 which deals with handlers, since a handler is the only means by which
propagation of an exception can be arrested. For EML, rules 135 and 136 are also exempted
from the exception convention — this is required so that a NoCode exception raised during the
evaluation of exp in a ValBind of the form “pat = exp (and valbind)” can be converted to the
value Incomplete.
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than one already treated in the rule), and this packet is the result of the phrase
in the conclusion.

Recall from Section 1.2 that we support compound metavariables such as v/p.
We also allow @/FAIL to range over X W {FAIL} where x ranges over X (and
analogously for x/Incomplete); furthermore, we extend environment modification
to allow for failure as follows:

VE + FAIL = FAIL.

Atomic Expressions E & atexp = v/p
103
E F scon = val(scon) (103)
E(longvar) = v Al(v) = sp v # Incomplete (104)
s, B longvar = v, s A\ sp
E(l =1 let
(longvar) ncomplete (104.1)
s, 't longvar = [NoCode], s_

E(longcon) = con (105)

E F longcon = con
E(longexcon) = en (106)

E Flongexcon = en
(E F exprow = r) (107)

EFA{ (exprow) } = {}{(+ r) in Val
EF dec = F E4+FEFerp=v (108)
EF let dec in exp end = v
ElFep=ov

109
EF(Cep) = (109)
(109.1)

s, F 7= [NoCode], s_

Comments:

(104.1) When a variable’s value is Incomplete, the variable evaluates to the
packet [NoCodel, indicating that no code exists for that binding.

(105) Value constructors denote themselves.

(106) Exception constructors are looked up in the exception environment com-
ponent of F.
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Expression Rows

ElFerp=v (E F exprow = r)

65

E & exprow = r/p

EFlab=exp (, exprow) = {lab — v}{+ r)

(110)

Comment: We may think of components as being evaluated from left to right,

because of the state and exception conventions.

s, B forall match® = [NoCode|, s_

Expressions EF exp=v/p
EF oat
alterp = v (111)
EF atexp = v

EF exp = con EF atexp = v (112)

EF exp atexp = (con,v)
EF exp = en EF atexp = v (113)

EF exp atexp = (en,v)
Deleted (refapplication rule) (114)
Deleted (:= application rule) (115)
Etrerp=5 E & atexp = v APPLY (b,v) =0'/p (116)

E & exp atexp = v'[p
EF exp = (match, E',VE) EF atexp = v
E' + RecVE, v F match = o'
4+ Rec v - matc v (117)
EF exp atexp = v’
EF exp = (malch, E', VE) EF atexp = v

E' + RecVE, v F match = FAIL (115)

E F exp atexp = [Match]
118.1
s, B F exp] == exp) = [NoCode], s_ ( )
118.2
s, B F exists match® = [NoCode|, s_ ( )
(118.3)
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118.4
s, ' exp® terminates = [NoCode|, s_ ( )
ElFep=ov (119)
I+ exp handle match = v
EF erp = [€] e # NoCode E et match = v (120)
I+ exp handle match = v
EF erp = [€] e # NoCode E. el match = FAIL (121)
E F exp handle match = [e]
E | exp = [NoCode] (121.1)
E F exp handle match = [NoCode]
ElFep=e (122)
E F raise exp = [¢]
v = (match, £, {}) Al(v) = sp (123)

s, E'F fn match = v,s A\ sp

Comments:

(112)—(118) Note that none of the rules for function application has a premise
in which the operator evaluates to a constructed value or a record. This is
because we are interested in the evaluation of well-typed programs only, and
in such programs exp will always have a functional type.

(116) The semantics of SML [MTH90] does not treat the case where an APPLY
result is a packet. This is an oversight, probably caused by the fact that the
exception convention does not apply to side-conditions.

Notice that the application of a basic value never raises the exception NoCode
— in that case we would have to set the state flag to — here.

(118.1)—(118.4) Remember that s_ is shorthand for (—, ens of s).

(119) The exception convention does not apply to this rule. If the operator
evaluates to a packet then rule 120 or rule 121 or rule 121.1 must be used.

(121) Packets that are not handled by the match propagate.

(120),(121),(121.1) The packet [NoCode| cannot be handled.

(123) The third component of the closure is empty because the match does not
introduce new recursively defined values.
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Matches E, vt match = v'[p/FAIL
E, v+ mrule = v
- 124
E, v mrule { | match) = v (124)
E v mrule = FAIL
E v mrule = FAIL (125)
E.vF mrule = FAIL E,vF match = v'/FAIL (126)

E v F mrule | match = o' /FAIL

Comment: A value v occurs on the left of the turnstile, in evaluating a match. We
may think of a mateh as being evaluated against a value; similarly, we may think
of a pattern as being evaluated against a value. Alternative match rules are tried
from left to right.

Match Rules E, vt mrule = o' /p/FAIL
E vk pat = VE E+VEF exp =0 (127)
E,vlF pat => exp = v’
E vk pat = FAIL (128)
E,vF pat => exp = FAIL
Declarations Et dec= E'/p
E+F valbind = VE (129)
E = val valbind = VE in Env
F datbind = VE

atomnd = , (129.5)

E - datatype datbind = VE in Env
F datbind = VE E+VEF dec = E' (129.6)

E F abstype datbind with dec end = F' '

B+ exbind = VE (130)

E F exception exbind = VFE in Env
EF decy = E; E 4+ FEiF decy = Ey (131)

FE F local dec; in decs end = FEy

E(longstrid,) = Ey - E(longstrid,) = E, (132)

E F open longstrid, --- longstrid, = F1 +---+ E,
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133
B = {} in Env (133)
EF decy = E; E 4+ FEiF decy = Ey (134)
EF decy (i) decy = Fy + F
Value Bindings E F wvalbind = VE/p
Ererp=wv E,vF pat = VE (E + valbind = VE') (135)
E F pat = exp (and valbind) = VE (+ VE')
EF exp = [NoCode] E. Incompletel pat = VI
(E + valbind = VE') 135.1
E & pat = exp (and valbind) = VE (+ VE') (135.1)
ElFexp= [e], e# NoCode (135.2)
EF pat = exp (and valbind) = [€]
ElFemp=v E vk pat = FAIL (136)
FE F pat = exp (and valbind) = [Bind]
EF exp = [NoCode] E.IncompleteF pat = FAIL
. (136.1)
E F pat = exp (and valbind) = [NoCode]
E F valbind I3
valbind = V. (137)

F F rec valbind = Rec VE

Comments:

(135),(136) The exception convention does not apply to these rules. If the ex-
pression evaluates to a packet then rule 135.1 or 135.2 (in the case of rule
135) or rule 136.1 (in the case of rule 136) must be used.

(135.1),(136.1) If the exception NoCode is raised while evaluating the expression
(e.g. because it contains quantifiers), the exception is caught before doing
the binding. Then the binding is done with the value Incomplete.

(135.2) Any exception other than NoCode is propagated as usual.

Data Type Bindings |- datbind = VE|

F conbind = VE ( + datbind = VE")
F tyvarseq tycon = conbind (and datbind) = VE (+ VE')

(137.1)
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Constructor Bindings |- conbind = VE|
con = id® . (F c?nbind = VE) (137.2)

Fcon { | conbind) = {id — con} (+ VE)
Exception Bindings |E + exbind = VE|

In the SML definition, sentences for exception bindings have the more general
form F F exbind = EF/p. But the /p is redundant, since packets can never
arise here. VE now incorporates the information that was formerly in VE and EE
because exception environments are not quite up to the task they were originally
designed for, see [Kah93]. The distinction between exception constructors and
other identifiers is handled in EML by the semantics of derived forms.

en = min(ExName \ (ens of s)) s'=s+ {en}
excon = id® (s, E F exbind = VE, s")

1
s, B F excon (and exbind) = {id — en}{+ VE), s'{’) (138)

E(longexcon) = en excon = id® (E + exbind = VE)
E F excon = longexcon (and exbind) = {id — en}(+ VE)

(139)

Comments:

(138) The two side conditions ensure that a new exception name is generated
and recorded as “used” in subsequent states. In contrast to Standard ML,
the fresh exception name is chosen deterministically to conform with the
verification semantics, see rules 256 and 257.

Atomic Patterns E.vF atpat = VE/FAIL
For =0 (140)
v = val(scon)
E v F scon = {} (141)
v # val(scon)
E vk scon = FAIL (142)
var = id" 143
E,vEvar = {id — v} (143)
E(longcon) =v (144)

E v F longcon = {}
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E(longcon) # v

14
E vk longcon = FAIL (149)
E(longexcon) = v
14
E. v F longexcon = {} (146)
E(longexcon) # v (147)
E.vF longexcon = FAIL
v={}{tr)in Val  (E,rk patrow = VE/TAIL) (148)
E, v A{ {patrow) } = {}{(+VE/FAIL)
v = Incomplete (E,Incomplete F patrow = VE/FAIL) (148.1)
E, v { (patrow) } = {}(+VE/FAIL) ‘
E,vF pat = VE/FAIL (149)

E, vt (pat) = VE/FAIL

Comments:

(142),(145),(147) Any evaluation resulting in FAIL must do so because rule 142,
rule 145, rule 147, rule 155, or rule 157 has been applied.

(148.1) The intention here (cf. rules 150.1, 151.1, 152.1) is that in a value bind-
ing of the form pat = 7 (and valbind) (or pat = exp (and valbind) where exp
evaluates to [NoCode]), the undefined value decomposes arbitrarily as long as
the type of pat ensures that any value of that type decomposes (disregarding
the case of datatypes with only one constructor). So for example,

val (x,y) =7

will successfully bind both x and y to Incomplete (recall that (x,y) expands
to {1=x,2=y}), while

val [x] = 7

will fail (by the eventual use of rule 155) and consequently raise [NoCode].
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E.r/Incomplete - patrow = VE/FAIL

1
Bt =0 (150)
150.1
E,Incompletel ... = {} ( )
E,r(lab) F pat = FAIL (151)
E,rtlab = pat { , patrow) = FAIL
E,Incomplete - pat = FAIL (151.1)
F,Incompletet lab = pat { , patrow) = FAIL '
E,r(lab) F pat = VE (E,r F patrow = VE'/FAIL) (152)
E,rt lab = pat { , patrow) = VE(+ VE'/FAIL)
E,Incompletel pat = VE
E,I lete b patrow = VE'/FAIL
(E,Incomplete F patrow / ) (152.1)

E,Incompletel lab = pat { , patrow) = VE(+ VE'/FAIL)

Comments:

(151),(152) For well-typed programs lab will be in the domain of r.

Patterns

E.vF pat = VE/FAIL

E v F atpat = VE/FAIL

153
E v F atpat = VE/FAIL (153)
E(longcon) = con v = (con,v')
E,v'F atpat = VE /FAIL (154)
E. v F longcon atpat = VE/FAIL
E(longcon) = con v ¢ {con} x Val (155)
E v longecon atpat = FAIL
E(longexcon) = en v = (en,v’)
E,v" b atpat = VE/FAIL 156
E v F longexcon atpat = VE/FAIL (156)
E(longexcon) = en v ¢ {en} x Val (157)

E, v F longexcon atpat = FAIL
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Deleted (ref application rule) (158)

var = id" E. v F pat = VE/FAIL

159
FE,vF varas pat = {id — v} + VE/FAIL (159)



73

7 Dynamic Semantics for Modules

The semantics of EML programs (see Section 10) does not depend on the dynamic
semantics for Modules. The purpose of this section is (together with the dynamic
semantics for the Core) to define computation with incomplete programs.

7.1 Reduced Syntax

Since signature expressions are mostly dealt with in the static semantics, the
dynamic semantics need only take limited account of them. Unlike types, it cannot
ignore them completely; the reason is that an explicit signature ascription plays
the role of restricting the “view” of a structure — that is, restricting the domains
of its component environments. However, the types and the sharing properties
of structures and signatures are irrelevant to dynamic evaluation; the syntax is
therefore reduced by the following transformations (in addition to those for the
Core), for the purpose of the dynamic semantics of Modules:

e Qualifications “of ty” are omitted from constructor descriptions and excep-
tion descriptions.

e We remove specifications without computational content, i.e. any specific-
ation of the form “axiom axdesc”, “type typdesc’, “eqtype typdesc” or
“sharing shareq” is replaced by the empty specification. Descriptions of
datatypes cannot be replaced by the empty specification, as they also give
rise to a variable environment in the static semantics. This was not correctly

treated in the definition of SML [MTH90] or corrected in [MT91].

o The Modules phrase classes TypDesc, AxDesc, SpecExp and Sharkq are
omitted.

7.2 Semantic Objects

The semantic objects for the Modules dynamic semantics, extra to those for the
Core dynamic semantics, are shown in Figure 16. An interface I € Int represents
a “view” of a structure. An interface in the dynamic semantics of SML includes a
set of value variables and a set of exception constructors; they are replaced here
by a status environment. Specifications and signature expressions will evaluate
to interfaces; moreover, during the evaluation of a specification or signature ex-
pression, structures (to which a specification or signature expression may refer via
“open”) are represented only by their interfaces. To extract an interface from a
dynamic environment we define two operations

Tnt ‘ Env — Int
et VarEnv — StatEnv
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(strid : I, strezp : I') B) € FunctorClosure
= (Strld x Int) x (StrExp x Int) x Basis

(IE,StE) or I € Int = IntEnv x StatEnv

IE € IntEnv = Strld B Int

st € Status = {v,c, e}

StE € StatEnv = Id 53 Status

G € SigEnv = Sigld 8 Tng

F € FunEnv = Funld B FunctorClosure
F. G F)or B € Basis = FunEnv x Sigknv x Env
(£, G, g
(G,IE) or IB € IntBasis = Sigknv x IntEnv

Figure 16: Further Semantic Objects

as follows:

Inter(SE,VE) = (IE,Inter VE)
where
IE = {strid — Inter E ; SE(strid) = F}
Inter VE = {idw— v ; id € DomVFE}
Notice that all identifiers are assigned status v in Inter VE. This is so, because
dynamic environments do not keep track of identifier status.
An interface basis IB = (G, IF) is that part of a basis needed to evaluate

signature expressions and specifications. The function Inter is extended to create
an interface basis from a basis B as follows:

Inter(F, G, F) = (G, IE of (Inter F))

A further operation
l ¢ Env x Int — Env

is required, to cut down an environment £ to a given interface I, representing the
effect of an explicit signature ascription. It is defined as follows:

(SE,VE) | (IE,StE) = (SE',VE')

where
SE' = {strid — E | I ; SE(strid) = E and [E(strid) = I}
VE'" = {id = v; VE(id) = v and id € Dom StE}
It is important to note that interfaces are statically known — they can be

obtained by appropriate projections from the static value ¥ of a principle signa-
ture and the environment Fpgr produced by the semantics for derived forms, see
Appendix B.
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As in the dynamic semantics of the core language, the use of “?” in structure
and functor bindings does not cause an exception to be raised until computation
occurs which makes use of undefined components. Consider the following example:

structure A : SIG = 7 ;
functor F(X : SIG) : SIG’ = 7 ;
structure B : SIG’ = F(4)

This will successfully evaluate without raising an exception. Any later attempt
to perform a computation using any component of A or B will raise an exception,
however.

To generate a “trivial” dynamic environment from an interface (with respect
to a given exception name set) we define the operation

TrivEnv : Int x ExNameSet — Env x ExNameSet

as follows:

TrivEnv((IE, StE), ens) = (SE, VE), ens’
where

SE = Astridy — Fy, ..., strid, — E,}
VE = {id — Incomplete; StE(id) =v}+

{id — id® ; StE(id) = c}+

{idy — eny, -~ idy — eng 5 SLE(id;) = e, 1 < j <k}
ens' = ens, U {eny,...,ens}

where

{stridy, ..., strid,} = Dom IF

VE(id) = en AVE(id') = en = id = id’
{eny,...,en;} Nens, =0

(E1, ensy) = TrivEnv(IE(stridy), ens)
(Es, ensy) = TrivEnv(IE(strids), ens;)

(En, ens,) = TrivEnv(IE(strid, ), ens,_1)

This binds Incomplete to each variable in the interface and a fresh excep-
tion name to each exception constructor. This operation is used to produce the
dynamic environment needed in a structure binding of the form

strid : psigexp = 7 (and strbind).

Note that the result is independent (modulo the choice of exception names) of the
particular enumeration of the domains of /K and StF.
To generate a “trivial” structure expression from an interface we define the
operation
TrivStrExp : Int — StrExp
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as follows:

TrivStrExp(/E, StE) = struct
structure strid; = TrivStrExp([E(stridy))

and strid,, = TrivStrExp(IE(strid,))

val vary =7 and ... and var, =7

exception ercony and ... and ercon,,

datatype dummy = cony | ... | con,
end

where:

{stridy, ..., strid,} = Dom IF

{vary,...,var,} = {id" | id € Dom StE ; StE(id) = v}
{excony, ..., excon,,} = {id® | id € Dom StE ; StF(id) = e}
{cony,...,con,} = {id® | id € Dom StE ; StE(id) = c}

This operation is used to produce the structure expression in the functor closure
produced by a functor binding “funid ( strid : psigexp ) : psigexp’ = ?”.

7.3 Inference Rules
The semantic rules allow sentences of the form
s, Al phrase = A’ s’

to be inferred, where A is either a basis or an interface basis or empty, A’ is some
semantic object and s,s” are the states before and after the evaluation represented
by the sentence. Some hypotheses in rules are not of this form; they are called
side-conditions.

The state and exception conventions are adopted as in the Core dynamic se-
mantics. However, it may be shown that the only Modules phrases whose eval-
uation may cause a side-effect or generate an exception packet are of the form
strexp, strdec, strbind, sglstrbind or topdec.

Structure Expressions B F strezp = E/p
B strd E
strdec = (160)
B F struct strdec end = F

B(longstma.l) =k (161)

B F longstrid = F

B(funid) = (strid : I, strexp’ : I', B")

B & strezp = E B' + {strid — E | I} \ strexp’ = B’ (162)

B F funid ( strexzp ) = E' | I
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B F strdec = F B+ E & strexp = F'
B F let strdec in strexp end = F’

(163)

Comments:

(162) Before the evaluation of the functor body strexp’, the actual argument E is
cut down by the formal parameter interface I, so that any opening of strid
resulting from the evaluation of strexp’ will produce no more components
than anticipated during the static elaboration.

Structure-level Declarations B F strdec = E/p
Eof BF dec = B’

164
B F dec = FE' (164)

164.1
s, B F axiom ar = {} in Env,s ( )
B & strbind = SE (165)

B | structure strbind = SE in Env
B F strdec; = F; B+ E| b strdecy = E5 (166)
B F local strdec; in strdec; end = FEy
1
B = {} in Env (167)
B F strdec; = F; B+ E| b strdecy = E5 (168)
B F strdecy (;) strdecy = Fy + F»
Structure Bindings B F strbind = SE/p
B & sglstrbind = SE (B F strbind = SE') (169)
B & sglstrbind (and strbind) = SE (+SE')

Single Structure Bindings B+ sglstrbind = SE/p
B F strezp = F Inter B - psigexp = 1 (169.1)

B F strid : psigexp = strexp = {strid — FE | I} '
s, Inter B & psigexp = I, s’ (E, ens’) = TrivEnv(I, ensof s') (169.2)

s, B F strid : psigexp = 7 = {strid — E},(spof &, ens’)
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B strezp = F
B F strid = strexp = {strid — F}

(169.3)

Comments:

(169.1),(169.2) As in the static semantics, psigexp constrains the “view” of the
structure. The restriction must be done in the dynamic semantics to ensure
that any dynamic opening of the structure produces no more components
than anticipated during the static elaboration.

(169.2) The state has been made explicit here because the side condition accesses

the state.

Signature Expressions IB F sigexp = 1

1B+ 1
. spec = (170)

IB I sig spec end = [

IB(sigid) =1 (171)

IB & sigid = 1
Principal Signatures IB F psigexp = 1

IB & sigexp = 1
171.1
IB & sigexp = 1 (171.1)
Signature Declarations IB F sigdec = G
1B+ sigbind = G (172)

IB F signature sighind = G
1
BF = () (173)
1B+ sigdec; = G4 IB + G F sigdec, = Gy (174)
IB & sigdecy (;) sigdecy = Gy + G

Signature Bindings IB = sigbind = G
1B+ sigexp = 1 (IB F sighind = @) (175)

IB + sigid = psigexp (and sighind) = {sigid — I} (+ G)
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Specifications IB F spec = 1
F valdesc = StE (176)
IB I val valdesc = StE in Int
F datd tE
atdesc = S . (176.1)
IB \- datatype datdesc = StE in Int
F exdesc = StE (177)
IB I exception exdesc = StF in Int
IB | strdesc = IE (178)
IB I structure strdesc = IF in Int
IB & spec, = Ih IB 4+ IE of I F specy, = I, (179)
IB |- local spec; in spec, end = I
IB(longstrid,) =1, --- [IB(longstrid,) = 1, (150)
IB \- open longstrid, --- longstrid, = I, + --- + I,
IB(sigidy) =1, --- IB(sigid,) =1, (181)
B+ include sigid, --- sigid, = [ + -+ I,
182
IB - = {} in Int (182)
IB &= specy = I, IB + IE of I1 F spec, = I (183)

IB & specy () specy = I + Iy

Comments:

(176.1) In the definition of SML, datatype descriptions are treated as empty
specifications. This is a bug since they elaborate to non-empty variable
environments in the static semantics.

(179),(183) Note that StFE of I; is not needed for the evaluation of spec,.

Value Descriptions |- valdesc = StE |
var = id" ( F valdesc = StE) (184)

F var (and valdesc) = {id — v} (+StE)
Datatype Descriptions |- datdesc = StE|
F condesc = StE ( F datdesc = StE") (184.1)

F tyvarseq tycon = condesc (and datdesc) = StE (+StE")
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Constructor Descriptions |- condesc = StE|

con = id© ( F condesec = StE)

184.2
Focon (| condesc) = {id — c} (+StF) (184.2)
Exception Descriptions |- exdesc = StE|
excon = id® (F exdesc = StFE) (185)
F excon (and exdesc) = {id — e} (+StF)
Structure Descriptions |IB F strdesc = IF|
1B+ sigexp = 1 (IB F strdesc = IE) (156)
IB | strid : sigexp (and strdesc) = {strid — I} (+ IE)
Functor Bindings B F funbind = F
Inter B F psigexp = 1 Inter B + {strid — I} + psigexp’ = I'
(B * funbind = F) 187
B¢ funid ( strid : psigexp ) : psigexp’ = strexp (and funbind) = (187)
{funid — (strid : I, strexp : I', B)} (+ F)
Inter B F psigexp = 1 Inter B + {strid — I} b psigexp’ = I’
(B * funbind = F) (187.1)
B & funid ( strid : psigexp ) : psigexp’ = ? (and funbind) = '
{funid — (strid : I, TrivSttExp I' : I', B)} (+ F)
Functor Declarations B F fundec = F
B F funbind = F (188)
B F functor funbind = F
Br = () )
B & fundec; = Fy B+ Fi F fundecy, = I (190)

B F fundec, (;) fundecy = Fy + Fy
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Top-level Declarations

BF strdec = I
B F strdec = F in Basis

Inter B - sigdec = G
B I sigdec = G in Basis

B F fundec = F

81

B+ topdec = B'/p

B I fundec = F'in Basis

(191)

(192)

(193)
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8 Verification Semantics for the Core

While the dynamic semantics defines evaluation of an expression in an environ-
ment, the verification semantics defines its evaluation in a model, which consists
of an environment, a trace, and an interpretation for question marks, see below.
We do not require a priori that the question mark interpretation is well-formed in
the sense that the replacement of question marks leads to a well-typed program;
such ill-formed models are eliminated a posteriori during verification.

Another difference to the dynamic semantics is that some rules in the verifica-
tion semantics are non-computational, involving e.g. infinitary premises (expressed
using higher-order rules), which is necessary to give meaning to specification con-
structs.

8.1 Semantic Objects

Many semantic objects used in the verification semantics already occur in the
static and dynamic semantics. We use the same names for these object classes
and the same variables to range over them, except when ambiguities occur. In
that case, we attach to variables (similarly for object classes) a subscript STAT
(resp. DYN), to indicate that it ranges over the corresponding object class of the
static (resp. dynamic) semantics.

Additional and modified semantic objects are shown in Figure 17.

The conventions and notations used in earlier sections are adopted here as well;
for example projection, injection and modification retain the meaning they were
given in Section 4.3.

For type values, we have instantiation, equivalence, and closure analogous to
type schemes and trace schemes: Voz(k).(v, 7) = (v',7') if there is a type substitu-
tion ¥ with Domd = a'® and d(r) =7, J(v) = v'. (In general, ¥(v) = v does
not hold, because values can contain closures and closures can contain type in-
formation in traces and environments.) Clos¢ (v, 7) = Voz(k).(v, 7), where o™ are
the variables occurring in v or 7 but not in (. Closure of variable environments is
also analogous to the closure of static variable environments, e.g. Closgg VE can
be obtained from VE by pointwise abstracting all type variables not free in FF.

We use the notation M(xz) or FE(x) to apply the appropriate component of
E of FE to x, where x is a (possibly long) identifier of some sort. The application
of environments to long identifiers is analogous to its definition in Section 4.3.

8.2 Question Mark Interpretation

A question mark interpretation Q1 consists of two maps, QIFE (for expressions)
and QIT (for types). These maps are not much more than (infinite) lists of
pieces of syntax (of the bare language), intended as replacements for occurrences
of question marks in expressions and type bindings. The well-formedness of these



8.2 Question Mark Interpretation 83

n
cT

ET

VT

1T or oy

Q1

QIE

QIT

(ens, T1, o1y, VT, n) or s

(SE,TE,VE) or E
SE

VE
Voz(k).(v,T) or tv
(E,m)or S

v

.
e

[e] or p
(match, M, VE)
(E,QI) or FE
(FE,~)or M

MMMMMMMMM

MMM M M M

M MMMMM

N =1{0,1,2,...}

TyCons = Fin(Id x TypeScheme)

TyExcs = Fin(ExName x Type)

ValTemp = TyCons x TyExcs

Typelnt = TyName — TypelFcn

QInt = QIntExp x QIntTy

QIntExp = NV — Exp

QIntTy = N — Ty

State = ExNameSet x Typelnt x Typelnt
x ValTemp x N

Env = StrEnv x TyEnv x VarEnv

StrEnv = Strld 53 Str

VarEnv = Id 23 TypeVal

TypeVal = LierZOTyVark x Val x Type

Str = Env x StrName

Val = SVal & BasVal & Con & (Con X Val)
¥ ExVal W Record & Closure

Record = Lab ™ Val

ExVal = ExName & (ExName x Val)
Pack = ExVal

Closure = Match x Mod x VarEnv
FullEnv = Env x QInt

Mod = FullEnv x Trace

Figure 17: Semantic Objects
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replacements w.r.t. the context in which they occur is checked during verifica-
tion, for instance rule 201 checks that the replacement of a question mark in an
expression has the right type.

We use the state (see next section) to associate the elements of these lists with
occurrences of question marks.

8.3 State

A state s has five components: a set of exception names ens, for exactly the
same purpose as in the dynamic semantics; a type interpretation 77 for modelling
the interpretation of type names originating from question mark type bindings;
another type interpretation ¢ty for representing the matching realisations of ab-
stract types in signatures; a pair of sets of value templates V'T' for maintaining
some necessary additional information about constructors — see the next section;
and, a natural number n for counting occurrences of 7. We write s & n for the
state in which n of s is replaced by n.

The component nof s is always statically known; in other words, using the state
is not essential for finding the right interpretations for question mark occurrences.
An alternative would be to change the syntax of the bare language, requiring a
(unique) label for each occurrence of ?; the semantics of derived forms could be
used to compute such labels. However, the method we use here seems to make
less “noise”.

We define a family of functions Replace : (Phrase X QInt x V') — (Phrase x /),
where Phrase is a class of syntactical phrases (of the core). These functions re-
place all occurrences of 7 by the corresponding object taken from the question
mark interpretation. The purpose of the natural number is to establish this cor-
respondence. For example, we have for atomic expressions:

Replace(?,Q1,n) = (QIFEof QI)(n),n+1)
Replace(longvar,Q1,n) = (longvar,n)
Replace(let dec in exp end,QI,n) = (let dec’ in exp’ end,n”) where
(dec’,n") = Replace(dec,QI,n)
(exp’,n") = Replace(exp, QI,n")

On other syntactical phrases, Replace is defined completely analogously, following
the schema of let-expressions for all composed phrases. Replace(phrase, Q1,n)
can be obtained from phrase by replacing the & + 1-th occurrence of ? (an atomic
expression or in a type binding) by either (QI Eof QI)(n+k) or (QITofQI)(n+k),

respectively.

8.4 Value Access

The VT component of the state contains the value templates; these are all value
constructors and exception names introduced so far. Any value of any type can be
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decomposed into value templates, basic values, special values, and closures. The
purpose of storing the value templates is to allow quantifiers to access values that
are “hidden” due to e.g. value constructors used to build them being no longer in
scope.

We define a semantic function Comp : Env x ValTemp — VarEnv for complet-
ing environments as follows: Comp(F,VT) = VE where

1. For each (en,7) in VT there is an id such that VE(id) = (en, 7).
2. For each (id, VOé(k).T) in VT thereis an id’ such that VE(id") = Voz(k).(idc, 7).

3. Any id in the domain of VE is of one of the two above forms and is not in
the domain of F.

We abbreviate Comp(FE of FE, VT of s) as Comp(FFE, s).

The intention is to enable each value “belonging to a type” to be obtained by
verificating some expression in Comp(FFE, s).

To convert constructor environments to value templates, we assume another
semantic function Graph, which maps a finite function to its graph (set of pairs).

In particular, Graph maps a constructor environment CF to a finite set of value
templates C'T'.

8.5 Type Interpretation

Type interpretations are the same as type realisations (see Section 5.6), but they
have a wider application in EML than type realisations have in the semantics of
SML, therefore the different name. A type realisation 71 provides a way of trans-
lating (semantic) types, for example to interpret ?-types or to translate between
a concrete and an abstract type. Given a type interpretation 71, we define a
function TI* between types as follows:

Tr*(r) = {T1(t") /1" 5 1" € Dom 11}

For the notation, see Section 4.4. We shall also apply TI* to other semantic
objects, meaning the simultaneous application of TI* to all components.

A state s contains two type interpretation, TT and ¢1y. The purpose of TT is to
interpret question mark types, i.e. to replace type names that were chosen during
static analysis for unknown types by their replacement in the given model. ¢y is
the type realisation for abstract types in signatures. We abbreviate (77 of 5)# as
s* and (pry of 5)* o 5% #H

Static information stored in traces is typically model-independent, having been
obtained from the static analysis of phrases. When interpreting this information

08" as s

in a given model we have to replace type names generated by question mark type
bindings (rule 28.1) by the concrete types the model provides. This explains the
frequent use of s¥ in the rules. With s*# we can access the underlying structure of
a type, i.e. how it is “implemented”; we use this for quantification and comparison
of values.
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8.6 Projections to Dynamic and Static Semantics

The notion of value is slightly different from that in the dynamic semantics because
models are part of closures. We define a family of functions Dyn mapping semantic
objects of the verification semantics to the corresponding semantic objects of the
dynamic semantics having the same name, as follows:

i1y Ty ) = @
Dyn(SE,TE,VE) = (DynSE,DynVE)
DynVE = DynoVFE
DynSE = Dynom oSE
Dyn(Voz(k).(v, 7)) = Dynv
Dynv = v, v & SValy BasVald Con & ExName

Dyn(v,v") = (v,Dynv’), v € Con W ExName
Dynr = Dynor
Dynle] = [Dyne]

Dyn(match, M,VE) = (Replace(match,QI of M,0),Dyn M,Dyn VE)
Dyn M = Dyn(FFE of M)
Dyn FE = Dyn(F of FFE)
Dyns = (T,ensof s)

The function Replace is used to replace question marks in closure values. It
is assumed here that the question mark interpretation in a closure always indexes
its occurrences of 7 from 0. The function Rec is extended to variable environ-
ments of the verification semantics in the obvious way, i.e. it unrolls closure values
analogously as in the dynamic semantics (without changing any types).

We define another family of functions Stat, mapping objects of the verification
semantics to corresponding objects in the static semantics. It is defined as follows:

Stat(SE,TE,VE) = (StatSE,TE,Stat VE)
Stat VE = Stato VE
Stat(Voz(k).(v, 7)) = Va7
Stat SE = {strid — (m,Stat ) ; SE(strid) = (F,m)}

8.7 Relationship to Dynamic Semantics

If any expression exp® evaluates in the dynamic semantics to a value or packet,
i.e. spyn, Epyn Fpyn exp® = vpyn/ppoyN, Spyny Without changing the flag, i.e.
spof spyn = spof spyy = T, then for any s such that spyxn = Dyns and for
any M such that Fpyn = Dyn M we also have s, M  exp® = v/p, s’ such that
Dyn(v/p) = vpyn/ppyn and Dyns’ = sfyyy, provided the trace v of M is well-
formed for exp.
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Dynamic and verification semantics differ on expressions only when the dy-
namic semantics sets the sp component to —. Even in that case, the differences
are not substantial. In particular, any non-terminating evaluation in the dynamic
semantics corresponds to non-termination in the verification semantics.

This close relationship between verification semantics and dynamic semantics
is due to the fact that the rules differ significantly only in places where either the
sp component of the state in the dynamic semantics is set to —, or where packets
(in particular [NoCode]) are treated that do not occur in the corresponding place
in the verification semantics. The packet [NoCode] cannot be handled: NoCode is
a basic exception name not associated with any identifier, see Section 6.5, and
furthermore it cannot be matched by a variable pattern in a handler, see rules
120-121.1 of the dynamic semantics. The dynamic semantics provides only one
place to capture [NoCodel: rule 135.1, for value declarations. This means that the
dynamic semantics can ignore NoCode, provided it ignores the declaration that
raises it, since using an identifier bound to Incomplete raises NoCode again, rule
104.1.

The evaluation of an expression containing a question mark, when it yields
a value, can differ from its corresponding verification; this is the case when the
question mark interpretation maps a ? occurrence to an expression which raises an
exception. Whenever the verification semantics makes reference to the dynamic
semantics, it is with a phrase that does not contain question marks.

One possible result when verificating exp® terminates is the packet [Abuse],
see rule 216. In this case the evaluation of exp® terminated successfully, but sp was
set to —. Thus successful evaluation does not guarantee successful verification —
the packet [Abuse| indicates that we have not obtained reliable information about
the termination of the verification of exp®.

8.8 Sentences of Static and Dynamic Semantics

Another difference between dynamic and verification semantics is that the latter
makes explicit use of the results of the static semantics; in particular it typechecks
certain expressions using contexts produced in the course of static analysis.

These contexts are explicitly provided by the 4 component of a model. The
reader may observe that traces are decomposed in the verification semantics in
the same way as they are composed in the static semantics.

To distinguish sentences of the static and dynamic semantics from those of
the verification semantics, we supply the F with an appropriate subscript in the
former case, that is FgpaT or Fpyn, respectively.

8.9 Inference Rules

The semantic rules allow sentences of the form s, A F phrase = A’,s" to be
inferred, where A is usually a model, A" is some semantic object and s, s’ are the
states before and after verification represented by the sentence. Additionally, we
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have two other forms of sentences, equality sentences s, FE, v F exp] = exp) = v,
and comparison sentences s, FE,C,v F v ~ v’ = v”. Beside these sentences, we
allow other hypotheses as in the dynamic semantics, including hypotheses in the
form of sentences of the static or dynamic semantics as explained in Section 8.8.
All these other hypotheses have the status of side-conditions; this includes higher-
order rules.

In most rules the states s and s’ are omitted from sentences. The state and
exception convention are adopted as in the dynamic semantics for the Core, except
that “state” refers there to a different semantic object.

The exception convention does not apply to rules 210-218 (those for the equal-
ity predicate ==, quantifiers, terminates and the exception handler) nor to rules
224-232 (equality and comparison rules).

Atomic Expressions M & atexp = v/p

194
M F scon = val(scon) (194)

FE(longvar) = (v', 5#(7'))
9. 9(v) = v A Dom ¥ N tyvars FE = ()

FE(longvar) > (v,S#(T))

1
s, (FE,7) F longvar = v, s (195)
M (longcon) > (con,T) (196)
M F longcon = con
M (longexcon) = (en, ) (197)
M F longexcon = en
(FE,~) F exprow = r) (198)
(FE,e(-v)) F { (exprow) } = {}{(+ r) in Val
(FE,y)F dec = FE' (FE+ E'.4")F exp = v (199)
(FE,~-~")F let dec in exp end = v
MFE exp=v
2
MECerp) = (200)
n=nofs (QIE of FE)(n) = exp®
s*(C) Ferar exp® = 7,0, 7 st(r) =1’
s@®(n+1),(FE, ) F exp® = v, s (201)

s,(FE,(C,T))F ?=v,s
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Comments:

(195) Types in verification environments have already been interpreted with an
appropriate type interpretation 11, but 7, which comes from the elaboration,
has not been so interpreted.

Applying a type substitution to a value has an effect only if the value contains
closures and the closures contain free type variables in the domain of the type
substitution. The type substitution is typically determined by 5#(7'), but
one can construct pathological examples for which this is not true. The
side-condition excludes such a choice to keep verification deterministic.

The value Incomplete does not appear in the verification semantics; there-
fore we have no rule corresponding to 104.1 (same for rules 135.1, 136.1,

148.1, 150.1, 151.1 and 152.1).

(201) The model substitutes each occurrence of 7 by a fixed expression, preferably
of the appropriate type. The type is appropriate if it is equal to the type of
7 after taking the interpretation of types into consideration. We do not get
appropriateness of types for free, thus the side-condition 5#(7') = 7’ which
excludes unwanted models.

By using an expression rather than a value we implicitly use a kind of second-
order substitution, because the value of this expression depends on the con-
text. In fact each 7 in an expression can roughly be seen as an abbreviation
for ?(xq, ..., ¥,) where the x; are the variables bound by the context in which
? occurs. Here, 7 could indeed be replaced by a value, a n-ary function.

Notice that there is a subtle problem with the type of exp®. We require that
exp® has exactly the same type as the particular occurrence of ?; otherwise
the rule is not applicable. In practice, this means that 7 almost always has
to be qualified by its intended type. The reason for requiring equality of
types rather than allowing instances is type safety, i.e. we may have used
an instance (or even different instances) of a polymorphic object that was
defined using 7. Since such instances only may be in conflict with the type
of exp®, this is not necessarily harmful, but the alternative to the rule given
would be to make the static context dependent on the model’s choice for

question marks, and hence to have a separate static semantics for each model.

Expression Rows M & exprow = r/p

(FE,v)F exp = v ((FE.~") F exprow = r)
(FE,~{(-+")) F lab = exp { , exprow) = {lab — v}{+ r)

(202)
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Expressions MFE exp=v/p

M F atexp = v
M F atexp = v

(FE,~) F exp = con (FE,~') F alexp = v
(FE,~-~") F exp atexp = (con,v)

(FE,v)F exp = en (FE,~') F alexp = v
(FE,~-~') F exp atexp = (en,v)

(FE,y)F exp = b (FE,~') F alexp = v APPLY (b,v) = '/p
(FE,~-~") F exp atexp = v'[p

s1,(FE,v) F exp = (match, M, VE), s s2, (FE,¥') b atexp = v, s3
5300, M 4+ RecVE, v+ match = v, 54

s1,(FE,y-~') F exp atexp = v, 84 G (n of s3)

s1,(FE,v) F exp = (match, M, VE), s sy, (FE, &) F atexp = v, s3
s3B 0, M + RecVE, v match = FAIL, s4

s1,(FE,y-~') F exp atexp = [Match], s4 & (n of s3)

MFE exp=v
MbEexp: ty=v

=9 =(C1) 1"
s, FE, 7 F exp} = erpt = v

s, (FE,v) F exp} == exp) = v, s

Comments:

(203)

(204)

(205)

(206)

(207)

(208)

(209)

(210)

(207),(208) To verificate match we have to reset the nof s component to 0, because

the question mark interpretation in M indexes occurrences of question marks
starting from 0; see also rule 223 and the definition of Dyn. Similarly, the
n of s component of the final state is taken from s3, because match is not a

subphrase of exp atexp.

209) The type expression ty is ignored. The type it describes may not be “ac-
(209) ype exp y is ig yp y

curate” (in an intuitive sense) anyway, because the explicit type variables

in exp are subject to abstraction and instantiation. If we needed to obtain
type information from ty here, we would have to extend the environment

by a type variable environment, mapping type variables to types. But this

is fortunately unnecessary since type information (coming from the static

semantics) is provided by traces, see rule 341.
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(210) Equality is type dependent. However, the premise requires that it is not
dependent on the instantiation of type variables local to the expression — all
instances should give the same result. Note that the state does not change,
even if exp, and/or exp, change the state.

Comp(FE,s)=VE v=(C,7)-~ a®n tyvars(FE) =0
5##(0) + Stat VE Fgrat atexp® = 7',0,7" 3##(7') =7
Dyn(s, FE 4+ VE) Fpyn atexp® = vpyn, (T, ens)
s,(FE + VE, v -~") | (fn match®) atexp® = true,s’

s, (FE,Voz(k).’y) F exists match® = true,s

(211)

Comp(FE,s)=VE
( vy =(C,7)-va s¥F(C)+ Stat VE Ferar atezp® = 7,0, 73 )
5##(7') =7 Dyn(s, FE + VE) bpyn atexp® = vpyn, (T, ens)
3s". s,(FE+VE,v1 -v3) b (fn match®) atexp® = false, s’
s, (FE,v) - exists match® = false,s

(212)

Comp(FE,s)=VE
( Y11= (C, 1) 72 5##(0) + Stat VE Fgrar atexp® = 7,0, 73 )
5##(7') =7 Dyn(s, FE + VE) bpyn atexp® = vpyn, (T, ens)
3s". s,(FE+VE, v, -v3) b (fn match®) atexp® = true,s’
s, (FE,~) F forall match® = true,s

(213)

Comp(FE,s)=VE v=(C,7)-~ a®n tyvars(FE) =0
5##(0) + Stat VE Fgrat atexp® = 7',0,7" 3##(7-) =7
Dyn(s, FE 4+ VE) Fpyn atexp® = vpyn, (T, ens)
s,(FE + VE,v-~") b (fn match®) atexp® = false, s’

s, (FE,Voz(k).’y) F forall match® = false,s

(214)

Comments:

(211)—(214) Verification of a quantified expression does not change the state.
All state changes that happen during its verification are recovered. The
purpose of Comp(FFE, s) is to complete the environment to make all values
accessible by syntactic means. In other words: quantification ranges over all
expressible values, including even all values of abstract types in signatures,
and not just over those values that are expressible at the particular point in
the program where the quantified expression occurs.

Quantification ranges only over defined values (no packets), therefore the
required evaluation to a value.
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(211),(214) Requiring o™ to be distinct from the type variables in FE cor-
responds to instantiating the trace scheme with fresh type variables. The
purpose of this requirement is to guarantee that the witness atexp® serves as
a witness for any instantiation of the trace scheme. atexp® is an arbitrary
(atomic) expression which is well-formed in context s*#(C') giving a type 7’
that is the same type as s¥% (7).

(212),(213) The premises of these rules contain a rule themselves, i.e. these are
higher-order rules.

Notice that the quantifier rules are not complete in the sense that a quantified
expression does not necessarily verificate to either true or false. The “missing
case” occurs when we are not able to provide a witness for truth of an existentially
quantified formula (resp. falsity of a universally quantified formula) which is as
polymorphic as the match, but the existentially quantified formula is not false
(resp. the universally quantified formula is not true) because on some values given
by atexp® the body of the formula does not verificate to true (resp. false) because
it either verificates to false (resp. true), or raises an exception, or does not
terminate. An important consequence of this is that a polymorphically quantified
formula is taken to be undefined if it is true for type instances and false for others.

Dyn(s, M) Fpyx exp® = vpyn/ppyn, (T, ens)

215
s, M I exp® terminates = true,s ( )
Dyn(s, M) Fpyn exp® = vpyn/ppyn, (—, ens) (216)
s, M I exp® terminates = [Abuse], s
spyN, Epyn = Dyn(s, M)
—3opyN/PDYN, Shyn- SDYN, EDyN Fpyn €2p® = vpyN/PDYN; Spyn (217)

s,M F exp® terminates = false, s

Comments:

(215) Raising an exception is treated as a terminating case.

Notice that the flag sp of the dynamic state must stay T to make the con-
vergence predicate true. As any specification construct sets the flag to —,
no such construct can occur during an evaluation that does not change the

flag.

(216) If an evaluation terminates in the dynamic semantics but the flag sp is set
to —, then the verification semantics might or might not derive a semantic
value for the same evaluation. The packet [Abuse]| indicates an abuse of
the convergence predicate — it is not intended to be used for expressions
containing specification constructs.
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(217) The convergence predicate is verificated using the dynamic semantics. This

is necessary to avoid paradoxes caused by the non-existence premise of this

rule.

(FE,v)F exp=v
(FE,~-~") I exp handle match = v

Comments:

(210)—(218) These rules are exempted from the exception convention.

FE ) F exp = [e e # Abuse FE,~"), e F match = v
v v
(FE,~-~') F exp handle match = v

(FE,y)F exp =[] e#Abuse  (FE,4'),eF match = FAIL

(FE,~-~'") F exp handle match = [e]

(FE,v) F exp = [Abuse]
(FE,~-~') I exp handle match = [Abuse]

Comments:

(218)

(219)

(220)

(221)

(219)—(221) The exception Abuse is treated specially, similarly to NoCode in the
dynamic semantics. We do not need special treatment for NoCode here,

because it is never raised in the verification semantics.

(FE,y)F exp = ¢
(FE,7-7)F raise exp = [e]

n=nofs M= ((E(QIE,QIT)),(C,7)-v)
(match’,n") = Replace(match, (QIE,QIT),n)
3#(0) Fstat mateh’ = ', U~/ 5#(7') =7
f=Akk—n QIE = QIFEo f QIT =QITo f
W (B (QIE.QIT).5)
s, M F fn match = (match, M',{}),s & n’'

(222)

(223)
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Comments:

(223) The purpose of substituting all question marks in the premise is to avoid any
ill-typed interpretations for the question marks when the closure is applied
to an argument. The so-obtained phrase match’ is not used for the closure
for technical reasons (traces and type interpretations are not quite right).

The difference between n’ and n is the number of question marks occurring
in match. When verificating a closure, we have to know at which number the
labelling of question marks starts. The composition of the question mark
interpretations with f makes it start from 0; this convention is used for
closure application (rules 207 and 208) and for mapping verification values
to dynamic values in the definition of Dyn.

The set of unguarded type variables U/ in match’ is left unspecified. If we
wanted to consider QI F as textual substitution, we would need that all type
variables in U are free in the context C.

Equality s,FE.v F exp;, = expy, = v

s, (FE,vm) F exp; = v1, 8 s, (FE,v2) F expy = va, 89
s, FE,.C. 1 F vy m vy =

s, FE,(Cy1)- 71 -7 b exp;, = expy =

(224)

57(FE7’71) - €rpy = [61]731 Sv(FE772) - €xpy = [62]732
s, FE . C exnt e ey =0
s, FE,(Cy1) 71 -y b exp;, = expy, =0

(225)

s, (FE,y) F expy = v, 81 s, (FE,v2) F expy = p, 39

226
s, FE,(C,7) 41 -7y & exp;, = exp, = false (226)

S,(FE,71)|_6$p1:>p781 Sv(FE772)|_e$p2:>v732

227
s, FE,(C,7) 41 -7y & exp;, = exp, = false (227)

s,(FE,y) F exp, terminates = false,s
s, (FE,¥2) F exp, terminates = false,s

228
s, FE,(C,7) 71 -y b exp; = exp, = true (228)

7(FE771) - €TPy = U/p,Sl
s, (FE,¥2) F exp, terminates = false,s
)
)

(229)

s, FE,(C,7) -7 72 F exp;, = exp, = false

s,(FE,y) F exp, terminates = false,s
7(FE772) - €D, = U/p,

230
s, FE,(C,7) 41 -7y & exp;, = exp, = false (230)
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Comments:

(224),(225) The last sentence in the premise of both rules refers to the comparison
rules (for comparing values), 231 to 232.

(225) The type 7 is arbitrary (and does not contribute to the result) when com-
paring packets, because raising an exception gives an arbitrary type.

(228)—(230) Notice that the sentence s, M I atexp terminates = false,s (see
the premises of these rules) ensures that atexp has no semantic value, i.e.
the rules do not overlap. This is guaranteed by the rules for the conver-
gence predicate, see rule 217, and the relationship between the dynamic and
verification semantics, see Section 8.7.

The predicate = is a partial congruence relation. It is partial because it is
undefined if in exp;, = exp, one of the exp, has no semantic value and the ex-
pression exp; terminates evaluates to [Abuse|. This can only happen — see rule
216 — if the dynamic evaluation of exp; terminates while setting the flag sp to —,
indicating that a specification construct has been encountered.

. / i
Comparisons s, FE,.C.TFv=v = v

VE = Comp(FFE, s) id ¢ Dom(VE of (FE + VE))
VE, =VE + {id — (v,7)} VE; = VE +{id — (V',7)}
5##(0) + Stat VE; Fstar exp = bool, ), v
s,(FE + VE1,v) b exp = vy, s’ 5, (FE + VEq,v) b exp = vy, 5"
APPLY (=, {1+ v1,2 — vy}) = false

s, FE,C, 7 F v ~ v = false (231)
VE = Comp(FFE, s) id ¢ Dom(VE of (FE + VE))
VE, =VE + {id — (v,7)} VE, = VE +{id — (v',7)}
( 5##(0) + Stat VE; FsraT ezp = bool, 0,y
$,(FE+VE1,y) F exp = vy, 8 5,(FE 4+ VE2,v) b exp = va, 8"
APPLY (=, {1 — v1,2 — va}) = true (232)

s, FE.C, 7 F v ~ v = true

Comments:

(231),(232) Values are considered equal if and only if they cannot be distin-
guished by expressions of type bool. v & v’ tests that the values are in-
distinguishable in any context, not only the current one — hence the use
of Comp(FFE, s) to complete the environment similarly as for quantification
(rules 211-214). To compare the values, we further extend the environment
by binding a fresh identifier id to v resp. v’, and then check if there is an
expression of type bool that distinguishes these two environments.
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Since Stat VE, = Stat VFE,, only one premise ensuring elaboration is re-
quired.

(224)—(232) The exception convention does not apply to these rules.

Matches M, v+ match = v'/p/FAIL
(FE,~),vF mrule = v (233)
(FE,~{(-v"),v F mrule { | match) = v’
M, v F mrule = FAIL

d 234
M, v F mrule = FAIL (234)
(FE,~),vF mrule = FAIL (FE,~"),vE match = v'/FAIL (235)

(FE,~-~"),vF mrule | match = o' /FAIL
Match Rules M, v mrule = v'/p/FAIL
(FE,v),vF pat = VE (FE+VE, 4"V F exp = o (236)

(FE,~-~"),vF pat => exp = v

(FE,~),v F pat = FAIL (237)

(FE,~-~"),vF pat => exp = FAIL
Declarations Mt dec= E/p

v ¢ TraceScheme o™ N tyvars(FE) = )
(FE,~) F valbind = VE VE' = Closgp VFE (235)
(FE,Yo™ 4) F val valbind = VE' in Env
s1,(FE,v) F typbind = {}, s2 (239)
s1,(FE,TE - v) F type typbind = S#(TE) in Env, s,
s1,(FE,v) F typbind = {}, s2 (240)
s1,(FE,TE - v) F eqtype typbind = S#(TE) in Env, s,

CT = s¥*(Graph(VE of Estar)) s, (FE,~) & datbind = VE, s (241)

s, (FE, Estat - v) | datatype datbind =

s*(VE,TE of Egrar) in Env, s +CT
CT = 3#(Graph(VESTAT))
s, (FE,v) F datbind = VE, s s+ CT,(FE+VE,¥' )t dec = E, s

E = o1, (E) tynames(E£') N Yield(pry) = 0 S = 81+ P1y (249)

s, (FE,(VEstat,o1y) - v - 7') | abstype datbind with dec end = E', s,
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s, M & exbind = VE, s

243

s, M F exception exbind = s¥(VE) in Env, s’ (243)

(FE,v) F decy = F (FE + E.+") b decy = E' (244)

(FE,~-~") I local dec; in decy end = B/

M (longstrid,) = (E1,my) -+ M(longstrid,) = (E,,m,,) (245)
s, M  open longstrid, --- longstrid, = Fy + ---+ E,, s

246

M+ = {} in Env (246)

(FE,v) F decy = F (FE + E.+") b decy = E' (247)

(FE,~v-~")F decy (;) decx = E + E'

Comments:

(238) Dropping the quantifier is a particular way of instantiating the trace scheme
Voz(k).’y. Other instantiations might lead to different variable environments,
but only in pathological cases involving type-dependent specification con-
structs (e.g. quantification) and type assertions with explicit type variables
to prevent the specification constructs from binding these type variables.

(241),(242) Remember that Graph is the graph of a finite map and that the com-
ponent C'T of the state is used for comparing values and for quantification.

The state s does not change when verificating a datbind, i.e. the requirement
that no state change takes place does not restrict the applicability of the rule.

(242) The type realisation @1y, maps type names of abstract types to their im-
plementing types, see rule 20 and the definition of Absc. We apply it “back-
wards” to the environment F to obtain an environment £’ in which the
implementing types (Yield(yty)) have been replaced by the corresponding
abstract type names. Such an E’ always exist because 1, maps type names
to type names, and it is uniquely determined because @1y is injective.

Value Bindings M + wvalbind = VE /p

(FE, ') F exp = v (FE,v),vF pat = VE
((FE,~") b valbind = VE")

24
(FE,~-v'{-v")) F pat = exp (and valbind) = VE (+ VE') (248)
(FE,¥') F exp = v (FE,~),vF pat = FAIL 019
(FE,~-~'"(-4")) F pat = exp (and valbind) = [Bind] (249)
M F valbind 1D
valbind = V. (250)

M+ rec valbind = RecVE
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Comments:

(248) In a value binding, verification order differs from elaboration order. This is
the reason why the first verification (exp) is done using the second trace and
vice versa. Although in general a difference between verification order and
syntactic appearance may cause problems w.r.t. the replacement of question
marks, in this particular case everything works smoothly, since question
marks do not occur in patterns.

Type Bindings M F typbind = {}
(FE,e(-v)) F tyvarseq tycon = ty (and typbind) = {}
n=nofs (QIT of FE)(n) =ty 3#(0) FstaT ty = 7
tyvarseq = o'® tyvars(ty) C a®) T = {t — Aoz(k).T}
s'=(+TH® (n+1) (s, (FE,y) b typbind = {},s") (252)

s, (FE, (C,t)(-y)) F tyvarseq tycon = 7 (and typbind) = {}, s'(")

Comments:

(252) The question mark interpretation Q17T maps occurrences of 7 to type ex-
pressions. These type expressions can be built from the type constructors
available so far, i.e. they have to elaborate at the position in the program at
which the ? occurs.

Data Type Bindings | M  datbind = VE|
(FE,~) F conbind = VE ((FE,~") b datbind = VE') 553
(FE,~v{(-4")) F tyvarseq tycon = conbind (and datbind) = VE (+VE') (253)
Constructor Bindings | M F conbind = VE|

con = id® (FE,v) F conbind = VE)
. . (254)

(FE,7(-v)) F con { | conbind) = {id — Clos(con,7)} (+ VE)

con = id® (FE,v) F conbind = VE) (255)

(FE,7(-v)) F con of ty ( | conbind) = {id — Clos(con,7)} (+ VE)
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Exception Bindings |M F exbind = VE|

excon = id® en = min(ExName \ (ensof s))
s' = s+ ({en} in ExNameSet, {(en, exn)}in ValTemp)
(s',(FE,~) F exbind = VE,s" )
s, (FE,e(-y)) F excon (and exbind) =
{id — (en,exn)} (+ VE), s'{)

(256)

excon = id® en = min(ExName \ (ensof s)) 7' = s*(1) = exn
s' = s+ ({en} in ExNameSet, {(en,7")} in ValTemp)
(s, (FE,y) b exbind = VE,s" )

s, (FE,7(-v)) F excon of ty (and exbind) =
{id — (en, )} (+ VE), s'(

(257)

excon = id® FE(longexcon) = (en, 1) (FE,~) F exbind = VE)

(FE,e(-v)) | excon = longexcon (and exbind) =
{id — (en,7)}{+ VE)

(258)

Comments:

(256),(257) The use of min ensures that excon is uniquely determined, which is
needed to make == reflexive, example:

val en = fn {} => let exception A in A end;

Successtul verification of en{} == en{} requires a fixed result, see rule 210.
Both occurrences of en{} will be verificated in the same state (see rule 224)
and the deterministic choice of fresh exception names ensures that the same
name is chosen in both cases.

Atomic Patterns M, v+ atpat = VE /FAIL
Mook _={} (259)

Ry (260

M, : f svcilvgsan)AIL (261)

var = id" )

s, (FE,7),vF var = {id — (v, s#(7))},s
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M (longcon) > (con,T) v = con

2
M, v+ longcon = {} (263)
M (longcon) > (con,T) v # con (264)
M, v F longcon = FAIL
M (longexcon) = (v, 7) (265)
M, v+ longexcon = {}
M{longexcon) = (v, 7) v’ # v (266)
M, v F longexcon = FAIL
v ={}{+r) in Val (FE,~),r F patrow = VE/FAIL) (267)
(FE,e(-v)),v F{ (patrow) } = {}(+VE/FAIL)
M, v+ pat = VE/FAIL (268)
M,vF (pat) = VE/FAIL
Pattern Rows M, r F patrow = VE /FAIL
2
Mot =0 (269)
(FE,~),r(lab) F pat = FAIL (270)
(FE,~{(-v"),r F lab = pat { , patrow) = FAIL
(FE,~),r(lab) F pat = VE ((FE,~'),r b patrow = VE'/FAIL) (271)
(FE,~{-4")),r F lab = pat { , patrow) = VE(+ VE'/FAIL)
Patterns M, v+ pat = VE/FAIL
M, v F atpat = VE/FAIL (272)
M, v F atpat = VE/FAIL
FE(longcon) = (con,T") v = (con,v')
(FE,~),v" b atpal = VE/FAIL o7
(FE,T-7),vF longcon atpat = VE/FAIL (273)
M (longeon) = (con,T) v ¢ {con} x Val (274)
M, v F longcon atpat = FAIL
M (longexcon) = (en, ) v = (en,v')
M,v" b atpat = VE/FAIL
(275)

M, v F longexcon atpat = VE[FAIL
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M (longexcon) = (en,T) v ¢ {en} x Val

276
M, v F longexcon atpat = FAIL (276)
M, v+ pat = VE/FAIL (277)
M,vF pat : ty= VE/FAIL
(FE,v),vF var = VE (FE,~'),vF pat = VE'/FAIL (278)

(FE,~-+"),vF var(: ty) as pat = VE + VE'/FAIL

Type Expressions and Type-expression Rows

There are no primitive sentence forms for these phrase classes; although type
expressions are present in the verification semantics for the Core, they are either
disregarded (e.g. rule 209) or interpreted via the static semantics (e.g. rule 252).
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9 Verification Semantics for Modules

9.1 Compound Objects

The compound objects for the Modules verification semantics, extra to those for
the Core verification semantics, are shown in Figure 18. For each semantic class
A there is a class Set(A) = p(State x A); each A € Set(A) is a (possibly infinite)
set of pairs (s,a), s € State, a € A. We use the same conventions as in the
verification semantics for the Core to refer to semantic objects of the static and
dynamic semantics.

(B,~,axdesc) € BasicAx = Basis X Trace x AxDesc
(N,B)(I,A) € ExistAx = NameSet x Basis X (Int x GenAx)
A € GenAx = BasicAx ¥ ExistAx &
(GenAx x GenAx) ¥ Bit
(IE,TE,VEstar, A) or I € Int =IntEnv x TyEnv x VarEnvgpar x GenAx
(I,m)or IS € IntStr = Int x StrName
[E € IntEnv = Strld ™3 TntStr
(N)IS or ¥ € Sig = NameSet x IntStr
(strid, B, (N)(I5,X)) € FunctorClosure =
Strld x Basis x NameSet x IntStr x Sig
G € SigEnv = Sigld 2 Sig
F € FunEnv = Funld 2 FunctorClosure
(N,F,G,E) or B € Basis = NameSet x FunEnv x Sigknv x Env
(N,F,G,IE,E)or IB € IntBasis = NameSet x FunEnv x SigEnvx
IntEnv x Env
S € Set(Str)
R € Set(Rea x Str)
E € Set(Env)
SE € Set(StrEnv)
B € Set(Basis)

Figure 18: Further Compound Semantic Objects

An interface I € Int represents a “view” of a structure. Specifications will
verificate to interfaces; moreover, during the verification of a specification or sig-
nature expression, structures (to which a specification may refer via “open”) are
represented only by their interfaces. A signature ¥ € Sig has the form (N)(I, m).
Signatures are similar to signatures in the static semantics, as they can be imposed
on structures, requiring certain checks and determining a matching realisation, but
they are also similar to interfaces in the dynamic semantics, as a signature includes
a rudimentary environment with only static information.
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A functor closure (strid, B, (N)(IS,X)) has three components. It contains the
structure identifier strid of its argument structure and the basis B in which the
functor binding appeared for the same reasons that functor closures in the dynamic
semantics do. However, it does not contain the body of the functor strexp, because
the semantics of a functor only depends on its interface, not on its implementation.
The third component of a functor closure corresponds to a static functor signature,
the only difference being that interface structures contain more information than
static structures.

To extract an interface from an environment we define the operation Inter
Env — Int as follows:

Inter(SE, TE,VE) = (IE,TE,Stat VE, —)
where [F = {strid — (Inter £, m) ; SE(strid) = (£, m)}

An interface structure IS is an instance of a signature ¥ = (N)IS', written
Y > 1S, if there exists a realisation o such that o(IS") = IS and Suppe C N.
We write ¥>,I5 if we want to make ¢ explicit. This is analogous to signature
instantiation in the static semantics, see section 5.9.

An interface basis IB = (N, F,G,IE, F) is derived from a basis for verificat-
ing signature expressions and specifications. An interface basis in the verification
semantics contains more components than an interface basis in the dynamic se-
mantics — the extra components are mainly for the interpretation of axioms.

The function Inter is extended to create an interface basis from a basis B as
follows:

Inter(N, F,G,FE) = (N, F,G,IE of (Inter ), F)

Specifications may hide components of an environment by reusing identifiers.
This affects the verification of axiom specifications. We define the environment
E\ I as the restriction of £ to identifiers not specified in . More precisely, given
an environment £ = (SE,TE, VE) and an interface I, we define the environment

E\ T to be (SE',TE',VE'"), which is the same as F except that the domains are

restricted as follows:

Dom SE' = Dom SE \ Dom(IE of I)
DomTE' = DomTE \ Dom(TE of I)
Dom VE' = Dom VE \ Dom(VEstat of I)

9.2 Generalised Axioms

A generalised axiom A € GenAx is a “mobile” axiom, capable of being interpreted
in different environments. Generalised axioms arise when verificating axioms in
signature expressions, and checking that a structure matches a signature involves
interpreting generalised axioms from the signature in the environment correspond-
ing to the structure. The basis B in a generalised axiom (B,~, azdesc) has the
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same purpose as the environment in a closure — because the axiom is mobile, it
has to carry the basis of its original occurrence. The trace v is (originally) the one
obtained from the static analysis of axdesc; it is modified in the course of match-
ing a structure against a signature, which involves applying a realisation to an
interface. The interface I in a generalised axiom (N, B)(I, A) can be viewed as a
kind of existential quantification: some auxiliary structure matching the signature
(N)(I,m) (for an appropriate m) has to be found, which builds on components
in basis B, such that A holds. A pair of generalised axioms (A1, A3) can be un-
derstood as their logical conjunction. The generalised axiom T is always satisfied.
It serves as a default value for GenAx — for example, (VEgtar in Int) stands for
({},{}, VEstaT, T). The generalised axiom — is never satisfied.

9.3 Combining Interfaces

The sequential composition of specifications spec; (;) spec, is a bit delicate, as
specy can use and/or overwrite identifiers specified in spec;. The corresponding
semantic operation on interfaces has to reflect this. For a given interface basis IB
we define the sequential combination of the interfaces I; and [, as the interface
I @ Iy, where @ is defined as follows. Let Iy = (IEy, TEy, VEE \p, Ar), k €
{1,2}. We write B of IB for the basis obtained from IB by removing the IE
component. Below we use the notation A 1 A" (for arbitrary finite maps A and A’
of the same type) to denote the finite map A” with Dom A” = Dom A N Dom A’
and for all € Dom A", A"(z) = A(2).

L —yI, = (N')((IEy IE,, TE, P TEy, VEgpar | VE;TATvT)vm)

where N' = {m}Unames [, \ names; \ N
¢ N Unames [; Unames [

Lapl = (IE1+ IE,TE, + TE,, VE;TAT + VE;TAT,
((NvBOf ]B)(]v Al)vAQ))
where (N)I = I —nofB I

The operation I; —n I3 is purely auxiliary; it maps two interfaces and a name set
to a signature. The idea is that this signature represents the hidden part (of I;)
when sequentially composing [y and I,. Matching a structure against I; & [
also requires finding a structure matching the hidden part.

Notice that the operator &g is not associative, because (Iy &5 I2) B I3 and
I &5 (Iz & I3) differ in their last component, the generalised axiom. But we
claim that the so-obtained generalised axioms A and A’ are semantically equivalent
in the sense that a sentence of the form s, K = A = {} (see rules 287 to 290 below)
can be derived iff the sentence s, E F A" = {} can be derived as well.
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9.4 Extracting Objects of the Static Semantics

We extend the family of functions Stat defined in Section 8.6 to semantic objects
of the module semantics as follows:

Stat(N, F, G, E) = (N,Stat F, Stat o7, Stat F)
Stat(N, F,G,IE, E) = (N,Stat F,Stat oG, Stat £ 4 (Stat o[F))
Stat I = {funid — (N)(Stat IS, Stat ¥) ;
F(funid) = (strid, B, (N)(15,%))}
Stat((N)IS) = (N)Stat IS
Stat(/,m) = (m,Stat[])
Stat(IE, TE, VEstar, A) = (Stat olE, TE, VEstar)

Interfaces and environments are both mapped to static environments; similarly,
bases and interface bases are both mapped to static bases.

9.5 Sets

The verification of a core phrase in a given state and environment typically leads
to a pair consisting of some semantic object (value, environment, etc.) and a new
state. For the verification semantics for Modules we typically have sets of such
pairs as verification results.

There are two major reasons for this: first, we interpret a structure binding

structure S: SIG =T

not as a binding of the identifier S to (some restriction of) the structure T, but as
the binding of S to any structure matching the signature SIG. In other words, we
abstract from the concrete structure T.

The second reason is the presence of ? in core phrases. The verification se-
mantics for the Core operates with a given interpretation of question marks. The
verification semantics for Modules enumerates all question mark interpretations
that lead to successful verifications and collects the results, see rule 299.

9.6 Inference Rules

There is no state convention and no exception convention for the verification se-
mantics for Modules: states are always made explicit.

In contrast to most other parts of the semantics, we have not only sentences
of the form A & phrase = A’ where phrase is a syntactic object, but also a variety
of sentence forms (not involving syntax) that determine whether a given structure
matches a signature.

The convention for referring to sentences of the static semantics is the same as
in the Core verification semantics.
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Satisfying Signatures s,TFS=5¢

Sentences of this form can be read as: in state s, structure S successfully matches
signature ¥ via realisation ¢, returning structure 5"

Suppp € N e(IS) = (I,m) s,E-I=F

s, (N)ISF (E,m)= (E',m), ¢ (279)

Restricting Environments s,E+1= L'

In the dynamic semantics, the effect of “cutting down” an environment £ to an
interface I, written £ | I, was defined in Section 7.2. In the verification semantics
the situation is a bit more difficult: an environment is not just cut down to an
interface, it also has to satisfy its (generalised) axiom, and the types have to fit.
We therefore express this operation formally in terms of rules.

s,SEv IE= SE' TEVFTE = TE"  VEF VEspar = VE'
E'=(SE'TE".VE') s E'F A= {}

2

s, (SE,TE,VE)F (IE,TE', VEstar, A) = B’ (280)
Restricting Structure Environments s,SE + IE = SE'
5,SE + IE = SE' s,E-I1=F 581
s, SE + {strid — (E,m)} b IE 4+ {strid — (I,m)} = (281)

SE" + {strid — (E£',m)}
282
SEF (=0 (282)
Restricting Type Environments TE +TE' = TE"
TEV TE = TE"  CE=CE'VCE = {} (263)

TE + {tycon — (0,CE)} - TE' + {tycon — (0,CE")} =

TE" + {tycon — (0,CE")}

(284)

TEF{} = {}

Comments:

(283) Notice that the side-condition closely relates to the enrichment of type
structures, see section 5.11.
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Restricting Variable Environments VE + VEgratr = VE'

VE F VEstaT = VE! VOé(k),T = Vﬂ(l).T/
VE + {Zd — Va(k)_(v, T)} F VESTAT -+ {Zd — Vﬂ(l),T/} —
VE' + {id = VY. (9(v), ')}

(285)

(286)

VEF{} = {}

Comments:

(285) There is a certain amount of arbitrariness in this rule, similarly as in rules
195 and 238 in the verification semantics for the Core. The arbitrariness is
again in the possibility that v may contain free type variables which are not
in 7, and thus not in the domain of ¥.

Satisfying Generalised Axioms s, B+ A=1{}
s, FF-T={} (287)
S,E|_A1:>{} S,E"A2:>{}

s EF (A, Ay) = {} (288)

s, B+ K.,y F axdesc = {}
s, B+ (B,y, axdesc) = {} (289)

m ¢ (N of BUN) s, B, (N)(I,m) F strexzp® = R

Sl (B €R S B4 B o) = () 0,

s, E'H (N, B)(1,4) = {}

Comments:

(290) Notice that the rule has two implicit existential quantifiers: we have to
find some structure expression such that some environment obtained from
its verification satisfies the axiom.

There is no rule for the generalised axiom —, as it is never satisfied.

Validating Axiom Descriptions s, B,y F axdesc = {}

s, B,y F specexp = {} (s, B,y I axdesc = {})
s, Byyi(-y2) F specexp (and axdesc) = {}

(291)
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Validating Specification Expressions |s, B,~ F specexp = {}

(s',E)e&
s, B,y F strdec = &€ OBy o e—— (292)
s, B,y -2 | let strdec in azexp end = {}
Axiomatic Expressions s, B,y F azexp = {}
(Bl B0 () 2) F ep® = true, & .

s, B,y exp* = {}

Comment: An axiomatic expression exp® holds if it verificates to true; hence
false, non-termination, and exceptions are treated equally here. Verification of
an axiomatic expression has no side-effect, i.e. any side-effect that appeared during
verification disappears.

Structure Expressions s, B,y strexp = S
s, B,y F strdec = £ (291)
s, B,m -+ F struct strdec end = {(s¢/,(E,m)) | (s, F) € £}
B(longstrid) = S
2
s, B,y F longstrid = {(s,5)} (295)
B(funid) = (strid, B', (N)(1S, X)) ¢ = s%(p)
©'(1S,%) = (18", %) s, B,y F strezp = S
(5,9 €S8
357,67 S (N)ISF S= 5, 4" (296)
s, B,p-vF funid ( strexp ) =
{5 [ (5.9 €S,
s', B @ {strid — S}, Y F strexp® = R, (s",(¢",5") e R }
(SlaE) S g
s, B,k strdec = & 3S. 51, B E, ' F strezp = S (297)

s,B,7-~"F let strdec in strexp end =
{(52,5) | (51, E) € E, 81,BD E, 4"+ strexp = S, (s9,5) € S}

Comments:

(296) It should be emphasised here that strexp and strexp® are different meta-
variables; strexp® is an arbitrary structure expression (not containing 7).
There are no explicit restrictions concerning elaboration of strexp® needed,
because they are implicit in the sentence form used, see rule 298.
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Structure vs. Signature s, B, X I strexp = R

Sentences of this form can be read as: in state s and basis B, the structure
expression strexp verificates and matches the signature ¥ in the ways specified by
R. Each member (s', (S, ¢)) of R consists of the resulting state s', the matching
realisation ¢, and the structure S obtained from cutting down the verification
result of strexp to X.

Stat B Fgrar strexp = (m, Estar),y (s2,5) €8
s1, B,y strexp = S 35, p. 59,2 S =5 p
s1, B, Y & strexp =
{(SQ—I_S‘QTW(S‘Q?S/)) | (5275)687 527Z|_SZ>S/799}

Comment: s34 1y is the state obtained by extending the type realisation ¢y of s5
by the type part of the realisation ¢. The effect of using this state instead of s,
is to make the implementing types known for the purposes of quantification and

(298)

comparison.

Structure-level Declarations s, B,y strdec = &£

Notice that the semantic value of a structure declaration is an &, not an &€/p.

299
SOV E.G B A F dec = (50 ) [ 5, (B, QD)4 F dec = By ()
7 (300)
. . TraceSch
s, B,y axiom az = {(s,{} in Env) | L :’g’f, l_rz(;e:(; ffle }
s, B,y F strbind = S& (301)
s, B,y F structure strbind = {(s’, SE in Env) | (s, SE) € S&}
(SlaE) € &
S, B771 - St?“dGCI e & 3. s1,B® E,’yz F strdecy = & (302)
s, B,y -y F local strdec; in strdecs end =
{(s2, E") | (51, E) € &, 51, B& E, 4 b strdecy = &', (53, E') € &'}
303
s, B,y F = {(s,{} in Env)} (303)
(SlaE) € g
87 B771 l_ Strdecl = g EIS/ 51,B o) E,"}/z F Strd662 = g/ (304)

s, By - va b ostrdecy () strdecy =
{(se, E4+ E") | (s1,E) €&, s1,B& E, v & strdecy = &', (s2, £') € £'}



110 9 VERIFICATION SEMANTICS FOR MODULES

Comments:

(299) The sentence in the set comprehension is a sentence of the verification
semantics for the Core. Notice that every Core declaration (viewed here
as a strdec) verificates, but it may verificate to an empty set; it may also
verificate to a set with more than one element, because ()1 can be chosen
arbitrarily. All Core verifications resulting in packets are ignored.

(300) Verification of an axiom always succeeds: if the axiom “holds”, the result is
a singleton set containing the empty environment; otherwise it is the empty
set. An axiom only holds if it does so for all type instances of its trace.

Axioms s, B,y Fax = {}
s, B,y F azexp = {} (s, B,v"F az = {}) 205

s, B,y(-v") F azexp (and axr) = {} (305)

Structure Bindings s, B,y F strbind = S

s, B, F sglstrbind = SE <E|SS/. s’ B+ n;;eig)E,E7§i strbind = S&’
s, B,y(-"} F sglstrbind (and strbind) =
{(s"(). SE(+SE")) | (s, 5E) € S€ (,

s', B +names SE, 4" b strbind = SE&', (s",SE") € S&') }

> (306)

Single Structure Bindings s, B,y F sglstrbind = S&
s, Inter B,~ = psigexp = X s, B,YX F strexp = R (307)
s,B,y-~"& strid : psigexp = strezp =
{(s, {strid — S'}) | 5, B, Y F strexp® = R/, (s',(¢,5)) e R}
| .3, Inter B,~ I psigexp = X (308)
s, B,y F strid : psigexp = 7 =
{(s', {strid — S}) | s, B,X F strexp® = R, (s',(¢,5)) € R }
s, B,y F strexp = S (309)

s, B,y b strid = strexp = {(s', {strid — S}) | (s',5) € S}

Comments:

(307) The second premise implicitly requires every interpretation of strexp to
match the signature ¥ (see rule 298). The resulting set R is then ignored
and the result is the union of all expressible sets of structures (since strexp®
is arbitrary) matching the signature.
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Notice that the trace ~' is thrown away, although the verification of strexp
re-builds it later using the judgements of the static semantics. The reason
for this arrangement is that judgements of the form s, B, ¥ - strexp = R
are also used for cases in which there is no trace readily available, e.g. rules

308 and 296.
Signature Expressions s, IB,v = sigexp = IS
B,y F 1
S, ,7 spec = (310)
s,IB,m -~ t sig spec end = (I, m)
1B(sigid)> 1.
(sigi .)_.@ S (311)
s, IB, ¢ F sigid = IS
Principal Signatures s, IB,v = psigexp = X
NNNofIB=10 s, IB,~y F sigexp = IS (312)
s, 1B, (N )y F sigexp = (N)IS
Comments:

(312) The role of this rule is similar to that of rule 65. Principality of (N)IS does
not have to be imposed because it is implicitly satisfied, as the derivation
of s,IB,vy F sigexp = IS uses the same realisations as the corresponding
derivation of BgtaT FsTaT Sigerp = Sstat,y when determining the principal
signature for rule 65.

Signature Declarations s, IB,v = sigdec = G
s, IB,y F sigbind = G (313)
s, IB,~ - signature sigbind = G

14
s, 1B~ I = {} (314)
s, IB, v F sigdec; = G4 8, IB+ Gy, & sigdecy = G (315)

8, 1B,y -2 & sigdecy (;) sigdecy = Gy + G
Signature Bindings s, IB,v = sigbind = G
s, IB,~ I psigexp = ¥ (s, IB,~" b sigbind = G (316)

s, IB,v{-y") F sigid = psigexp (and sighind) = {sigid — X} (+ G)
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Specifications s, IB,v F spec = I
317
s, IB, VEgtat - val valdesc = s#(VEgrar) in Int (317)
318
s, IB,TE F type typdesc = s#(TFE) in Int (318)
319
s, IB, TE F eqtype typdesc = s#(TE) in Int (319)
. (320)
s, 1B, (TE, VEgat) in Envgpar F datatype datdesc =
(s*(TE), s*(VEsar)) in Int
: : (321)
s, 1B, VEgTaT in EnvgraT F exception exdesc =
(S#(VESTAT)) in Int
. . (322)
s, IB,~v I axiom axdesc = (B of IB,~, axdesc) in Int
s, IB,~v I strdesc = IE (323)
s,IB,~ F structure strdesc = [F in Int
(324)

s, IB,v I sharing shareq= {} in Int

IB=(N,F.G,IE E) s, IB,y1 b specy = Ih
IB"= (NUnames [, F,G, IE+ [Eof I,,E\ I) s, IB' vy & specy = I,
I, = (IE,TE,VEgtaT, A) N; = names [ \ names [; \ N
I = (IE,TE, VEstar, (N1, B of IB)(I,, A))

$,IB,~v1 - v2 - local spec, in spec, end = I3

(325)
IB(longstrid,) = (I1,my) --- [B(longstrid,) = (I, m,)
: : (326)
s, IB,~v I open longstrid, --- longstrid, = I &p - B I,
]B(Sigidl)ztm (]17 ml) T ]B(Slgldn)z%z(]m mn)
: — — (327)
s$,IB, @1 - ..., - include sigid, --- sigid, = I, B - Bm I,
(328)

s, IB,v F = {} in Int

IB=(N,F.G,IE E) s, IB,y1 b specy = Ih
IB"= (NUnames [, F,G, IE+ [Eof I,,E\ I) s, IB' vy & specy = I,
8, 1B, v1 -2 = specy () specy, = Iy B Io

(329)
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Comments:

(317)—(321) The various traces in these rules have to be interpreted in the cur-
rent state to make choices for question mark types known for verification

# and not s*%,

of phrases that depend on these. Notice also that we use s
i.e. specifications in EML do not see the implementing types from other

structure bindings.

(324) All the necessary sharing has already been checked in the static analysis,
therefore this rule needs no premise.

(325),(329) Notice that the £ component of IB shrinks while the [E component
increases. I contains global objects which can be hidden by specifications
(hence the shrinking), while IE contains interface of global structures as well
as of specified structures.

Structure Descriptions s,IB,v - strdesc = IE
s, IB,~ F sigexp = IS (s, IB,~" b strdesc = IE) (330)
s, IB, v (v} F strid : sigexp (and strdesc) = {strid — IS} (+ IF)
Functor Declarations s, B,y F fundec = F
s, B,y F funbind = F (331)
s, B,~v F functor funbind = F
332
SBar =0 352
s, B,y F fundec; = Iy s, B+ Fi,v2 - fundecy = Fy (333)
s, Byyi - va b fundeey () fundecy = Fy + F3
Functor Bindings s, B,y F funbind = F
IB = Inter B Y= 72 Y3(y4)
s, IB, v, F psigexp = X Y =(N)IS NNNofIB=10
s, IB @ {strid — IS}, v, - psigexp’ = ¥’
. 5,B, X strexp® = R (s, (p,9) ER
<S’B’74 = Junbind = F> IR'. 5", B @ {strid — S}, ¥ F strezp = R’ (334)

s, B,y & funid ( strid : psigexp ) : psigexp’ = strexp (and funbind) =
{funid — (strid, B, (N)(IS5,%))} (+ F)
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IB = Inter B Y= v2(3)
s, IB, v, F psigexp = X Y =(N)IS NNNofIB=10
s, IB @ {strid — IS}, ~, - psigexp’ = ¥’ (s, B,vs I funbind = F)
s, B,y & funid ( strid : psigexp ) : psigexp’ = 7 (and funbind) =
{funid — (strid, B,(N)(IS,%")} (+F)

(335)

Comments:

(334) The rule in the premise ensures that the argument in a functor application
can safely be replaced by anything satisfying the input signature (including
generalised axioms) of the functor. “Safely” means here that the functor
application is guaranteed to verificate.

(334),(335) There is no difference in the result of these two rules: rule 334 simply
has an additional check that strexp satisfies the signature psigexp’ for any
valid functor argument.

Top-level Declarations s, B,y topdec = B
s, B,y F strdec = £
S (336)
s, B,y F strdec = {(s,(names F, F) in Basis) | (¢/, F) € £}

s, Inter B,y F sigdec = G

. — (337)
s, B,y sigdec = {(s,(names G, ) in Basis)}

s, B,y F fundec = F (339)

s, B,y F fundec = {(s,(names F, F') in Basis)}
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10 Programs

The phrase classes FullProgram and Program of programs are defined as follows:

program = topdec ; {program)

fullprogram ::= program

The variable topdec above refers to top-level declarations of the Full language.
As the semantic rules shown so far only operate on the Bare language, we have
to translate such a topdec into a top-level declaration of the Bare language — the
rules for this purpose are 478-481 in Appendix B.

Semantic objects in this section are the semantic objects for the verification
semantics; objects coming from other parts of the semantics are accordingly in-
dexed, for example Cpgp 1s a context of the semantics for derived forms. Similarly,
we attribute each turnstile with the part of the semantics that it refers to — a
missing index means “program semantics”.

Consider a sentence of the form F fullprogram = B,Cpgr. The following
main situations can arise:

e There is no B,Cpgr such that F fullprogram = B,Cpgr holds. This is
the case if fullprogram either contains static errors (static semantics, derived
forms) or an interface error of the verification semantics for modules, i.e. a
structure (resp. functor) in fullprogram does not match its signature (resp.
signatures).

e We have & fullprogram = B,Cpgr but B = 0. This situation arises if
fullprogram contains a the structure or functor declaration which is incon-
sistent, i.e. which has an empty class of models. This inconsistency can arise
in a number of ways, most typically if a stated axiom does not hold in any
model or if a value declaration does not terminate or raises an exception.

o Otherwise all of the structure and functor declarations in fullprogram are
consistent and each (s, B) € B (together with Cpgr) can be seen as a model

of fullprogram.
Top-level Declarations s, B, Cpgr F topdec = B,Chgg
=3ChgR, topdec’. Cpgr Fper topdec = topdec’, Clhgr (339)
s, B, Cpgr I topdec = {(s, B)}, Cper
CbEer Fper topdec = topdec’, Chpr
_‘EIBSTATa 7. Stat B l_STAT topdec' = BSTAT7 ~ (340)

s, B, Cpgr I topdec = {(s, B)}, Cper
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Cper Fper topdec = topdec’, Clypn Stat B Fgrat topdec’ = Bsrat,
Stat B tgpar topdec’ = Bipar, vy
(namesy \ N of B)y =+

s, B,Cpgr F topdec = {(s', B & B') | (s, B') € B}, Cper + Chgr

s, B,y Fyer topdec’ = B

(341)

Comments:

(340) A failing elaboration has no effect whatever. Even derived form declarations
are “undone”. In contrast to SML there is no rule for dealing with raised
exceptions, because packets cannot escape core level verification in EML.

(341) The rule in the premise ensures that the top-level declaration is verificated
with a principal trace.

Programs s, B, Cpgr = program = B, Chpg
(s,B)eB
B 5", B, Chgr - program = B’ Chgr
s, B, Cpgr F topdec ; (program) = {(s'{"}, B'{(")) | (s', B") € B,
<5/7 Blv C]/DER + program = Blv C]/D/ERv (3”7 B”) € B/>}7 Cl</>DER

s, B, Cpgr  topdec = B, Chgg

(342)
Comment: Notice that Cjpg is scoped at the main rule, see Section 1.2 — the
resulting context for derived forms is not model-dependent and is the same for
all (s', B') € B. Another consequence of this scoping is that Cfjgy is arbitrary if

B=1.

Full Program = fullprogram = B, Chpr

S0, Bo, C]%ER F program = B, Cpgr (343)

F program = B, Cpgr

Comment: This rule connects the program semantics with the initial state sg, the
initial verification basis By, and the inital context for derived forms CPgg.



117

A Appendix: Full Grammar

This section gives the full grammar of Extended ML, which includes the syntax
for the Core, the syntax for Modules and the derived forms. Syntactic phrases of
the Full Language contain identifiers without status labels, i.e. the class Id takes
the réle of the classes Var, Strld, etc.

The Full language uses the same names for its phrase classes as the Bare lan-
guage, see figures 3 and 7 on pages 11 and 17, respectively. Concerning the syntax
of expressions, two additional subclasses of the phrase class Exp are introduced,
namely AppExp (application expressions) and InfExp (infix expressions). The
inclusion relation among the four classes is as follows:

AtExp C AppExp C InfExp C Exp

The effect is that certain phrases, such as “2 + if --- then --- else --- 7, are

now disallowed. An analogous construction applies to patterns, i.e. we also have
additional phrase classes AppPat and InfPat, etc. Concerning identifiers, there
are the phrase classes Id (and Longld, analogous to Section 2.4), Lab and
TyVar. Each id € Id is either alphanumeric (but not starting with a prime) or
symbolic. Members of Id are considered to be lexical items. Another additional
phrase class is D (digits): each d € D is a character between 0 and 9 and is also
regarded as a lexical item.
The grammatical conventions are similar to Section 2, namely:

e The brackets () enclose optional phrases.

e For any syntax class X (over which & ranges) we define the syntax class Xseq
(over which zseq ranges) as follows:

rseq = x (singleton sequence)
(empty sequence)
(#1,--+,2,) (sequence, n > 1)

Note that the “---” used here, a meta-symbol indicating syntactic repetition,

7 which is a reserved word of the language.

must not be confused with “. ..
To range over all three alternatives for sequences in semantic rules we write
x1--x, (with n > 0), which suppresses the syntactic commas and paren-
theses. The ambiguity for n = 1 will be harmless whenever we use this

notation.

o Alternative forms for each phrase class are in order of decreasing precedence.
This precedence resolves ambiguity in parsing in the following way. Suppose
that a phrase class phrase has several alternative forms Fy---F),. If a lexical
sequence Lq---Lp reduces to more than one of the F}, then it reduces to
phrase via the F; with lowest precedence. Example: The parsing of the
sequence

if exp, then exp, else exp, handle match
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is determined by the above principle. Because if-expressions have lower
precedence than handle-expressions, the sequence parses as

if exp, then exp, else (exp, handle match)

Note particularly that the use of precedence does not decrease the class
of admissible phrases; it merely rejects alternative ways of parsing certain
phrases. In particular, the purpose is not to prevent a phrase, which is an
instance of a form with higher precedence, having a constituent which is an
instance of a form with lower precedence. Thus for example

if --- then case --- of --- else case --- of ---
is quite admissible, and will be parsed as

if --- then (case --- of ---) else (case --- of --+)

Longest match: Suppose FyF, is an alternative form of a phrase class. A
natural number ¢ is called a split index w.r.t. F1 [, for a lexical sequence
Ly Lp it 0 <e < kand Ly---L; reduces to Fy and L;yq---L reduces to Fb.
It for a given lexical sequence [, = Ly---Lj there are different split indices
w.r.t. F1F;, then L reduces to [y F, by reducing Ly---L; to Fy, where j is
either the maximal split index, or — iff the alternative form is labelled (R),
indicating a right associative infix construct — the minimal split index.

For any syntax class X (over which « ranges) we define the syntax class X*
(over which x® ranges) as the same as X, except that phrases of class X*
may not contain 7.



atexp

eTPTrow

appexrp

infexp

exp

match

mrule

scon
(op)longid

{ (exprow) %}

# lab

O

(expy , -+, exp,,)
Lexp, , -+, exp,]
Cexpy 3 -+ ; exp,)
let dec in exp, ; ---
(exp)

?

lab = exp { , exprow)

atexp
appexp atexp

appexp
infexp, id infexp,

infexp

exp : ly

exp} == exp}

exp} =/= exp}
exists match®
forall match®
exp® terminates
exp® proper

erp, andalso exp,
erp, orelse exp,
erp, implies exp,
exp handle match
raise exp

exp raises match
exp raises pal

1f exp, then exp, else exp,

case exp of match
fn match

mrule { | match)

pat => exp

; exp, end

special constant

long identifier

record

record selector

0-tuple

n-tuple, n > 2

list, n >0

sequence, n > 2

local declaration, n > 1

undefined value

expression row
application expression
infix expression

typed

comparison (R)
comparison (R)
existential quantifier
universal quantifier
convergence predicate
definedness predicate
conjunction
disjunction
implication (R)
handle exception
raise exception

test for exception
test for exception
conditional

case analysis
function

Figure 19: Grammar: Expressions and Matches
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dec

valbind

fvalbind
funcbind
typbind

datbind

conbind

exbind
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val valbind

fun fvalbind

type typbind

eqtype typbind

datatype datbind
(withtype typbind®)

abstype datbind
(withtype typbind®)
with dec end

exception exbind

local decy; in decy end

open longid,---longid,,

decy () decy

infix (d) idy --- id,
infixr (d) idy --- id,
nonfix id, --- id,

pat = exp (and valbind)
rec valbind

funcbind (and fvalbind)
fpat (:ty) = exp (| funcbind)

tyvarseq id = ty (and typbind)

tyvarseq id = 7 (and typbind)

tyvarseq id = conbind
(and datbind)

id {of ty) (| conbind)

id (of ty) (and exbind)
id = longid (and exbind)

value declaration
function declaration
type declaration
equality type declaration
datatype declaration

abstype declaration

exception declaration
local declaration

open declaration, n > 1
sequential declaration
empty declaration

infix directive, n > 1
infix directive, n > 1
nonfix directive, n > 1

function declarations
single function

type binding
question mark type binding

Figure 20: Grammar: Declarations and Bindings



alpat

patrow

apppal

infpat

pat

fpat

ty

tyrow == lab :

scon
(op)longid

{ (patrow) %
O

(patl , e
[patl , e
( pat)

, pat,)
, pat,]

lab = pat { , patrow)
id(:ty) (as pat) {, patrow)
(op)longid atpat

alpat

apppal
infpat, id infpat,

infpat

pat : ly

(op)id (: ty) as pat
(op)id atpat,---atpat,,

(atpat, id atpat’) atpat,---atpat
paty paty paty pat,

atpat, id atpat!
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wildcard
special constant

record

0-tuple
n-tuple, n > 2
list, n >0

wildcard
pattern row
label as variable

construction
atomic

application or atomic
infix construction

typed
layered

fvalbind pattern sequence

Figure 21: Grammar: Patterns

= lyvar
{ (tyrow) %
tyseq longid
ty, * - x 1y,
ty -> tyf
(ty)

ty ( , tyrow)

type variable
record type

type construction
tuple type, n > 2
function type (R)

type-expression row

Figure 22: Grammar: Type expressions
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strexp = struct strdec end generative

longid structure identifier

id ( strexp ) functor application

1d ( strdec )

let strdec in strexp end local declaration
strdec n= dec declaration

axiom ax axiom

(withtype typbind®)

structure strbind structure

local sirdecy in strdecs end local

strdecy () strdecs sequential

empty

axv = azexrp (and ax) axioms
arerp n= exp® axiomatic expression
strbind = sglstrbind (and strbind) structure binding
sglstrbind ::= id : psigexp = strexp single structure binding

id : psigexp = 7 undefined structure binding

id = strexp unguarded structure binding
stgexp 1= s1ig spec end generative

id signature identifier
pstgexp n= sigexp principal signature
sigdec = signature sighind single

sigdecy ;) sigdec, sequential

empty

sigbind = id = psigexp (and sigbind)

Figure 23: Grammar: Structure and Signature FExpressions



spec

valdesc
typdesc
datdesc
condesc
exdesc
axdesc

specexp

strdesc

shareq

val valdesc

type typdesc

eqtype typdesc
datatype datdesc
exception exdesc
axiom axdesc
structure strdesc
sharing shareq
local specy 1n spec, end
open longid,---longid,,
include idy---id,

specy () specy

id : ty (and valdesc)

tyvarseq id (and typdesc)

tyvarseq id = condesc (and datdesc)
id (of ty) (| condesc)

id (of ty) (and exdesc)

specexp (and axdesc)

let strdec in axexp end
exp®

id : sigexp (and strdesc)
longid, = --- = longid ,

type longid, = --- = longid,,

shareq, and shareq,

Figure 24: Grammar: Specifications
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value

type

eqtype
datatype
exception
axiom
structure
sharing
local

open (n > 1)
include (n > 1)
sequential
empty

structure sharing
(n > 2)

type sharing

(n>2)

multiple
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undec = functor funbind single
g
fundec, (;) fundec, sequence
empty
funbind = id (id : psigexp ): psigexp’ functor binding

= strexp (and funbind)
id ( spec) : psigexp
= strexp (and funbind)
id (id : psigexp ): psigexp’ undefined functor binding
= 7 (and funbind)
id ( spec) : psigexp
= 7 (and funbind)

topdec n= strdec structure-level declaration
stgdec signature declaration
fundec functor declaration
exp expression at top-level
program = topdec ; (program)
ullprogram ::= program
prog prog

Note: No topdec may contain, as an initial segment, a shorter top-
level declaration followed by a semicolon.

Figure 25: Grammar: Functors and Top-level Declarations

A.1 Syntactic Restrictions

The syntactic restrictions mentioned in sections 2.9 and 3.5 apply analogously to
the full grammar.

Further restrictions are expressed in the next section, the semantics of derived
forms.
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The rules in this section translate syntactical phrases of the full grammar into
syntactical phrases of the Bare language.

B.1 Semantic Objects

The semantic objects of this section are the syntactic phrases of Bare and Full
language and the objects in Figure 26.

st € Status = {v,c,e,g,s,f,t}
fir € Fixity = {1,r,n}
n € N=1{0,1,2,...}
VE € VarEnv =1d 2 (W x Fixity)
StE € StatEnv = Id 53 Status
TE € TyEnv=1d fin (TypeFenw {FAIL})
Aoz(k).ty € TypelFen = LierZOTyVark x Ty
SE € StrEnv =1d 2 Env
F € FunEnv=1Id53 (Env x Env)
G € Sigknv=1d i Env
(SE,TE,StE) or £ € Env = StrEnv x TyEnv x StatEnv
(E,VE,F,G) or C € Context = Env X VarEnv x FunEnv x Sigknv
idval € Idval = Env @ TypeFcen & Status ¥

(N x Fixity) W (Env x Env) W {FAIL}
m € Context — (Id fin Idval)

Figure 26: Semantic Objects for Derived Forms

The results of looking up a long identifier in a context (rules 344-346) includes
an identifier value. The object class IdVal contains the codomains of all envir-
onments of a context plus {FAIL}. The identifier value FAIL indicates that the
access is unsuccessful, see rule 345. This is also used to generate “fresh” identifi-
ers. Within type environments an identifier is bound to FAIL if this binding does
not originate from a withtype type binding.

The variable 7« serves as a placeholder for various projections from a context
to its components. A concrete projection is written with an _ indicating the
argument position, e.g. (SEof Fof _) selects the structure environment of a context.

Given a type expression ty, a sequence of type variables aq,...,a; and a
sequence of type expressions ty,, ..., ty,, we write ty{ty,/aq,..., ty,/az} for the
result of the simultaneous substitution of the type variables a; throughout ty by
the corresponding type expressions ty;. The conventions and notations used for
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projection, injection and modification in preceding sections are adapted here as
well, except that within this section, we write C' & E for the context obtained from
C' by replacing its first component by F. To obtain default behaviour for certain
forms of environments, we introduce the following notation:

[StE)(id) = StE(id) if id € Dom StE

= v otherwise
[VE](id) = VE(id) ifid € DomVE
= (0,n) otherwise

In other words: [StE] resp. [VE] is an (infinite) map which extends the finite map
StE resp. VE by the default value v resp. (0,n).

B.2 Identifiers

The Bare language distinguishes different forms of identifiers, e.g. value variables
and value constructors, structure identifiers and signature identifiers. Syntactic-
ally, identifiers in the classes Var, Con, ExCon, TyCon, Strld, Sigld and Funld all
belong to the class Id. Within phrases of the Bare language, we distinguish them
by their attached identifier status, i.e. id** belongs to the class indicated by st,
where v, ¢, e, t, s, g and £ refer to Var, Con, ExCon, TyCon, Strld, Sigld and
Funld, respectively. Thus, any value variable var has the form idV with id € Id,
etc.

Variable environments map identifiers to their fixity (n, fiz). This is used for
parsing expressions with infix operators: the number n is the precedence of the
identifier (when used infix) and fiz says whether it is left- or right-associative (1
or r, respectively) or non-infix (n).

Phrases of the Full language only contain plain identifiers (i.e. without attached
status) and the semantic rules in this section which translate the Full into the Bare
language also provide this status information.

Given a natural number n, we write @ for a label lab that is a string of digits
and that denotes this number when interpreted as a special constant.

B.3 Enrichment

We define a relation > on identifier status as st = st' <= st = st'Vst' =v. We
extend this to (status, structure) environments as follows:

Ei-F, <= StEof F, > StFE of E; AN SEof By = SE of E,

B.4 Inference Rules

All sentences of this part of the semantics have the form C, A} F phrase =
phrase’, A5, where C'is a context, AT and A} are sequences of semantic or syntactic
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objects, phrase is a phrase of the Full language and phrase’ is a (corresponding)
phrase of the Bare language. Syntactic objects in AT and A} belong to the Bare
language. When we have C, A} b phrase = phrase’, A5, then phrase’ and A} are
determined by C', A7, and phrase, modulo choice of fresh identifier names (e.g. as
in rule 351).

We do not give all rules explicitly. When we omit the sentence form for a
phrase class Phrase, the sentence form is C' + phrase = phrase’. When we omit
rules for an alternative form of a phrase class, then these rules can be determined
as follows: if the alternative form in the full grammar is t; vy ty -+t Vg try1
(k > 0), where each ?; is a sequence of lexical items (terminals) and each v; is a
variable ranging over a phrase class (in the Full language), then the missing rule
is:

Choy=v; - CFo,= v
C F tl U1 tg tk Uk tk+1 = tl U{ tg tk U;C tk+1

Long Identifiers C,m, st longid = longid', idval
id € Dom(x (') idval = 7(C)(id) (344)
C,x, stk id = id*, idval
id ¢ Dom(x (')
345
C,m, st id = id”, FAIL (34)
(SEof Eof C)(id)=FE C @ E, 7, stF longid = longid', idval (346)

C,x, st Fid.longid = id® . longid’', idval

Comments:

(345) This rule has two purposes. On the one hand, it detects identifiers that are
used without being declared. On the other, it is also used to generate fresh
identifiers, e.g. in rule 351.

Value Identifiers C' F {op) longid = longid', st

[VE of C|(id) = (n, fix) fir #n [StE of E of C](id) = st

347
CFop id = id*, st (347)
[VE of C](id) = (n,n) [StE of F of C|(id) = st (348)
C + {op) id = id*, st
of Ko id) = P op longid = longid’, st
SE of F fC d)=F C @ E & op longid = longid’ (349)
- (op) id.longid = id® .longid’, st
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Comments:

(349) The presence of op in the premise, regardless whether it occurs in the
conclusion or not, means that identifiers with infix status can be used non-
infix in their long form.

Atomic Expressions C'+ atezp = atexp’
C'F {op)longid = longid', st (350)
C'F {op)longid = longid’
C,StE of Fof _ v F id = var, FAIL (351)
Ck#lab= (£fn { lab=var,...} => var)

2
CF 0= () (332)
n>2 C'Foexp, = exp) -+ CFexp, = erp) (353)

CF Cexpy,--,exp,) = {l=exp}, -, H=exp)}
n >0 CF Cexpy):ee--i:Cexp,)::nil = exp (354)

CF Lexpy,-,exp,] = (exp)

n>1 C I case (expy) of _=>--- case (exp,) of _=> (exp) = exp’

CF Cexpy;---;exp,;exp) = (exp’)
(355)

n>1 C+ dec = dec’,C’ C+C"F Ceapy;esexp,) = atexp

356
C'F let dec in exp,;---;erp, end = let dec’ in alexp end (356)

Comments:

(351) The premise selects a fresh identifier id and attributes it with status v,
giving the value variable var.

(354) It is assumed here that neither nil nor :: has been rebound, and :: still
has right-associative infix status.

(356) The side-condition n > 1 means that the rule applies to all Let-expressions.

Applications C F appexp = exp

C & appexp = exp C + atexp = atexp’

357
C' & appexp atexp = (exp) atexp’ (357)
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Infix Expressions C,n, fir = infexp = exp
C - appexp = exp (358)
C,n, fix - appexp = exp
[VE of C(id) = (n,1) n<n'Vn=nAfiz =1)
[StE of F of C|(id) = st
C,n', 1k infexp, = exp, C,n',nk infexp, = exp, (359)
C,n, fix b infexp, id infexp, = id** {1=cxp,,2=cxp,}
[VE of C(id) = (n', 1) n<n'V(n=nAfir=r)
[StE of F of C|(id) = st
C,n',nt infexp, = exp, C,n',r F infexp, = exp, (360)

C,n, fix b infexp, id infexp, = id** {1=cxp,,2=cxp,}

Comments:

(360) The SML definition makes two different right-associative operators of the
same precedence associate to the left. This rule makes them associate to the
right.

Expressions Ct erp = exp'

Not all of the parentheses these rules generate are really necessary; many of them
are here only for uniformity of presentation.

C,0, fix - infexp = exp

361
C F infexp = (exp) (361)
C F not (exp] == expy) = exp (362)
CF expl =/= expy = (exp)
Ot (exp® terminates) andalso not(exp® raises ) = exp (363)
C' + exp® proper = (exp)

C' I if exp, then exp, else false = exp (364)

C' F erp, andalso exp, = (exp)
C' k= if exp, then true else exp, = exp (365)

C' I exp, orelse exp, = (exp)
C' F if exp, then exp, else true = exp (366)

C'F expy implies exp, = (exp)
C'F ((exp ; false) handle match) handle _=> false = exp’ (367)

C' F erp raises match = (exp’)
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C & exp raises pat => true = exp’

368

C F exp raises pat = (exp’) (368)

C'F case exp, of true => (exp,) | false => (exp;) = exp (369)
C' F if exp, then exp, else exp; = (exp)

C F (fn match) Cexp) = exp’ (370)

C' t case exp of match = (exp’)

Comments:

(361) The fixity fir can be chosen arbitrarily. If it were fixed, then either left- or
right-associative or all operators of precedence 0 would be ruled out.

(362),(363) It is assumed here that not has not been rebound, neither in St£ nor
in VE.

(364)—(369) It is assumed here that true and false have not been rebound.

Match Rules C + mrule = mrule’
C + pat = pat’, StE C + StE & exp = exp’ (371)
C'F pat => exp = pat’ => exp’
Declarations C'+ dec = dec’,C’
C + valbind = valbind’, StE (372)
C + val valbind = val valbind', StE in Env in Context
C + StE F fvalbind = valbind, StFE (373)
C F fun fvalbind = val rec valbind, StE in Env in Context
C + typbind = typbind', TE,TE' (374)
C + type typbind = type typbind’, TE' in Env in Context
C & typbind = typbind', TE, TE' (375)
C + eqtype typbind = eqtype typbind', TE' in Env in Context
(C + Et typbind® = typbind', TE, TE')
C + E{ +TFE) F datbind = datbind', F (376)

('t datatype datbind (withtype typbind®) =
datatype datbind’ { ; type typbind'), E{(+TE') in Context



B.4 Inference Rules 131

(C + EF typbind® = typbind', TE, TE'
C' + E( +TE) b datbind = datbind’, E
C' + E{+TE") b dec = dec', ("

377
C' t abstype datbind (withtype typbind®) with dec end = (377)
abstype datbind’ with (type typbind’ ;) dec’ end,
<TE' in Context —|—>C’
C + exbind = exbind', StE (378)
C' F exception exbind = exception exbind’, StF in Env in Context
CF decy = dec, Cy C+ Oy F decy = decy, Cy (379)

C' t local dec; in decy end = local dec) in dec), end, ()

C,SE of E of _, st longid, = longid’, I,

C,SE of Eof _ st longid, = longid. , E,
C'F open longid,---longid, = open longid}---longid! , Ey + --- + E, in Context

(380)
1
C+ = , {} in Context (381)
C'+ decy = dec, Cy C'+ Cy b decy = decy, Cy (352)
CF decy () decy = dec () decl, Cy+ Cy
Ct infix (d) idy --- id, = , VE in Context
C t infixr (d) idy - id, = , VE in Context

C t nonfix id, -+ id, = , VE in Context

Comments:

(376),(377) Type declarations of these forms are mutually recursive.

(383)—(385) Infix directives are replaced by the empty declaration. The digit d
is treated in the premise as the corresponding natural number.
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Value Bindings C' + valbind = valbind', StE
C + pat = pat', StE Ct exp = exp
(C'F valbind = valbind', StE") (356)
C'F pat = exp (and valbind) = pat’ = exp’ (and valbind'), StE{+StE")
C + StE F valbind = valbind’, StE (387)

C + rec valbind = rec valbind', StE

Comments:

(387) The recursive binding of StE allows constructor status to be overwritten.
This is not possible in SML (although the SML semantics is not entirely
clear about this).

Function Value Bindings C' F fvalbind = valbind, StE

A function value binding does not make “holes” in the scope of constructors, but
we need to make it produce a status environment in order to correctly generate
fresh identifiers.

C' F funcbind = match, var,n var = id"
Vi.l1<1<n = C,StF of Fof _ vt id; = var;, FAIL
C'F case (idy, -+, id,) of match = exp
(C F foalbind = valbind, StE)

388
C  funcbind (and fvalbind) = (388)
var = fn vary => --- fn var, => exp (and valbind), {id — v}{+StFE)
Single Function Bindings C' F funcbind = match,var,n
C' + fpat = pat, var,n, StE (CFty =ty
C + StE & exp = exp’ ((C F funcbind = match, var,n)) (389)

C+ fpat (:ty) = exp ({| funcbind)) =
pat => exp’ {:ty"y {{| match)), var,n

Comment: Notice that the function name and the number of parameters have to
be the same throughout a funcbind.

Type Bindings C' + typbind = typbind', TE, TE'

A type binding produces two type environments, the first for expansion of type
abbreviations (for withtype types), the second for declaring the type constructors
to be irreducible within type expressions, see rule 423.
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tyvarseq = o'® Chty=1ty (C'F typbind = typbind', TE, TE")
C + tyvarseq id = ty (and typbind) =
tyvarseq id® = ty" (and typbind'),
{id = AW 1y} (+TE), {id — FAIL}(+TE")

(390)
tyvarseq = o® (C'F typbind = typbind', TE, TE') (391)

C F tyvarseq id = 7 (and typbind) =

tyvarseq id® =7 (and typbind'),

{id — FAIL}(+TE), {id — FAIL}(+TE")

Data Type Bindings C' + datbind = datbind', E
C + conbind = conbind’', StE (C'+ datbind = datbind', E) (392)

C' + tyvarseq id = conbind (and datbind) =

tyvarseq id® = conbind’ (and datbind'),
({id — FAIL}, StE) in Env (+F)
Constructor Bindings C't conbind = conbind', StE
(C'F conbind = conbind’, SLE) (393)
Ctid (| conbind) = id® { | conbind'), {id s c} (+StE)
Ckty=ty (C'F conbind = conbind', SLE) (394)
O+ id of ty { | conbind) = id® of ty' { | conbind’), {id — c} (+StE)
Exception Bindings C' + exbind = exbind', StE
(CFty=ty) {{(C & exbind = exbind’, StE)) (395)
C'tid (of ty) ((and exbind)) =
id® (of ty') ((and exbind’)), {id — e}{{+StE))
C,StE of Eof _ el longid = longexcon, e
(CF exbind = exbind’, StE)

(396)

C'tid = longid (and exbind) =
id® = longexcon (and exbind’), {id — e}(+StE)
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Atomic Patterns C' + atpat = atpat’, StE

e (397)

C F scon = scon, {} (398)

C'+ (op) id = var,v

C'+ (op) id = var,{id — v} (399)
C F (op) longid = longid', st st #v (400)
C'F (op) longid = longid', {}
(C'F patrow = patrow’, SLE) (401)
C FA{ (patrow) } = { (patrow’) }, {}{+StE)
402
CHO={}{} (402)
n>?2 C & pat, = paty,StEy --- CF pat, = pat., StE, (403)
CtE (paty,--,pat,) = {1=pat,, -, n=pat,}, StE; + -+ StF,
n >0 CF (paty)::---::(pat,) : :nil = pat, SLK (404)
CF [paty,---,pat,] = (pat), St
- pat t', Stk
CF pat = pat', S (405)

C'F (pat) = (pat’), StE

Comments:

(404) It is assumed here that neither nil nor :: has been rebound, and :: still
has right-associative infix status.

Pattern Rows C' + patrow = patrow’, StE

Cr ... = ... 0 (406)

C'+ pat = pal’, StE (C F patrow = patrow’, StE")
C'F lab = pat { , patrow) = lab = pat’ { , patrow’), StE (+StE")

(407)

lab = id in Lab C'F lab = id{:ty) {(, patrow)) = patrow’, StE
CFid{:ty) ({, patrow)) = patrow’, StF

(408)

lab = id in Lab C'F lab = id{:ty) as pat {{, patrow)) = patrow’, SLE
Ct id{:ty) as pat {{, patrow)) = patrow’, StE

(409)
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Application Patterns C' F apppat = pat, StE

C F (op)longid = longid’, st st #v C & alpat = atpal’, StE

41
C' F {op)longid atpat = longid" atpat’, StE (410)
C & atpat = atpat’, StE (411)
C' F atpat = atpat’, SLE
Infix Patterns C,n, fir = nfpat = pat, StE
C  apppat = pat, StE (412)
C,n, fix = apppat = pat, StE
[VE of C](id) = (n',1) n<nV(n=nAfir=1)
[StE of F of C|(id) = st € {c, e}
C,n',1F infpat, = pat,, StF, C,n',nt infpat, = pat,, StE, (413)
C,n, fix b infpat, id infpat, = id** {1=pat,,2=pat,}, StE, + StF,
[VE of C](id) = (n', 1) n<nV(n=nAfix =r)
[StE of F of C|(id) = st € {c, e}
C,n',nF infpat, = pat,, StF, C,n',r & infpat, = pat,, StE, (414)
C,n, fix b infpat, id infpat, = id** {1=pat,,2=pat,}, StE, + StF,
Patterns C'+ pat = pat', StE
C,0, fix = infpat = pat, St (415)
C & infpat = pat, St
Chily=ty C't pat = pal’, StE (416)
CF pat : ty= pat’ : ty', St
C + (op)id = var,v {(CFty=ty)) C + pat = pat', StE 17
C+ (op)id((: ty)) as pat = var((: ty')) as pat’, {id — v} + StE (417)
Function Patterns C' F fpat = pat,var,n, Stk
n>1 C' F Catpaty,---,atpat,) = pat, StE (418)

C' & op id atpat,---atpat, = pat,id’  n, Stk

n>1 [VE of C(id) = (n',n) C' F Catpaty,---,atpat,) = pat, StE
C' & id atpat,---atpat, = pat,id’ ,n, SLE

(419)
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C F (Catpat, ,atpat}) ,atpaty,---,atpat,) = pat, StE
[VE of C(id) = (n', fix) fix #n n>1

: — (420)
C' & Catpat, id atpaty) atpaty---atpal, = pat,id”,n, SLE
[VE of C|(id) = (v, fix) fix #n C F Catpat,, atpat}) = pat, SLE (121)
C & atpat, id atpat, = pat,id",1, StE
Type Expressions ChHty=ty
tyseq = ty,---ty, Ckity, =ty, - Ck iy, = ty,
C,TE of Eof _ t I longid = longtycon, Aay---ay.ty
: (422)
C F tyseq longid = ty{ty|/oq,... ty}./ar}
C,TE of F of _,t I longid = longtycon, FAIL tyseq = ty,---ty,
Chily, =ty - Ckty, =ty tyseq’ =ty -ty (423)
C' F tyseq longid = tyseq’ longtycon
> 2 CFH{l:ty,,,m:t t

CF ty* - *ty, = ty

Comments:

(422) This rule replaces type constructors defined in a withtype clause of a type
declaration. The replacement of withtype types of the current context '
does not apply to type constructors in ty — ty is a type expression for which
withtype types have already been replaced.

Structure Expressions C'+ strezp = strexp’, E
C' + strdec = strdec’, C' (425)
C | struct strdec end = struct sirdec’ end, F of C'
C,SE of Eof _ st longid = longstrid, I/ (426)
C' F longid = longstrid, F
C,Fof £t id= funid,(Fy, E,) C & strexp = strexp’, B E = F, (427)
C Fid ( strexp ) F funid ( strexp’ ), F;
C + id ( struct strdec end ) = strexp’, F (428)
C'Fid ( strdec ) = strexp’, E
C & strdec = strdec’,C’ C + C'F strexp = strexp’, E (429)

C' F let strdec in strerp end = let strdec’ in strexp’ end, E
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Structure-level Declarations C'+ strdec = strdec’, C'
C + dec = dec’,C’
- 4
C+ dec = dec’, C’ (430)
l_ !
| C a.:r = ar . (431)
C'F axiom ar = axiom az’, {} in Context

C' F strbind = strbind’, SE (432)

C F structure strbind = structure strbind’, SE in Env in Context
C & strdec; = strdec), Cy C + Cy & strdecy = strdec,, C (433)

C' F local strdec; in strdecy end = local strdec) in strdec), end, C,
434
CF = ,{} in Context (434)
C & strdec; = strdec), Cy C + Cy & strdecy = strdec,, C (435)

C'b strdecy (;) strdecy = strdec) (;) strdecy, Cy + C

Structure Bindings |C' + strbind = SE|
C'+ sglstrbind = sglstrbind’, SE, (C' & strbind = strbind’, SE,) (436)

C'F sglstrbind (and strbind) = sglstrbind’ (and strbind'), SE, (+SE;)

Single Structure Bindings C'  sglstrbind = sglstrbind', SE

C + psigexp = psigexp’, F; C' & strexp = strexp’, Fy Ey = Fy

437
C Fid : psigexp = strexp = 1d® : psigexp’ = strexp’, {id — F;} (437)
C' F psigexp = psigexp’, E (438)
C'&id : psigexp = ? = id® : psigexp’ = 7, {id — E}
C & strexp = strexp’, F (439)
C' & id = strexp = id® = strexp’, {id — E}
. . . . I
Signature Expressions C'F sigexp = sigexp’, K
| C I spec = S].)GC/, i) (440)
C I~ sig spec end = sig spec’ end, I/
C,Gof gt id = sigid, (441)

CFid= sigid, F
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. . . . . !
Principal Signatures C' F psigexp = psigexp , K
C' F sigexp = sigexp’, I (442)
C & sigexp = sigexp’, E
Signature Declarations C'+ sigdec = sigdec’, G
C' + sigbind = sigbind’, G (443)
C F signature sighind = signature sigbind’, G
CF = .0 (444)
C'F sigdec, = sigdec), Gy C' + Gy F sigdec, = sigdecy, Gy (445)
C' & sigdecy (;) sigdecy, = sigdec’ {;) sigdecy, Gy + G
. . . . . . . !
Signature Bindings C F sigbind = sigbind , G
C + psigexp = psigexp’, E (C'F sigbind = sigbind’, G) (446)
C'+ id = psigexp (and sigbind) =
id& = psigexp’ (and sigbind’y, {id — E} (+G)
. . /
Specifications C'F spec = spec’, K
C + valdesc = valdesc', E (447)
C + val valdesc = val valdesc', B
C F typdesc = typdesc’, TE (448)
C t type typdesc = type typdesc’, TE in Env
C F typdesc = typdesc’, TE (449)
C' F eqtype typdesc = eqtype typdesc’, TE in Env
C '+ datdesc = datdesc’, E (450)
C'F datatype datdesc = datatype datdesc’, E
C't exdesc = exdesc’, StE (451)
(' F exception exdesc = exception exdesc’, StE in Env
C t axdesc = axdesc’ (452)
C'F axiom azdesc = axiom axzdesc’, {} in Env
C' & strdesc = strdesc’, SE (453)

C F structure strdesc = structure strdesc’, SE in Env
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C + shareq = shareq'

454
C' F sharing shareq = sharing shareq’, {} in Env (454)
C & spec, = specy, Iy C + E, & spec, = spech, E; (455)
C' F local specy in spec, end = local spec) in spech end, Fs
C,SE of Fof _ s F longid, = longstrid,, £y
C,SE of Eof st longid, = longstrid,, F, (456)
C' F open longid,---longid, =
open longstrid, --- longstrid,,, £y +---+ F,
C,Gof gk wdy = sigid,, IV
C,Gof gk id, = sigid,, I, (457)
C'F include idy---id, = include sigid, --- siqid,,, Iy + -+ F,
458
CF = ,{} in Env (458)
C' F spec, = spech, Iy C + E, & specy, = spech, I (459)
C't specy () specy = specy (;) spech, E1+ Es
Value Descriptions C' + valdesc = valdesc', StE
Ckty=ty (C'F valdesc = valdesc’, SLE) (460)
Ctid : ty {(and valdesc) = id" : ty' (and valdesc’), {id s v}({+StE)
Type Descriptions C' + typdesc = typdesc’, TE
(C'F typdesc = typdesc’, TE) (461)
C + tyvarseq id (and typdesc) =
tyvarseq id® (and typdesc'), {id — FAIL}{+TE)
Datatype Description C'+ datdesc = datdesc’, E
C + condesc = condesc’, StF (C'+ datdesc = datdesc’, E) (162)

C + tyvarseq id = condesc (and datdesc) =

tyvarseq id® = condesc’ (and datdesc'),
({id — FAIL}, StE) in Env (+F)
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Constructor Descriptions C'+ condesc = condesc’, StE
(CFty=ty) {({C'F condesc = condesc’, SLE)) (163)
Ctid (of ty) ({| condesc)) =

id® {of ty') {{| condesc’)), {id — c}{{+StE))
Exception Descriptions C'+ exdesc = exdesc’, StE
(CFty =ty {({(C'F exdesc = exdesc’, StE)) (464)

Ct id (of ty) ((and exdesc)) =

id® {of ty') ((and exdesc’)), {id — e} {{+StE))
Specification Expressions C'+ specexp = specexp’
C + strdec = strdec’, B C + E & azexp = exp (465)

C F let strdec in arerp end = let strdec’ in exp end
CF let in azerp end = specexp (466)

C & azexp = specexp
Axiomatic Expressions C F azexp = exp
C'F exp® = exp
4
C I exp® = exp (467)
Structure Descriptions C't strdesc = strdesc’, SE
C + sigexp = sigexp’, K (C F strdesc = strdesc’, SE) (468)
Ctid : sigexp (and strdesc) =

id® : sigexp’ (and strdesc’), {id — E} (+SE)
Functor Declarations C' + fundec = fundec', F
C + funbind = funbind’, F’ (469)

C F functor funbind = functor funbind’, '

cr = .0 (470)
C + fundec, = fundecy, Iy C+ Fy & fundec, = fundecy, Fy (471)

C'F fundec, (;) fundec, = fundec' (;) fundecy, Fy + Fy
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Functor Bindings C'+ funbind = funbind', F

C,SEof Eof _ st id" = strid, FAIL
Ctid (id” - sig spec end ) : id =
let open id” in strerp end (and funbind) = funbind’, F

472
CFid (spec) : id" = strezp (and funbind) = funbind', F (472)
C,SE of Eof _ st id = strid, FAIL
CFid (id sig spec end ) : sig local open id" in spec’ end end
= let open id’ in strexp end (and funbind) = funbind’, F (473)
C'Fid ( spec ) : sig spec’ end = strexp (and funbind) = funbind', F
C,SEof Eof _ st id" = strid, FAIL
C'Fid (id" : sig spec end ) : id' =7 (and funbind) = funbind', F (474)
CFid (spec) : id' =7 (and funbind) = funbind’, F
C,SE of Eof _ st id = strid, FAIL
CFid (id sig spec end ) : sig local open id" in spec’ end end
= 7 (and funbind) = funbind’, F (175)
C'F id ( spec ) : sig spec’ end = 7 (and funbind) = funbind', F
C & psigexp, = psigexp’, Iy
C 4 ({idy — E1} in Env) F psigexp, = psigexpy, Fy
C' + ({idy — E,} in Env) b strexp = strexp’, E E - E
(C'F funbind = funbind', F) (476)
Ctidy Cidy : psigexp, ) :psigexp, = strexp (and funbind) =
id;f Cid5 : psigexp’ ) :psigexpl, = strexp’ (and funbind'),
{funid — (E1, Eq)} (+F)
C F psigexp, = psigexp’,
C' + ({idy — E,} in Env) b psigexp, = psigexpy, E;
(C'F funbind = funbind', F) (477)

Ctidy Cidy : psigexpy ) :psigexpy, = 7 (and funbind) =
idf (idS : psigexp) ) :psigeapl, = 7 (and funbind’),
{funid — (Ey, Eo)} (+1F)



142 B APPENDIX: DERIVED FORMS

Top-level Declarations C' + topdec = topdec’, C'
C+ val it = exp = topdec,C’ (478)
C' F exp = topdec,C’
C' + strdec = strdec’, C'
: 4
C + strdec = strdec’, C" (479)
C + sigdec = sigdec’, G (450)
C'+ sigdec = sigdec’, G in Context

C + fundec = fundec', I’ (481)

C't fundec = fundec’, ' in Context
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C Appendix: The Initial Basis

For the verification of full programs, see rule 343, we have to specify the initial
(verification) basis By, an initial context CDgg for deriving phrases of the Bare
language from phrases of the Full language, and an initial (verification) state sq.
The subscript “DER” refers to the semantics of derived forms in Appendix B.

C.1 The Initial State
The initial state sg has the form
so = (BasExName, {},{},CToU ET,,0)

where BasExName can be found in section 6.5 on page 57. Ty and ET, are
defined below in figure 27. Setting nof 5o to 0 is insignificant; any natural number
would do. The reason for this arbitrariness is rule 299, which allows an arbitrary
choice of question mark interpretation.

CTy = A (true, bool), (false, bool), (nil, V’a.’a list),
(::,Va{l— ’a,2— ’alist} — ’a list) }
ETy = {(excon,exn) | excon € BasExName \ {NoCode, Abuse}}

Figure 27: Initial Value Templates

The set E'Ty does not contain the corresponding pairs for NoCode and Abuse,
because they are not ordinary exceptions. We use the exception mechanism to
propagate certain information, but we do not want quantified variables of type
exn to range over these special exceptions.

C.2 The Initial Context for Derived Forms
The initial context for the derived forms CPgg has the form
Cher = ((SEper, TEpEr, StE°), VEDgr, Forr, SEpER)

where all components except VEQ g and StE° are the empty map {}. VEQpg is
defined in figure 28, StE° in figure 29. The set BasVal is defined in section 6.4,
page 57. PredFun is the set containing the identifiers

o @ - map rev  not

The initial status environment StE° assigns identifier status to all predefined
identifiers. Although the status v is the default status for identifiers in the se-
mantics for derived forms, we still have to include value variables in StE°, because
the rules in the semantics for derived forms that require the generation of fresh
variables take the condition id ¢ Dom StE as an indication of freshness.
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id — (n,fir) condition

o — (3,1)

id — (41) id € {=,<>,<,>,<=,>=}
¢ — (b1)

i o— (5,r)

id — (6,1) ide{+-")

id — (7,1) id € {div,mod,/,*}

Figure 28: Initial Infix Status VEDgg

id

st condition

H
id — id € BasExName \ {NoCode}
id — ¢ id € {true false,::,nil}
id — id € BasVal U PredFun

Figure 29: Initial Status Environment St&°
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C.3 The Initial Verification Basis

The initial verification basis By has the form

By = ((Mo,Tv), Iy, Go, Eo)

where
o My = 0
o To = {bool,int,real,string,list, exn}
o Iy = {}
o Go = {}

® EO - (SE(),TE(),VE())
® SEO - {}

All type names in Ty have arity 0, except 1ist which has arity 1. All type names
in Ty except exn admit equality.

The initial type environment TFE, is shown in figure 30. The initial variable
environment VF, consists of two parts, VE, = VE; U VE{ with Dom VE[ =
BasValU{true, false, : :,nil}U(BasExName\{NoCode, Abuse}) and Dom VE[ =
PredFun. All identifiers id in the domain of VE| are mapped to typed values tv.
The type schemes Stat tv of the predefined identifiers are given in figure 31; the
basic exceptions (not listed there) have all type exn.

tycon +— {0, {cony — oy,...,con, —o,} } (n>0)
wmit o (500 (1)
bool +~ { bool, {true > bool, false — bool} }
int ~ { int, {}}
real — { real, {}}
string — { string, {}}
list +— { list, {nil+— V’a. ’a list,
it —VYa. {1~ ’a,2+— ’alist} — ’a list} }
exn +— { exn, {}}

Figure 30: Static TFq
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NONFIX INFIX
var +— o var +— o
map +— V’a’b.(’a— ’b) — Precedence 7 :
’a list — ’b list / +— real * real — real
rev — V’a.’alist — ’alist |div ~— int * int — int
not +— bool — bool mod +— int % int — int
~ +— Vnum num — num * +— Vnum num * num — num
abs +~— Vnum num — num Precedence 6 :
floor +— real — int + +~— Vinum num * num — num
real +— int — real - +— VYnum num * num — num
sqrt + real — real — string * string — string
sin + real — real Precedence 5 :
cos + real — real : — VY’a.’a* ’alist — ’alist
arctan +— real — real @ ~— V’a.’alist
exp + real — real * ’a list — ’a list
In +— real — real Precedence 1 :
size + string — int = +— V’’a. ’’a x ’’a — bool
chr +— int — string <> +— V’a.’’a x ’’a— bool
ord + string — int < + Vnum num * num — bool
explode +— string — string list > + Vnum num * num — bool
implode + string list — string <= + Vnum num * num — bool
true +— bool >= +— Vnum num * num — bool
false +— bool Precedence 3 :
nil ~— V’a. ’a list o — Y’a’b’c. (’b—’c¢)
«(Pa— ) (Pa— ’¢)
Notes:

o In type schemes we have taken the liberty of writing ty, * ty, in place of

{1 Yy, 2 — tyz}.

e Recall that the special type variable num can be replaced by either real or

int, see Section 4.5.

Figure 31: Static Variable Environment Stat VE, (without exceptions)
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C.4 Predefined Functions

Note that Dyn VE] is the identity function; this is because we have chosen to
denote basic values by the names of variables to which they are initially bound. We
assume that we can always distinguish basic values from constructors — therefore,
the bare identifiers are not values, but these identifiers attributed with their status.

The semantics of these basic values (most of which are functions) lies princip-
ally in their behaviour under APPLY, which we describe below.

VE{ contains initial variable bindings which, unlike BasVal, are definable
in ML; it is obtained as follows: the following top declaration topdec is veri-
ficated with the program semantics (page 116) in the initial state and basis as
s0, By, CRpr F topdec = B,Cl g where BY is the same as By but without VE].
B = {(s,B)} is a singleton set with s = s and we get VE{ by removing all
bindings in VE of E of By, from VE of E of B.

fun (F o G)x = F(G x)

fun nil @ M = M
| (x::L) @M =x::(L @ M)

fun s © s’ = implode((explode s) @ (explode s’))
fun map F nil = nil

| map F (x::L) = (F x)::(map F L)
fun rev nil = nil

| rev (x::L) = (rev L) @ [x]

fun not true = false
| not false = true

We now describe the effect of APPLY upon each value b € BasVal. For special
values, we shall normally use ¢, r, n, s to range over integers, reals, numbers
(integer or real), strings respectively. We also take the liberty of abbreviating
“APPLY(abs, r)” to “abs(r)”, “APPLY(mod, {1 — ¢,2 — d})” to “e mod d”, etc.

e “(n) returns the negation of n, or the packet [Neg] if the result is out of
range.

e abs(n) returns the absolute value of n, or the packet [Abs] if the result is
out of range.

e floor(r) returns the largest integer ¢ not greater than r; it returns the
packet [Floor]| if ¢ is out of range.

e real(s) returns the real value equal to i.

e sqrt(r) returns the square root of r, or the packet [Sqrt] if r is negative.
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sin(r), cos(r) return the result of the appropriate trigonometric functions.

arctan(r) returns the result of the appropriate trigonometric function in
the range +7/2.

exp(r), 1n(r) return respectively the exponential and the natural logarithm
of r, or an exception packet [Exp] or [Ln] if the result is out of range.

size(s) returns the number of characters in s.

chr(i) returns the character numbered 7 (see Section 2.2) if ¢ is in the interval
[0,255], and the packet [Chr] otherwise.

ord(s) returns the number of the first character in s (an integer in the
interval [0,255], see Section 2.2), or the packet [0rd] if s is empty.

explode(s) returns the list of characters (as single-character strings) of
which s consists.

implode(L) returns the string formed by concatenating all members of the
list L of strings.

The arithmetic functions /%, +,- all return the results of the usual arith-
metic operations, or exception packets respectively [Quot], [Prod], [Sum],

[Diff] if the result is undefined or out of range.

i mod d , ¢ div d return integers r, ¢ (remainder, quotient) determined by
the equation d x g + r = ¢, where either 0 < r < d or d <r < 0. Thus the
remainder has the same sign as the divisor d. The packet [Mod] or [Div] is
returned if d = 0.

The order relations <,>,<=,>= return boolean values in accord with their
usual meanings.

vy = vy returns true or false according as the values vy and vy are, or
are not, identical. The type discipline (in particular, the fact that function
types do not admit equality) ensures that equality is only ever applied to
special values, nullary constructors, and values built out of such by record
formation and constructor application.

v; <> vy returns the opposite boolean value to v; = v,.
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