
The De�nition of Extended MLStefan Kahrs� Donald Sannella� Andrzej Tarleckiy| Version 1 |AbstractThis document formally de�nes the syntax and semantics of the Ex-tended ML language. It is based directly on the published semantics ofStandard ML in an attempt to ensure compatibility between the two lan-guages.

�LFCS, Department of Computer Science, University of Edinburgh, Edinburgh, Scotland.yInstitute of Informatics, Warsaw University, and Institute of Computer Science, PolishAcademy of Sciences, Warsaw, Poland.

ii CONTENTSContents1 Introduction 11.1 Behavioural equivalence : 31.2 Metalanguage : 32 Syntax of the Core 82.1 Reserved Words : 82.2 Special constants : 82.3 Comments : 92.4 Identi�ers : 92.5 Lexical analysis : 102.6 In�xed operators : 102.7 Derived Forms : 112.8 Grammar : 112.9 Syntactic Restrictions : 153 Syntax of Modules 163.1 Reserved Words : 163.2 Identi�ers : 163.3 In�xed operators : 163.4 Grammar for Modules : 163.5 Syntactic Restrictions : 163.6 Closure Restrictions : 184 Static Semantics for the Core 224.1 Simple Objects : 224.2 Compound Objects : 234.3 Projection, Injection and Modi�cation : : : : : : : : : : : : : : : : 234.4 Types and Type functions : 254.5 Type Schemes : 26Traces and Trace Schemes : 264.6 Scope of Explicit Type Variables : : : : : : : : : : : : : : : : : : : 264.7 Non-expansive Expressions : 274.8 Closure : 274.9 Type Structures and Type Environments : : : : : : : : : : : : : : : 274.10 Inference Rules : 284.11 Further Restrictions : 375 Static Semantics for Modules 385.1 Semantic Objects : 385.2 Consistency : 395.3 Well-formedness : 395.4 Cycle-freedom : 40

CONTENTS iii5.5 Admissibility : 405.6 Type Realisation : 405.7 Realisation : 40Traces : 41Stripping Axioms : 415.8 Type Explication : 425.9 Signature Instantiation : 425.10 Functor Signature Instantiation : 425.11 Enrichment : 425.12 Signature Matching : 435.13 Principal Signatures : 435.14 Inference Rules : 456 Dynamic Semantics for the Core 556.1 Reduced Syntax : 556.2 Simple Objects : 556.3 Compound Objects : 566.4 Basic Values : 576.5 Basic Exceptions : 576.6 Closures : 58States and Flags : 58Pure Values : 596.7 Inference Rules : 637 Dynamic Semantics for Modules 737.1 Reduced Syntax : 737.2 Semantic Objects : 737.3 Inference Rules : 768 Veri�cation Semantics for the Core 828.1 Semantic Objects : 828.2 Question Mark Interpretation : 828.3 State : 848.4 Value Access : 848.5 Type Interpretation : 858.6 Projections to Dynamic and Static Semantics : : : : : : : : : : : : 868.7 Relationship to Dynamic Semantics : : : : : : : : : : : : : : : : : : 868.8 Sentences of Static and Dynamic Semantics : : : : : : : : : : : : : 878.9 Inference Rules : 879 Veri�cation Semantics for Modules 1029.1 Compound Objects : 1029.2 Generalised Axioms : 1039.3 Combining Interfaces : 104

iv CONTENTS9.4 Extracting Objects of the Static Semantics : : : : : : : : : : : : : : 1059.5 Sets : 1059.6 Inference Rules : 10510 Programs 115A Appendix: Full Grammar 117A.1 Syntactic Restrictions : 124B Appendix: Derived Forms 125B.1 Semantic Objects : 125B.2 Identi�ers : 126B.3 Enrichment : 126B.4 Inference Rules : 126C Appendix: The Initial Basis 143C.1 The Initial State : 143C.2 The Initial Context for Derived Forms : : : : : : : : : : : : : : : : 143C.3 The Initial Veri�cation Basis : 145C.4 Prede�ned Functions : 147References 149

CONTENTS vPrefaceExtended ML (EML) is a framework for the formal development of programs in theStandard ML (SML) programming language from high-level speci�cations of theirrequired behaviour. The Extended ML language is a \wide-spectrum" languagewhich encompasses both speci�cations and executable programs in a single uni�edframework. This allows all stages in the development of a program to be expressedin the Extended ML language, from the initial high-level speci�cation to the �nalcode itself and including intermediate stages in which speci�cation and code areintermingled.The Extended ML language is an extension of a large subset of Standard ML.This subset excludes references, assignment, input/output and imperative poly-morphism, requires structure declarations and functor declarations to include ex-plicit signatures, and restricts structures and functors to behave as abstractions1and parameterised abstractions respectively. Thus, Extended ML can only be usedto specify/develop programs written in this subset of Standard ML. The Exten-ded ML language extends this subset by permitting axioms in module interfaces(for specifying required properties of module components) and in place of code inmodule bodies (for describing functions in a non-algorithmic way prior to theirimplementation as Standard ML code).The principles behind the design of the Extended ML language and devel-opment framework, details of its theoretical underpinnings and examples of itsuse may be found in [ST85], [ST86], [ST89], [San90] and [ST91]. The interestedreader should consult these for background information. This document is a formalde�nition of the syntax and semantics of the Extended ML language; the othercomponents of the Extended ML framework are disregarded here.In order for Extended ML to serve its purpose as a framework for specifyingand formally developing Standard ML programs, it is essential that the de�nitionof the Extended ML language should appropriately \match" the published de�n-ition of Standard ML [MTH90]. Given the size of language de�nitions, such amatch is practically impossible to achieve (let alone demonstrate in any convin-cing way) by post hoc comparison of two independent de�nitions. For this reason,the de�nition of Extended ML is based directly on the relevant parts of [MTH90],amended to correct errors and infelicities as described in Appendix D of [MT91]and as suggested in [Kah93] and [Kah94]. In order to make the relationship withStandard ML manifest, the structure of this document is as close as possible tothat of [MTH90]. In places where the two languages are identical, the text of[MTH90] (with the indicated amendments) is used without change. For the mostpart, even the rule numbers and section numbers used in [MTH90] have beenretained here. In detail:1The term \abstraction" is taken from [MacQ86], the original description of the modulesfacilities of Standard ML. The idea is that only the information that is explicitly recorded in thesignature(s) of a structure/functor is available to its clients.

vi CONTENTS� Sections 2{7 of this document correspond directly to Sections 2{7 of [MTH90].Although there are a few more rules here than in [MTH90], correspondingrules appear with the same numbers for ease of comparison.� Sections 8 and 9 are completely new.� Section 10 here corresponds to Section 8 in [MTH90].� Appendix A here corresponds directly to Appendix B there.� Appendix B here is a reformulation of Appendix A there, which also takescare of identi�er status (Appendix B of [MT91]) and in�x directives.� Appendix C here corresponds to Appendices C and D there.The intention is that a \proof" that Extended ML is compatible with Stand-ard ML, if such a thing could ever be constructed, would be based in large parton a simple textual comparison of the two de�nitions.Because of the intimate relationship between [MTH90] and this document,familiarity with the former (for which study of [MT91] is strongly recommended!)is almost a prerequisite to achieving a deep understanding of the latter. The lengthand necessary formality of a de�nition such as this one makes it rather di�cult topenetrate. For this reason an informal overview of the de�nition, which explainsmost of the main issues involved and justi�es some of the choices taken, is providedin [KST94].AcknowledgementsThanks to Fabio da Silva for collaboration on an early version of the syntax andthe static and dynamic semantics. Thanks to Thorsten Altenkirch, Mike Fourman,Robert Harley, Martin Hofmann, Ed Kazmierczak, Robin Milner and Mads Toftefor helpful discussions, comments and criticisms.This document contains most of the text of The De�nition of Standard MLby Robin Milner, Mads Tofte and Robert Harper (MIT Press, 1990), which isreproduced by kind permission of the authors and MIT Press.The research reported here was partly supported by SERC grants GR/E78463(SK, DS, AT), GR/H73103 (SK), GR/H76739 (AT), GR/J07303 (SK, DS) andGR/J07693 (DS), a SERC Advanced Fellowship (DS), the COMPASS Basic Re-search working group (DS, AT) and KBN grant 2 P301 007 04 (AT).

11 IntroductionThis document formally de�nes the Extended ML language. As explained inthe Preface, its structure closely follows that of the de�nition of Standard ML[MTH90]. Thus, apart from the usual separation between the de�nition of syntaxand semantics, the semantics is divided into several parts:� The static semantics deals with types (de�ning when a phrase elaborates toa type or an assembly containing types). It checks that phrases are well-typed, that they do not make reference to unbound identi�ers, etc. We claimthat the relations de�ned here are decidable, which means that mechanicaltype inference is possible.� The dynamic semantics deals with values (de�ning when a phrase evaluatesto a value). In Extended ML, phrases may specify values without de�ningthem in an executable fashion. The result of evaluation in Extended ML isthe same as in Standard ML, provided that such \unde�ned" values are notused in computing the result; otherwise a special exception is raised. Axiomsin signatures and in structure/functor bodies are treated as formal commentsby the dynamic semantics. We claim that the relations de�ned here aresemi-decidable, which means that evaluation is implementable although (ofcourse) it may fail to terminate.� The veri�cation semantics deals with the constraints imposed by axioms(de�ning when a phrase veri�cates2 to a value or set of values). This includeschecking that each structure and functor satis�es the axioms in its interfacesignature(s). Since axioms are not present in Standard ML, there is nothingin [MTH90] corresponding to the veri�cation semantics. We claim that someof the relations de�ned here are not semi-decidable, which means that nocomplete proof system can exist for Extended ML.Both syntax and semantics are further subdivided by treating the Core and Mod-ules separately. The de�nition of syntax is also divided into the de�nition of theBare language, which can be viewed as abstract syntax, and the de�nition of theFull language by (computable) translation of derived forms into the Bare lan-guage. The initial basis gives names and meanings to all the prede�ned identi�ersin Extended ML. Finally, the semantics of \programs" completes the de�nitionof the Extended ML language by combining the other parts of the de�nition.Figure 1 shows where all these parts appear in this document, and indicates thedirect dependencies between the parts (A �! B means that A directly dependson B, i.e. A explicitly \calls" B). There are further indirect dependencies whichmust be kept in mind when reading the de�nition. The dynamic semantics de-pends on the static semantics, since evaluation of phrases is only guaranteed tobe well-de�ned for phrases that elaborate. The veri�cation semantics depends on2A more obvious term is \verify", but this carries connotations we would like to avoid.

2 1 INTRODUCTION
Static semanticsfor the CoreSection 4 � Static semanticsfor ModulesSection 5= ~Bare syntaxfor the CoreSection 2 � Dynamic semanticsfor the CoreSection 6 � Dynamic semanticsfor ModulesSection 7 - Bare syntaxfor ModulesSection 36} >Veri�cation semanticsfor the CoreSection 8 � Veri�cation semanticsfor ModulesSection 9 }Full syntaxAppendix A � Derived formsAppendix B � ProgramsSection 10?Initial basisAppendix C

o 7� o9
Figure 1: Parts of the de�nition of Extended ML

1.1 Behavioural equivalence 3the static semantics in exactly the same fashion, with the di�erence that inform-ation is explicitly passed from the static semantics to the veri�cation semanticsvia the program semantics. The initial basis depends on the dynamic semantics,the veri�cation semantics and the derived forms in the sense that it contains se-mantic objects of classes de�ned in these sections. Since the metalanguage usedfor presenting the semantics is non-standard, it is presented later in this section.1.1 Behavioural equivalenceThe veri�cation semantics de�nes what it means for a structure body to matchits interface signature. Roughly speaking, this requires any model of the struc-ture body to satisfy the axioms in the signature. Following ideas concerning theuse of axioms to specify encapsulated abstractions, it is possible to relax this re-quirement by allowing the axioms to be satis�ed not \literally", but only \up tobehavioural equivalence" with respect to an appropriate set of \observable types"[ST89]. Similar remarks apply to functor declarations.The present de�nition requires literal satisfaction of axioms. We intend toeventually change this to permit satisfaction up to behavioural equivalence, butfurther study is required before this can be done. Unfortunately, the approach usedin previous work on the foundations of formal development in Extended ML, via ade�nition of behavioural equivalence between models, will not achieve the desirede�ect because of our use of models incorporating a rather concrete representationof types and values. We believe that a small modi�cation to the meaning ofquanti�cation (rules 211{214) and logical equality (rules 231{232) is all that willbe required. Before making this change we hope to show that there is a satisfactoryrelationship between what this yields and the behavioural equivalence relation usedfor the foundations of formal development, following [BHW94].1.2 MetalanguageThe semantics of Extended ML is presented in a style known as Natural Semantics[Kah88], or rather an extended version of it. The metalanguage for the presenta-tion of the semantics has rules of the form�1 ��� �k where the conclusion is a sentence and each premise (or hypothesis) �i is eithera sentence or a rule. In particular we allow for the use of higher-order rules (withrules as premises).In the presentation of the rules, phrases within single angle brackets h i arecalled �rst options, and those within double angle brackets hh ii are called secondoptions. To reduce the number of rules, we have adopted the following convention:

4 1 INTRODUCTIONIn each instance of a rule, the �rst options must be either all presentor all absent; similarly the second options must be either all presentor all absent.Thus, a rule abbreviates four rules if both �rst and second options occur in itspresentation.Primitive sentences are de�ned in the various sections of the semantics and aremostly of the form B ` P)M where B and M are (tuples of) semantic objectsand P is a syntactic object. Such a primitive sentence can be read as \againstbackground B, the phrase P may be given the meaningM". The schema `)can be seen as a family of ternary predicate symbols, which are de�ned by thesemantics. These predicate symbols are overloaded for various phrase classes, butthe context always resolves this ambiguity: the predicate symbol in the conclusionof a rule is always introduced by a rule section header, e.g. (cf. Section 4.10)Expressions C ` exp) �; U;
introduces a predicate symbol `exp in the static semantics of the Core. The follow-ing rules (up to the next rule section, in this particular case rules 9 to 14) all usethis predicate symbol in their conclusion. The premises on the other hand use the\closest-�tting" predicate symbol, which will always be uniquely determined. Forinstance, rule 9 on page 30 in the static semantics seems to have identical premiseand conclusion, but ` in the conclusion refers to `exp and ` in the premise to `atexp .The meaning of \closest-�tting" is formalised by ordering the phrase classes of thesyntax (languages generated by non-terminals of the grammar) by set inclusion,giving us a partial order on the mentioned predicate symbols: `atexp � `exp , be-cause each atomic expression is an expression as well.We also allow several other forms of primitive sentences (e.g. x 2 A) andcombine primitive sentences using logical connectives and quanti�ers to form non-primitive sentences.Metavariables within sentences range over syntactic and semantic objects. Thename of a metavariable indicates the class of objects it ranges over. The name of ametavariable for a syntactic object is closely linked to the name of the correspond-ing phrase class, the language generated by the non-terminal. For example, themetavariable exp ranges over syntactic objects of the phrase class Exp, see Section2.8. Concerning metavariables for semantic objects, the corresponding conventionis introduced in the de�nition of the semantic objects, e.g. t 2 TyName in Figure11 on page 22 introduces t as a metavariable ranging over semantic objects fromTyName. This convention extends to priming and subscripting of metavariables,e.g. t01 is also a metavariable ranging over TyName. Finally, we write v=p for ametavariable which ranges over the (disjoint) union of the semantic object classesover which v and p range; they are called compound metavariables.We interpret rules by translating them into formulae of many-sorted higher-order logic and then interpreting these formulae intuitionistically. Therefore, as

1.2 Metalanguage 5a whole, the semantics can be understood as a speci�cation in higher-order logic.Its meaning is the set of consequences of this speci�cation (derivable sentences) inhigher-order intuitionistic logic. This approach sidesteps problems with the usualinterpretation of such rules as giving an inductive de�nition of the predicates`) , since our use of negated premises and higher-order rules renders thisinterpretation potentially meaningless. However, it appears that the hierarchicalstructure of the semantics and the particular way in which the o�ending constructsare used make it possible to show that such an \inductive" interpretation wouldbe unproblematic and would coincide with the interpretation we formally use here.For the sake of legibility, the rules do not contain explicit quanti�ers on allvariables, but we employ instead a number of principles for inserting these inthe course of the translation into higher-order logic. Besides the usual bindingconstructs (quanti�ers) in logic, we understand rules (and set comprehensions) asguarding variables. If a variable is guarded by a rule then this fact corresponds toan implicit universal quanti�er, provided the variable does not occur unguardedoutside the rule. Thus, in contrast to usual binding, guarding operates top-downrather than bottom-up. Unguarded variables are free variables in the usual sense,but guarded variables can also be free, provided they are unguarded in the contextof the formula. For instance, if we take implication =) as a guarding operatorin �rst-order logic then the formula (P (x) =) Q(x; y)) =) R(y) is shorthand for8y: (8x: (P (x) =) Q(x; y)) =) R(y)), i.e. the variable x is bound at the innerimplication, because it is not unguarded in the context =) R(y).Let us make this precise. If � is a rule or sentence and V a set of variables,then [[�]]V is a pair (V 0;�), where V 0 is a set of variables and � a formula inhigher-order logic; we say that the variables in V 0 occur unguarded in �. The setV in [[�]]V serves here as the context of �; it should be understood as the set ofvariables occurring unguarded outside �. Similarly, if t is a term and V a set ofvariables, then [[t]]V is a pair (t0; V 0) where t0 is a term and V 0 a set of variables.We translate a top-level rule � (i.e. one that is not being used as a rule premise)to a formula �, where [[�]]V0 = (;;�) (rules have no unguarded variables, see below)and V0 are names for (the components of) the initial basis, see Appendix C. Theproperties maintained by the de�nition of [[�]]V are that for [[�]]V = (V 0; �), thefree variables of � are contained in V [V 0, and if [[�]]W = (W 0; �0) then V 0 = W 0,i.e. the set of unguarded variables does not depend on the second argument.[[�1����n]]V = (;;8x1:���:8xk:(�1 ^ ��� ^�n =)))where 8>>><>>>: (Vi;�i) = [[�i]]W(V 0;) = [[]]WW = V1 [��� [Vn [V 0 [Vfx1; : : : ; xkg = W n VThe above de�nition uniquely determines [[�1����n]]V up to permutation of boundvariables. The cyclic dependency present in the de�nition can be resolved by �rstcomputing the �rst component of the result for each �i, the set of unguarded

6 1 INTRODUCTIONvariables | this does not depend on W . The symbol =) in the de�nition refersto logical implication; it di�ers from) which is part of our notation for primitivesentences.For any sentence , we put [[]]V = (V 0;), where 	 is de�ned to be thesame as except that quanti�cation in set comprehension is made explicit, seebelow; V 0 are the unguarded variables in (w.r.t. V), where quanti�cation and setcomprehension are the only connectives that may guard variables. For a quanti�edsentence like 9x: the unguarded variables w.r.t. V are V 0 n fxg, where V 0 are theunguarded variables of w.r.t. V . The unguarded variables of a primitive sentencep(A1; : : : ; An) w.r.t. V are the union of the unguarded variables of the Ai (w.r.t.the same V); the same principle applies to terms f(A1; : : : ; An). Each variableoccurs unguarded in itself: [[x]]V = (fxg; x), regardless of whether x is in V or not.In contrast to the SML semantics, we allow rules as premises of rules. Basedon the above translation scheme, such higher-order rules abbreviate formulae con-taining nested quanti�ers, very much in the spirit of Hannan's \Extended NaturalSemantics" [Han93]. Satisfaction of such a premise requires the rule to be admiss-ible. Higher-order rules can be used to express \principality" and other in�nitaryrequirements, as in the following rule 57 of the static semantics for Modules. Prin-cipality was described in English in [MTH90].C of B ` dec) E;
 N = names
 nN of B CofB`dec)E0;
0(N)
�
0B ` dec) E;
Applying the translation [[]]V0 to this rule, we obtain the following formula:8B:8dec:8E:8
:8N:(C of B ` dec) E;
 ^ N = names
 nN of B ^8E 0:8
 0: (C of B ` dec) E 0;
 0 =) (N)
 �
 0)=) B ` dec) E;
)In expressions (of the metalanguage) such as C of B, C is not a variable but thename of a component of B-like objects. In the metalanguage, \Cof" is a functionsymbol, the corresponding projection; see Section 4.3.The important thing to remember about the translation from the metalanguageinto formulae is how variables are scoped. In the example, E 0 and
 0 are scoped atthe local rule because they do not occur unguarded in any of the other componentsof the top-level rule. On the other hand, B,
 and N have such unguardedoccurrences and so no quanti�er is introduced for them at the local rule. Thisscoping principle of the metalanguage corresponds very closely to the scopingprinciple of explicit type variables in the object language (EML), where valuedeclarations guard type variable occurrences; see Section 4.6.Writing higher-order rules requires care in one special case, as the given trans-lation scheme does not produce the formulae one might intuitively expect. It isthe situation when a metavariable occurs in the conclusion of a local rule. Here isan example taken from rule 297 of the veri�cation semantics for Modules:

1.2 Metalanguage 7s;B;
 ` strdec) E (s1; E) 2 E9S: s1; B � E;
0 ` strexp) Ss;B;
 �
 0 ` let strdec in strexp end)f(s2; S) j (s1; E) 2 E; s1; B � E;
 0 ` strexp) S; (s2; S) 2 SgThe problematic metavariable is S. The existential quanti�er in the conclusion ofthe premise is necessary to give the rule the intended meaning \we do not carewhat S is"; without this the meaning would be \we can do this for any S". Thesame problem does not arise with premises of local rules: 8x:(P (x) =) Q) is thesame as (9x:P (x)) =) Q. The above pattern of a higher-order rule combined withan existential quanti�er in the conclusion of a premise occurs quite frequently inthe veri�cation semantics.In the veri�cation semantics for Modules, we use another form, having similarscoping principles as rules have, for describing certain semantic objects: set com-prehension. A set comprehension denotes a semantic object (a possibly in�niteset) and is of the form fA j g where A denotes a semantic object and is asentence. It is translated as follows:[[fA j g]]V = (;; fy j 9x1:���:9xk:(y = A0 ^ 0)g)where8>>><>>>: (V 0; 0) = [[]]W(W 0; A0) = [[A]]WW = V 0 [W 0 [Vfx1; : : : ; xkg = W n Vwhere y is a fresh variable. Like rules, set comprehensions have no unguardedvariables.We can remove set comprehensions entirely from the translated formulae asfollows: a set comprehension fy j g is replaced by a fresh variable Y and thesentence in which it occurs is supplied with an additional premise 8y:(y 2 Y ()). As a second-order rewrite rule:�[fy j g=x] �! 8Y:(8y:(y 2 Y ()) =) �[Y=x]):As our underlying logic is intuitionistic, these \sets" should be interpreted in atopos, see for instance [Gol84]. The di�erence is subtle but it matters as we shallencounter \sets" the membership predicate of which is undecidable.

8 2 SYNTAX OF THE CORE2 Syntax of the Core2.1 Reserved WordsThe reserved words of Extended ML can be divided into two groups, namely:1. those that are necessary for presenting the grammar of the Core; and2. those additional reserved words that are needed for presenting the grammarfor Modules.Below we list reserved words of the �rst group; the rest are listed in Section 3.1.Reserved words may not (except =) be used as identi�ers.abstype and andalso as case dodatatype else end eqtype exception existsforall fn fun handle if implies in infixinfixr let local nonfix of op open orelseproper raise raises rec terminatesthen type val with withtype while() [] { } , : ; ... _ | = =>-> # *) ? == =/=2.2 Special constantsAn integer constant is any non-empty sequence of digits, possibly preceded by anegation symbol (~). A real constant is an integer constant, possibly followed by apoint (.) and one or more digits, possibly followed by an exponent symbol E andan integer constant; at least one of the optional parts must occur, hence no integerconstant is a real constant. Examples: 0.7 3.32E5 3E~7 . Non-examples:23 .3 4.E5 1E2.0 .We assume an underlying alphabet of 256 characters (numbered 0 to 255) suchthat the characters with numbers 0 to 127 coincide with the ASCII character set.A string constant is a sequence, between quotes ("), of zero or more printablecharacters (i.e., numbered 33{126), spaces or escape sequences. Each escape se-quence starts with the escape character \ , and stands for a character sequence.The escape sequences are:\n A single character interpreted by the system as end-of-line.\t Tab.\^c The control character c, where c may be any character withnumber 64{95. The number of \^c is 64 less than the numberof c.\ddd The single character with number ddd (3 decimal digits de-noting an integer in the interval [0; 255]).

2.3 Comments 9Var (value variables) longCon (value constructors) longExCon (exception constructors) longTyVar (type variables)TyCon (type constructors) longLab (record labels)StrId (structure identi�ers) longFigure 2: Identi�ers\" "\\ \\f ���f\ This sequence is ignored, where f ���f stands for a sequence ofone or more formatting characters.The formatting characters are a subset of the non-printable characters includ-ing at least space, tab, newline, formfeed. The last form allows long strings to bewritten on more than one line, by writing \ at the end of one line and at thestart of the next.We denote by SCon the class of special constants, i.e., the integer, real, andstring constants; we shall use scon to range over SCon.2.3 CommentsA comment is any character sequence within comment brackets (* *) in whichcomment brackets are properly nested, i.e. the rules for forming lexical items donot apply within a comment. An unmatched comment bracket should be detectedand rejected by the compiler.No space is allowed between the two characters which make up a commentbracket (* or *). Even an unmatched *) should be detected by the compiler.Thus the expression (op *) is illegal. But (op *) is legal; so is op* .Furthermore (op **) is legal because of the longest match principle for lexicalanalysis (see Section 2.5).2.4 Identi�ersThe classes of identi�ers for the Core are shown in Figure 2. We use var , tyvar torange over Var, TyVar etc. For each class X marked \long" there is a class longXof long identi�ers; if x ranges over X then longx ranges over longX. The syntax ofthese long identi�ers is given by the following:longx ::= x identi�erstrid1.���.stridn.x quali�ed identi�er (n � 1)The quali�ed identi�ers constitute a link between the Core and the Modules.Throughout this document, the term \identi�er", occurring without an adjective,refers to non-quali�ed identi�ers only.

10 2 SYNTAX OF THE COREAn identi�er is either alphanumeric: any sequence of letters, digits, primes (')and underbars () starting with a letter or prime, or symbolic: any non-emptysequence of the following symbols! % & $ # + - / : < = > ? @ \ ~ ` ^ | *In either case, however, reserved words are excluded. This means that for example# and | are not identi�ers, but ## and |=| are identi�ers. The only exceptionto this rule is that the symbol = , which is a reserved word, is also allowed as anidenti�er to stand for the equality predicate. The identi�er = may not be boundby the user; this precludes any syntactic ambiguity.A type variable tyvar may be any alphanumeric identi�er starting with a prime;the subclass EtyVar of TyVar, the equality type variables, consists of those whichstart with two or more primes. We exclude3 identi�ers from TyVar that startwith one or two primes followed by an underbar. The other six classes (Var, Con,ExCon, TyCon, Lab and StrId) are represented by identi�ers not starting with aprime. However, * is excluded from TyCon, to avoid confusion with the derivedform of tuple type (see Figure 22). The class Lab is extended to include thenumeric labels 1 2 3 ���, i.e. any numeral not starting with 0.Identi�ers in the classes Var, Con, ExCon, TyCon and StrId all belong tothe syntactic class Id. Within syntactic phrases (of the Bare Language), thesesubclasses are considered to be disjoint: for example, each var 2 Var has theform idv, being an identi�er id 2 Id labelled with its status information | seeAppendix B. Within other semantic objects, the labelling information has nosigni�cance. It is used, however, to disambiguate various overloaded forms ofenvironment application: if an environment E contains a structure environmentSE and a variable environment VE, then E(ids) is SE(id) and E(idv) is VE(id),etc.2.5 Lexical analysisEach item of lexical analysis is either a reserved word, a numeric label, a specialconstant or a long identi�er. Comments and formatting characters separate itemsand are otherwise ignored. An exception from this rule are formatting characterswithin string constants; see Section 2.2. At each stage the longest next item istaken.2.6 In�xed operatorsAn identi�er may be given in�x status by the infix or infixr directive, whichmay occur as a declaration. These declaration are not treated here, but see Ap-pendices A and B.3The reason for this exclusion is compatibility with Standard ML. The type variables inquestion are the imperative type variables of Standard ML.

2.7 Derived Forms 11atomic expressionsexpression rowsexpressionsmatchesmatch rulesdeclarationsvalue bindingstype bindingsdatatype bindingsconstructor bindingsexception bindingsatomic patternspattern rowspatternstype expressionstype-expression rowsFigure 3: Core Phrase Classes2.7 Derived FormsThere are many standard syntactic forms in ML whose meaning can be expressedin terms of a smaller number of syntactic forms, called the Bare language. Thesederived forms, and their equivalent forms in the Bare language, are given in Ap-pendix B. The rest of this document de�nes the syntax and semantics of theBare language, with the exception of Appendices A (the full syntax) and B. Theprogram semantics (Section 10) links the Full language with the semantics of theBare language.2.8 GrammarThe phrase classes for the Core are shown in Figure 3. We use the variable atexpto range over AtExp, etc.The grammatical rules for the Core are shown in Figures 4, 5 and 6.The following conventions are adopted in presenting the grammatical rules,and in their interpretation:� The brackets h i enclose optional phrases.� For any syntax class X (over which x ranges) we de�ne the syntax class Xseq(over which xseq ranges) as follows:

12 2 SYNTAX OF THE CORExseq ::= x (singleton sequence)(empty sequence)(x1,���,xn) (sequence, n � 1)Note that the \���" used here, meaning syntactic iteration, must not beconfused with \..." which is a reserved word of the language. To rangeover all three alternatives for sequences in semantic rules we write x1���xn(with n � 0), which suppresses the syntactic commas and parentheses. Theambiguity for n = 1 will be harmless whenever we use this notation.� Alternative forms for each phrase class are in order of decreasing ; thisresolves ambiguity in parsing, as explained in Appendix A.� Longest match: Suppose F1F2 is an alternative form of a phrase class. Anatural number i is called a split index w.r.t. F1F2 for a lexical sequenceL1���Lk if 0 � i � k and L1���Li reduces to F1 and Li+1���Lk reduces to F2.If for a given lexical sequence L = L1���Lk there are di�erent split indicesw.r.t. F1F2, then L reduces to F1F2 by reducing L1���Lj to F1, where j iseither the maximal split index, or | i� the alternative form is labelled (R),indicating a right associative in�x construct | the minimal split index.� For any syntax class X (over which x ranges) we de�ne the syntax class X�(over which x� ranges) as the same as X, except that phrases of class X�may not contain the lexical item ?.Notice that there is a di�erence between question marks for values and types:question marks for types have to be named, using the second form of typbind ,while question marks for values can be anonymous. But a declaration of the formval pat = ? is possible, because one form of expression exp is a question mark.As a consequence of the re�ned disambiguation principle for precedence (seeAppendix A) sequential declarations are given higher precedence than empty de-clarations. This is di�erent from SML, but the de�nition of SML [MTH90] doesnot fully explain how parsing is a�ected by precedence.

2.8 Grammar 13
atexp ::= scon special constantlongvar value variablelongcon value constructorlongexcon exception constructor{ hexprow i } recordlet dec in exp end local declaration(exp)? unde�ned valueexprow ::= lab = exp h , exprowi expression rowexp ::= atexp atomicexp atexp applicationexp : ty typedexp�1 == exp�2 comparison (R)exists match� existential quanti�erforall match� universal quanti�erexp� terminates convergence predicateexp handle match handle exceptionraise exp raise exceptionfn match functionmatch ::= mrule h | matchimrule ::= pat => expFigure 4: Grammar: Expressions and Matches

14 2 SYNTAX OF THE CORE
dec ::= val valbind value declarationtype typbind type declarationeqtype typbind equality type declarationdatatype datbind datatype declarationabstype datbind with dec end abstype declarationexception exbind exception declarationlocal dec1 in dec2 end local declarationopen longstrid 1 ��� longstridn open declaration (n � 1)dec1 h;i dec2 sequential declarationempty declarationvalbind ::= pat = exp hand valbind irec valbindtypbind ::= tyvarseq tycon = ty hand typbindi type bindingtyvarseq tycon = ? hand typbind i question mark type bindingdatbind ::= tyvarseq tycon = conbindhand datbindiconbind ::= con hof tyi h | conbindiexbind ::= excon hof tyi hand exbind iexcon = longexcon hand exbind iFigure 5: Grammar: Declarations and Bindings

2.9 Syntactic Restrictions 15atpat ::= wildcardscon special constantvar variablelongcon constantlongexcon exception constant{ hpatrowi } record(pat)patrow ::= ... wildcardlab = pat h , patrowi pattern rowpat ::= atpat atomiclongcon atpat value constructionlongexcon atpat exception constructionpat : ty typedvarh: tyi as pat layeredty ::= tyvar type variable{ htyrowi } record typetyseq longtycon type constructionty -> ty0 function type (R)(ty)tyrow ::= lab : ty h , tyrowi type-expression rowFigure 6: Grammar: Patterns and Type Expressions2.9 Syntactic Restrictions� No pattern may contain the same var twice. No expression row, pattern rowor type row may bind the same lab twice.� No binding valbind , typbind , datbind or exbind may bind the same identi�ertwice; this applies also to value constructors within a datbind .� In the left side tyvarseq tycon of any typbind or datbind , tyvarseq must notcontain the same tyvar twice. Any tyvar occurring within the right sidemust occur in tyvarseq.� For each value binding pat = exp within rec, exp must be of the formfn match4. The derived form of function-value binding given in Appendix B,rule 373, necessarily obeys this restriction.4The SML de�nition adds here \possibly constrained by one or more type expressions". Thisis a void extension, because an expression fn pat => exp : ty parses as fn pat => (exp : ty).

16 3 SYNTAX OF MODULES3 Syntax of ModulesFor Modules there are further reserved words, identi�er classes and derived forms.There are no further special constants; comments and lexical analysis are as forthe Core. The derived forms for modules concern mainly functors and appear inAppendix B.3.1 Reserved WordsIn addition to the listed in Section 2.1, Extended ML reserves the following words,which are used in the grammar for Modules:axiom functor include sharingsig signature struct structureThey may not be used as identi�ers.3.2 Identi�ersThe additional identi�er classes for Modules are (signature identi�ers) and (functoridenti�ers); they may be either alphanumeric { not starting with a prime { orsymbolic. Henceforth, we consider all identi�er classes to be disjoint.3.3 In�xed operatorsFixity directives and their scope are treated in Appendix B.3.4 Grammar for ModulesThe phrase classes for Modules are shown in Figure 7. We use the variable strexpto range over StrExp, etc. The conventions adopted in presenting the grammaticalrules for Modules are the same as for the Core. The grammatical rules are shown inFigures 8, 9 and 10. Note that functor bindings and unde�ned structure bindingsare required to include explicit (output) signatures.Speci�cation expressions specexp occur in axiom descriptions, i.e. in axiomswithin signatures. This is the only construct of the language in which structurescan be declared as local to expressions. This is useful when one wants to expressa property that depends on a functor instantiation.3.5 Syntactic Restrictions� No binding strbind , sigbind , or funbind may bind the same identi�er twice.� No description valdesc , typdesc, datdesc, exdesc or strdesc may describe thesame identi�er twice; this applies also to value constructors within a datdesc.

3.5 Syntactic Restrictions 17structure expressionsstructure-level declarationsaxiomsaxiomatic expressionsstructure bindingsSglStrBind single structure bindingssignature expressions(principal) signature expressionssignature declarationssignature bindingsspeci�cationsvalue descriptionstype descriptionsdatatype descriptionsconstructor descriptionsexception descriptionsaxiom descriptionsspeci�cation expressionsstructure descriptionssharing equationsfunctor declarationsfunctor bindingstop-level declarationsFigure 7: Modules Phrase Classes� In the tyvarseq tycon in any typdesc or datdesc, tyvarseq must not containthe same tyvar twice. Any tyvar occurring on the right side of the datdescmust occur in tyvarseq.� In a single structure binding of the form strid = strexp, strexp must beguarded. A structure expression is called guarded if it is of the form longstrid,funid (strexp) or let strdec in strexp end, provided (in the last case) thatstrexp is guarded.The last restriction is for purely methodological reasons: we want each struc-ture to come equipped with an explicit signature. The reason why we include asingle structure binding of the form strid = strexp in the language at all is the needto provide a way of realising structure sharing speci�cations, see [KST94]. Thesemantic rules for structure bindings do not exploit the guarding requirement.

18 3 SYNTAX OF MODULES3.6 Closure RestrictionsThe semantics presented in later sections requires no restriction on reference tonon-local identi�ers. For example, it allows a signature expression to refer toexternal signature identi�ers and (via sharing or open) to external structureidenti�ers; it also allows a functor (or structure expression) to refer to externalidenti�ers of any kind.However, implementers who want to provide a simple facility for separate com-pilation may want to impose the following restrictions (ignoring references to iden-ti�ers bound in the initial basis B0, which may occur anywhere):1. In any signature binding sigid = psigexp , the only non-local references inpsigexp are to signature identi�ers.2. In any functor binding funid (strid : psigexp) : psigexp0 = strexp , the onlynon-local references in psigexp, psigexp 0 and strexp are to functor and signa-ture identi�ers, except that both psigexp 0 and strexp may refer to strid andits components.In the second case the �nal quali�cation allows, for example, sharing constraintsto be speci�ed between functor argument and result. (For a completely precisede�nition of these closure restrictions, see the comments to rules 66 (page 48) and96 (page 53) in the static semantics of modules, Section 5.)The signi�cance of these restrictions is that they may ease separate compilationand veri�cation; this may be seen as follows. If one takes amodule to be a sequenceof signature declarations and functor declarations satisfying the above restrictionsthen the elaboration of a module can be made to depend on the initial static basisalone (in particular, it will not rely on structures outside the module). Moreover,the elaboration of a module cannot create new free structure or type names, soconsistency (as de�ned in Section 5.2, page 39) is automatically preserved acrossseparately compiled modules. On the other hand, imposing these restrictions mayforce the programmer to write many more sharing equations than is needed iffunctors and signature expressions can refer to free structures.

3.6 Closure Restrictions 19
strexp ::= struct strdec end generativelongstrid structure identi�erfunid (strexp) functor applicationlet strdec in strexp end local declarationstrdec ::= dec declarationaxiom ax axiomstructure strbind structurelocal strdec1 in strdec2 end localstrdec1 h;i strdec2 sequentialemptyax ::= axexp hand ax i axiomaxexp ::= exp� axiomatic expressionstrbind ::= sglstrbind hand strbindi structure bindingsglstrbind ::= strid : psigexp = strexp single structure bindingstrid : psigexp = ? unde�ned structure bindingstrid = strexp unguarded structure bindingsigexp ::= sig spec end generativesigid signature identi�erpsigexp ::= sigexp principal signaturesigdec ::= signature sigbind singlesigdec1 h;i sigdec2 sequentialemptysigbind ::= sigid = psigexp hand sigbind iFigure 8: Grammar: Structure and Signature Expressions

20 3 SYNTAX OF MODULES
spec ::= val valdesc valuetype typdesc typeeqtype typdesc eqtypedatatype datdesc datatypeexception exdesc exceptionaxiom axdesc axiomstructure strdesc structuresharing shareq sharinglocal spec1 in spec2 end localopen longstrid 1 ��� longstridn open (n � 1)include sigid 1 ��� sigidn include (n � 1)spec1 h;i spec2 sequentialemptyvaldesc ::= var : ty hand valdescitypdesc ::= tyvarseq tycon hand typdescidatdesc ::= tyvarseq tycon = condesc hand datdescicondesc ::= con hof tyi h | condesciexdesc ::= excon hof tyi hand exdesciaxdesc ::= specexp hand axdescispecexp ::= let strdec in axexp endstrdesc ::= strid : sigexp hand strdescishareq ::= longstrid 1 = ��� = longstridn structure sharing(n � 2)type longtycon1 = ��� = longtyconn type sharing(n � 2)shareq1 and shareq2 multipleFigure 9: Grammar: Speci�cations

3.6 Closure Restrictions 21
fundec ::= functor funbind singlefundec1 h;i fundec2 sequenceemptyfunbind ::= funid (strid : psigexp) : psigexp0= strexp hand funbind i functor bindingfunid (strid : psigexp) : psigexp0= ? hand funbind i unde�ned functor bindingtopdec ::= strdec structure-level declarationsigdec signature declarationfundec functor declarationNote: No topdec may contain, as an initial segment, a shorter top-level declaration followed by a semicolon.Figure 10: Grammar: Functors and Top-level Declarations

22 4 STATIC SEMANTICS FOR THE CORE4 Static Semantics for the CoreOur �rst task in presenting the semantics { whether for Core or Modules, static ordynamic { is to de�ne the objects concerned. In addition to the class of syntacticobjects, which we have already de�ned, there are classes of so-called semanticobjects used to describe the meaning of the syntactic objects. Some classes containsimple semantic objects; such objects are usually identi�ers or names of some kind.Other classes contain compound semantic objects, such as types or environments,which are constructed from component objects.4.1 Simple ObjectsAll semantic objects in the static semantics of the entire language are built fromidenti�ers and two further kinds of simple objects: type constructor names andstructure names. Type constructor names are the values taken by type construct-ors; we shall usually refer to them brie
y as type names, but they are to be clearlydistinguished from type variables and type constructors. Structure names playan active role only in the Modules semantics; they enter the Core semantics onlybecause they appear in structure environments, which (in turn) are needed in theCore semantics only to determine the values of long identi�ers. The simple objectclasses, and the variables ranging over them, are shown in Figure 11. We haveincluded TyVar in the table to make visible the use of � in the semantics to rangeover TyVar. � or tyvar 2 TyVar type variablest 2 TyName type namesm 2 StrName structure namesFigure 11: Simple Semantic ObjectsThe sets TyName and StrName are arbitrary in�nite sets, except that TyNameis a superset of T0 (type names of the initial basis), see Section C.3.Each � 2 TyVar possesses a boolean equality attribute, which determineswhether or not it admits equality, i.e. whether it is a member of EtyVar (de�nedon page 10). There is a distinguished type variable num; it is in EtyVar, but it hasno syntactic representation in EML.Each t 2 TyName has an arity k � 0, and also possesses an equality attribute.We denote the class of type names with arity k by TyName(k).With each special constant scon we associate a type name type(scon) which iseither int, real or string as indicated by Section 2.2.

4.2 Compound Objects 234.2 Compound ObjectsWhen A and B are sets FinA denotes the set of �nite subsets of A, and A �n! Bdenotes the set of �nite maps (partial functions with �nite domain) from A to B.The domain and range of a �nite map, f , are denoted Dom f and Ran f . A �nitemap will often be written explicitly in the form fa1 7! b1; ���; ak 7! bkg; k � 0;in particular the empty map is fg. We shall use the form fx 7! e ; �g | a formof set comprehension | to stand for the �nite map f whose domain is the set ofvalues x which satisfy the condition �, and whose value on this domain is given byf(x) = e. This notation slightly di�ers from those set comprehensions denotingsets (see page 7), for which we use a j to separate the condition.When f and g are �nite maps the map f + g, called f modi�ed by g, is the�nite map with domain Domf [Dom g and values(f + g)(a) = if a 2 Dom g then g(a) else f(a).For any semantic object class A, we de�ne Tree(A) to be the �nite binarytrees of elements taken from A, i.e. Tree(A) is the smallest solution of the domainequation Tree(A) = f�g] A] fx � y j x; y 2 Tree(A)g. We take � to be left-associative, i.e. x � y � z stands for (x � y) � z.The compound objects for the static semantics of the Core Language are shownin Figure 12. We take] to mean disjoint union over semantic object classes. Wealso understand all the de�ned object classes to be disjoint.Note that � and 8 bind type variables. For any semantic or syntactic objectA, tynamesA and tyvarsA denote respectively the set of type names and the setof type variables occurring free in A.4.3 Projection, Injection and Modi�cationProjection: We often need to select components of tuples { for example, thevariable-environment component of a context. In such cases we rely on variablenames to indicate which component is selected. For instance \VE of E" means\the variable-environment component of E" and \m of S" means \the structurename of S".Moreover, when a tuple contains a �nite map we shall \apply" the tuple to anargument, relying on the syntactic class of the argument to determine the relevantfunction. For instance C(tycon) means (TE of C)tycon.A particular case needs mention: C(con) is taken to stand for (VE of C)con.The type scheme of a value constructor is held in VE as well as in TE (whereit will be recorded within a CE). Thus the re-binding of a constructor is givenproper e�ect by accessing it in VE, rather than in TE.Finally, environments may be applied to long identi�ers. For instance iflongcon = strid1.���.stridk.con then E(longcon) means(VE of (SE of ���(SE of (SE of E)strid1)strid2���)stridk)con:

24 4 STATIC SEMANTICS FOR THE CORE
� 2 Type = TyVar] RecType] FunType] ConsType(�1; ���; �k) or � (k) 2 Typek(�1; ���; �k) or �(k) 2 TyVark% 2 RecType = Lab �n! Type� ! � 0 2 FunType = Type� TypeConsType =]k�0ConsType(k)� (k)t 2 ConsType(k) = Typek � TyName(k)� or ��(k):� 2 TypeFcn =]k�0TyVark � Type� or 8�(k):� 2 TypeScheme =]k�0TyVark � TypeS or (m;E) 2 Str = StrName� Env(�;CE) 2 TyStr = TypeFcn� ConEnvSE 2 StrEnv = StrId �n! StrTE 2 TyEnv = TyCon �n! TyStrCE 2 ConEnv = Id �n! TypeSchemeVE 2 VarEnv = Id �n! TypeSchemeE or (SE; TE; VE) 2 Env = StrEnv� TyEnv�VarEnvT 2 TyNameSet = Fin(TyName)U 2 TyVarSet = Fin(TyVar)C or T;U;E 2 Context = TyNameSet� TyVarSet� Env'Ty 2 TyRea = TyName! TypeFcn
 2 Trace = Tree(SimTrace] TraceScheme)SimTrace = Type] Env] (Context� Type)](Context� Env)] TyEnv] (VarEnv� TyRea)TraceScheme =]k�0TraceScheme(k)8�(k):
 2 TraceScheme(k) = TyVark � TraceFigure 12: Compound Semantic Objects

4.4 Types and Type functions 25Injection: Components may be injected into tuple classes; for example,\VE in Env" means the environment (fg; fg; VE). The default values for themissing components are always ;, fg, or tuples of these. Injection into disjointunion classes is usually left implicit, with a few exceptions where we also use the\In" notation for it. For brevity, we often express the composition of injectionsby a single injection.Modi�cation: The modi�cation of one map f by another map g, writtenf + g, has already been mentioned. It is commonly used for environment modi-�cation, for example E + E 0. Often, empty components will be left implicit in amodi�cation; for example E + VE means E + (fg; fg; VE). For set components,modi�cation means union, so that C + (T; VE) means((T of C) [T; U of C; (E of C) + VE)We frequently need to modify a context C by an environment E (or a typeenvironment TE say), at the same time extending T of C to include the typenames of E (or of TE say). We therefore de�ne C � TE, for example, to meanC + (tynamesTE; TE).4.4 Types and Type functionsA type � is an equality type, or admits equality, if it is of one of the forms� �, where � admits equality;� flab1 7! �1; ���; labn 7! �ng, where each �i admits equality;� � (k)t, where t and all members of � (k) admit equality.A type function � = ��(k):� has arity k; it must be closed { i.e. tyvars(�) � �(k){ and the bound variables must be distinct. Two type functions are consideredequal if they only di�er in their choice of bound variables (alpha-conversion). Inparticular, the equality attribute has no signi�cance in a bound variable of a typefunction; for example, ��:� ! � and ��:� ! � are equal type functions evenif � admits equality but � does not. If t has arity k, then we write t to mean��(k):�(k)t (eta-conversion); thus TyName� TypeFcn. � = ��(k):� is an equalitytype function, or admits equality, if when the type variables �(k) are chosen toadmit equality then � also admits equality.We write the application of a type function � to a vector � (k) of types as � (k)�.If � = ��(k):� we set � (k)� = �f� (k)=�(k)g (beta-conversion).We write �f�(k)=t(k)g for the result of substituting type functions �(k) for typenames t(k) in � . Here and for other forms of substitution maps, we use the notationft=x ; �g instead of fx 7! t ; �g. We assume that all beta-conversions are carriedout after substitution, so that for example(� (k)t)f��(k):�=tg = �f� (k)=�(k)g:

26 4 STATIC SEMANTICS FOR THE CORE4.5 Type SchemesA type substitution is a �nite map # 2 TyVar �n! Type, where #(�) admits equalityif � does, and where #(num) is either int or real (provided num is in the domainof #). Type substitutions extend to functions on other semantic objects, e.g. tofunctions between types by mapping a type � to �f#(�)=� ; � 2 Dom#g.A type scheme � = 8�(k):� generalises a type � 0, written � � � 0, if thereexists a type substitution # with domain �(k) \ tyvars(�) such that #(�) = � 0.We make the type substitution of a generalisation explicit by writing � �# � 0. If�0 = 8�(l):� 0 then � generalises �0, written � � �0, if � � � 0 and �(l) containsno free type variable of �. It can be shown that � � �0 i�, for all � 00, whenever�0 � � 00 then also � � � 00.Two type schemes � and �0 are considered equal if they can be obtained fromeach other by renaming and reordering of bound type variables, and deleting typevariables from the pre�x which do not occur in the body. Here, in contrast to thecase for type functions, the equality attribute must be preserved in renaming; forexample 8�:� ! � and 8�:� ! � are only equal if either both � and � admitequality, or neither does. It can be shown that � = �0 i� � � �0 and �0 � �.We consider a type � to be a type scheme, identifying it with 8():� .Traces and Trace SchemesTraces record objects of the static semantics. The purpose of this recording istwofold: (i) it rei�es choices that have been made during static analysis, making itpossible to talk about all possible choices for the elaboration of a phrase; and (ii)semantic objects that are involved in the elaboration of a phrase become visiblefor veri�cation purposes. One can informally view traces as information hung onthe syntax tree by static analysis for use by the veri�cation semantics.Traces can contain bound type variables: in traces of the form 8�(k):
 the typevariables �(k) bind occurrences of those variables in
. The de�nition of equalityof trace schemes is analogous to that of type schemes.4.6 Scope of Explicit Type VariablesIn the Core language, a type or datatype binding can explicitly introduce typevariables whose scope is that binding. In the modules, a description of a value,type, or datatype may contain explicit type variables whose scope is that descrip-tion. However, we still have to account for the scope of an explicit type variableoccurring in the \: ty" of a typed expression or pattern. For the rest of thissection, we consider such occurrences of type variables only.We call value declarations, axiom declarations and speci�cations, quanti�erexpressions and expressions of the form exp�1 == exp�2 guarding constructs. Everyoccurrence of a guarding construct is said to scope a set of explicit type variablesdetermined as follows.

4.7 Non-expansive Expressions 27First, an occurrence of � in a guarding construct phrase is said to be unguardedif the occurrence is not part of a smaller guarding construct within phrase. In thiscase we say that � occurs unguarded in the guarding construct.Then we say that � is scoped at a particular occurrence O of a guardingconstruct in a program if (1) � occurs unguarded in this construct, and (2) � doesnot occur unguarded in any larger guarding construct containing the occurrenceO.The inference rules in Section 4.10 make this explicit (in contrast to the SMLstatic semantics in [MTH90]). If phrase is a guarding construct, then its sentencesare typically derived with premises of the form C + U ` phrase) A;U;
 forsome metavariable A. The two occurrences of U mean that every type variableoccurring unguarded in phrase cannot be locally bound within phrase.4.7 Non-expansive ExpressionsDeleted4.8 ClosureLet � be a type and A a semantic object. Then ClosA(�), the closure of � withrespect to A, is the type scheme 8�(k):� , where �(k) = tyvars(�) n tyvarsA. Com-monly,A will be a context C. We abbreviate the total closure Closfg(�) to Clos(�).If the range of a variable environment VE contains only types (rather than arbit-rary type schemes) we setClosAVE = fid 7! ClosA(�) ; VE(id) = �gwith a similar de�nition for ClosACE.There is also a similar closure operation for traces: ClosA
 = 8�(k):
, where�(k) = tyvars(
) n tyvarsA.4.9 Type Structures and Type EnvironmentsA type structure (�;CE) is well-formed if either CE = fg, or � is a type namet. (The latter case arises, with CE 6= fg, in datatype declarations.) All typestructures occurring in elaborations are assumed to be well-formed.A type structure (t; CE) is said to respect equality if, whenever t admits equal-ity, then for each CE(con) of the form 8�(k):(� ! �(k)t), the type function ��(k):�also admits equality. (This ensures that the SML equality predicate = will beapplicable to a constructed value (con; v) of type � (k)t only when it is applicableto the value v itself, whose type is �f� (k)=�(k)g.) A type environment TE respectsequality if all its type structures do so.Let TE be a type environment, and let T be the set of type names t such that(t; CE) occurs in TE for some CE 6= fg. Then TE is said to maximise equalityif (a) TE respects equality, and also (b) if any larger subset of T were to admit

28 4 STATIC SEMANTICS FOR THE COREequality (without any change in the equality attribute of any type names not inT) then TE would cease to respect equality.For any TE of the formTE = ftyconi 7! (ti; CEi) ; 1 � i � kg;where no CEi is the empty map, and for any E we de�ne AbsC(TE;E) to be theenvironment obtained from E and TE as follows. First, let AbsC(TE) be the typeenvironment ftycon i 7! (ti; fg) ; 1 � i � kg in which all constructor environmentsCEi have been replaced by the empty map. Let t01; : : : ; t0k be new distinct typenames (\new" means that t01; : : : ; t0k are not in TofC), none of which admit equality.Then AbsC(TE;E) is the result of simultaneously substituting t0i for ti, 1 � i � k,throughout AbsC(TE) +E. (The e�ect of the latter substitution is to ensure thatthe use of SML equality on an abstype is restricted to the with part.) Let 'Ty bethe type realisation with Supp('Ty) � ft01; : : : ; t0kg and 'Ty(t0i) = ti; 1 � i � k; wewrite AbsC(TE;E) ='Ty E0 to say that AbsC(TE;E) = E 0 via the type realisation'Ty. Type realisations are de�ned in Section 5.6.4.10 Inference RulesEach rule of the semantics allows inferences among sentences of the formA ` phrase) A0where A is usually a context, phrase is a phrase of the Core, and A0 is a semanticobject | usually a type or an environment or assembly of such objects, togetherwith a trace. It may be pronounced \phrase elaborates to A0 in (context) A".Some rules have extra hypotheses not of this form; these hypotheses are calledside conditions.Atomic Expressions C ` atexp) �; U;
C ` scon) type(scon); ;; � (1)C(longvar) � �C ` longvar) �; ;; � (2)C(longcon) � �C ` longcon) �; ;; � (3)C(longexcon) = �C ` longexcon) �; ;; � (4)hC ` exprow) %; U;
iC ` { hexprowi }) fgh+ %i in Type; ;h [Ui; �h�
i (5)

4.10 Inference Rules 29C ` dec) E;
 C � E ` exp) �; U;
 0tynames � � T of CC ` let dec in exp end) �; U;
 �
 0 (6)C ` exp) �; U;
C ` (exp)) �; U;
 (7)C ` ?) �; ;; (C; �) (7:1)Comments:(2),(3) The instantiation of type schemes allows di�erent occurrences of a singlelongvar or longcon to assume di�erent types.(6) The use of �, here and elsewhere, ensures that type names generated bythe �rst sub-phrase are di�erent from type names generated by the secondsub-phrase.The third premise is not present in the SML de�nition. Simply omittingit would compromise the soundness of type inference, because type namesintroduced by di�erent let expressions could become equal. This was anoversight in the de�nition of SML [MTH90] which was not �xed in [MT91];see also [Kah93]. Some Standard ML implementations have a less restrictivemethod for type-checking let-expressions which is still sound but allowslocal datatypes to escape from the scope of the let.Notice that there are no unguarded occurrences of explicit type variablesin declarations, as the form of sentences for declarations indicates. Thisdi�ers from SML, which permits (unguarded) imperative type variables inexception declarations.(7.1) A ? can have any type. The context C is stored in the trace to enableveri�cation to type-check the chosen replacement for ? in a given model, seerule 201.Expression Rows C ` exprow) %; U;
C ` exp) �; U;
 hC ` exprow) %; U 0;
 0iC ` lab = exp h , exprowi) flab 7! �gh+ %i; Uh [U 0i;
h�
 0i (8)

30 4 STATIC SEMANTICS FOR THE COREExpressions C ` exp) �; U;
C ` atexp) �; U;
C ` atexp) �; U;
 (9)C ` exp) � 0 ! �; U;
 C ` atexp) � 0; U 0;
 0C ` exp atexp) �; U [U 0;
 �
 0 (10)C ` exp) �; U;
 C ` ty) � U 0 = tyvars tyC ` exp : ty) �; U [U 0;
 (11)C + U ` exp�1) �; U1;
 C + U ` exp�2) �; U2;
 0 U = U1 [U2C ` exp�1 == exp�2) bool; ;;ClosC((C; �) �
 �
 0) (11:1)C + U ` match�) � ! bool; U;
C ` exists match�) bool; ;;ClosC((C; �) �
) (11:2)C + U ` match�) � ! bool; U;
C ` forall match�) bool; ;;ClosC((C; �) �
) (11:3)C ` exp�) �; U;
C ` exp� terminates) bool; U; � (11:4)C ` exp) �; U;
 C ` match) exn! �; U 0;
 0C ` exp handle match) �; U [U 0;
 �
 0 (12)C ` exp) exn; U;
C ` raise exp) �; U; � �
 (13)C ` match) �; U;
C ` fn match) �; U; (C; �) �
 (14)Comments:(9) The relation symbol ` is overloaded for all syntactic classes (here atomicexpressions and expressions). Thus, the relational symbol ` refers in thepremise to the predicate for atomic expressions as de�ned in rules 1 to 7.1.(11) Here � is determined by C and ty. Notice that type variables in ty cannotbe instantiated in obtaining � ; thus the expression 1:'a will not elaboratesuccessfully, nor will the expression (fn x=>x):'a->'b. The e�ect of typevariables in an explicitly typed expression is to indicate exactly the degreeof polymorphism present in the expression.

4.10 Inference Rules 31(11.1){(11.3) Equality and quanti�cation are guarding constructs, i.e. any typevariable occurring in them is guarded. Any type variable occuring unguardedwithin a guarding construct is scoped at that construct, provided it is notalready scoped in the context: this is expressed by extending the contextwith +U which prohibits these type variables from being bound locally bythe closure operator.Storing C and � in the trace is necessary for the veri�cation semantics, toselect appropriate witnesses for the quanti�ers, and to compare values. Werequire quanti�cation and comparison in the veri�cation semantics to behaveuniformly: abstracting type variables via ClosC here allows the veri�cationsemantics to instantiate the traces arbitrarily.(11.4) The expression exp� will not be subject to veri�cation; only its terminationbehaviour in the dynamic semantics is of interest. The dynamic semanticsdoes not need any type information, thus the empty trace � in the result.(13) Note that � does not occur in the premise; thus a raise expression has\arbitrary" type. For the same reason, its type has to be recorded in thetrace.(14) The context C is part of the result trace so that match can be type-checkedafter replacing all its question marks with the corresponding choices of agiven model.Matches C ` match) �; U;
C ` mrule) �; U;
 hC ` match) �; U 0;
 0iC ` mrule h | matchi) �; Uh [U 0i;
h�
 0i (15)Match Rules C ` mrule) �; U;
C ` pat) (VE; �); U;
 C � VE ` exp) � 0; U 0;
 0C ` pat => exp) � ! � 0; U [U 0;
 �
 0 (16)Comment: This rule allows new free type variables to enter the context. Thesenew type variables will be chosen, in e�ect, during the elaboration of pat (i.e., inthe inference of the �rst hypothesis). In particular, their choice may have to bemade to agree with type variables present in any explicit type expression occurringwithin exp (see rule 11).Notice that rule 16 uses C � VE in contrast to the SML de�nition, which usesC + VE here. The reason for this change is another soundness problem, similarto the one mentioned for rule 6, but a bit more involved. This problem was notmentioned in [MT91] or [Kah93], see [Kah94].

32 4 STATIC SEMANTICS FOR THE COREDeclarations C ` dec) E;
C + U ` valbind) VE;U;
 VE 0 = ClosCVEC ` val valbind) VE0 in Env;ClosC
 (17)C ` typbind) TE;
C ` type typbind) TE in Env; TE �
 (18)C ` typbind) TE;
 8(�;CE) 2 Ran TE; � admits equalityC ` eqtype typbind) TE in Env; TE �
 (18:1)C � TE ` datbind) VE; TE;
 8(t; CE) 2 Ran TE; t =2 (T of C)E = (VE; TE) in Env TE maximises equalityC ` datatype datbind) E; E �
 (19)C � TE ` datbind) VE; TE;
 8(t; CE) 2 Ran TE; t =2 (T of C)C � (VE; TE) ` dec) E;
 0 TE maximises equalityAbsC(TE;E) ='Ty E 0C ` abstype datbind with dec end) E 0; (VE;'Ty) �
 �
 0 (20)C ` exbind) VE;
C ` exception exbind) VE in Env;
 (21)C ` dec1) E1;
1 C � E1 ` dec2) E2;
2C ` local dec1 in dec2 end) E2;
1 �
2 (22)C(longstrid1) = (m1; E1) ��� C(longstridn) = (mn; En)C ` open longstrid 1 ��� longstridn) E1 + ���+ En; � (23)C `) fg in Env; � (24)C ` dec1) E1;
1 C � E1 ` dec2) E2;
2C ` dec1 h;i dec2) E1 + E2;
1 �
2 (25)Comments:(17) Here VE will contain types rather than general type schemes. The closure ofVE is exactly what allows variables to be used polymorphically, via rule 2.(18) Within typbind there might be ?-types, i.e. there might be newly introducedtype names. Notice that their equality attributes are not a�ected by thisrule, but that principality of environments can a�ect it later (rule 57) | atype with equality attribute is more speci�c.

4.10 Inference Rules 33(18),(18.1) The veri�cation semantics exploits type information; storing the typeenvironment TE in the trace is one way to make the needed informationaccessible for later veri�cation purposes.(19),(20) The side conditions express that the elaboration of each datatype bind-ing generates new type names and that as many of these new names aspossible admit equality. Adding TE to the context on the left of the ` inthe �rst premise captures the recursive nature of the binding.To see why an environment E etc. is stored in the trace, one has to lookat these rules in connection with the corresponding rules of the veri�cationsemantics, here 241 and 242.(20) The AbsC operation was de�ned in Section 4.9, page 28.(21) No closure operation is used here, since exception bindings do not containtype variables.Value Bindings C ` valbind) VE;U;
C ` pat) (VE; �); U;
 C ` exp) �; U 0;
 0hC ` valbind) VE 0; U 00;
 00iC ` pat = exp hand valbind i) VE h+ VE 0i; U [U 0h [U 00i;
 �
 0h�
00i (26)C + VE ` valbind) VE;U;
C ` rec valbind) VE;U;
 (27)Comments:(26) When the option is present we have DomVE\DomVE 0 = ; by the syntacticrestrictions.(27) Modifying C by VE on the left of the premise captures the recursive natureof the binding. From rule 26 we see that any type scheme occurring in VEwill have to be a type. Thus each use of a recursive function in its own bodymust be ascribed the same type.Type Bindings C ` typbind) TE;
tyvarseq = �(k) C ` ty) � hC ` typbind) TE;
iC ` tyvarseq tycon = ty hand typbindi)ftycon 7! (��(k):�; fg)g h+ TEi; �h�
i (28)tyvarseq = �(k) t =2 (T of C); arity t = khC + ftg ` typbind) TE;
iC ` tyvarseq tycon = ? hand typbindi)ftycon 7! (t; fg)g h+ TEi; (C; t)h�
i (28:1)

34 4 STATIC SEMANTICS FOR THE COREComments:(28) The syntactic restrictions ensure that the type function ��(k):� satis�es thewell-formedness constraints of Section 4.4 and that tycon =2 DomTE.(28.1) Question mark types are treated as new types for the purposes of staticanalysis (premise t =2 (T of C)). In a given model (veri�cation semantics),the type name t will be replaced by an appropriate type function, see rule252; C and T are stored in the trace for the purposes of that replacement.Data Type Bindings C ` datbind) VE; TE;
tyvarseq = �(k) C;�(k)t ` conbind) CE;
hC ` datbind) VE; TE;
 0 8(t0; CE) 2 Ran TE; t 6= t0iC ` tyvarseq tycon = conbind hand datbind i)ClosCE h+ VEi; ftycon 7! (t;ClosCE)g h+ TEi;
h�
 0i (29)Comment: The syntactic restrictions ensure DomVE \DomCE = ; and tycon =2DomTE.Constructor Bindings C; � ` conbind) CE;
con = idc hC; � ` conbind) CE;
iC; � ` con h | conbindi) fid 7! �g h+ CEi; � h�
i (30)con = idc C ` ty) � 0 � 00 = � 0 ! �hC; � ` conbind) CE;
iC; � ` con of ty h | conbindi) fid 7! � 00g h+ CEi; � 00h�
i (30:1)Comments:(30),(30.1) By the syntactic restrictions con =2 DomCE.Exception Bindings C ` exbind) VE;
excon = ide hC ` exbind) VE;
iC ` excon hand exbind i) fid 7! exng h+ VEi; �h�
i (31)excon = ide C ` ty) � tyvars(ty) = ;hC ` exbind) VE;
iC ` excon of ty hand exbind i) fid 7! � ! exng h+ VEi; � h�
i (31:1)

4.10 Inference Rules 35excon = ide C(longexcon) = � hC ` exbind) VE;
iC ` excon = longexcon hand exbind i) fid 7! �g h+ VEi; �h�
i (32)Comments:(31.1) Notice that ty must not contain any type variables. This is slightly stricterthan to require tyvars � = ;, as the corresponding rule in [MTH90] does, andit rules out some pathological cases. Type variables occurring in exceptionbindings are unguarded (in SML) and a�ect the scoping mechanism even ifthey do not occur in the type obtained from that binding. In Extended ML,declarations never have unguarded type variables; the restriction makes surethat there is no di�erence in type variable scoping between Standard MLand Extended ML.(31),(31.1),(32) There are unique VE and
, for each C and exbind , such thatC ` exbind) VE;
.Atomic Patterns C ` atpat) (VE; �); U;
C `) (fg; �); ;; � (33)C ` scon) (fg; type(scon)); ;; � (34)var = idvC ` var) (fid 7! �g; �); ;; � (35)C(longcon) � � (k)tC ` longcon) (fg; � (k)t); ;; � (k)t (36)C(longexcon) = exnC ` longexcon) (fg; exn); ;; � (37)hC ` patrow) (VE; %); U;
iC ` { hpatrowi }) (fgh+ VEi; fgh+ %i in Type); ;h [Ui; �h�
i (38)C ` pat) (VE; �); U;
C ` (pat)) (VE; �); U;
 (39)Comments:(35) Note that var can assume a type, not a general type scheme.

36 4 STATIC SEMANTICS FOR THE COREPattern Rows C ` patrow) (VE; %); U;
C ` ...) (fg; %); ;; % in Trace (40)C ` pat) (VE; �); U;
hC ` patrow) (VE 0; %); U 0;
 0 lab =2 Dom %iC ` lab = pat h , patrowi)(VEh+ VE 0i; flab 7! �gh+ %i); Uh [U 0i;
h�
 0i (41)Comments:(41) By the syntactic restrictions, DomVE \DomVE 0 = ;.Patterns C ` pat) (VE; �); U;
C ` atpat) (VE; �); U;
C ` atpat) (VE; �); U;
 (42)C(longcon) � � 00 = � 0 ! � C ` atpat) (VE; � 0); U;
C ` longcon atpat) (VE; �); U; � 00 �
 (43)C(longexcon) = � ! exn C ` atpat) (VE; �); U;
C ` longexcon atpat) (VE; exn); U;
 (44)C ` pat) (VE; �); U;
 C ` ty) � U 0 = tyvars tyC ` pat : ty) (VE; �); U [U 0;
 (45)C ` var) (VE; �); U;
 C ` pat) (VE 0; �); U 0;
 0hC ` ty) � U 00 = tyvars tyiC ` varh: tyi as pat) (VE + VE 0; �); U [U 0h [U 00i;
 �
 0 (46)Comments:(46) By the syntactic restrictions, DomVE \DomVE 0 = ;. In the �rst premise,var is viewed as an atomic pattern.Type Expressions C ` ty) �tyvar = �C ` tyvar) � (47)hC ` tyrow) %iC ` { htyrowi }) fgh+ %i in Type (48)

4.11 Further Restrictions 37tyseq = ty1���tyk C ` ty i) �i (1 � i � k)C(longtycon) = (�;CE) arity � = kC ` tyseq longtycon) � (k)� (49)C ` ty) � C ` ty 0) � 0C ` ty -> ty0) � ! � 0 (50)C ` ty) �C ` (ty)) � (51)Type-expression Rows C ` tyrow) %C ` ty) � hC ` tyrow) %iC ` lab : ty h , tyrowi) flab 7! �gh+ %i (52)Comment: The syntactic constraints ensure lab =2 Dom%.4.11 Further RestrictionsIn a match of the form pat1 => exp1 | ��� | patn => expn the pattern sequencepat1; : : : ; patn should be irredundant; that is, each patj must match some value(of the right type) which is not matched by pat i for any i < j. In the contextfn match, the match must also be exhaustive; that is, every value (of the righttype) must be matched by some pat i. The compiler must give warning on violationof these restrictions, but should still compile the match. The restrictions areinherited by derived forms; in particular, this means that in the function bindingvar atpat1 ��� atpatnh: tyi = exp (consisting of one clause only), each separateatpat i should be exhaustive by itself.This text originates from [MTH90]. In the context of Extended ML, this (andother references to compilers below) should be taken as referring to an Exten-ded ML parser/typechecker, which of course is not a compiler in the usual sense.

38 5 STATIC SEMANTICS FOR MODULES5 Static Semantics for Modules5.1 Semantic ObjectsThe simple objects for Modules static semantics are exactly as for the Core. Thecompound objects are those for the Core, augmented by those in Figure 13.M 2 StrNameSet = Fin(StrName)N or (M;T) 2 NameSet = StrNameSet� TyNameSet� or (N)S 2 Sig = NameSet� Str� or (N)(S; (N 0)S 0) 2 FunSig = NameSet� (Str� Sig)G 2 SigEnv = SigId �n! SigF 2 FunEnv = FunId �n! FunSigB or N;F;G;E 2 Basis = NameSet� FunEnv� SigEnv � Env'Str 2 StrRea = StrName! StrName' or ('Ty; 'Str) 2 Rea = TyRea� StrRea
 2 Trace = Tree(SimTrace] TraceScheme] BoundTrace)(N)
 2 BoundTrace = NameSet� TraceSimTrace = SimTraceCOR] StrName] Rea] VarEnvFigure 13: Further Compound Semantic ObjectsThe pre�x (N), in signatures and functor signatures, binds both type namesand structure names. We shall always consider a set N of names as partitionedinto a pair (M;T) of sets of the two kinds of name.It is sometimes convenient to work with an arbitrary semantic object A, orassembly A of such objects. As with the function tynames, strnames(A) andnames(A) denote respectively the set of structure names and the set of namesoccurring free in A.Certain operations require a change of bound names in semantic objects; seefor example Section 5.7. When bound type names are changed, we demand thatall of their attributes (i.e. equality and arity) are preserved.For any structure S = (m; (SE; TE; VE)) we call m the structure name orname of S; also, the proper substructures of S are the members of RanSE andtheir proper substructures. The substructures of S are S itself and its proper sub-structures. The structures occurring in an object or assembly A are the structuresand substructures from which it is built. The type structures of S are all membersof RanTE and all type structures of substructures of S.The operations of projection, injection and modi�cation are as for the Core.Moreover, we de�ne C ofB to be the context (T ofB; ;; E ofB), i.e. with an emptyset of explicit type variables. Also, we frequently need to modify a basis B by anenvironment E (or a structure environment SE say), at the same time extending

5.2 Consistency 39N of B to include the type names and structure names of E (or of SE say). Wetherefore de�ne B � SE, for example, to mean B + (namesSE;SE).For the purposes of the module semantics, we extend the notion of simpletrace and introduce another form of trace, the bound trace. SimTraceCOR refersto SimTrace as de�ned in Figure 12 on page 24, i.e. the simple traces of the Core.In traces of the form (N)
, the names N are bound. Type substitution andrealisations have to respect variable binding when applied to a trace, i.e. their ap-plication may involve renaming of bound names and bound type variables. Whenapplying a realisation ' to a trace consisting of a realisation '0, then ' a�ects theresults of '0, i.e. '('0)(x) = '('0(x)).5.2 ConsistencyA set of type structures is said to be consistent if, for all (�1; CE1) and (�2; CE2)in the set, if �1 = �2 thenCE1 = fg or CE2 = fg or DomCE1 = DomCE2A semantic object A or assembly A of objects is said to be consistent if (afterchanging bound names to make all nameset pre�xes in A disjoint) for all S1 andS2 occurring in A and for every longstrid and every longtycon1. If m of S1 = m of S2, and both S1(longstrid) and S2(longstrid) exist, thenm of S1(longstrid) = m of S2(longstrid)2. If m of S1 = m of S2, and both S1(longtycon) and S2(longtycon) exist, then� of S1(longtycon) = � of S2(longtycon)3. The set of all type structures in A is consistentAs an example, a functor signature (N)(S; (N 0)S 0) is consistent if, assuming�rst that N \N 0 = ;, the assembly A = fS; S 0g is consistent.We may loosely say that two structures S1 and S2 are consistent if fS1; S2g isconsistent, but must remember that this is stronger than the assertion that S1 isconsistent and S2 is consistent.Note that if A is a consistent assembly and A0 � A then A0 is also a consistentassembly.5.3 Well-formednessA signature (N)S is well-formed if N � namesS, and also, whenever (m;E)is a substructure of S and m =2 N , then N \ (namesE) = ;, and whenever(t; CE) is a type structure of S and t =2 N , then N \ (namesCE) = ;. A functor

40 5 STATIC SEMANTICS FOR MODULESsignature (N)(S; (N 0)S 0) is well-formed if (N)S and (N 0)S 0 are well-formed, andalso, whenever (m0; E 0) is a substructure of S 0 and m0 =2 N [N 0, then (N [N 0) \(namesE 0) = ;, and whenever (t0; CE 0) is a type structure of S 0 and t0 =2 N [N 0,then (N [N 0) \ (namesCE 0) = ;.An object or assemblyA is well-formed if every signature and functor signatureoccurring in A is well-formed.5.4 Cycle-freedomAn object or assembly A is cycle-free if it contains no cycle of structure names;that is, there is no sequencem0; ���;mk�1;mk = m0 (k > 0)of structure names such that, for each i (0 � i < k) some structure with name mioccurring in A has a proper substructure with name mi+1.5.5 AdmissibilityAn object or assembly A is admissible if it is consistent, well-formed and cycle-free. Henceforth it is assumed that all objects mentioned are admissible. We alsorequire that1. In every sentenceA ` phrase) A0 inferred by the rules given in Section 5.14,the assembly fA;A0g is admissible.2. In the special case of a sentence B ` sigexp) S;
, we further requirethat the assembly consisting of all semantic objects occurring in the entireinference of this sentence be admissible. This is important for the de�nitionof principal signatures in Section 5.13.In our semantic de�nition we have not undertaken to indicate how admissibilityshould be checked in an implementation.5.6 Type RealisationA type realisation is a function 'Ty : TyName! TypeFcn such that t and 'Ty(t)have the same arity, and if t admits equality then so does 'Ty(t).The support Supp'Ty of a type realisation 'Ty is the set of type names t forwhich 'Ty(t) 6= t.5.7 RealisationA realisation is a function ' of names, partitioned into a type realisation 'Ty :TyName ! TypeFcn and a function 'Str : StrName ! StrName. The support

5.7 Realisation 41Supp' of a realisation ' is the set of names n for which '(n) 6= n. The yieldYield' of a realisation ' is the set of names which occur in some '(n) for whichn 2 Supp'.Realisations ' are extended to apply to all semantic objects; their e�ect is toreplace each name n by '(n). In applying ' to an object with bound names, suchas a signature (N)S, �rst bound names must be changed so that, for each bindingpre�x (N), N \ (Supp' [Yield') = ; :We assume realisations to have �nite support, i.e. the last sentence does not a�ectthe applicability of realisations.The semantic class of realisations is called Rea.TracesWe extend the de�nition of generalisation to traces. The relation � is the smallestbinary relation on traces satisfying the following properties:
 �
 (=
 2 SimTrace
1 �
2 �
 01 �
 02 (=
1 �
 01 ^
2 �
 028�(k):
 � #(
) (= Dom# = �(k)(N)
 � '(
) (= Supp' � N
1 �
3 (= there exists
2 such that
1 �
2 ^
2 �
3
1 �
2 (= for all
3;
2 �
3 =)
1 �
3It can be shown that generalisation between type schemes is a special case ofgeneralisation between traces.Stripping AxiomsAxioms should not in
uence elaboration; in particular, the successful elaborationof a phrase should not depend on the presence of axioms. For this purpose, wede�ne a family of partial functionsstrip : 8><>: (SigExp� Trace)! (SigExp�Trace)(StrDesc� Trace)! (StrDesc� Trace)(Spec� Trace)! (Spec� Trace)which \strip" axioms from signature expressions and perform the correspondingremoval in the trace. These functions are partial because e.g. the trace
 in anargument (spec;
) of strip is expected to be an elaboration result of spec. Moreprecisely, strip is de�ned as follows:strip : (SigExp� Trace)! (SigExp�Trace)strip(sig spec end;m �
) = (sig spec0 end;m �
 0)where strip(spec;
) = (spec 0;
 0)strip(sigid ;
) = (sigid ;
)

42 5 STATIC SEMANTICS FOR MODULESstrip : (StrDesc� Trace)! (StrDesc� Trace)strip(strid : sigexp hand strdesci;
1h�
2i) =(strid : sigexp 0 hand strdesc 0i;
 01h�
 02i)where (strip(sigexp;
1) = (sigexp 0;
 01)hstrip(strdesc;
2) = (strdesc 0;
 02)istrip : (Spec� Trace)! (Spec�Trace)strip(axiom axdesc;
) = (; �)strip(structure strdesc;
) = (structure strdesc 0;
 0)where strip(strdesc;
) = (strdesc0;
 0)strip(local spec1 in spec2 end;
1 �
2) = (local spec01 in spec02 end;
 01 �
 02)where strip(speci;
i) = (spec0i;
 0i); i 2 f1; 2gstrip(spec1 h;i spec2;
1 �
2) = (spec01 h;i spec02;
 01 �
 02)where strip(speci;
i) = (spec0i;
 0i); i 2 f1; 2gstrip(spec;
) = (spec;
) otherwise5.8 Type ExplicationA signature (N)S is type-explicit if, whenever t 2 N and t occurs free in S, thensome substructure of S contains a type environment TE such that TE(tycon) =(t; CE) for some tycon and some CE.5.9 Signature InstantiationA structure S2 is an instance of a signature �1 = (N1)S1, written �1�S2, if thereexists a realisation ' such that '(S1) = S2 and Supp' � N1. We write �1�'S2if we want to make ' explicit. (Note that if �1 is type-explicit then there is atmost one such '.) A signature �2 = (N2)S2 is an instance of �1 = (N1)S1, written�1��2, if �1�S2 and N2 \ (names�1) = ;. It can be shown that �1��2 i�, forall S, whenever �2�S then �1�S.5.10 Functor Signature InstantiationA pair (S; (N 0)S 0) is called a functor instance. Given � = (N1)(S1; (N 01)S 01), afunctor instance (S2; (N 02)S 02) is an instance of �, written ��(S2; (N 02)S02), if thereexists a realisation ' such that '(S1; (N 01)S 01) = (S2; (N 02)S 02) and Supp' � N1.Again we write ��'(S2; (N 02)S 02) to make ' explicit.5.11 EnrichmentIn matching a structure to a signature, the structure will be allowed both tohave more components, and to be more polymorphic, than (an instance of) the

5.12 Signature Matching 43signature. Precisely, we de�ne enrichment of structures, environments and typestructures by mutual recursion as follows.A structure S1 = (m1; E1) enriches another structure S2 = (m2; E2), writtenS1 � S2, if1. m1 = m22. E1 � E2An environment E1 enriches another environment E2, Ei = (SEi; TEi; VEi), writ-ten E1 � E2, if1. DomSE1 � DomSE2, and 8strid 2 DomSE2: SE1(strid) � SE2(strid)2. DomTE1 � DomTE2, and 8tycon 2 DomTE2: TE1(tycon) � TE2(tycon)3. DomVE1 � DomVE2, and 8id 2 DomVE2: VE1(id) � VE2(id)Finally, a type structure (�1; CE1) enriches another type structure (�2; CE2),written (�1; CE1) � (�2; CE2), if1. �1 = �22. Either CE1 = CE2 or CE2 = fg5.12 Signature MatchingA structure S matches a signature �1 if there exists a structure S� such that�1 � S� � S. Thus matching is a combination of instantiation and enrichment.There is at most one such S�, given �1 and S. Moreover, writing �1 = (N1)S1,if �1 � S� then there exists a realisation ' with Supp' � N1 and '(S1) = S�.We shall then say that S matches �1 via '. (Note that if �1 is type-explicit then' is uniquely determined by �1 and S.)A signature �2 matches a signature �1 if for all structures S, if S matches �2then S matches �1. It can be shown that �2 = (N2)S2 matches �1 = (N1)S1 ifand only if there exists a realisation ' with Supp' � N1 and '(S1) � S2 andN2 \ names�1 = ;.5.13 Principal SignaturesThe de�nitions in this section concern the elaboration of signature expressions;more precisely they concern inferences of sentences of the form B ` sigexp) S;
,where S is a structure and B is a basis. Recall, from Section 5.5, that the assemblyof all semantic objects in such an inference must be admissible.For any basis B and any structure S, we say that B covers S if for everysubstructure (m;E) of S such that m 2 N of B:

44 5 STATIC SEMANTICS FOR MODULES1. For every structure identi�er strid 2 DomE, B contains a substructure(m;E 0) with m free and strid 2 DomE 02. For every type constructor tycon 2 DomE, B contains a substructure(m;E 0) with m free and tycon 2 DomE 0(This condition is not a consequence of consistency of fB;Sg; informally, it statesthat if S shares a substructure with B, then S mentions no more components ofthe substructure than B does.)We say that a signature (N)S with a trace
 is principal for sigexp in B if,choosing N so that (N of B) \N = ;,1. B covers S2. B ` sigexp) S;
3. Whenever B ` sigexp) S 0;
 0, then (N)S�'S0 and '0(
) �
 0, for somerealisations ' and '0 such that Supp'0 \ (N of B) = ; and such that '0restricted to N is the same as '.We claim that if sigexp elaborates in B to some structure covered by B, then itpossesses a principal signature in B (with some trace).5Analogous to the de�nition given for type environments in Section 4.9, we saythat a semantic object A respects equality if every type environment occurring inA respects equality.Now let us assume that sigexp possesses a principal signature �0 = (N0)S0with
0 in B. We wish to de�ne, in terms of �0, another signature � with
 whichprovides more information about the equality attributes of structures which willmatch �0. To this end, let T0 be the set of type names t 2 N0 which do not admitequality, and such that (t; CE) occurs in S0 for some CE 6= fg. Then we say �with
 is equality-principal for sigexp in B if1. � respects equality2. � and
 are obtained from �0 and
0 just by making as many members ofT0 admit equality as possible, subject to 1. above.It is easy to show that, if any such a pair (�;
) exists, it is determined uniquelyby (�0;
0); moreover, � exists if �0 itself respects equality.We do not express equality-principality of signature elaboration by higher-orderrules, in spite of comments in Section 1.2 which suggest this. The problem is thatthe obvious higher-order rule is on the one hand (slightly) incompatible with SMLand on the other hand makes signature elaboration undecidable. One can repairthe undecidability
aw by making a few rather innocent-looking changes to thesemantics, but this would widen the gap between SML and EML.5This claim must be slightly quali�ed, since it may be ill-formed in a mild sense. This isdiscussed at the end of Section 11.3 of [MT91].

5.14 Inference Rules 455.14 Inference RulesAs for the Core, the rules of the Modules static semantics allow sentences of theform A ` phrase) A0to be inferred, where in this case A is usually either a basis or a context and A0 isa semantic object or an assembly of such objects.Structure Expressions B ` strexp) S;
B ` strdec) E;
 m =2 (N of B) [namesEB ` struct strdec end) (m;E);m �
 (53)B(longstrid) = SB ` longstrid) S; � (54)B ` strexp) S;
B(funid)�'(S 00; (N 0)S 0) ; S � S 00 (N of B) \N 0 = ;B ` funid (strexp)) S 0; ' �
 (55)B ` strdec) E;
 B � E ` strexp) S;
 0B ` let strdec in strexp end) S;
 �
 0 (56)Comments:(53) The side condition ensures that each generative structure expression receivesa new name. If the expression occurs in a functor body the structure namewill be bound by (N 0) in rule 99; this will ensure that for each application ofthe functor, by rule 55, a new distinct name will be chosen for the structuregenerated.(55) The side condition (N of B) \ N 0 = ; can always be satis�ed by renamingbound names in (N 0)S 0 thus ensuring that the generated structures receivenew names.Let B(funid) = (N)(Sf ; (N 0)S 0f). Assuming that (N)Sf is type-explicit, therealisation ' for which '(Sf ; (N 0)S 0f) = (S 00; (N 0)S 0) is uniquely determinedby S, since S � S 00 can only hold if the type names and structure namesin S and S 00 agree. Recall that enrichment � allows more components andmore polymorphism, while instantiation � does not.Sharing between argument and result speci�ed in the declaration of thefunctor funid is represented by the occurrence of the same name in bothSf and S 0f , and this repeated occurrence is preserved by ', yielding sharingbetween the argument structure S and the result structure S 0 of this functorapplication.

46 5 STATIC SEMANTICS FOR MODULES(56) The use of �, here and elsewhere, ensures that structure and type namesgenerated by the �rst sub-phrase are distinct from names generated by thesecond sub-phrase.Structure-level Declarations B ` strdec) E;
C of B ` dec) E;
 N = names
 nN of B C of B ` dec) E0;
0(N)
 �
0B ` dec) E;
 (57)B ` ax)
 B ` ax)
0Clos
 �
0B ` axiom ax) fg in Env;Clos
 (57:1)B ` strbind) SE;
B ` structure strbind) SE in Env;
 (58)B ` strdec1) E1;
1 B � E1 ` strdec2) E2;
2B ` local strdec1 in strdec2 end) E2;
1 �
2 (59)B `) fg in Env; � (60)B ` strdec1) E1;
1 B � E1 ` strdec2) E2;
2B ` strdec1 h;i strdec2) E1 + E2;
1 �
2 (61)Comments:(57) The last premise can be seen as requiring principality of the trace
 (fordec in B), which implies principality of the environment E in the sense ofthe SML de�nition; it is a stronger condition, as
 may also include typeswhich are not in E.(57.1) The second premise ensures principality of the trace
.Axioms B ` ax)
B ` axexp)
 hB ` ax)
 0iB ` axexp hand ax i)
h�
 0i (61:1)Comment: Axioms are not implicitly universally quanti�ed over all their free vari-ables. Such implicit quanti�cation is convenient for presenting small examples,but the redundancy introduced by requiring variables to be explicitly quanti�edis helpful in detecting typographical errors in larger examples.

5.14 Inference Rules 47Axiomatic Expressions B ` axexp)
C of B ` exp�) bool; ;;
B ` exp�)
 (61:2)Comment: Axiomatic expressions must be of type bool and are not allowed tocontain unguarded explicit type variables.Structure Bindings B ` strbind) SE;
B ` sglstrbind) SE;
 hB + namesSE ` strbind) SE0;
 0iB ` sglstrbind hand strbind i) SE h+SE 0i;
h�
 0i (62)Single Structure Bindings B ` sglstrbind) SE;
B ` psigexp) (N)S;
 B ` strexp) S 0;
 0N \N of B = ; (N)S � S 00 � S 0B ` strid : psigexp = strexp) fstrid 7! Sg;
 �
 0 (62:1)B ` psigexp) (N)S;
 N \N of B = ;B ` strid : psigexp = ?) fstrid 7! Sg;
 (62:2)B ` strexp) S;
B ` strid = strexp) fstrid 7! Sg;
 (62:3)Comments:(62.1) In EML, structures are like abstractions [MacQ86]: the signature of astructure is taken to be exactly the explicit signature. Any additionalsharing present in the structure body is invisible outside the body. Thetype/structure names in S 0 are not accessible outside the body and so theymay be safely reused (in contrast to SML, where strid is bound to S 00).(62.1),(62.2) The only di�erence between these two rules is that in the case wherea body is present, it is required to elaborate and to �t the signature given.However, this does not e�ect the overall result of elaboration, which dependsonly on the signature given.The side-condition N \N ofB = ; can always be satis�ed by an appropriate�-conversion of (N)S.

48 5 STATIC SEMANTICS FOR MODULESSignature Expressions B ` sigexp) S;
B ` spec) E;
B ` sig spec end) (m;E);m �
 (63)B(sigid)�'SB ` sigid) S;' (64)Comments:(63) In contrast to rule 53, m is not here required to be new. The name mmay be chosen to achieve the sharing required in rule 88, or to achieve theenrichment side conditions of rule 62.1 or 99. The choice of m must resultin an admissible object.(64) The instance S of B(sigid) is not determined by this rule, but | as in rule 63| the instance may be chosen to achieve sharing properties or enrichmentconditions.Principal Signatures B ` psigexp) �;
(N)S with
 equality-principal for sigexp in B (N)S type-explicitstrip(sigexp;
) = (sigexp 0;
 0)(N)S with
 0 equality-principal for sigexp 0 in BB ` sigexp) (N)S; (N)
 (65)Comment: B ` sigexp) S;
 follows from the de�nition of equality-principalityof (N)S with
 for sigexp in B. The purpose of the second equality-principalityrequirement is to ensure that dropping axioms from sigexp does not change theresult of elaboration. We also need principality of the second elaboration to get aunique trace
. In an implementation, the two equality-principality requirementswill probably correspond to two passes of static analysis: the �rst pass elaboratesthe signature expression stripped of its axioms; the second pass then includes theaxioms and checks that no further identi�cation of type names is required forelaboration to succeed.Signature Declarations B ` sigdec) G;
B ` sigbind) G;
B ` signature sigbind) G;
 (66)B `) fg; � (67)B ` sigdec1) G1;
1 B +G1 ` sigdec2) G2;
2B ` sigdec1 h;i sigdec2) G1 +G2;
1 �
2 (68)

5.14 Inference Rules 49Comments:(66) The �rst closure restriction of Section 3.6 can be enforced by replacing theB in the premise by (B \B0) +G of B.(68) A signature declaration does not create any new structures or types; hencethe use of + instead of �.Signature Bindings B ` sigbind) G;
B ` psigexp) �;
 hB ` sigbind) G;
 0iB ` sigid = psigexp hand sigbind i) fsigid 7! �g h+ Gi;
h�
 0i (69)Comment: The condition that � be equality-principal, implicit in the �rst premise,ensures that the signature found is as general as possible given the sharing con-straints present in psigexp.Speci�cations B ` spec) E;
C of B ` valdesc) VEB ` val valdesc) ClosVE in Env; ClosVE in Trace (70)C of B ` typdesc) TEB ` type typdesc) TE in Env; TE in Trace (71)C of B ` typdesc) TE 8(�;CE) 2 Ran TE; � admits equalityB ` eqtype typdesc) TE in Env; TE in Trace (72)C of B + TE ` datdesc) VE; TE E = (fg; TE; VE)B ` datatype datdesc) E; E in Trace (73)C of B ` exdesc) VE E = (fg; fg; VE)B ` exception exdesc) E; E in Trace (74)B ` axdesc)
B ` axiom axdesc) fg in Env;
 (74:1)B ` strdesc) SE;
B ` structure strdesc) SE in Env;
 (75)B ` shareq) fgB ` sharing shareq) fg in Env; � (76)B ` spec1) E1;
1 B + E1 ` spec2) E2;
2B ` local spec1 in spec2 end) E2;
1 �
2 (77)

50 5 STATIC SEMANTICS FOR MODULESB(longstrid1) = (m1; E1) ��� B(longstridn) = (mn; En)B ` open longstrid 1 ��� longstridn) E1 + ���+ En; � (78)B(sigid1)�'1(m1; E1) ��� B(sigidn)�'n(mn; En)B ` include sigid1 ��� sigidn) E1 + ���+ En; '1 � : : : � 'n (79)B `) fg in Env; � (80)B ` spec1) E1;
1 B + E1 ` spec2) E2;
2B ` spec1 h;i spec2) E1 + E2;
1 �
2 (81)Comments:(70) VE is determined by B and valdesc.(71){(73) The type functions in TE may be chosen to achieve the sharing hy-pothesis of rule 89 or the enrichment conditions of rules 62.1 and 99. Inparticular, the type names in TE in rule 73 need not be new. Also, inrule 71 the type functions in TE may admit equality.(74) VE is determined by B and exdesc and contains monotypes only.(79) The names mi in the instances may be chosen to achieve sharing or enrich-ment conditions.Value Descriptions C ` valdesc) VEvar = idv C ` ty) � hC ` valdesc) VEiC ` var : ty hand valdesci) fid 7! �g h+ VEi (82)Type Descriptions C ` typdesc) TEtyvarseq = �(k) hC ` typdesc) TEi arity � = kC ` tyvarseq tycon hand typdesci) ftycon 7! (�; fg)g h+ TEi (83)Comment: Note that any � of arity k may be chosen but that the constructorenvironment in the resulting type structure must be empty. For example,datatype s=ctype tsharing type s=tis a legal speci�cation, but the type structure bound to t does not bind any valueconstructors.

5.14 Inference Rules 51Datatype Descriptions C ` datdesc) VE; TEtyvarseq = �(k) C;�(k)t ` condesc) CE hC ` datdesc) VE; TEiC ` tyvarseq tycon = condesc hand datdesci)ClosCEh+ VEi; ftycon 7! (t;ClosCE)g h+ TEi (84)Constructor Descriptions C; � ` condesc) CEcon = idc hC; � ` condesc) CEiC; � ` con h | condesci) fid 7! �g h+ CEi (85)con = idc C ` ty) � 0 hC; � ` condesc) CEiC; � ` con of ty h | condesci) fid 7! � 0 ! �g h+ CEi (85:1)Exception Descriptions C ` exdesc) VEexcon = ide hC ` exdesc) VEiC ` excon hand exdesci) fid 7! exng h+ VEi (86)C ` ty) � tyvars(ty) = ;excon = ide hC ` exdesc) VEiC ` excon of ty hand exdesci) fid 7! � ! exngh+ VEi (86:1)Comments:(86.1) The requirement that there are no type variables in ty (rather than in � ,as in rule 31.1 or in rule 86 of [MTH90]) was suggested in Appendix D in[MT91]. The problem with the requirement in [MTH90] is that principalityis lost because of the existence of type functions like ��:int; see [MT91].Here is an example:type 'a texception e of 'a tThis speci�cation does not elaborate because of the side-condition in 86.1.The weaker side-condition tyvars(�) = ; would still allow successful elabor-ations with e.g. t 7! ��:int.Axiom Descriptions B ` axdesc)
Axiom descriptions, speci�cation expressions, etc. do not add components to thebasis, hence the only outcome of elaboration is the trace.B ` specexp)
 hB ` axdesc)
 0iB ` specexp hand axdesci)
h�
 0i (86:2)

52 5 STATIC SEMANTICS FOR MODULESSpeci�cation Expressions B ` specexp)
B ` strdec) E;
 B � E ` axexp)
 0B ` let strdec in axexp end)
 �
 0 (86:3)Structure Descriptions B ` strdesc) SE;
B ` sigexp) S;
 hB ` strdesc) SE;
 0iB ` strid : sigexp hand strdesci) fstrid 7! Sg h+ SEi;
h�
 0i (87)Sharing Equations B ` shareq) fgm of B(longstrid1) = ��� = m of B(longstridn)B ` longstrid 1 = ��� = longstridn) fg (88)� of B(longtycon1) = ��� = � of B(longtyconn)B ` type longtycon1 = ��� = longtyconn) fg (89)B ` shareq1) fg B ` shareq2) fgB ` shareq1 and shareq2) fg (90)Comments:(88) The premise is weaker than B(longstrid1) = ��� = B(longstridn). Twodi�erent structures with the same name may be thought of as representingdi�erent views. The requirement that B is consistent forces di�erent viewsto be consistent.(89) The premise is weaker than B(longtycon1) = ��� = B(longtyconn). Atype structure with empty constructor environment may have the sametype name as one with a non-empty constructor environment; the formercould arise from a type description, and the latter from a datatype descrip-tion. However, the requirement that B is consistent will prevent two typestructures with constructor environments which have di�erent non-emptydomains from sharing the same type name.Functor Speci�cations etc.Several rules have been removed here, because EML does not support functorspeci�cations, functor descriptions or functor signature expressions. In SML theseconstructs are assigned semantics although they cannot appear in programs.Deleted (91)

5.14 Inference Rules 53Deleted (92)Deleted (93)Deleted (94)Deleted (95)Functor Declarations B ` fundec) F;
B ` funbind) F;
B ` functor funbind) F;
 (96)B `) fg; � (97)B ` fundec1) F1;
1 B + F1 ` fundec2) F2;
2B ` fundec1 h;i fundec2) F1 + F2;
1 �
2 (98)Comments:(96) The second closure restriction of Section 3.6 can be enforced by replacingthe B in the premise by (B \B0) + (G of B) + (F of B).Functor Bindings B ` funbind) F;
B ` psigexp) (N)S;
1 N \N of B = ; B 0 = B � fstrid 7! SgB0 ` psigexp 0) �;
2 B0 ` strexp) S 0;
3� � S 00 � S 0 hB ` funbind) F;
4iB ` funid (strid : psigexp) : psigexp0 = strexp hand funbind i)ffunid 7! (N)(S;�)g h+ F i;
1 �
2 �
3h�
4i (99)B ` psigexp) (N)S;
1 B � fstrid 7! Sg ` psigexp 0) �;
2N \ N of B = ; hB ` funbind) F;
3iB ` funid (strid : psigexp) : psigexp0 = ? hand funbind i)ffunid 7! (N)(S;�)g h+ F i;
1 �
2h�
3i (99:1)

54 5 STATIC SEMANTICS FOR MODULESComments:(99) In EML, functors are like parameterised abstractions [MacQ86]: the outputsignature of a functor is taken to be exactly the explicit output signature.Any additional sharing present in the functor body is invisible outside thebody. Compare rule 99 of [MTH90].(99),(99.1) The requirement that (N)S be equality-principal, implicit in the �rstpremise, forces (N)S to be as general as possible given the sharing con-straints in psigexp. The requirement that (N)S be type-explicit ensuresthat there is at most one realisation via which an actual argument can match(N)S. Since � is used, any structure namem and type name t in S acts likea constant in the functor body and in the functor result signature; in partic-ular, it ensures that further names generated during elaboration of the bodyare distinct from m and t. The only di�erence between these two rules isthat in the case where a body is present, it is required to elaborate and to �tthe output signature. This does not a�ect the overall result of elaboration,which depends only on the input and output signatures.Top-level Declarations B ` topdec) B0;
B ` strdec) E;
B ` strdec) (namesE;E) in Basis;
 (100)B ` sigdec) G;
B ` sigdec) (namesG;G) in Basis;
 (101)B ` fundec) F;
B ` fundec) (namesF;F) in Basis;
 (102)

556 Dynamic Semantics for the Core6.1 Reduced SyntaxSince types are fully dealt with in the static semantics, the dynamic semanticsignores them. The Core syntax is therefore reduced by the following transforma-tions, for the purpose of the dynamic semantics:� All explicit type ascriptions \: ty" are omitted, and quali�cations \of ty"are omitted from constructor and exception bindings.� Any declaration of the form \type typbind "or \eqtype typbind " is replacedby the empty declaration.� The Core phrase classes TypBind, Ty and TyRow are omitted.6.2 Simple ObjectsAll objects in the dynamic semantics are built from identi�er classes togetherwith the simple object classes shown (with the variables which range over them)in Figure 14. en 2 ExName exception namesb 2 BasVal basic valuessv 2 SVal special valuessp 2 Bit = f?;>g
agsfFAILg failureFigure 14: Simple Semantic ObjectsExName is an in�nite set; it is totally ordered, i.e. every subset A of ExNamehas a smallest element minA. BasVal is described below in Section 6.4. SVal is theclass of values denoted by the special constants SCon. Each integer or real constantdenotes a value according to usual conventions for decimal numbers with limitedprecision; each string constant denotes a sequence of characters as explained inSection 2.2. The value denoted by scon is written val(scon). The values ? and >are only used as Boolean
ags. If a semantic object x contains a Bit component,we write x? to denote the same object, but with the Bit component set to ?. OnBit, we de�ne the operation ^ as the greatest lower bound of the order ? � >; itsgeneralisation to �nite index sets I is written Vi2I . FAIL is the result of a failingattempt to match a value and a pattern. Thus FAIL is neither a value nor anexception, but simply a semantic object used in the rules to express operationallyhow matching proceeds.

56 6 DYNAMIC SEMANTICS FOR THE COREv 2 Val = SVal] BasVal] Con] (Con �Val)] ExVal] Record] Closure] fIncompletegr 2 Record = Lab �n! Vale 2 ExVal = ExName] (ExName�Val)[e] or p 2 Pack = ExVal(match; E; VE) 2 Closure = Match� Env�VarEnvens 2 ExNameSet = Fin(ExName)(sp; ens) or s 2 State = Bit� ExNameSet(SE; VE) or E 2 Env = StrEnv �VarEnvSE 2 StrEnv = StrId �n! EnvVE 2 VarEnv = Id �n! ValFigure 15: Compound Semantic ObjectsException constructors evaluate to exception names, unlike value constructorswhich simply evaluate to themselves. This is to accommodate the generativenature of exception bindings; each evaluation of a declaration of an exceptionconstructor binds it to a new unique name.6.3 Compound ObjectsThe compound objects for the dynamic semantics are shown in Figure 15. Manyconventions and notations are adopted as in the static semantics; in particu-lar projection, injection and modi�cation all retain their meaning. The valueIncomplete is used to represent the \value" associated with a variable having anunde�ned value (e.g. because it was bound using \?").We take] to mean disjoint union over semantic object classes. We also un-derstand all the de�ned object classes to be disjoint. A particular case deservesmention; ExVal and Pack (exception values and packets) are isomorphic classes,but the latter class corresponds to exceptions which have been raised, and there-fore has di�erent semantic signi�cance from the former, which is just a subclassof values.Although the same names, e.g. E for an environment, are used as in the staticsemantics, the objects denoted are di�erent. This need cause no confusion sincethe static and dynamic semantics are presented separately. An important pointis that structure names m have no signi�cance at all in the dynamic semantics;this explains why the object class Str = StrName� Env is absent here { for thedynamic semantics the concepts structure and environment coincide.

6.4 Basic Values 576.4 Basic ValuesThe basic values in BasVal are the values bound to prede�ned variables. Thesevalues are denoted by the identi�ers to which they are bound in the initial basis(see Appendix C), and are as follows:abs floor real sqrt sin cos arctan exp lnsize chr ord explode implode div mod/ * + - = <> < > <= >=The meaning of basic values (all of which are functions) is represented by thefunction APPLY : BasVal�Val! Val] Packwhich is detailed in Appendix C.6.5 Basic ExceptionsA subset BasExName � ExName of the exception names are bound to prede�nedexception constructors. These names are denoted by the identi�ers to which allbut the last are bound in the initial basis (see Appendix C), and are as follows:Abs Ord Chr Div Mod Quot ProdNeg Sum Diff Floor Sqrt Exp LnMatch Bind Interrupt NoCode AbuseThe exceptions on the �rst two lines are raised by corresponding basic functions,where ~ / * + - correspond respectively to Neg Quot Prod Sum Diff. The details aregiven in Appendix C. The exceptions Match and Bind are raised upon failureof pattern-matching in evaluating a function fn match or a valbind , as detailed inthe rules to follow. Interrupt is raised by external intervention. The exceptionNoCode is raised to signal an attempt to evaluate a speci�cation construct, seebelow. Finally, Abuse is raised in the veri�cation semantics only, to signal abuseof the convergence predicate (rule 216).Recall from Section 4.11 that in the context fn match, the match must beirredundant and exhaustive and that the compiler should
ag the match if itviolates these restrictions. The exception Match can only be raised for a matchwhich is not exhaustive, and has therefore been
agged by the compiler.For each value binding pat = exp the compiler must issue a report (but stillcompile) if either pat is not exhaustive or pat contains no variable. This will (onboth counts) detect a mistaken declaration like val nil = exp in which the userexpects to declare a new variable nil (whereas the language dictates that nil ishere a constant pattern, so no variable gets declared). However, these warningsshould not be given when the binding is a component of a top-level declarationval valbind; e.g. val x::l = exp1 and y = exp2 is not faulted by the compilerat top level, but may of course generate a Bind exception.

58 6 DYNAMIC SEMANTICS FOR THE COREThe exception NoCode is raised when evaluation encounters an expression hav-ing an unde�ned value (i.e. an atomic expression of the form ?, an expression of theform \exists match�", \forall match�", \exp� terminates", \exp�1 == exp�2", oraccessing a variable which has been bound to Incomplete). This exception is notbound in the initial basis (but NoCode; Abuse 2 BasExName to avoid erroneousreuse of these names for user-declared exceptions). Rule 121.1 and premises onrules 120 and 121 guarantee that the exception NoCode cannot be caught by anexplicit handler in the program. This is required to ensure that replacing \?" bycode will not change the result of an evaluation, except from [NoCode] to somethingelse, provided the evaluation of the new code yields a value. The exception NoCodeis handled as a special case in one of the rules for value binding (rule 135.1) |if evaluation of the expression on the right-hand side of a value binding raisesNoCode, then the binding is done with the value Incomplete.6.6 ClosuresThe informal understanding of a closure (match; E; VE) is as follows: when theclosure is applied to a value v, match will be evaluated against v, in the envir-onment E modi�ed in a special sense by VE. The domain DomVE of this thirdcomponent contains those function identi�ers to be treated recursively in the eval-uation. To achieve this e�ect, the evaluation of match will take place not in E+VEbut in E +RecVE, where Rec : VarEnv! VarEnvis de�ned as follows:� Dom(RecVE) = DomVE� If VE(id) =2 Closure, then (RecVE)(id) = VE(id)� If VE(id) = (match 0; E 0; VE 0) then (RecVE)(id) = (match 0; E 0; VE)The e�ect is that, before application of (match; E; VE) to v, the closure valuesin RanVE are \unrolled" once, to prepare for their possible recursive applicationduring the evaluation of match upon v.This device is adopted to ensure that all semantic objects are �nite (by con-trolling the unrolling of recursion). The operator Rec is invoked in just twoplaces in the semantic rules: in the rule for recursive value bindings of the form\rec valbind", and in the rule for evaluating an application expression \exp atexp"in the case that exp evaluates to a closure.States and FlagsA state consists of a set of exception names and a
ag. The set of exception namesrecords the exceptions introduced so far. The
ag indicates whether or not a spe-ci�cation construct (e.g. a quanti�ed expression) has been encountered during the

6.6 Closures 59evaluation so far; this includes speci�cation constructs within values, see the nextsection. Initially, this component is > and each speci�cation construct makes it?. The meaning of speci�cation constructs in dynamic and veri�cation semanticsdi�ers in a signi�cant way. The purpose of the
ag is to relate dynamic and veri-�cation semantics, see Section 8.7 and the rules for the convergence predicate inthe veri�cation semantics, rules 215 to 217. It is also used in the de�nition of themeaning of quanti�cation in the veri�cation semantics (rules 211{214) where wewant to quantify over ML-de�nable values only.Let s = (sp; ens). We de�ne the notation s ^ sp0 as abbreviation for the state(sp ^ sp0; ens).In contrast to SML, states do not contain a map from \addresses" to values.Pure ValuesWe de�ne a function AI : Val ! Bit to indicate whether or not a value is pure,meaning that it does not depend on speci�cation constructs. For example, theexpression (fn y=>y terminates) evaluates to an impure value. Impure valuescan only arise if functional types are involved, since speci�cation constructs invalues can occur only within closures. Therefore, the function AI is used directlyonly in rules 123 (where closures are formed) and 104 (where closures may beextracted from an environment).AI(v) = > means that the value v neither directly nor indirectly depends onspeci�cation constructs, AI(v) = ? means that there may be such a dependency.Because values include closures, we need corresponding auxiliary functions forvarious syntactic phrases; for simplicity, we call them all AI as well. The con-nection is (for expressions): if s;E ` exp) v; s0 is a derivable sentence in thedynamic semantics then AI(E; exp) ^ sp of s � AI(v) ^ sp of s0. The functionsAI can be seen as an abstract interpretation, very much in the style of abstractinterpretation for strictness analysis.Another auxiliary function for AI is dRec : VarEnv ! VarEnv, de�ned asfollows:� Dom(dRecVE) = DomVE� If VE(id) =2 Closure, then (dRecVE)(id) = VE(id)� If VE(id) = (match 0; E 0; VE 0) then(dRecVE)(id) = (match 0; E 0; VE + fid 7! 1g):The operation dRec is very similar to Rec except that each identi�er id in thevariable environment of a closure will be \unrolled" at most once, which is achievedby binding id after one unrolling to the value 1, disregarding its type.

60 6 DYNAMIC SEMANTICS FOR THE COREOn values, we have AI(v) = ? if v either contains Incomplete or is a closurethat contains speci�cation constructs or refers to incompletely de�ned identi�ers:AI : Val! BitAI(Incomplete) = ?AI(v) = > if v 2 SVal] BasVal] Con] ExNameAI(con; v) = AI(v)AI(en; v) = AI(v)AI(r) = Vlab2Dom rAI(r(lab))AI(match; E; VE) = AI(E + dRecVE;match)The function AI on the right-hand side of the last equation has the form AI :Env �Match! Bit. Similarly, we have a function AI : Env � Exp! Bit for thephrase class Exp, etc. We adopt the notation of options in syntactic phrases forthe de�nition of functions by equations: the option is either present in both sidesof an equation or in neither.AI : Env�Match! BitAI(E;mrule h | matchi) = AI(E;mrule) h ^AI(E;match)iAI : Env�Mrule! BitAI(E; pat => exp) = AI(E +AI(pat); exp)The abstract interpretation of a pattern (de�ned further below) is a variable en-vironment that maps each var in pat to the dummy value 1. It does not dependon the environment because identi�ers in patterns of the Bare language alreadycome equipped with their status, i.e. a dynamic environment is neither necessarynor helpful to distinguish value variables from value constructors and exceptionconstructors.AI : Env � Exp! BitAI(E; atexp) = AI(E; atexp)AI(E; exp atexp) = AI(E; exp) ^AI(E; atexp)AI(E; exp�1 == exp�2) = ?AI(E; exists match�) = ?AI(E; forall match�) = ?AI(E; exp� terminates) = ?AI(E; exp handle match) = AI(E; exp) ^AI(E;match)AI(E; raise exp) = AI(E; exp)AI(E; fn match) = AI(E;match)In the �rst equation, the AI on the right-hand side refers to the correspondingfunction for atomic expressions. Equality, quanti�cation, and the convergencepredicate are considered speci�cation constructs.

6.6 Closures 61AI : Env �AtExp! BitAI(E; scon) = >AI(E; longvar) = AI(E(longvar))AI(E; longcon) = AI(E(longcon))AI(E; longexcon) = AI(E(longexcon))AI(E; f hexprow i g) = > h ^ AI(E; exprow)iAI(E; let dec in exp end) = sp ^AI(E + E 0; exp)where (sp; E 0) = AI(E; dec)AI(E; (exp)) = AI(E; exp)AI(E; ?) = ?The abstract interpretation of a let-expression let dec in exp end is ? if decdepends on speci�cation constructs, even if the corresponding identi�er is notused in exp. This re
ects the call-by-value nature of evaluation.Question marks are considered speci�cation constructs when they are used asexpressions.AI : Env� ExpRow! BitAI(E; lab = exp h , exprowi) = AI(E; exp) h ^AI(E; exprow)iThe abstract interpretation of an (atomic) pattern is a variable environmentmapping each value variable that occurs in the pattern to 1, regardless of its type.The value 1 is an arbitrary choice here; any value v with AI(v) = > would do.AI : Pat! VarEnvAI(atpat) = AI(atpat)AI(longcon atpat) = AI(atpat)AI(longexcon atpat) = AI(atpat)AI(var as pat) = fid 7! 1g+AI(pat); where var = idvAI : AtPat! VarEnvAI() = fgAI(scon) = fgAI(var) = fid 7! 1g; where var = idvAI(longcon) = fgAI(longexcon) = fgAI(f hpatrowi g) = fg h+AI(patrow)iAI((pat)) = AI(pat)AI : PatRow! VarEnvAI(...) = fgAI(lab = pat h , patrowi) = AI(pat) h +AI(patrow)i

62 6 DYNAMIC SEMANTICS FOR THE COREFor declarations, AI has the form Env�Dec! Bit�Env. The �rst componentof the result indicates whether the declaration depends on speci�cation constructs.AI : Env �Dec! Bit� EnvAI(E; val valbind) = (sp; VE in Env)where (sp; VE) = AI(E; valbind)AI(E; datatype datbind) = (>;AI(datbind) in Env)AI(E; abstype datbind with dec end) = (sp; (VE in Env) + E 0)where (VE = AI(datbind)(sp; E 0) = AI(E + VE; dec)AI(E; exception exbind) = (>;AI(exbind) in Env)AI(E; local dec1 in dec2 end) = (sp1 ^ sp2; E2)where ((sp1; E1) = AI(E; dec1)(sp2; E2) = AI(E + E1; dec2)AI(E; open longstrid1 ��� longstridn) = (>; E1 + ���+ En)where Ei = E(longstrid i); 1 � i � nAI(E; dec1 h;i dec2) = (sp1 ^ sp2; E1 + E2)where ((sp1; E1) = AI(E; dec1)(sp2; E2) = AI(E + E1; dec2)AI(E;) = (>; fg)AI : E �ValBind! Bit�VarEnvAI(E; pat = exp hand valbind i) = (AI(E; exp) h ^ spi; AI(pat) h+ VEi)where (sp; VE) = AI(E; valbind)AI(E; rec valbind) = (sp; VE)where (sp; VE) = AI(E + VE; valbind)The cyclic dependency of VE in the de�nition of AI(E; rec valbind) is unproblem-atic: we have VE(id) = 1 for all identi�ers id de�ned in valbind .AI : DatBind! VarEnvAI(tyvarseq tycon = conbind hand datbindi) = AI(conbind) h +AI(datbind)iAI : ConBind! VarEnvAI(con h|conbind i) = fid 7! 1g h+AI(conbind)iwhere con = idvAI : ExBind! VarEnvAI(excon hand exbind i) = fid 7! 1g h+AI(exbind)iwhere excon = ideAI(excon = longexcon hand exbind i) = fid 7! 1g h+AI(exbind)iwhere excon = ide

6.7 Inference Rules 636.7 Inference RulesThe semantic rules allow sentences of the forms;A ` phrase) A0; s0to be inferred, where A is usually an environment,A0 is some semantic object ands,s0 are the states before and after the evaluation represented by the sentence.Some hypotheses in rules are not of this form; they are called side-conditions.In most rules the states s and s0 are omitted from sentences; they are onlyincluded for those rules which are directly concerned with the state | eitherreferring to its contents or changing it. When omitted, the convention for restoringthem is as follows. If the rule is presented in the formA1 ` phrase1) A01 A2 ` phrase2) A02 ������ An ` phrasen) A0nA ` phrase) A0then the full form is intended to bes0; A1 ` phrase1) A01; s1 s1; A2 ` phrase2) A02; s2 ������ sn�1; An ` phrasen) A0n; sns0; A ` phrase) A0; sn(Any side-conditions are left unaltered). Thus the left-to-right order of the hypo-theses indicates the order of evaluation. Note that in the case n = 0, when thereare no hypotheses (except possibly side-conditions), we have sn = s0; this impliesthat the rule causes no side e�ect. The convention is called the state convention,and must be applied to each version of a rule obtained by inclusion or omission ofits options.A second convention, the exception convention, is adopted to deal with thepropagation of exception packets p. For each rule whose full form (ignoring side-conditions) iss1; A1 ` phrase1) A01; s01 ��� sn; An ` phrasen) A0n; s0ns;A ` phrase) A0; s0and for each k, 1 � k � n, for which the result A0k is not a packet p, an extra ruleis added of the forms1; A1 ` phrase1) A01; s01 ��� sk; Ak ` phrasek) p0; s0s;A ` phrase) p0; s0where p0 does not occur in the original rule.6 This indicates that evaluation ofphrases in the hypothesis terminates with the �rst whose result is a packet (other6There is one exception to the exception convention in the de�nition of SML; no extra ruleis added for rule 119 which deals with handlers, since a handler is the only means by whichpropagation of an exception can be arrested. For EML, rules 135 and 136 are also exemptedfrom the exception convention | this is required so that a NoCode exception raised during theevaluation of exp in a ValBind of the form \pat = exp hand valbindi" can be converted to thevalue Incomplete.

64 6 DYNAMIC SEMANTICS FOR THE COREthan one already treated in the rule), and this packet is the result of the phrasein the conclusion.Recall from Section 1.2 that we support compound metavariables such as v=p.We also allow x=FAIL to range over X] fFAILg where x ranges over X (andanalogously for x=Incomplete); furthermore, we extend environment modi�cationto allow for failure as follows: VE + FAIL = FAIL:Atomic Expressions E ` atexp) v=pE ` scon) val(scon) (103)E(longvar) = v AI(v) = sp v 6= Incompletes;E ` longvar) v; s ^ sp (104)E(longvar) = Incompletes;E ` longvar) [NoCode]; s? (104:1)E(longcon) = conE ` longcon) con (105)E(longexcon) = enE ` longexcon) en (106)hE ` exprow) riE ` { hexprowi }) fgh+ ri in Val (107)E ` dec) E 0 E + E 0 ` exp) vE ` let dec in exp end) v (108)E ` exp) vE ` (exp)) v (109)s;E ` ?) [NoCode]; s? (109:1)Comments:(104.1) When a variable's value is Incomplete, the variable evaluates to thepacket [NoCode], indicating that no code exists for that binding.(105) Value constructors denote themselves.(106) Exception constructors are looked up in the exception environment com-ponent of E.

6.7 Inference Rules 65Expression Rows E ` exprow) r=pE ` exp) v hE ` exprow) riE ` lab = exp h , exprowi) flab 7! vgh+ ri (110)Comment: We may think of components as being evaluated from left to right,because of the state and exception conventions.Expressions E ` exp) v=pE ` atexp) vE ` atexp) v (111)E ` exp) con E ` atexp) vE ` exp atexp) (con; v) (112)E ` exp) en E ` atexp) vE ` exp atexp) (en; v) (113)Deleted (refapplication rule) (114)Deleted (:= application rule) (115)E ` exp) b E ` atexp) v APPLY(b; v) = v0=pE ` exp atexp) v0=p (116)E ` exp) (match; E 0; VE) E ` atexp) vE 0 +RecVE; v ` match) v0E ` exp atexp) v0 (117)E ` exp) (match; E 0; VE) E ` atexp) vE 0 +RecVE; v ` match) FAILE ` exp atexp) [Match] (118)s;E ` exp�1 == exp�2) [NoCode]; s? (118:1)s;E ` exists match�) [NoCode]; s? (118:2)s;E ` forall match�) [NoCode]; s? (118:3)

66 6 DYNAMIC SEMANTICS FOR THE COREs;E ` exp� terminates) [NoCode]; s? (118:4)E ` exp) vE ` exp handle match) v (119)E ` exp) [e] e 6= NoCode E; e ` match) vE ` exp handle match) v (120)E ` exp) [e] e 6= NoCode E; e ` match) FAILE ` exp handle match) [e] (121)E ` exp) [NoCode]E ` exp handle match) [NoCode] (121:1)E ` exp) eE ` raise exp) [e] (122)v = (match; E; fg) AI(v) = sps;E ` fn match) v; s ^ sp (123)Comments:(112){(118) Note that none of the rules for function application has a premisein which the operator evaluates to a constructed value or a record. This isbecause we are interested in the evaluation of well-typed programs only, andin such programs exp will always have a functional type.(116) The semantics of SML [MTH90] does not treat the case where an APPLYresult is a packet. This is an oversight, probably caused by the fact that theexception convention does not apply to side-conditions.Notice that the application of a basic value never raises the exception NoCode| in that case we would have to set the state
ag to ? here.(118.1){(118.4) Remember that s? is shorthand for (?; ens of s).(119) The exception convention does not apply to this rule. If the operatorevaluates to a packet then rule 120 or rule 121 or rule 121.1 must be used.(121) Packets that are not handled by the match propagate.(120),(121),(121.1) The packet [NoCode] cannot be handled.(123) The third component of the closure is empty because the match does notintroduce new recursively de�ned values.

6.7 Inference Rules 67Matches E; v ` match) v0=p=FAILE; v ` mrule) v0E; v ` mrule h | matchi) v0 (124)E; v ` mrule) FAILE; v ` mrule) FAIL (125)E; v ` mrule) FAIL E; v ` match) v0=FAILE; v ` mrule | match) v0=FAIL (126)Comment: A value v occurs on the left of the turnstile, in evaluating a match. Wemay think of a match as being evaluated against a value; similarly, we may thinkof a pattern as being evaluated against a value. Alternative match rules are triedfrom left to right.Match Rules E; v ` mrule) v0=p=FAILE; v ` pat) VE E + VE ` exp) v0E; v ` pat => exp) v0 (127)E; v ` pat) FAILE; v ` pat => exp) FAIL (128)Declarations E ` dec) E 0=pE ` valbind) VEE ` val valbind) VE in Env (129)` datbind) VEE ` datatype datbind) VE in Env (129:5)` datbind) VE E + VE ` dec) E 0E ` abstype datbind with dec end) E 0 (129:6)E ` exbind) VEE ` exception exbind) VE in Env (130)E ` dec1) E1 E + E1 ` dec2) E2E ` local dec1 in dec2 end) E2 (131)E(longstrid 1) = E1 ��� E(longstridn) = EnE ` open longstrid 1 ��� longstridn) E1 + ���+ En (132)

68 6 DYNAMIC SEMANTICS FOR THE COREE `) fg in Env (133)E ` dec1) E1 E + E1 ` dec2) E2E ` dec1 h;i dec2) E1 + E2 (134)Value Bindings E ` valbind) VE=pE ` exp) v E; v ` pat) VE hE ` valbind) VE 0iE ` pat = exp hand valbind i) VE h+ VE 0i (135)E ` exp) [NoCode] E; Incomplete ` pat) VEhE ` valbind) VE 0iE ` pat = exp hand valbind i) VE h+ VE 0i (135:1)E ` exp) [e]; e 6= NoCodeE ` pat = exp hand valbind i) [e] (135:2)E ` exp) v E; v ` pat) FAILE ` pat = exp hand valbind i) [Bind] (136)E ` exp) [NoCode] E; Incomplete ` pat) FAILE ` pat = exp hand valbind i) [NoCode] (136:1)E ` valbind) VEE ` rec valbind) RecVE (137)Comments:(135),(136) The exception convention does not apply to these rules. If the ex-pression evaluates to a packet then rule 135.1 or 135.2 (in the case of rule135) or rule 136.1 (in the case of rule 136) must be used.(135.1),(136.1) If the exception NoCode is raised while evaluating the expression(e.g. because it contains quanti�ers), the exception is caught before doingthe binding. Then the binding is done with the value Incomplete.(135.2) Any exception other than NoCode is propagated as usual.Data Type Bindings ` datbind) VE` conbind) VE h ` datbind) VE 0i` tyvarseq tycon = conbind hand datbind i) VE h+ VE 0i (137:1)

6.7 Inference Rules 69Constructor Bindings ` conbind) VEcon = idc h ` conbind) VEi` con h | conbindi) fid 7! cong h+ VEi (137:2)Exception Bindings E ` exbind) VEIn the SML de�nition, sentences for exception bindings have the more generalform E ` exbind) EE=p. But the =p is redundant, since packets can neverarise here. VE now incorporates the information that was formerly in VE and EEbecause exception environments are not quite up to the task they were originallydesigned for, see [Kah93]. The distinction between exception constructors andother identi�ers is handled in EML by the semantics of derived forms.en = min(ExName n (ens of s)) s0 = s+ fengexcon = ide hs0; E ` exbind) VE; s00is;E ` excon hand exbind i) fid 7! engh+ VEi; s0h0i (138)E(longexcon) = en excon = ide hE ` exbind) VEiE ` excon = longexcon hand exbind i) fid 7! engh+ VEi (139)Comments:(138) The two side conditions ensure that a new exception name is generatedand recorded as \used" in subsequent states. In contrast to Standard ML,the fresh exception name is chosen deterministically to conform with theveri�cation semantics, see rules 256 and 257.Atomic Patterns E; v ` atpat) VE=FAILE; v `) fg (140)v = val(scon)E; v ` scon) fg (141)v 6= val(scon)E; v ` scon) FAIL (142)var = idvE; v ` var) fid 7! vg (143)E(longcon) = vE; v ` longcon) fg (144)

70 6 DYNAMIC SEMANTICS FOR THE COREE(longcon) 6= vE; v ` longcon) FAIL (145)E(longexcon) = vE; v ` longexcon) fg (146)E(longexcon) 6= vE; v ` longexcon) FAIL (147)v = fgh+ri in Val hE; r ` patrow) VE=FAILiE; v ` { hpatrowi }) fgh+VE=FAILi (148)v = Incomplete hE; Incomplete ` patrow) VE=FAILiE; v ` { hpatrowi }) fgh+VE=FAILi (148:1)E; v ` pat) VE=FAILE; v ` (pat)) VE=FAIL (149)Comments:(142),(145),(147) Any evaluation resulting in FAIL must do so because rule 142,rule 145, rule 147, rule 155, or rule 157 has been applied.(148.1) The intention here (cf. rules 150.1, 151.1, 152.1) is that in a value bind-ing of the form pat = ? hand valbind i (or pat = exp hand valbind i where expevaluates to [NoCode]), the unde�ned value decomposes arbitrarily as long asthe type of pat ensures that any value of that type decomposes (disregardingthe case of datatypes with only one constructor). So for example,val (x,y) = ?will successfully bind both x and y to Incomplete (recall that (x,y) expandsto {1=x,2=y}), whileval [x] = ?will fail (by the eventual use of rule 155) and consequently raise [NoCode].

6.7 Inference Rules 71Pattern Rows E; r=Incomplete ` patrow) VE=FAILE; r ` ...) fg (150)E; Incomplete ` ...) fg (150:1)E; r(lab) ` pat) FAILE; r ` lab = pat h , patrowi) FAIL (151)E; Incomplete ` pat) FAILE; Incomplete ` lab = pat h , patrowi) FAIL (151:1)E; r(lab) ` pat) VE hE; r ` patrow) VE 0=FAILiE; r ` lab = pat h , patrowi) VEh+ VE 0=FAILi (152)E; Incomplete ` pat) VEhE; Incomplete ` patrow) VE 0=FAILiE; Incomplete ` lab = pat h , patrowi) VEh+ VE 0=FAILi (152:1)Comments:(151),(152) For well-typed programs lab will be in the domain of r.Patterns E; v ` pat) VE=FAILE; v ` atpat) VE=FAILE; v ` atpat) VE=FAIL (153)E(longcon) = con v = (con; v0)E; v0 ` atpat) VE=FAILE; v ` longcon atpat) VE=FAIL (154)E(longcon) = con v =2 fcong �ValE; v ` longcon atpat) FAIL (155)E(longexcon) = en v = (en; v0)E; v0 ` atpat) VE=FAILE; v ` longexcon atpat) VE=FAIL (156)E(longexcon) = en v =2 feng �ValE; v ` longexcon atpat) FAIL (157)

72 6 DYNAMIC SEMANTICS FOR THE COREDeleted (ref application rule) (158)var = idv E; v ` pat) VE=FAILE; v ` var as pat) fid 7! vg+ VE=FAIL (159)

737 Dynamic Semantics for ModulesThe semantics of EML programs (see Section 10) does not depend on the dynamicsemantics for Modules. The purpose of this section is (together with the dynamicsemantics for the Core) to de�ne computation with incomplete programs.7.1 Reduced SyntaxSince signature expressions are mostly dealt with in the static semantics, thedynamic semantics need only take limited account of them. Unlike types, it cannotignore them completely; the reason is that an explicit signature ascription playsthe role of restricting the \view" of a structure | that is, restricting the domainsof its component environments. However, the types and the sharing propertiesof structures and signatures are irrelevant to dynamic evaluation; the syntax istherefore reduced by the following transformations (in addition to those for theCore), for the purpose of the dynamic semantics of Modules:� Quali�cations \of ty" are omitted from constructor descriptions and excep-tion descriptions.� We remove speci�cations without computational content, i.e. any speci�c-ation of the form \axiom axdesc", \type typdesc", \eqtype typdesc" or\sharing shareq" is replaced by the empty speci�cation. Descriptions ofdatatypes cannot be replaced by the empty speci�cation, as they also giverise to a variable environment in the static semantics. This was not correctlytreated in the de�nition of SML [MTH90] or corrected in [MT91].� The Modules phrase classes TypDesc, AxDesc, SpecExp and SharEq areomitted.7.2 Semantic ObjectsThe semantic objects for the Modules dynamic semantics, extra to those for theCore dynamic semantics, are shown in Figure 16. An interface I 2 Int representsa \view" of a structure. An interface in the dynamic semantics of SML includes aset of value variables and a set of exception constructors; they are replaced hereby a status environment. Speci�cations and signature expressions will evaluateto interfaces; moreover, during the evaluation of a speci�cation or signature ex-pression, structures (to which a speci�cation or signature expression may refer via\open") are represented only by their interfaces. To extract an interface from adynamic environment we de�ne two operationsInter : (Env! IntVarEnv! StatEnv

74 7 DYNAMIC SEMANTICS FOR MODULES(strid : I; strexp : I 0; B) 2 FunctorClosure= (StrId� Int)� (StrExp� Int)� Basis(IE;StE) or I 2 Int = IntEnv� StatEnvIE 2 IntEnv = StrId �n! Intst 2 Status = fv; c; egStE 2 StatEnv = Id �n! StatusG 2 SigEnv = SigId �n! IntF 2 FunEnv = FunId �n! FunctorClosure(F;G;E) or B 2 Basis = FunEnv� SigEnv� Env(G; IE) or IB 2 IntBasis = SigEnv� IntEnvFigure 16: Further Semantic Objectsas follows: Inter(SE; VE) = (IE; InterVE)where IE = fstrid 7! InterE ; SE(strid) = EgInterVE = fid 7! v ; id 2 DomVEgNotice that all identi�ers are assigned status v in InterVE. This is so, becausedynamic environments do not keep track of identi�er status.An interface basis IB = (G; IE) is that part of a basis needed to evaluatesignature expressions and speci�cations. The function Inter is extended to createan interface basis from a basis B as follows:Inter(F;G;E) = (G; IE of (InterE))A further operation # : Env� Int! Envis required, to cut down an environment E to a given interface I, representing thee�ect of an explicit signature ascription. It is de�ned as follows:(SE; VE) # (IE;StE) = (SE 0; VE 0)where SE 0 = fstrid 7! E # I ; SE(strid) = E and IE(strid) = IgVE 0 = fid 7! v ; VE(id) = v and id 2 DomStEgIt is important to note that interfaces are statically known | they can beobtained by appropriate projections from the static value � of a principle signa-ture and the environment EDER produced by the semantics for derived forms, seeAppendix B.

7.2 Semantic Objects 75As in the dynamic semantics of the core language, the use of \?" in structureand functor bindings does not cause an exception to be raised until computationoccurs which makes use of unde�ned components. Consider the following example:structure A : SIG = ? ;functor F(X : SIG) : SIG' = ? ;structure B : SIG' = F(A)This will successfully evaluate without raising an exception. Any later attemptto perform a computation using any component of A or B will raise an exception,however.To generate a \trivial" dynamic environment from an interface (with respectto a given exception name set) we de�ne the operationTrivEnv : Int� ExNameSet! Env � ExNameSetas follows: TrivEnv((IE;StE); ens) = (SE; VE); ens0where SE = fstrid1 7! E1; : : : ; stridn 7! EngVE = fid 7! Incomplete ; StE (id) = vg+fid 7! idc ; StE (id) = cg+fid1 7! en1; ���; idk 7! enk ; StE (id j) = e; 1 � j � kgens0 = ensn [fen1; : : : ; enkgwhere fstrid1; : : : ; stridng = Dom IEVE(id) = en ^ VE(id 0) = en) id = id 0fen1; : : : ; enkg \ ensn = ;(E1; ens1) = TrivEnv(IE(strid1); ens)(E2; ens2) = TrivEnv(IE(strid2); ens1)��� ���(En; ensn) = TrivEnv(IE(stridn); ensn�1)This binds Incomplete to each variable in the interface and a fresh excep-tion name to each exception constructor. This operation is used to produce thedynamic environment needed in a structure binding of the formstrid : psigexp = ? hand strbindi:Note that the result is independent (modulo the choice of exception names) of theparticular enumeration of the domains of IE and StE .To generate a \trivial" structure expression from an interface we de�ne theoperation TrivStrExp : Int! StrExp

76 7 DYNAMIC SEMANTICS FOR MODULESas follows:TrivStrExp(IE;StE) = structstructure strid1 = TrivStrExp(IE(strid1))��� ���and stridn = TrivStrExp(IE(stridn))val var1 = ? and : : : and varp = ?exception excon1 and : : : and exconmdatatype dummy = con1 | : : : | conrendwhere: fstrid1; : : : ; stridng = Dom IEfvar1; : : : ; varpg = fidv j id 2 DomStE ; StE (id) = vgfexcon1; : : : ; exconmg = fide j id 2 DomStE ; StE (id) = egfcon1; : : : ; conrg = fidc j id 2 DomStE ; StE (id) = cgThis operation is used to produce the structure expression in the functor closureproduced by a functor binding \funid (strid : psigexp) : psigexp0 = ?".7.3 Inference RulesThe semantic rules allow sentences of the forms;A ` phrase) A0; s0to be inferred, where A is either a basis or an interface basis or empty, A0 is somesemantic object and s,s0 are the states before and after the evaluation representedby the sentence. Some hypotheses in rules are not of this form; they are calledside-conditions.The state and exception conventions are adopted as in the Core dynamic se-mantics. However, it may be shown that the only Modules phrases whose eval-uation may cause a side-e�ect or generate an exception packet are of the formstrexp, strdec, strbind , sglstrbind or topdec.Structure Expressions B ` strexp) E=pB ` strdec) EB ` struct strdec end) E (160)B(longstrid) = EB ` longstrid) E (161)B(funid) = (strid : I; strexp 0 : I 0; B 0)B ` strexp) E B 0 + fstrid 7! E # Ig ` strexp 0) E 0B ` funid (strexp)) E 0 # I 0 (162)

7.3 Inference Rules 77B ` strdec) E B + E ` strexp) E 0B ` let strdec in strexp end) E 0 (163)Comments:(162) Before the evaluation of the functor body strexp 0, the actual argument E iscut down by the formal parameter interface I, so that any opening of stridresulting from the evaluation of strexp 0 will produce no more componentsthan anticipated during the static elaboration.Structure-level Declarations B ` strdec) E=pE of B ` dec) E 0B ` dec) E 0 (164)s;B ` axiom ax) fg in Env; s (164:1)B ` strbind) SEB ` structure strbind) SE in Env (165)B ` strdec1) E1 B + E1 ` strdec2) E2B ` local strdec1 in strdec2 end) E2 (166)B `) fg in Env (167)B ` strdec1) E1 B + E1 ` strdec2) E2B ` strdec1 h;i strdec2) E1 + E2 (168)Structure Bindings B ` strbind) SE=pB ` sglstrbind) SE hB ` strbind) SE 0iB ` sglstrbind hand strbind i) SE h+SE 0i (169)Single Structure Bindings B ` sglstrbind) SE=pB ` strexp) E InterB ` psigexp) IB ` strid : psigexp = strexp) fstrid 7! E # Ig (169:1)s; InterB ` psigexp) I; s0 (E; ens0) = TrivEnv(I; ens of s0)s;B ` strid : psigexp = ?) fstrid 7! Eg; (sp of s0; ens0) (169:2)

78 7 DYNAMIC SEMANTICS FOR MODULESB ` strexp) EB ` strid = strexp) fstrid 7! Eg (169:3)Comments:(169.1),(169.2) As in the static semantics, psigexp constrains the \view" of thestructure. The restriction must be done in the dynamic semantics to ensurethat any dynamic opening of the structure produces no more componentsthan anticipated during the static elaboration.(169.2) The state has been made explicit here because the side condition accessesthe state.Signature Expressions IB ` sigexp) IIB ` spec) IIB ` sig spec end) I (170)IB(sigid) = IIB ` sigid) I (171)Principal Signatures IB ` psigexp) IIB ` sigexp) IIB ` sigexp) I (171:1)Signature Declarations IB ` sigdec) GIB ` sigbind) GIB ` signature sigbind) G (172)IB `) fg (173)IB ` sigdec1) G1 IB +G1 ` sigdec2) G2IB ` sigdec1 h;i sigdec2) G1 +G2 (174)Signature Bindings IB ` sigbind) GIB ` sigexp) I hIB ` sigbind) GiIB ` sigid = psigexp hand sigbind i) fsigid 7! Ig h+ Gi (175)

7.3 Inference Rules 79Speci�cations IB ` spec) I` valdesc) StEIB ` val valdesc) StE in Int (176)` datdesc) StEIB ` datatype datdesc) StE in Int (176:1)` exdesc) StEIB ` exception exdesc) StE in Int (177)IB ` strdesc) IEIB ` structure strdesc) IE in Int (178)IB ` spec1) I1 IB + IE of I1 ` spec2) I2IB ` local spec1 in spec2 end) I2 (179)IB(longstrid 1) = I1 ��� IB(longstridn) = InIB ` open longstrid 1 ��� longstridn) I1 + ���+ In (180)IB(sigid 1) = I1 ��� IB(sigidn) = InIB ` include sigid 1 ��� sigidn) I1 + ���+ In (181)IB `) fg in Int (182)IB ` spec1) I1 IB + IE of I1 ` spec2) I2IB ` spec1 h;i spec2) I1 + I2 (183)Comments:(176.1) In the de�nition of SML, datatype descriptions are treated as emptyspeci�cations. This is a bug since they elaborate to non-empty variableenvironments in the static semantics.(179),(183) Note that StE of I1 is not needed for the evaluation of spec2.Value Descriptions ` valdesc) StEvar = idv h ` valdesc) StE i` var hand valdesci) fid 7! vg h+StE i (184)Datatype Descriptions ` datdesc) StE` condesc) StE h ` datdesc) StE 0i` tyvarseq tycon = condesc hand datdesci) StE h+StE 0i (184:1)

80 7 DYNAMIC SEMANTICS FOR MODULESConstructor Descriptions ` condesc) StEcon = idc h ` condesc) StE i` con h j condesci) fid 7! cg h+StE i (184:2)Exception Descriptions ` exdesc) StEexcon = ide h` exdesc) StE i` excon hand exdesci) fid 7! eg h+StE i (185)Structure Descriptions IB ` strdesc) IEIB ` sigexp) I hIB ` strdesc) IEiIB ` strid : sigexp hand strdesci) fstrid 7! Ig h+ IEi (186)Functor Bindings B ` funbind) FInterB ` psigexp) I InterB + fstrid 7! Ig ` psigexp 0) I 0hB ` funbind) F iB ` funid (strid : psigexp) : psigexp 0 = strexp hand funbind i)ffunid 7! (strid : I; strexp : I 0; B)g h+ F i (187)InterB ` psigexp) I InterB + fstrid 7! Ig ` psigexp 0) I 0hB ` funbind) F iB ` funid (strid : psigexp) : psigexp0 = ? hand funbind i)ffunid 7! (strid : I;TrivStrExp I 0 : I 0; B)g h+ F i (187:1)Functor Declarations B ` fundec) FB ` funbind) FB ` functor funbind) F (188)B `) fg (189)B ` fundec1) F1 B + F1 ` fundec2) F2B ` fundec1 h;i fundec2) F1 + F2 (190)

7.3 Inference Rules 81Top-level Declarations B ` topdec) B0=pB ` strdec) EB ` strdec) E in Basis (191)InterB ` sigdec) GB ` sigdec) G in Basis (192)B ` fundec) FB ` fundec) F in Basis (193)

82 8 VERIFICATION SEMANTICS FOR THE CORE8 Veri�cation Semantics for the CoreWhile the dynamic semantics de�nes evaluation of an expression in an environ-ment, the veri�cation semantics de�nes its evaluation in a model, which consistsof an environment, a trace, and an interpretation for question marks, see below.We do not require a priori that the question mark interpretation is well-formed inthe sense that the replacement of question marks leads to a well-typed program;such ill-formed models are eliminated a posteriori during veri�cation.Another di�erence to the dynamic semantics is that some rules in the veri�ca-tion semantics are non-computational, involving e.g. in�nitary premises (expressedusing higher-order rules), which is necessary to give meaning to speci�cation con-structs.8.1 Semantic ObjectsMany semantic objects used in the veri�cation semantics already occur in thestatic and dynamic semantics. We use the same names for these object classesand the same variables to range over them, except when ambiguities occur. Inthat case, we attach to variables (similarly for object classes) a subscript STAT(resp. DYN), to indicate that it ranges over the corresponding object class of thestatic (resp. dynamic) semantics.Additional and modi�ed semantic objects are shown in Figure 17.The conventions and notations used in earlier sections are adopted here as well;for example projection, injection and modi�cation retain the meaning they weregiven in Section 4.3.For type values, we have instantiation, equivalence, and closure analogous totype schemes and trace schemes: 8�(k):(v; �) � (v0; � 0) if there is a type substitu-tion # with Dom# = �(k) and #(�) = � 0, #(v) = v0. (In general, #(v) = v doesnot hold, because values can contain closures and closures can contain type in-formation in traces and environments.) ClosC(v; �) = 8�(k):(v; �), where �(k) arethe variables occurring in v or � but not in C. Closure of variable environments isalso analogous to the closure of static variable environments, e.g. ClosFEVE canbe obtained from VE by pointwise abstracting all type variables not free in FE.We use the notation M(x) or FE(x) to apply the appropriate component ofE of FE to x, where x is a (possibly long) identi�er of some sort. The applicationof environments to long identi�ers is analogous to its de�nition in Section 4.3.8.2 Question Mark InterpretationA question mark interpretation QI consists of two maps, QIE (for expressions)and QIT (for types). These maps are not much more than (in�nite) lists ofpieces of syntax (of the bare language), intended as replacements for occurrencesof question marks in expressions and type bindings. The well-formedness of these

8.2 Question Mark Interpretation 83
n 2 N = f0; 1; 2; :::gCT 2 TyCons = Fin(Id� TypeScheme)ET 2 TyExcs = Fin(ExName� Type)V T 2 ValTemp = TyCons� TyExcsTI or 'Ty 2 TypeInt = TyName! TypeFcnQI 2 QInt = QIntExp�QIntTyQIE 2 QIntExp = N ! ExpQIT 2 QIntTy = N ! Ty(ens; TI; 'Ty; V T ; n) or s 2 State = ExNameSet�TypeInt�TypeInt�ValTemp�N(SE; TE; VE) or E 2 Env = StrEnv� TyEnv�VarEnvSE 2 StrEnv = StrId �n! StrVE 2 VarEnv = Id �n! TypeVal8�(k):(v; �) or tv 2 TypeVal =]k�0TyVark �Val�Type(E;m) or S 2 Str = Env� StrNamev 2 Val = SVal] BasVal] Con] (Con �Val)] ExVal] Record] Closurer 2 Record = Lab �n! Vale 2 ExVal = ExName] (ExName�Val)[e] or p 2 Pack = ExVal(match;M; VE) 2 Closure = Match�Mod �VarEnv(E;QI) or FE 2 FullEnv = Env �QInt(FE;
) or M 2 Mod = FullEnv� TraceFigure 17: Semantic Objects

84 8 VERIFICATION SEMANTICS FOR THE COREreplacements w.r.t. the context in which they occur is checked during veri�ca-tion, for instance rule 201 checks that the replacement of a question mark in anexpression has the right type.We use the state (see next section) to associate the elements of these lists withoccurrences of question marks.8.3 StateA state s has �ve components: a set of exception names ens, for exactly thesame purpose as in the dynamic semantics; a type interpretation TI for modellingthe interpretation of type names originating from question mark type bindings;another type interpretation 'Ty for representing the matching realisations of ab-stract types in signatures; a pair of sets of value templates V T for maintainingsome necessary additional information about constructors | see the next section;and, a natural number n for counting occurrences of ?. We write s � n for thestate in which n of s is replaced by n.The component nof s is always statically known; in other words, using the stateis not essential for �nding the right interpretations for question mark occurrences.An alternative would be to change the syntax of the bare language, requiring a(unique) label for each occurrence of ?; the semantics of derived forms could beused to compute such labels. However, the method we use here seems to makeless \noise".We de�ne a family of functions Replace : (Phrase�QInt�N)! (Phrase�N),where Phrase is a class of syntactical phrases (of the core). These functions re-place all occurrences of ? by the corresponding object taken from the questionmark interpretation. The purpose of the natural number is to establish this cor-respondence. For example, we have for atomic expressions:Replace(?; QI; n) = ((QIE of QI)(n); n+ 1)Replace(longvar ; QI; n) = (longvar ; n)Replace(let dec in exp end; QI; n) = (let dec 0 in exp 0 end; n00) where(dec0; n0) = Replace(dec; QI; n)(exp 0; n00) = Replace(exp; QI; n0)On other syntactical phrases, Replace is de�ned completely analogously, followingthe schema of let-expressions for all composed phrases. Replace(phrase; QI; n)can be obtained from phrase by replacing the k+1-th occurrence of ? (an atomicexpression or in a type binding) by either (QIEofQI)(n+k) or (QIT ofQI)(n+k),respectively.8.4 Value AccessThe V T component of the state contains the value templates; these are all valueconstructors and exception names introduced so far. Any value of any type can be

8.5 Type Interpretation 85decomposed into value templates, basic values, special values, and closures. Thepurpose of storing the value templates is to allow quanti�ers to access values thatare \hidden" due to e.g. value constructors used to build them being no longer inscope.We de�ne a semantic function Comp : Env�ValTemp! VarEnv for complet-ing environments as follows: Comp(E; V T) = VE where1. For each (en; �) in V T there is an id such that VE(id) = (en; �).2. For each (id ;8�(k):�) in V T there is an id 0 such that VE(id 0) = 8�(k):(idc; �).3. Any id in the domain of VE is of one of the two above forms and is not inthe domain of E.We abbreviate Comp(E of FE; V T of s) as Comp(FE; s).The intention is to enable each value \belonging to a type" to be obtained byveri�cating some expression in Comp(FE; s).To convert constructor environments to value templates, we assume anothersemantic function Graph, which maps a �nite function to its graph (set of pairs).In particular, Graph maps a constructor environment CE to a �nite set of valuetemplates CT .8.5 Type InterpretationType interpretations are the same as type realisations (see Section 5.6), but theyhave a wider application in EML than type realisations have in the semantics ofSML, therefore the di�erent name. A type realisation TI provides a way of trans-lating (semantic) types, for example to interpret ?-types or to translate betweena concrete and an abstract type. Given a type interpretation TI, we de�ne afunction TI# between types as follows:TI#(�) = �fTI(t(k))=t(k) ; t(k) 2 DomTIgFor the notation, see Section 4.4. We shall also apply TI# to other semanticobjects, meaning the simultaneous application of TI# to all components.A state s contains two type interpretation, TI and 'Ty. The purpose of TI is tointerpret question mark types, i.e. to replace type names that were chosen duringstatic analysis for unknown types by their replacement in the given model. 'Ty isthe type realisation for abstract types in signatures. We abbreviate (TI of s)# ass# and ('Ty of s)# � s# as s##.Static information stored in traces is typically model-independent, having beenobtained from the static analysis of phrases. When interpreting this informationin a given model we have to replace type names generated by question mark typebindings (rule 28.1) by the concrete types the model provides. This explains thefrequent use of s# in the rules. With s## we can access the underlying structure ofa type, i.e. how it is \implemented"; we use this for quanti�cation and comparisonof values.

86 8 VERIFICATION SEMANTICS FOR THE CORE8.6 Projections to Dynamic and Static SemanticsThe notion of value is slightly di�erent from that in the dynamic semantics becausemodels are part of closures. We de�ne a family of functions Dyn mapping semanticobjects of the veri�cation semantics to the corresponding semantic objects of thedynamic semantics having the same name, as follows:�i(x1; ���; xi; ���; xn) = xiDyn(SE; TE; VE) = (DynSE;DynVE)DynVE = Dyn � VEDynSE = Dyn � �1 � SEDyn(8�(k):(v; �)) = Dyn vDyn v = v; v 2 SVal] BasVal] Con] ExNameDyn(v; v0) = (v;Dyn v0); v 2 Con] ExNameDyn r = Dyn � rDyn[e] = [Dyn e]Dyn(match;M; VE) = (Replace(match; QI of M; 0);DynM;Dyn VE)DynM = Dyn(FE of M)DynFE = Dyn(E of FE)Dyn s = (>; ens of s)The function Replace is used to replace question marks in closure values. Itis assumed here that the question mark interpretation in a closure always indexesits occurrences of ? from 0. The function Rec is extended to variable environ-ments of the veri�cation semantics in the obvious way, i.e. it unrolls closure valuesanalogously as in the dynamic semantics (without changing any types).We de�ne another family of functions Stat, mapping objects of the veri�cationsemantics to corresponding objects in the static semantics. It is de�ned as follows:Stat(SE; TE; VE) = (StatSE; TE;StatVE)Stat VE = Stat � VEStat(8�(k):(v; �)) = 8�(k):�StatSE = fstrid 7! (m;StatE) ; SE(strid) = (E;m)g8.7 Relationship to Dynamic SemanticsIf any expression exp� evaluates in the dynamic semantics to a value or packet,i.e. sDYN; EDYN `DYN exp�) vDYN=pDYN; s0DYN without changing the
ag, i.e.sp of sDYN = sp of s0DYN = >, then for any s such that sDYN = Dyn s and forany M such that EDYN = DynM we also have s;M ` exp�) v=p; s0 such thatDyn(v=p) = vDYN=pDYN and Dyn s0 = s0DYN, provided the trace
 of M is well-formed for exp.

8.8 Sentences of Static and Dynamic Semantics 87Dynamic and veri�cation semantics di�er on expressions only when the dy-namic semantics sets the sp component to ?. Even in that case, the di�erencesare not substantial. In particular, any non-terminating evaluation in the dynamicsemantics corresponds to non-termination in the veri�cation semantics.This close relationship between veri�cation semantics and dynamic semanticsis due to the fact that the rules di�er signi�cantly only in places where either thesp component of the state in the dynamic semantics is set to ?, or where packets(in particular [NoCode]) are treated that do not occur in the corresponding placein the veri�cation semantics. The packet [NoCode] cannot be handled: NoCode isa basic exception name not associated with any identi�er, see Section 6.5, andfurthermore it cannot be matched by a variable pattern in a handler, see rules120{121.1 of the dynamic semantics. The dynamic semantics provides only oneplace to capture [NoCode]: rule 135.1, for value declarations. This means that thedynamic semantics can ignore NoCode, provided it ignores the declaration thatraises it, since using an identi�er bound to Incomplete raises NoCode again, rule104.1.The evaluation of an expression containing a question mark, when it yieldsa value, can di�er from its corresponding veri�cation; this is the case when thequestion mark interpretation maps a ? occurrence to an expression which raises anexception. Whenever the veri�cation semantics makes reference to the dynamicsemantics, it is with a phrase that does not contain question marks.One possible result when veri�cating exp� terminates is the packet [Abuse],see rule 216. In this case the evaluation of exp� terminated successfully, but sp wasset to ?. Thus successful evaluation does not guarantee successful veri�cation |the packet [Abuse] indicates that we have not obtained reliable information aboutthe termination of the veri�cation of exp�.8.8 Sentences of Static and Dynamic SemanticsAnother di�erence between dynamic and veri�cation semantics is that the lattermakes explicit use of the results of the static semantics; in particular it typecheckscertain expressions using contexts produced in the course of static analysis.These contexts are explicitly provided by the
 component of a model. Thereader may observe that traces are decomposed in the veri�cation semantics inthe same way as they are composed in the static semantics.To distinguish sentences of the static and dynamic semantics from those ofthe veri�cation semantics, we supply the ` with an appropriate subscript in theformer case, that is `STAT or `DYN, respectively.8.9 Inference RulesThe semantic rules allow sentences of the form s;A ` phrase) A0; s0 to beinferred, where A is usually a model, A0 is some semantic object and s, s0 are thestates before and after veri�cation represented by the sentence. Additionally, we

88 8 VERIFICATION SEMANTICS FOR THE COREhave two other forms of sentences, equality sentences s; FE;
 ` exp�1 � exp�2) v,and comparison sentences s; FE;C;
 ` v � v0) v00. Beside these sentences, weallow other hypotheses as in the dynamic semantics, including hypotheses in theform of sentences of the static or dynamic semantics as explained in Section 8.8.All these other hypotheses have the status of side-conditions; this includes higher-order rules.In most rules the states s and s0 are omitted from sentences. The state andexception convention are adopted as in the dynamic semantics for the Core, exceptthat \state" refers there to a di�erent semantic object.The exception convention does not apply to rules 210{218 (those for the equal-ity predicate ==, quanti�ers, terminates and the exception handler) nor to rules224{232 (equality and comparison rules).Atomic Expressions M ` atexp) v=pM ` scon) val(scon) (194)FE(longvar) � (v; s#(�)) FE(longvar) � (v0; s#(�))9#: #(v) = v0 ^Dom# \ tyvarsFE = ;s; (FE; �) ` longvar) v; s (195)M(longcon) � (con; �)M ` longcon) con (196)M(longexcon) = (en; �)M ` longexcon) en (197)h(FE;
) ` exprow) ri(FE; �h�
i) ` { hexprowi }) fgh+ ri in Val (198)(FE;
) ` dec) E 0 (FE + E 0;
 0) ` exp) v(FE;
 �
 0) ` let dec in exp end) v (199)M ` exp) vM ` (exp)) v (200)n = n of s (QIE of FE)(n) = exp�s#(C) `STAT exp�) � 0; ;;
 s#(�) = � 0s� (n+ 1); (FE;
) ` exp�) v; s0s; (FE; (C; �)) ` ?) v; s0 (201)

8.9 Inference Rules 89Comments:(195) Types in veri�cation environments have already been interpreted with anappropriate type interpretation TI, but � , which comes from the elaboration,has not been so interpreted.Applying a type substitution to a value has an e�ect only if the value containsclosures and the closures contain free type variables in the domain of the typesubstitution. The type substitution is typically determined by s#(�), butone can construct pathological examples for which this is not true. Theside-condition excludes such a choice to keep veri�cation deterministic.The value Incomplete does not appear in the veri�cation semantics; there-fore we have no rule corresponding to 104.1 (same for rules 135.1, 136.1,148.1, 150.1, 151.1 and 152.1).(201) The model substitutes each occurrence of ? by a �xed expression, preferablyof the appropriate type. The type is appropriate if it is equal to the type of? after taking the interpretation of types into consideration. We do not getappropriateness of types for free, thus the side-condition s#(�) = � 0 whichexcludes unwanted models.By using an expression rather than a value we implicitly use a kind of second-order substitution, because the value of this expression depends on the con-text. In fact each ? in an expression can roughly be seen as an abbreviationfor ?(x1; :::; xn) where the xi are the variables bound by the context in which? occurs. Here, ? could indeed be replaced by a value, a n-ary function.Notice that there is a subtle problem with the type of exp�. We require thatexp� has exactly the same type as the particular occurrence of ?; otherwisethe rule is not applicable. In practice, this means that ? almost always hasto be quali�ed by its intended type. The reason for requiring equality oftypes rather than allowing instances is type safety, i.e. we may have usedan instance (or even di�erent instances) of a polymorphic object that wasde�ned using ?. Since such instances only may be in con
ict with the typeof exp�, this is not necessarily harmful, but the alternative to the rule givenwould be to make the static context dependent on the model's choice forquestion marks, and hence to have a separate static semantics for each model.Expression Rows M ` exprow) r=p(FE;
) ` exp) v h(FE;
 0) ` exprow) ri(FE;
h�
 0i) ` lab = exp h , exprowi) flab 7! vgh+ ri (202)

90 8 VERIFICATION SEMANTICS FOR THE COREExpressions M ` exp) v=pM ` atexp) vM ` atexp) v (203)(FE;
) ` exp) con (FE;
 0) ` atexp) v(FE;
 �
 0) ` exp atexp) (con; v) (204)(FE;
) ` exp) en (FE;
 0) ` atexp) v(FE;
 �
 0) ` exp atexp) (en; v) (205)(FE;
) ` exp) b (FE;
 0) ` atexp) v APPLY(b; v) = v0=p(FE;
 �
 0) ` exp atexp) v0=p (206)s1; (FE;
) ` exp) (match;M; VE); s2 s2; (FE;
 0) ` atexp) v; s3s3 � 0;M +RecVE; v ` match) v0; s4s1; (FE;
 �
 0) ` exp atexp) v0; s4 � (n of s3) (207)s1; (FE;
) ` exp) (match;M; VE); s2 s2; (FE;
 0) ` atexp) v; s3s3 � 0;M +RecVE; v ` match) FAIL; s4s1; (FE;
 �
 0) ` exp atexp) [Match]; s4 � (n of s3) (208)M ` exp) vM ` exp : ty) v (209)
 �
0 = (C; �) �
00s; FE;
0 ` exp�1 � exp�2) vs; (FE;
) ` exp�1 == exp�2) v; s (210)Comments:(207),(208) To veri�catematch we have to reset the nofs component to 0, becausethe question mark interpretation inM indexes occurrences of question marksstarting from 0; see also rule 223 and the de�nition of Dyn. Similarly, then of s component of the �nal state is taken from s3, because match is not asubphrase of exp atexp.(209) The type expression ty is ignored. The type it describes may not be \ac-curate" (in an intuitive sense) anyway, because the explicit type variablesin exp are subject to abstraction and instantiation. If we needed to obtaintype information from ty here, we would have to extend the environmentby a type variable environment, mapping type variables to types. But thisis fortunately unnecessary since type information (coming from the staticsemantics) is provided by traces, see rule 341.

8.9 Inference Rules 91(210) Equality is type dependent. However, the premise requires that it is notdependent on the instantiation of type variables local to the expression | allinstances should give the same result. Note that the state does not change,even if exp1 and/or exp2 change the state.Comp(FE; s) = VE
 = (C; �) �
 0 �(k) \ tyvars(FE) = ;s##(C) + StatVE `STAT atexp�) � 0; ;;
 00 s##(�) = � 0Dyn(s; FE + VE) `DYN atexp�) vDYN; (>; ens)s; (FE + VE;
 �
 00) ` (fn match�) atexp�) true; s0s; (FE;8�(k):
) ` exists match�) true; s (211)Comp(FE; s) = VE�
 �
1 = (C; �) �
2 s##(C) + StatVE `STAT atexp�) � 0; ;;
3s##(�) = � 0 Dyn(s; FE + V E) `DYN atexp�) vDYN; (>; ens) �9s0: s; (FE + V E;
1 �
3) ` (fn match�) atexp�) false; s0s; (FE;
) ` exists match�) false; s (212)Comp(FE; s) = VE�
 �
1 = (C; �) �
2 s##(C) + StatVE `STAT atexp�) � 0; ;;
3s##(�) = � 0 Dyn(s; FE + V E) `DYN atexp�) vDYN; (>; ens) �9s0: s; (FE + V E;
1 �
3) ` (fn match�) atexp�) true; s0s; (FE;
) ` forall match�) true; s (213)Comp(FE; s) = VE
 = (C; �) �
 0 �(k) \ tyvars(FE) = ;s##(C) + StatVE `STAT atexp�) � 0; ;;
 00 s##(�) = � 0Dyn(s; FE + VE) `DYN atexp�) vDYN; (>; ens)s; (FE + VE;
 �
 00) ` (fn match�) atexp�) false; s0s; (FE;8�(k):
) ` forall match�) false; s (214)Comments:(211){(214) Veri�cation of a quanti�ed expression does not change the state.All state changes that happen during its veri�cation are recovered. Thepurpose of Comp(FE; s) is to complete the environment to make all valuesaccessible by syntactic means. In other words: quanti�cation ranges over allexpressible values, including even all values of abstract types in signatures,and not just over those values that are expressible at the particular point inthe program where the quanti�ed expression occurs.Quanti�cation ranges only over de�ned values (no packets), therefore therequired evaluation to a value.

92 8 VERIFICATION SEMANTICS FOR THE CORE(211),(214) Requiring �(k) to be distinct from the type variables in FE cor-responds to instantiating the trace scheme with fresh type variables. Thepurpose of this requirement is to guarantee that the witness atexp� serves asa witness for any instantiation of the trace scheme. atexp� is an arbitrary(atomic) expression which is well-formed in context s##(C) giving a type � 0that is the same type as s##(�).(212),(213) The premises of these rules contain a rule themselves, i.e. these arehigher-order rules.Notice that the quanti�er rules are not complete in the sense that a quanti�edexpression does not necessarily veri�cate to either true or false. The \missingcase" occurs when we are not able to provide a witness for truth of an existentiallyquanti�ed formula (resp. falsity of a universally quanti�ed formula) which is aspolymorphic as the match, but the existentially quanti�ed formula is not false(resp. the universally quanti�ed formula is not true) because on some values givenby atexp� the body of the formula does not veri�cate to true (resp. false) becauseit either veri�cates to false (resp. true), or raises an exception, or does notterminate. An important consequence of this is that a polymorphically quanti�edformula is taken to be unde�ned if it is true for type instances and false for others.Dyn(s;M) `DYN exp�) vDYN=pDYN; (>; ens)s;M ` exp� terminates) true; s (215)Dyn(s;M) `DYN exp�) vDYN=pDYN; (?; ens)s;M ` exp� terminates) [Abuse]; s (216)sDYN; EDYN = Dyn(s;M):9vDYN=pDYN; s0DYN: sDYN; EDYN `DYN exp�) vDYN=pDYN; s0DYNs;M ` exp� terminates) false; s (217)Comments:(215) Raising an exception is treated as a terminating case.Notice that the
ag sp of the dynamic state must stay > to make the con-vergence predicate true. As any speci�cation construct sets the
ag to ?,no such construct can occur during an evaluation that does not change the
ag.(216) If an evaluation terminates in the dynamic semantics but the
ag sp is setto ?, then the veri�cation semantics might or might not derive a semanticvalue for the same evaluation. The packet [Abuse] indicates an abuse ofthe convergence predicate | it is not intended to be used for expressionscontaining speci�cation constructs.

8.9 Inference Rules 93(217) The convergence predicate is veri�cated using the dynamic semantics. Thisis necessary to avoid paradoxes caused by the non-existence premise of thisrule. (FE;
) ` exp) v(FE;
 �
 0) ` exp handle match) v (218)Comments:(210){(218) These rules are exempted from the exception convention.(FE;
) ` exp) [e] e 6= Abuse (FE;
 0); e ` match) v(FE;
 �
 0) ` exp handle match) v (219)(FE;
) ` exp) [e] e 6= Abuse (FE;
 0); e ` match) FAIL(FE;
 �
 0) ` exp handle match) [e] (220)(FE;
) ` exp) [Abuse](FE;
 �
 0) ` exp handle match) [Abuse] (221)Comments:(219){(221) The exception Abuse is treated specially, similarly to NoCode in thedynamic semantics. We do not need special treatment for NoCode here,because it is never raised in the veri�cation semantics.(FE;
) ` exp) e(FE; � �
) ` raise exp) [e] (222)n = n of s M = ((E; (QIE;QIT)); (C; �) �
)(match 0; n0) = Replace(match; (QIE;QIT); n)s#(C) `STAT match 0) � 0; U;
 0 s#(�) = � 0f = �k:k � n QIE0 = QIE � f QIT 0 = QIT � fM 0 = ((E; (QIE0; QIT 0));
)s;M ` fn match) (match;M 0; fg); s� n0 (223)

94 8 VERIFICATION SEMANTICS FOR THE COREComments:(223) The purpose of substituting all question marks in the premise is to avoid anyill-typed interpretations for the question marks when the closure is appliedto an argument. The so-obtained phrase match 0 is not used for the closurefor technical reasons (traces and type interpretations are not quite right).The di�erence between n0 and n is the number of question marks occurringinmatch. When veri�cating a closure, we have to know at which number thelabelling of question marks starts. The composition of the question markinterpretations with f makes it start from 0; this convention is used forclosure application (rules 207 and 208) and for mapping veri�cation valuesto dynamic values in the de�nition of Dyn.The set of unguarded type variables U in match 0 is left unspeci�ed. If wewanted to consider QIE as textual substitution, we would need that all typevariables in U are free in the context C.Equality s; FE;
 ` exp1 � exp2) vs; (FE;
1) ` exp1) v1; s1 s; (FE;
2) ` exp2) v2; s2s; FE;C; � ` v1 � v2) vs; FE; (C; �) �
1 �
2 ` exp1 � exp2) v (224)s; (FE;
1) ` exp1) [e1]; s1 s; (FE;
2) ` exp2) [e2]; s2s; FE;C; exn ` e1 � e2) vs; FE; (C; �) �
1 �
2 ` exp1 � exp2) v (225)s; (FE;
1) ` exp1) v; s1 s; (FE;
2) ` exp2) p; s2s; FE; (C; �) �
1 �
2 ` exp1 � exp2) false (226)s; (FE;
1) ` exp1) p; s1 s; (FE;
2) ` exp2) v; s2s; FE; (C; �) �
1 �
2 ` exp1 � exp2) false (227)s; (FE;
1) ` exp1 terminates) false; ss; (FE;
2) ` exp2 terminates) false; ss; FE; (C; �) �
1 �
2 ` exp1 � exp2) true (228)s; (FE;
1) ` exp1) v=p; s1s; (FE;
2) ` exp2 terminates) false; ss; FE; (C; �) �
1 �
2 ` exp1 � exp2) false (229)s; (FE;
1) ` exp1 terminates) false; ss; (FE;
2) ` exp2) v=p; ss; FE; (C; �) �
1 �
2 ` exp1 � exp2) false (230)

8.9 Inference Rules 95Comments:(224),(225) The last sentence in the premise of both rules refers to the comparisonrules (for comparing values), 231 to 232.(225) The type � is arbitrary (and does not contribute to the result) when com-paring packets, because raising an exception gives an arbitrary type.(228){(230) Notice that the sentence s;M ` atexp terminates) false; s (seethe premises of these rules) ensures that atexp has no semantic value, i.e.the rules do not overlap. This is guaranteed by the rules for the conver-gence predicate, see rule 217, and the relationship between the dynamic andveri�cation semantics, see Section 8.7.The predicate � is a partial congruence relation. It is partial because it isunde�ned if in exp1 � exp2 one of the exp i has no semantic value and the ex-pression expi terminates evaluates to [Abuse]. This can only happen | see rule216 | if the dynamic evaluation of exp i terminates while setting the
ag sp to ?,indicating that a speci�cation construct has been encountered.Comparisons s; FE;C; � ` v � v0) v00VE = Comp(FE; s) id =2 Dom(VE of (FE + VE))VE1 = VE + fid 7! (v; �)g VE2 = VE + fid 7! (v0; �)gs##(C) + StatVE1 `STAT exp) bool; ;;
s; (FE + VE1;
) ` exp) v1; s0 s; (FE + VE2;
) ` exp) v2; s00APPLY(=; f1 7! v1; 2 7! v2g) = falses; FE;C; � ` v � v0) false (231)VE = Comp(FE; s) id =2 Dom(VE of (FE + VE))VE1 = VE + fid 7! (v; �)g VE2 = VE + fid 7! (v0; �)g0@ s##(C) + Stat VE1 `STAT exp) bool; ;;
s; (FE + VE1;
) ` exp) v1; s0 s; (FE + VE2;
) ` exp) v2; s00APPLY(=; f1 7! v1; 2 7! v2g) = true 1As; FE;C; � ` v � v0) true (232)Comments:(231),(232) Values are considered equal if and only if they cannot be distin-guished by expressions of type bool. v � v0 tests that the values are in-distinguishable in any context, not only the current one | hence the useof Comp(FE; s) to complete the environment similarly as for quanti�cation(rules 211{214). To compare the values, we further extend the environmentby binding a fresh identi�er id to v resp. v0, and then check if there is anexpression of type bool that distinguishes these two environments.

96 8 VERIFICATION SEMANTICS FOR THE CORESince Stat VE1 = StatVE2, only one premise ensuring elaboration is re-quired.(224){(232) The exception convention does not apply to these rules.Matches M; v ` match) v0=p=FAIL(FE;
); v ` mrule) v0(FE;
h�
 0i); v ` mrule h | matchi) v0 (233)M;v ` mrule) FAILM;v ` mrule) FAIL (234)(FE;
); v ` mrule) FAIL (FE;
 0); v ` match) v0=FAIL(FE;
 �
 0); v ` mrule | match) v0=FAIL (235)Match Rules M; v ` mrule) v0=p=FAIL(FE;
); v ` pat) VE (FE + VE;
 0) ` exp) v0(FE;
 �
 0); v ` pat => exp) v0 (236)(FE;
); v ` pat) FAIL(FE;
 �
 0); v ` pat => exp) FAIL (237)Declarations M ` dec) E=p
 =2 TraceScheme �(k) \ tyvars(FE) = ;(FE;
) ` valbind) VE VE 0 = ClosFEVE(FE;8�(k):
) ` val valbind) VE 0 in Env (238)s1; (FE;
) ` typbind) fg; s2s1; (FE; TE �
) ` type typbind) s#2 (TE) in Env; s2 (239)s1; (FE;
) ` typbind) fg; s2s1; (FE; TE �
) ` eqtype typbind) s#2 (TE) in Env; s2 (240)CT = s#(Graph(VE of ESTAT)) s; (FE;
) ` datbind) VE; ss; (FE;ESTAT �
) ` datatype datbind)s#(VE; TE of ESTAT) in Env; s+ CT (241)CT = s#(Graph(VESTAT))s; (FE;
) ` datbind) VE; s s+ CT; (FE + VE;
 0) ` dec) E; s1E = 'Ty(E 0) tynames(E 0) \ Yield('Ty) = ; s2 = s1 + 'Tys; (FE; (VESTAT; 'Ty) �
 �
 0) ` abstype datbind with dec end) E 0; s2 (242)

8.9 Inference Rules 97s;M ` exbind) VE; s0s;M ` exception exbind) s#(VE) in Env; s0 (243)(FE;
) ` dec1) E (FE + E;
 0) ` dec2) E 0(FE;
 �
 0) ` local dec1 in dec2 end) E 0 (244)M(longstrid 1) = (E1;m1) ��� M(longstridn) = (En;mn)s;M ` open longstrid1 ��� longstridn) E1 + ���+ En; s (245)M `) fg in Env (246)(FE;
) ` dec1) E (FE + E;
 0) ` dec2) E 0(FE;
 �
 0) ` dec1 h;i dec2) E + E 0 (247)Comments:(238) Dropping the quanti�er is a particular way of instantiating the trace scheme8�(k):
. Other instantiations might lead to di�erent variable environments,but only in pathological cases involving type-dependent speci�cation con-structs (e.g. quanti�cation) and type assertions with explicit type variablesto prevent the speci�cation constructs from binding these type variables.(241),(242) Remember that Graph is the graph of a �nite map and that the com-ponent CT of the state is used for comparing values and for quanti�cation.The state s does not change when veri�cating a datbind , i.e. the requirementthat no state change takes place does not restrict the applicability of the rule.(242) The type realisation 'Ty maps type names of abstract types to their im-plementing types, see rule 20 and the de�nition of AbsC. We apply it \back-wards" to the environment E to obtain an environment E 0 in which theimplementing types (Yield('Ty)) have been replaced by the correspondingabstract type names. Such an E 0 always exist because 'Ty maps type namesto type names, and it is uniquely determined because 'Ty is injective.Value Bindings M ` valbind) VE=p(FE;
 0) ` exp) v (FE;
); v ` pat) VEh(FE;
 00) ` valbind) VE 0i(FE;
 �
 0h�
00i) ` pat = exp hand valbind i) VE h+ VE 0i (248)(FE;
 0) ` exp) v (FE;
); v ` pat) FAIL(FE;
 �
 0h�
 00i) ` pat = exp hand valbind i) [Bind] (249)M ` valbind) VEM ` rec valbind) RecVE (250)

98 8 VERIFICATION SEMANTICS FOR THE COREComments:(248) In a value binding, veri�cation order di�ers from elaboration order. This isthe reason why the �rst veri�cation (exp) is done using the second trace andvice versa. Although in general a di�erence between veri�cation order andsyntactic appearance may cause problems w.r.t. the replacement of questionmarks, in this particular case everything works smoothly, since questionmarks do not occur in patterns.Type Bindings M ` typbind) fgh(FE;
) ` typbind) fgi(FE; �h�
i) ` tyvarseq tycon = ty hand typbind i) fg (251)n = n of s (QIT of FE)(n) = ty s#(C) `STAT ty) �tyvarseq = �(k) tyvars(ty) � �(k) TI = ft 7! ��(k):�gs0 = (s+ TI)� (n+ 1) hs0; (FE;
) ` typbind) fg; s00is; (FE; (C; t)h�
i) ` tyvarseq tycon = ? hand typbind i) fg; s0h0i (252)Comments:(252) The question mark interpretation QIT maps occurrences of ? to type ex-pressions. These type expressions can be built from the type constructorsavailable so far, i.e. they have to elaborate at the position in the program atwhich the ? occurs.Data Type Bindings M ` datbind) VE(FE;
) ` conbind) VE h(FE;
 0) ` datbind) VE 0i(FE;
h�
 0i) ` tyvarseq tycon = conbind hand datbindi) VE h+VE 0i (253)Constructor Bindings M ` conbind) VEcon = idc h(FE;
) ` conbind) VEi(FE; � h�
i) ` con h | conbindi) fid 7! Clos(con; �)g h+ VEi (254)con = idc h(FE;
) ` conbind) VEi(FE; � h�
i) ` con of ty h | conbindi) fid 7! Clos(con; �)g h+ VEi (255)

8.9 Inference Rules 99Exception Bindings M ` exbind) VEexcon = ide en = min(ExName n (ens of s))s0 = s+ (feng in ExNameSet; f(en; exn)g in ValTemp)hs0; (FE;
) ` exbind) VE; s00 is; (FE; �h�
i) ` excon hand exbind i)fid 7! (en; exn)g h+ VEi; s0h0i (256)excon = ide en = min(ExName n (ens of s)) � 0 = s#(�)! exns0 = s+ (feng in ExNameSet; f(en; � 0)g in ValTemp)hs0; (FE;
) ` exbind) VE; s00 is; (FE; � h�
i) ` excon of ty hand exbind i)fid 7! (en; � 0)g h+ VEi; s0h0i (257)excon = ide FE(longexcon) = (en; �) h(FE;
) ` exbind) VEi(FE; �h�
i) ` excon = longexcon hand exbind i)fid 7! (en; �)gh+ VEi (258)Comments:(256),(257) The use of min ensures that excon is uniquely determined, which isneeded to make == re
exive, example:val en = fn {} => let exception A in A end;Successful veri�cation of en{} == en{} requires a �xed result, see rule 210.Both occurrences of en{} will be veri�cated in the same state (see rule 224)and the deterministic choice of fresh exception names ensures that the samename is chosen in both cases.Atomic Patterns M; v ` atpat) VE=FAILM;v `) fg (259)v = val(scon)M;v ` scon) fg (260)v 6= val(scon)M;v ` scon) FAIL (261)var = idvs; (FE; �); v ` var) fid 7! (v; s#(�))g; s (262)

100 8 VERIFICATION SEMANTICS FOR THE COREM(longcon) � (con; �) v = conM;v ` longcon) fg (263)M(longcon) � (con; �) v 6= conM;v ` longcon) FAIL (264)M(longexcon) = (v; �)M;v ` longexcon) fg (265)M(longexcon) = (v0; �) v0 6= vM; v ` longexcon) FAIL (266)v = fgh+ri in Val h(FE;
); r ` patrow) VE=FAILi(FE; �h�
i); v ` { hpatrowi }) fgh+VE=FAILi (267)M;v ` pat) VE=FAILM;v ` (pat)) VE=FAIL (268)Pattern Rows M; r ` patrow) VE=FAILM; r ` ...) fg (269)(FE;
); r(lab) ` pat) FAIL(FE;
h�
 0i); r ` lab = pat h , patrowi) FAIL (270)(FE;
); r(lab) ` pat) VE h(FE;
 0); r ` patrow) VE 0=FAILi(FE;
h�
 0i); r ` lab = pat h , patrowi) VEh+ VE 0=FAILi (271)Patterns M; v ` pat) VE=FAILM;v ` atpat) VE=FAILM;v ` atpat) VE=FAIL (272)FE(longcon) � (con; � 0) v = (con; v0)(FE;
); v0 ` atpat) VE=FAIL(FE; � �
); v ` longcon atpat) VE=FAIL (273)M(longcon) � (con; �) v =2 fcong �ValM;v ` longcon atpat) FAIL (274)M(longexcon) = (en; �) v = (en; v0)M;v0 ` atpat) VE=FAILM;v ` longexcon atpat) VE=FAIL (275)

8.9 Inference Rules 101M(longexcon) = (en; �) v =2 feng �ValM;v ` longexcon atpat) FAIL (276)M;v ` pat) VE=FAILM;v ` pat : ty) VE=FAIL (277)(FE;
); v ` var) VE (FE;
 0); v ` pat) VE 0=FAIL(FE;
 �
 0); v ` varh: tyi as pat) VE + VE 0=FAIL (278)Type Expressions and Type-expression RowsThere are no primitive sentence forms for these phrase classes; although typeexpressions are present in the veri�cation semantics for the Core, they are eitherdisregarded (e.g. rule 209) or interpreted via the static semantics (e.g. rule 252).

102 9 VERIFICATION SEMANTICS FOR MODULES9 Veri�cation Semantics for Modules9.1 Compound ObjectsThe compound objects for the Modules veri�cation semantics, extra to those forthe Core veri�cation semantics, are shown in Figure 18. For each semantic classA there is a class Set(A) = }(State�A); each A 2 Set(A) is a (possibly in�nite)set of pairs (s; a); s 2 State; a 2 A. We use the same conventions as in theveri�cation semantics for the Core to refer to semantic objects of the static anddynamic semantics.(B;
; axdesc) 2 BasicAx = Basis� Trace�AxDesc(N;B)(I;A) 2 ExistAx = NameSet� Basis� (Int�GenAx)A 2 GenAx = BasicAx] ExistAx](GenAx�GenAx)] Bit(IE; TE; VESTAT;A) or I 2 Int = IntEnv� TyEnv�VarEnvSTAT �GenAx(I;m) or IS 2 IntStr = Int� StrNameIE 2 IntEnv = StrId �n! IntStr(N)IS or � 2 Sig = NameSet� IntStr(strid ; B; (N)(IS;�)) 2 FunctorClosure =StrId� Basis�NameSet� IntStr� SigG 2 SigEnv = SigId �n! SigF 2 FunEnv = FunId �n! FunctorClosure(N;F;G;E) or B 2 Basis = NameSet� FunEnv� SigEnv � Env(N;F;G; IE;E) or IB 2 IntBasis = NameSet� FunEnv � SigEnv�IntEnv� EnvS 2 Set(Str)R 2 Set(Rea� Str)E 2 Set(Env)SE 2 Set(StrEnv)B 2 Set(Basis)Figure 18: Further Compound Semantic ObjectsAn interface I 2 Int represents a \view" of a structure. Speci�cations willveri�cate to interfaces; moreover, during the veri�cation of a speci�cation or sig-nature expression, structures (to which a speci�cation may refer via \open") arerepresented only by their interfaces. A signature � 2 Sig has the form (N)(I;m).Signatures are similar to signatures in the static semantics, as they can be imposedon structures, requiring certain checks and determining a matching realisation, butthey are also similar to interfaces in the dynamic semantics, as a signature includesa rudimentary environment with only static information.

9.2 Generalised Axioms 103A functor closure (strid ; B; (N)(IS;�)) has three components. It contains thestructure identi�er strid of its argument structure and the basis B in which thefunctor binding appeared for the same reasons that functor closures in the dynamicsemantics do. However, it does not contain the body of the functor strexp, becausethe semantics of a functor only depends on its interface, not on its implementation.The third component of a functor closure corresponds to a static functor signature,the only di�erence being that interface structures contain more information thanstatic structures.To extract an interface from an environment we de�ne the operation Inter :Env! Int as follows:Inter(SE; TE; VE) = (IE; TE;StatVE;?)where IE = fstrid 7! (InterE;m) ; SE(strid) = (E;m)gAn interface structure IS is an instance of a signature � = (N)IS0, written��IS, if there exists a realisation ' such that '(IS0) = IS and Supp' � N .We write ��'IS if we want to make ' explicit. This is analogous to signatureinstantiation in the static semantics, see section 5.9.An interface basis IB = (N;F;G; IE;E) is derived from a basis for veri�cat-ing signature expressions and speci�cations. An interface basis in the veri�cationsemantics contains more components than an interface basis in the dynamic se-mantics | the extra components are mainly for the interpretation of axioms.The function Inter is extended to create an interface basis from a basis B asfollows: Inter(N;F;G;E) = (N;F;G; IE of (InterE); E)Speci�cations may hide components of an environment by reusing identi�ers.This a�ects the veri�cation of axiom speci�cations. We de�ne the environmentE n I as the restriction of E to identi�ers not speci�ed in I. More precisely, givenan environment E = (SE; TE; VE) and an interface I, we de�ne the environmentE n I to be (SE 0; TE 0; VE 0), which is the same as E except that the domains arerestricted as follows:DomSE 0 = DomSE nDom(IE of I)DomTE0 = DomTE nDom(TE of I)DomVE 0 = DomVE nDom(VESTAT of I)9.2 Generalised AxiomsA generalised axiom A 2 GenAx is a \mobile" axiom, capable of being interpretedin di�erent environments. Generalised axioms arise when veri�cating axioms insignature expressions, and checking that a structure matches a signature involvesinterpreting generalised axioms from the signature in the environment correspond-ing to the structure. The basis B in a generalised axiom (B;
; axdesc) has the

104 9 VERIFICATION SEMANTICS FOR MODULESsame purpose as the environment in a closure | because the axiom is mobile, ithas to carry the basis of its original occurrence. The trace
 is (originally) the oneobtained from the static analysis of axdesc; it is modi�ed in the course of match-ing a structure against a signature, which involves applying a realisation to aninterface. The interface I in a generalised axiom (N;B)(I;A) can be viewed as akind of existential quanti�cation: some auxiliary structure matching the signature(N)(I;m) (for an appropriate m) has to be found, which builds on componentsin basis B, such that A holds. A pair of generalised axioms (A1;A2) can be un-derstood as their logical conjunction. The generalised axiom > is always satis�ed.It serves as a default value for GenAx | for example, (VESTAT in Int) stands for(fg; fg; VESTAT;>). The generalised axiom ? is never satis�ed.9.3 Combining InterfacesThe sequential composition of speci�cations spec1 h;i spec2 is a bit delicate, asspec2 can use and/or overwrite identi�ers speci�ed in spec1. The correspondingsemantic operation on interfaces has to re
ect this. For a given interface basis IBwe de�ne the sequential combination of the interfaces I1 and I2 as the interfaceI1 �IB I2, where �IB is de�ned as follows. Let Ik = (IEk; TEk; VEkSTAT;Ak), k 2f1; 2g. We write B of IB for the basis obtained from IB by removing the IEcomponent. Below we use the notation A � A0 (for arbitrary �nite maps A and A0of the same type) to denote the �nite map A00 with DomA00 = DomA \ DomA0and for all x 2 DomA00, A00(x) = A(x).I1 �N I2 = (N 0)((IE1 � IE2; TE1 � TE2; VE1STAT � VE2STAT;>);m)where(N 0 = fmg [names I2 n names I1 nNm =2 N [names I1 [names I2I1 �IB I2 = (IE1 + IE2; TE1 + TE2; VE1STAT + VE2STAT;((N;B of IB)(I;A1);A2))where (N)I = I1 �NofIB I2The operation I1 �N I2 is purely auxiliary; it maps two interfaces and a name setto a signature. The idea is that this signature represents the hidden part (of I1)when sequentially composing I1 and I2. Matching a structure against I1 �IB I2also requires �nding a structure matching the hidden part.Notice that the operator �IB is not associative, because (I1�IB I2)�IB I3 andI1 �IB (I2 �IB I3) di�er in their last component, the generalised axiom. But weclaim that the so-obtained generalised axioms A and A0 are semantically equivalentin the sense that a sentence of the form s;E ` A) fg (see rules 287 to 290 below)can be derived i� the sentence s;E ` A0) fg can be derived as well.

9.4 Extracting Objects of the Static Semantics 1059.4 Extracting Objects of the Static SemanticsWe extend the family of functions Stat de�ned in Section 8.6 to semantic objectsof the module semantics as follows:Stat(N;F;G;E) = (N;StatF;Stat �G;StatE)Stat(N;F;G; IE;E) = (N;StatF;Stat �G;StatE + (Stat �IE))StatF = ffunid 7! (N)(Stat IS;Stat �) ;F (funid) = (strid ; B; (N)(IS;�))gStat((N)IS) = (N) Stat ISStat(I;m) = (m;Stat I)Stat(IE; TE; VESTAT;A) = (Stat �IE; TE; VESTAT)Interfaces and environments are both mapped to static environments; similarly,bases and interface bases are both mapped to static bases.9.5 SetsThe veri�cation of a core phrase in a given state and environment typically leadsto a pair consisting of some semantic object (value, environment, etc.) and a newstate. For the veri�cation semantics for Modules we typically have sets of suchpairs as veri�cation results.There are two major reasons for this: �rst, we interpret a structure bindingstructure S: SIG = Tnot as a binding of the identi�er S to (some restriction of) the structure T, but asthe binding of S to any structure matching the signature SIG. In other words, weabstract from the concrete structure T.The second reason is the presence of ? in core phrases. The veri�cation se-mantics for the Core operates with a given interpretation of question marks. Theveri�cation semantics for Modules enumerates all question mark interpretationsthat lead to successful veri�cations and collects the results, see rule 299.9.6 Inference RulesThere is no state convention and no exception convention for the veri�cation se-mantics for Modules: states are always made explicit.In contrast to most other parts of the semantics, we have not only sentencesof the form A ` phrase) A0 where phrase is a syntactic object, but also a varietyof sentence forms (not involving syntax) that determine whether a given structurematches a signature.The convention for referring to sentences of the static semantics is the same asin the Core veri�cation semantics.

106 9 VERIFICATION SEMANTICS FOR MODULESSatisfying Signatures s;� ` S) S0; 'Sentences of this form can be read as: in state s, structure S successfully matchessignature � via realisation ', returning structure S 0.Supp' � N '(IS) = (I;m) s;E ` I) E 0s; (N)IS ` (E;m)) (E 0;m); ' (279)Restricting Environments s; E ` I) E 0In the dynamic semantics, the e�ect of \cutting down" an environment E to aninterface I, written E # I, was de�ned in Section 7.2. In the veri�cation semanticsthe situation is a bit more di�cult: an environment is not just cut down to aninterface, it also has to satisfy its (generalised) axiom, and the types have to �t.We therefore express this operation formally in terms of rules.s; SE ` IE) SE 0 TE ` TE 0) TE 00 VE ` VESTAT) VE 0E0 = (SE 0; TE 00; VE 0) s;E 0 ` A) fgs; (SE; TE; VE) ` (IE; TE 0; VESTAT;A)) E 0 (280)Restricting Structure Environments s; SE ` IE) SE 0s; SE ` IE) SE 0 s;E ` I) E 0s; SE + fstrid 7! (E;m)g ` IE + fstrid 7! (I;m)g)SE0 + fstrid 7! (E 0;m)g (281)s; SE ` fg) fg (282)Restricting Type Environments TE ` TE 0) TE 00TE ` TE 0) TE 00 CE = CE 0 _ CE 0 = fgTE + ftycon 7! (�;CE)g ` TE 0 + ftycon 7! (�;CE 0)g)TE00 + ftycon 7! (�;CE 0)g (283)TE ` fg) fg (284)Comments:(283) Notice that the side-condition closely relates to the enrichment of typestructures, see section 5.11.

9.6 Inference Rules 107Restricting Variable Environments VE ` VESTAT) VE 0VE ` VESTAT) VE 0 8�(k):� �# 8�(l):� 0VE + fid 7! 8�(k):(v; �)g ` VESTAT + fid 7! 8�(l):� 0g)VE 0 + fid 7! 8�(l):(#(v); � 0)g (285)VE ` fg) fg (286)Comments:(285) There is a certain amount of arbitrariness in this rule, similarly as in rules195 and 238 in the veri�cation semantics for the Core. The arbitrariness isagain in the possibility that v may contain free type variables which are notin � , and thus not in the domain of #.Satisfying Generalised Axioms s; E ` A) fgs;E ` >) fg (287)s;E ` A1) fg s;E ` A2) fgs;E ` (A1;A2)) fg (288)s;B + E;
 ` axdesc) fgs;E ` (B;
; axdesc)) fg (289)m =2 (N of B [N) s;B; (N)(I;m) ` strexp�) R(s0; ('; (E 0;m))) 2 R s0; E + E 0 ` '(A)) fgs;E ` (N;B)(I;A)) fg (290)Comments:(290) Notice that the rule has two implicit existential quanti�ers: we have to�nd some structure expression such that some environment obtained fromits veri�cation satis�es the axiom.There is no rule for the generalised axiom ?, as it is never satis�ed.Validating Axiom Descriptions s; B;
 ` axdesc) fgs;B;
1 ` specexp) fg hs;B;
2 ` axdesc) fgis;B;
1h�
2i ` specexp hand axdesci) fg (291)

108 9 VERIFICATION SEMANTICS FOR MODULESValidating Speci�cation Expressions s; B;
 ` specexp) fgs;B;
1 ` strdec) E (s0; E) 2 Es0; B +E;
2 ` axexp) fgs;B;
1 �
2 ` let strdec in axexp end) fg (292)Axiomatic Expressions s; B;
 ` axexp) fgs; ((E of B; (fg; fg));
) ` exp�) true; s0s;B;
 ` exp�) fg (293)Comment: An axiomatic expression exp� holds if it veri�cates to true; hencefalse, non-termination, and exceptions are treated equally here. Veri�cation ofan axiomatic expression has no side-e�ect, i.e. any side-e�ect that appeared duringveri�cation disappears.Structure Expressions s; B;
 ` strexp) Ss;B;
 ` strdec) Es;B;m �
 ` struct strdec end) f(s0; (E;m)) j (s0; E) 2 Eg (294)B(longstrid) = Ss;B;
 ` longstrid) f(s; S)g (295)B(funid) = (strid ; B 0; (N)(IS;�)) '0 = s#(')'0(IS;�) = (IS0;�0) s;B;
 ` strexp) S(s0; S) 2 S9S0; '00: s0; (N)IS ` S) S0; '00s;B; ' �
 ` funid (strexp))f(s00; S 0) j (s0; S) 2 S;s0; B0 � fstrid 7! Sg;�0 ` strexp�) R; (s00; ('00; S 0)) 2 R g (296)s;B;
 ` strdec) E (s1; E) 2 E9S: s1; B �E;
0 ` strexp) Ss;B;
 �
 0 ` let strdec in strexp end)f(s2; S) j (s1; E) 2 E; s1; B � E;
 0 ` strexp) S; (s2; S) 2 Sg (297)Comments:(296) It should be emphasised here that strexp and strexp� are di�erent meta-variables; strexp� is an arbitrary structure expression (not containing ?).There are no explicit restrictions concerning elaboration of strexp� needed,because they are implicit in the sentence form used, see rule 298.

9.6 Inference Rules 109Structure vs. Signature s; B;� ` strexp) RSentences of this form can be read as: in state s and basis B, the structureexpression strexp veri�cates and matches the signature � in the ways speci�ed byR. Each member (s0; (S;')) of R consists of the resulting state s0, the matchingrealisation ', and the structure S obtained from cutting down the veri�cationresult of strexp to �.StatB `STAT strexp) (m;ESTAT);
s1; B;
 ` strexp) S (s2; S) 2 S9S0; ': s2;� ` S) S0; 's1; B;� ` strexp)f(s2 + 'Ty; ('; S 0)) j (s2; S) 2 S; s2;� ` S) S 0; 'g (298)Comment: s2+'Ty is the state obtained by extending the type realisation 'Tyof s2by the type part of the realisation '. The e�ect of using this state instead of s2is to make the implementing types known for the purposes of quanti�cation andcomparison.Structure-level Declarations s; B;
 ` strdec) ENotice that the semantic value of a structure declaration is an E, not an E=p.s; (N;F;G;E);
 ` dec) f(s0; E 0) j s; (E;QI);
 ` dec) E 0; s0g (299)s;B;
 ` axiom ax) f(s; fg in Env) j
 �
0 =2 TraceSchemes; B;
0 ` ax) fg g (300)s;B;
 ` strbind) SEs;B;
 ` structure strbind) f(s0; SE in Env) j (s0; SE) 2 SEg (301)s;B;
1 ` strdec1) E (s1; E) 2 E9E 0: s1; B �E;
2 ` strdec2) E 0s;B;
1 �
2 ` local strdec1 in strdec2 end)f(s2; E 0) j (s1; E) 2 E; s1; B � E;
2 ` strdec2) E 0; (s2; E 0) 2 E 0g (302)s;B;
 `) f(s; fg in Env)g (303)s;B;
1 ` strdec1) E (s1; E) 2 E9E 0: s1; B �E;
2 ` strdec2) E 0s;B;
1 �
2 ` strdec1 h;i strdec2)f(s2; E + E 0) j (s1; E) 2 E; s1; B � E;
2 ` strdec2) E 0; (s2; E 0) 2 E 0g (304)

110 9 VERIFICATION SEMANTICS FOR MODULESComments:(299) The sentence in the set comprehension is a sentence of the veri�cationsemantics for the Core. Notice that every Core declaration (viewed hereas a strdec) veri�cates, but it may veri�cate to an empty set; it may alsoveri�cate to a set with more than one element, because QI can be chosenarbitrarily. All Core veri�cations resulting in packets are ignored.(300) Veri�cation of an axiom always succeeds: if the axiom \holds", the result isa singleton set containing the empty environment; otherwise it is the emptyset. An axiom only holds if it does so for all type instances of its trace.Axioms s; B;
 ` ax) fgs;B;
 ` axexp) fg hs;B;
 0 ` ax) fgis;B;
h�
 0i ` axexp hand ax i) fg (305)Structure Bindings s; B;
 ` strbind) SEs;B;
 ` sglstrbind) SE � (s0; SE) 2 SE9SE 0: s0; B + namesSE;
0 ` strbind) SE 0�s;B;
h�
 0i ` sglstrbind hand strbindi)f(s0h0i; SEh+SE 0i) j (s0; SE) 2 SE h ;s0; B + namesSE;
 0 ` strbind) SE 0; (s00; SE0) 2 SE 0i g (306)Single Structure Bindings s; B;
 ` sglstrbind) SEs; InterB;
 ` psigexp) � s;B;� ` strexp) Rs;B;
 �
 0 ` strid : psigexp = strexp)f(s0; fstrid 7! S 0g) j s;B;� ` strexp�) R0; (s0; ('; S 0)) 2 R0 g (307)s; InterB;
 ` psigexp) �s;B;
 ` strid : psigexp = ?)f(s0; fstrid 7! Sg) j s;B;� ` strexp�)R; (s0; ('; S)) 2 R g (308)s;B;
 ` strexp) Ss;B;
 ` strid = strexp) f(s0; fstrid 7! Sg) j (s0; S) 2 Sg (309)Comments:(307) The second premise implicitly requires every interpretation of strexp tomatch the signature � (see rule 298). The resulting set R is then ignoredand the result is the union of all expressible sets of structures (since strexp�is arbitrary) matching the signature.

9.6 Inference Rules 111Notice that the trace
 0 is thrown away, although the veri�cation of strexpre-builds it later using the judgements of the static semantics. The reasonfor this arrangement is that judgements of the form s;B;� ` strexp) Rare also used for cases in which there is no trace readily available, e.g. rules308 and 296.Signature Expressions s; IB;
 ` sigexp) ISs; IB;
 ` spec) Is; IB;m �
 ` sig spec end) (I;m) (310)IB(sigid)�'ISs; IB;' ` sigid) IS (311)Principal Signatures s; IB;
 ` psigexp) �N \N of IB = ; s; IB;
 ` sigexp) ISs; IB; (N)
 ` sigexp) (N)IS (312)Comments:(312) The rôle of this rule is similar to that of rule 65. Principality of (N)IS doesnot have to be imposed because it is implicitly satis�ed, as the derivationof s; IB;
 ` sigexp) IS uses the same realisations as the correspondingderivation of BSTAT `STAT sigexp) SSTAT;
 when determining the principalsignature for rule 65.Signature Declarations s; IB;
 ` sigdec) Gs; IB;
 ` sigbind) Gs; IB;
 ` signature sigbind) G (313)s; IB;
 `) fg (314)s; IB;
1 ` sigdec1) G1 s; IB +G1;
2 ` sigdec2) G2s; IB;
1 �
2 ` sigdec1 h;i sigdec2) G1 +G2 (315)Signature Bindings s; IB;
 ` sigbind) Gs; IB;
 ` psigexp) � hs; IB;
 0 ` sigbind) Gis; IB;
h�
 0i ` sigid = psigexp hand sigbind i) fsigid 7! �g h+ Gi (316)

112 9 VERIFICATION SEMANTICS FOR MODULESSpeci�cations s; IB;
 ` spec) Is; IB; VESTAT ` val valdesc) s#(VESTAT) in Int (317)s; IB; TE ` type typdesc) s#(TE) in Int (318)s; IB; TE ` eqtype typdesc) s#(TE) in Int (319)s; IB; (TE; VESTAT) in EnvSTAT ` datatype datdesc)(s#(TE); s#(VESTAT)) in Int (320)s; IB; VESTAT in EnvSTAT ` exception exdesc)(s#(VESTAT)) in Int (321)s; IB;
 ` axiom axdesc) (B of IB;
; axdesc) in Int (322)s; IB;
 ` strdesc) IEs; IB;
 ` structure strdesc) IE in Int (323)s; IB;
 ` sharing shareq) fg in Int (324)IB = (N;F;G; IE;E) s; IB;
1 ` spec1) I1IB0 = (N [names I1; F;G; IE + IE of I1; E n I1) s; IB0;
2 ` spec2) I2I2 = (IE; TE; VESTAT;A) N1 = names I2 n names I1 nNI3 = (IE; TE; VESTAT; (N1; B of IB)(I1;A))s; IB;
1 �
2 ` local spec1 in spec2 end) I3 (325)IB(longstrid 1) = (I1;m1) ��� IB(longstridn) = (In;mn)s; IB;
 ` open longstrid 1 ��� longstridn) I1 �IB ��� �IB In (326)IB(sigid1)�'1(I1;m1) ��� IB(sigidn)�'n(In;mn)s; IB; '1 � : : : � 'n ` include sigid1 ��� sigidn) I1 �IB ��� �IB In (327)s; IB;
 `) fg in Int (328)IB = (N;F;G; IE;E) s; IB;
1 ` spec1) I1IB0 = (N [names I1; F;G; IE + IE of I1; E n I1) s; IB0;
2 ` spec2) I2s; IB;
1 �
2 ` spec1 h;i spec2) I1 �IB I2 (329)

9.6 Inference Rules 113Comments:(317){(321) The various traces in these rules have to be interpreted in the cur-rent state to make choices for question mark types known for veri�cationof phrases that depend on these. Notice also that we use s# and not s##,i.e. speci�cations in EML do not see the implementing types from otherstructure bindings.(324) All the necessary sharing has already been checked in the static analysis,therefore this rule needs no premise.(325),(329) Notice that the E component of IB shrinks while the IE componentincreases. E contains global objects which can be hidden by speci�cations(hence the shrinking), while IE contains interface of global structures as wellas of speci�ed structures.Structure Descriptions s; IB;
 ` strdesc) IEs; IB;
 ` sigexp) IS hs; IB;
 0 ` strdesc) IEis; IB;
h�
 0i ` strid : sigexp hand strdesci) fstrid 7! ISg h+ IEi (330)Functor Declarations s; B;
 ` fundec) Fs;B;
 ` funbind) Fs;B;
 ` functor funbind) F (331)s;B;
 `) fg (332)s;B;
1 ` fundec1) F1 s;B + F1;
2 ` fundec2) F2s;B;
1 �
2 ` fundec1 h;i fundec2) F1 + F2 (333)Functor Bindings s; B;
 ` funbind) FIB = InterB
 =
1 �
2 �
3h�
4is; IB;
1 ` psigexp) � � = (N)IS N \N of IB = ;s; IB � fstrid 7! ISg;
2 ` psigexp 0) �0hs;B;
4 ` funbind) F i s; B;� ` strexp�)R (s0; ('; S)) 2 R9R0: s0; B � fstrid 7! Sg;�0 ` strexp)R0s;B;
 ` funid (strid : psigexp) : psigexp0 = strexp hand funbind i)ffunid 7! (strid; B; (N)(IS;�0))g h+ F i (334)

114 9 VERIFICATION SEMANTICS FOR MODULESIB = InterB
 =
1 �
2h�
3is; IB;
1 ` psigexp) � � = (N)IS N \N of IB = ;s; IB � fstrid 7! ISg;
2 ` psigexp 0) �0 hs;B;
3 ` funbind) F is;B;
 ` funid (strid : psigexp) : psigexp0 = ? hand funbind i)ffunid 7! (strid ; B; (N)(IS;�0))g h+F i (335)Comments:(334) The rule in the premise ensures that the argument in a functor applicationcan safely be replaced by anything satisfying the input signature (includinggeneralised axioms) of the functor. \Safely" means here that the functorapplication is guaranteed to veri�cate.(334),(335) There is no di�erence in the result of these two rules: rule 334 simplyhas an additional check that strexp satis�es the signature psigexp 0 for anyvalid functor argument.Top-level Declarations s; B;
 ` topdec) Bs;B;
 ` strdec) Es;B;
 ` strdec) f(s0; (namesE;E) in Basis) j (s0; E) 2 Eg (336)s; InterB;
 ` sigdec) Gs;B;
 ` sigdec) f(s; (namesG;G) in Basis)g (337)s;B;
 ` fundec) Fs;B;
 ` fundec) f(s; (namesF;F) in Basis)g (338)

11510 ProgramsThe phrase classes FullProgram and Program of programs are de�ned as follows:program ::= topdec ; hprogramifullprogram ::= programThe variable topdec above refers to top-level declarations of the Full language.As the semantic rules shown so far only operate on the Bare language, we haveto translate such a topdec into a top-level declaration of the Bare language | therules for this purpose are 478{481 in Appendix B.Semantic objects in this section are the semantic objects for the veri�cationsemantics; objects coming from other parts of the semantics are accordingly in-dexed, for example CDER is a context of the semantics for derived forms. Similarly,we attribute each turnstile with the part of the semantics that it refers to | amissing index means \program semantics".Consider a sentence of the form ` fullprogram) B; CDER. The followingmain situations can arise:� There is no B; CDER such that ` fullprogram) B; CDER holds. This isthe case if fullprogram either contains static errors (static semantics, derivedforms) or an interface error of the veri�cation semantics for modules, i.e. astructure (resp. functor) in fullprogram does not match its signature (resp.signatures).� We have ` fullprogram) B; CDER but B = ;. This situation arises iffullprogram contains a the structure or functor declaration which is incon-sistent, i.e. which has an empty class of models. This inconsistency can arisein a number of ways, most typically if a stated axiom does not hold in anymodel or if a value declaration does not terminate or raises an exception.� Otherwise all of the structure and functor declarations in fullprogram areconsistent and each (s;B) 2 B (together with CDER) can be seen as a modelof fullprogram.Top-level Declarations s; B; CDER ` topdec) B; C 0DER:9C 0DER; topdec0: CDER `DER topdec) topdec0; C 0DERs;B;CDER ` topdec) f(s;B)g; CDER (339)CDER `DER topdec) topdec0; C 0DER:9BSTAT;
: StatB `STAT topdec0) BSTAT;
s;B;CDER ` topdec) f(s;B)g; CDER (340)

116 10 PROGRAMSCDER `DER topdec) topdec 0; C 0DER StatB `STAT topdec0) BSTAT;
StatB `STAT topdec 0) B0STAT;
0(names
 nN of B)
 �
0 s;B;
 `VER topdec0) Bs;B;CDER ` topdec) f(s0; B �B 0) j (s0; B 0) 2 Bg; CDER + C 0DER (341)Comments:(340) A failing elaboration has no e�ect whatever. Even derived form declarationsare \undone". In contrast to SML there is no rule for dealing with raisedexceptions, because packets cannot escape core level veri�cation in EML.(341) The rule in the premise ensures that the top-level declaration is veri�catedwith a principal trace.Programs s; B; CDER ` program) B; C 0DERs;B;CDER ` topdec) B; C 0DER � (s0; B0) 2 B9B0: s0; B0; C 0DER ` program) B0; C 00DER�s;B;CDER ` topdec ; hprogrami) f(s0h0i; B 0h0i) j (s0; B 0) 2 B;hs0; B 0; C 0DER ` program) B0; C 00DER; (s00; B 00) 2 B0ig; C 0h0iDER (342)Comment: Notice that C 00DER is scoped at the main rule, see Section 1.2 | theresulting context for derived forms is not model-dependent and is the same forall (s0; B0) 2 B. Another consequence of this scoping is that C 00DER is arbitrary ifB = ;.Full Program ` fullprogram) B; CDERs0; B0; C0DER ` program) B; CDER` program) B; CDER (343)Comment: This rule connects the program semantics with the initial state s0, theinitial veri�cation basis B0, and the inital context for derived forms C0DER.

117A Appendix: Full GrammarThis section gives the full grammar of Extended ML, which includes the syntaxfor the Core, the syntax for Modules and the derived forms. Syntactic phrases ofthe Full Language contain identi�ers without status labels, i.e. the class Id takesthe rôle of the classes Var, StrId, etc.The Full language uses the same names for its phrase classes as the Bare lan-guage, see �gures 3 and 7 on pages 11 and 17, respectively. Concerning the syntaxof expressions, two additional subclasses of the phrase class Exp are introduced,namely AppExp (application expressions) and InfExp (in�x expressions). Theinclusion relation among the four classes is as follows:AtExp � AppExp � InfExp � ExpThe e�ect is that certain phrases, such as \2 + if ��� then ��� else ��� ", arenow disallowed. An analogous construction applies to patterns, i.e. we also haveadditional phrase classes AppPat and InfPat, etc. Concerning identi�ers, thereare the phrase classes Id (and LongId, analogous to Section 2.4), Lab andTyVar. Each id 2 Id is either alphanumeric (but not starting with a prime) orsymbolic. Members of Id are considered to be lexical items. Another additionalphrase class is D (digits): each d 2 D is a character between 0 and 9 and is alsoregarded as a lexical item.The grammatical conventions are similar to Section 2, namely:� The brackets h i enclose optional phrases.� For any syntax class X (over which x ranges) we de�ne the syntax class Xseq(over which xseq ranges) as follows:xseq ::= x (singleton sequence)(empty sequence)(x1,���,xn) (sequence, n � 1)Note that the \���" used here, a meta-symbol indicating syntactic repetition,must not be confused with \..." which is a reserved word of the language.To range over all three alternatives for sequences in semantic rules we writex1���xn (with n � 0), which suppresses the syntactic commas and paren-theses. The ambiguity for n = 1 will be harmless whenever we use thisnotation.� Alternative forms for each phrase class are in order of decreasing precedence.This precedence resolves ambiguity in parsing in the following way. Supposethat a phrase class phrase has several alternative forms F1���Fn. If a lexicalsequence L1���Lk reduces to more than one of the Fi, then it reduces tophrase via the Fi with lowest precedence. Example: The parsing of thesequence if exp1 then exp2 else exp3 handle match

118 A APPENDIX: FULL GRAMMARis determined by the above principle. Because if-expressions have lowerprecedence than handle-expressions, the sequence parses asif exp1 then exp2 else (exp3 handle match)Note particularly that the use of precedence does not decrease the classof admissible phrases; it merely rejects alternative ways of parsing certainphrases. In particular, the purpose is not to prevent a phrase, which is aninstance of a form with higher precedence, having a constituent which is aninstance of a form with lower precedence. Thus for exampleif ��� then case ��� of ��� else case ��� of ���is quite admissible, and will be parsed asif ��� then (case ��� of ���) else (case ��� of ���)� Longest match: Suppose F1F2 is an alternative form of a phrase class. Anatural number i is called a split index w.r.t. F1F2 for a lexical sequenceL1���Lk if 0 � i � k and L1���Li reduces to F1 and Li+1���Lk reduces to F2.If for a given lexical sequence L = L1���Lk there are di�erent split indicesw.r.t. F1F2, then L reduces to F1F2 by reducing L1���Lj to F1, where j iseither the maximal split index, or | i� the alternative form is labelled (R),indicating a right associative in�x construct | the minimal split index.� For any syntax class X (over which x ranges) we de�ne the syntax class X�(over which x� ranges) as the same as X, except that phrases of class X�may not contain ?.

119atexp ::= scon special constanthopilongid long identi�er{ hexprow i } record# lab record selector() 0-tuple(exp1 , ��� , expn) n-tuple, n � 2[exp1 , ��� , expn] list, n � 0(exp1 ; ��� ; expn) sequence, n � 2let dec in exp1 ; ��� ; expn end local declaration, n � 1(exp)? unde�ned valueexprow ::= lab = exp h , exprowi expression rowappexp ::= atexpappexp atexp application expressioninfexp ::= appexpinfexp1 id infexp2 in�x expressionexp ::= infexpexp : ty typedexp�1 == exp�2 comparison (R)exp�1 =/= exp�2 comparison (R)exists match� existential quanti�erforall match� universal quanti�erexp� terminates convergence predicateexp� proper de�nedness predicateexp1 andalso exp2 conjunctionexp1 orelse exp2 disjunctionexp1 implies exp2 implication (R)exp handle match handle exceptionraise exp raise exceptionexp raises match test for exceptionexp raises pat test for exceptionif exp1 then exp2 else exp3 conditionalcase exp of match case analysisfn match functionmatch ::= mrule h | matchimrule ::= pat => expFigure 19: Grammar: Expressions and Matches

120 A APPENDIX: FULL GRAMMARdec ::= val valbind value declarationfun fvalbind function declarationtype typbind type declarationeqtype typbind equality type declarationdatatype datbind datatype declarationhwithtype typbind�iabstype datbind abstype declarationhwithtype typbind�iwith dec endexception exbind exception declarationlocal dec1 in dec2 end local declarationopen longid 1���longidn open declaration, n � 1dec1 h;i dec2 sequential declarationempty declarationinfix hdi id1 ��� idn in�x directive, n � 1infixr hdi id1 ��� idn in�x directive, n � 1nonfix id1 ��� idn non�x directive, n � 1valbind ::= pat = exp hand valbind irec valbindfvalbind ::= funcbind hand fvalbind i function declarationsfuncbind ::= fpat h:tyi = exp h| funcbind i single functiontypbind ::= tyvarseq id = ty hand typbind i type bindingtyvarseq id = ? hand typbind i question mark type bindingdatbind ::= tyvarseq id = conbindhand datbind iconbind ::= id hof tyi h| conbind iexbind ::= id hof tyi hand exbind iid = longid hand exbind iFigure 20: Grammar: Declarations and Bindings

121atpat ::= wildcardscon special constanthopilongid{ hpatrowi } record() 0-tuple(pat1 , ��� , patn) n-tuple, n � 2[pat1 , ��� , patn] list, n � 0(pat)patrow ::= ... wildcardlab = pat h , patrowi pattern rowidh:tyi has pati h, patrowi label as variableapppat ::= hopilongid atpat constructionatpat atomicinfpat ::= apppat application or atomicinfpat1 id infpat2 in�x constructionpat ::= infpatpat : ty typedhopiid h: tyi as pat layeredfpat ::= hopiid atpat1���atpatn fvalbind pattern sequence(atpat1 id atpat 01) atpat2���atpatnatpat1 id atpat 01Figure 21: Grammar: Patternsty ::= tyvar type variable{ htyrowi } record typetyseq longid type constructionty1 * ��� * tyn tuple type, n � 2ty -> ty0 function type (R)(ty)tyrow ::= lab : ty h , tyrowi type-expression rowFigure 22: Grammar: Type expressions

122 A APPENDIX: FULL GRAMMAR
strexp ::= struct strdec end generativelongid structure identi�erid (strexp) functor applicationid (strdec)let strdec in strexp end local declarationstrdec ::= dec declarationaxiom ax axiomhwithtype typbind �istructure strbind structurelocal strdec1 in strdec2 end localstrdec1 h;i strdec2 sequentialemptyax ::= axexp hand ax i axiomsaxexp ::= exp� axiomatic expressionstrbind ::= sglstrbind hand strbind i structure bindingsglstrbind ::= id : psigexp = strexp single structure bindingid : psigexp = ? unde�ned structure bindingid = strexp unguarded structure bindingsigexp ::= sig spec end generativeid signature identi�erpsigexp ::= sigexp principal signaturesigdec ::= signature sigbind singlesigdec1 h;i sigdec2 sequentialemptysigbind ::= id = psigexp hand sigbind iFigure 23: Grammar: Structure and Signature Expressions

123spec ::= val valdesc valuetype typdesc typeeqtype typdesc eqtypedatatype datdesc datatypeexception exdesc exceptionaxiom axdesc axiomstructure strdesc structuresharing shareq sharinglocal spec1 in spec2 end localopen longid 1���longidn open (n � 1)include id1���idn include (n � 1)spec1 h;i spec2 sequentialemptyvaldesc ::= id : ty hand valdescitypdesc ::= tyvarseq id hand typdescidatdesc ::= tyvarseq id = condesc hand datdescicondesc ::= id hof tyi h| condesciexdesc ::= id hof tyi hand exdesciaxdesc ::= specexp hand axdescispecexp ::= let strdec in axexp endexp�strdesc ::= id : sigexp hand strdescishareq ::= longid 1 = ��� = longidn structure sharing(n � 2)type longid 1 = ��� = longid n type sharing(n � 2)shareq1 and shareq2 multipleFigure 24: Grammar: Speci�cations

124 A APPENDIX: FULL GRAMMARfundec ::= functor funbind singlefundec1 h;i fundec2 sequenceemptyfunbind ::= id (id0 : psigexp): psigexp0 functor binding= strexp hand funbind iid (spec) : psigexp= strexp hand funbind iid (id0 : psigexp): psigexp0 unde�ned functor binding= ? hand funbind iid (spec) : psigexp= ? hand funbind itopdec ::= strdec structure-level declarationsigdec signature declarationfundec functor declarationexp expression at top-levelprogram ::= topdec ; hprogramifullprogram ::= programNote: No topdec may contain, as an initial segment, a shorter top-level declaration followed by a semicolon.Figure 25: Grammar: Functors and Top-level DeclarationsA.1 Syntactic RestrictionsThe syntactic restrictions mentioned in sections 2.9 and 3.5 apply analogously tothe full grammar.Further restrictions are expressed in the next section, the semantics of derivedforms.

125B Appendix: Derived FormsThe rules in this section translate syntactical phrases of the full grammar intosyntactical phrases of the Bare language.B.1 Semantic ObjectsThe semantic objects of this section are the syntactic phrases of Bare and Fulllanguage and the objects in Figure 26.st 2 Status = fv; c; e; g; s; f; tg�x 2 Fixity = fl; r; ngn 2 N = f0; 1; 2; : : :gVE 2 VarEnv = Id �n! (N � Fixity)StE 2 StatEnv = Id �n! StatusTE 2 TyEnv = Id �n! (TypeFcn] fFAILg)��(k):ty 2 TypeFcn =]k�0TyVark �TySE 2 StrEnv = Id �n! EnvF 2 FunEnv = Id �n! (Env � Env)G 2 SigEnv = Id �n! Env(SE; TE;StE) or E 2 Env = StrEnv �TyEnv� StatEnv(E; VE;F;G) or C 2 Context = Env �VarEnv� FunEnv� SigEnvidval 2 Idval = Env] TypeFcn] Status](N � Fixity)] (Env� Env)] fFAILg� 2 Context! (Id �n! Idval)Figure 26: Semantic Objects for Derived FormsThe results of looking up a long identi�er in a context (rules 344{346) includesan identi�er value. The object class IdVal contains the codomains of all envir-onments of a context plus fFAILg. The identi�er value FAIL indicates that theaccess is unsuccessful, see rule 345. This is also used to generate \fresh" identi�-ers. Within type environments an identi�er is bound to FAIL if this binding doesnot originate from a withtype type binding.The variable � serves as a placeholder for various projections from a contextto its components. A concrete projection is written with an indicating theargument position, e.g. (SEofEof) selects the structure environment of a context.Given a type expression ty, a sequence of type variables �1; : : : ; �k and asequence of type expressions ty1; : : : ; tyk, we write tyfty1=�1; : : : ; tyk=�kg for theresult of the simultaneous substitution of the type variables �i throughout ty bythe corresponding type expressions ty i. The conventions and notations used for

126 B APPENDIX: DERIVED FORMSprojection, injection and modi�cation in preceding sections are adapted here aswell, except that within this section, we write C�E for the context obtained fromC by replacing its �rst component by E. To obtain default behaviour for certainforms of environments, we introduce the following notation:[StE](id) = StE (id) if id 2 DomStE= v otherwise[VE](id) = VE(id) if id 2 DomVE= (0; n) otherwiseIn other words: [StE] resp. [VE] is an (in�nite) map which extends the �nite mapStE resp. VE by the default value v resp. (0; n).B.2 Identi�ersThe Bare language distinguishes di�erent forms of identi�ers, e.g. value variablesand value constructors, structure identi�ers and signature identi�ers. Syntactic-ally, identi�ers in the classes Var, Con, ExCon, TyCon, StrId, SigId and FunId allbelong to the class Id. Within phrases of the Bare language, we distinguish themby their attached identi�er status, i.e. id st belongs to the class indicated by st ,where v, c, e, t, s, g and f refer to Var, Con, ExCon, TyCon, StrId, SigId andFunId, respectively. Thus, any value variable var has the form idv with id 2 Id,etc.Variable environments map identi�ers to their �xity (n;�x). This is used forparsing expressions with in�x operators: the number n is the precedence of theidenti�er (when used in�x) and �x says whether it is left- or right-associative (lor r, respectively) or non-in�x (n).Phrases of the Full language only contain plain identi�ers (i.e. without attachedstatus) and the semantic rules in this section which translate the Full into the Barelanguage also provide this status information.Given a natural number n, we write n for a label lab that is a string of digitsand that denotes this number when interpreted as a special constant.B.3 EnrichmentWe de�ne a relation � on identi�er status as st � st 0 () st = st 0 _ st 0 = v. Weextend this to (status, structure) environments as follows:E1 � E2 () StE of E1 � StE of E2 ^ SE of E1 � SE of E2SE1 � SE2 () 8id 2 DomSE2: id 2 DomSE1 ^ SE1(id) � SE2(id)StE 1 � StE 2 () 8id 2 DomStE 2: id 2 DomStE 1 ^ StE 1(id) � StE 2(id)B.4 Inference RulesAll sentences of this part of the semantics have the form C;A�1 ` phrase)phrase0; A�2, where C is a context, A�1 and A�2 are sequences of semantic or syntactic

B.4 Inference Rules 127objects, phrase is a phrase of the Full language and phrase 0 is a (corresponding)phrase of the Bare language. Syntactic objects in A�1 and A�2 belong to the Barelanguage. When we have C;A�1 ` phrase) phrase 0; A�2, then phrase 0 and A�2 aredetermined by C, A�1, and phrase, modulo choice of fresh identi�er names (e.g. asin rule 351).We do not give all rules explicitly. When we omit the sentence form for aphrase class Phrase, the sentence form is C ` phrase) phrase 0. When we omitrules for an alternative form of a phrase class, then these rules can be determinedas follows: if the alternative form in the full grammar is t1 v1 t2 ���tk vk tk+1(k � 0), where each ti is a sequence of lexical items (terminals) and each vi is avariable ranging over a phrase class (in the Full language), then the missing ruleis: C ` v1) v01 ��� C ` vk) v0kC ` t1 v1 t2 ���tk vk tk+1) t1 v01 t2 ���tk v0k tk+1Long Identi�ers C; �; st ` longid) longid 0; idvalid 2 Dom(�C) idval = �(C)(id)C; �; st ` id) id st; idval (344)id =2 Dom(�C)C; �; st ` id) id st;FAIL (345)(SE of E of C)(id) = E C � E; �; st ` longid) longid 0; idvalC; �; st ` id.longid) ids.longid 0; idval (346)Comments:(345) This rule has two purposes. On the one hand, it detects identi�ers that areused without being declared. On the other, it is also used to generate freshidenti�ers, e.g. in rule 351.Value Identi�ers C ` hopi longid) longid 0; st[VE of C](id) = (n;�x) �x 6= n [StE of E of C](id) = stC ` op id) id st ; st (347)[VE of C](id) = (n; n) [StE of E of C](id) = stC ` hopi id) id st ; st (348)(SE of E of C)(id) = E C �E ` op longid) longid 0; stC ` hopi id.longid) ids.longid 0; st (349)

128 B APPENDIX: DERIVED FORMSComments:(349) The presence of op in the premise, regardless whether it occurs in theconclusion or not, means that identi�ers with in�x status can be used non-in�x in their long form.Atomic Expressions C ` atexp) atexp 0C ` hopilongid) longid 0; stC ` hopilongid) longid 0 (350)C;StE of E of ; v ` id) var ;FAILC ` # lab) (fn f lab=var,...g => var) (351)C ` ()) fg (352)n � 2 C ` exp1) exp 01 ��� C ` expn) exp 0nC ` (exp1,���,expn)) f1=exp 01,���,n=exp 0ng (353)n � 0 C ` (exp1)::���::(expn)::nil) expC ` [exp1,���,expn]) (exp) (354)n � 1 C ` case (exp1) of => ��� case (expn) of => (exp)) exp 0C ` (exp1;���;expn;exp)) (exp 0) (355)n � 1 C ` dec) dec 0; C 0 C + C 0 ` (exp1;���;expn)) atexpC ` let dec in exp1;���;expn end) let dec 0 in atexp end (356)Comments:(351) The premise selects a fresh identi�er id and attributes it with status v,giving the value variable var .(354) It is assumed here that neither nil nor :: has been rebound, and :: stillhas right-associative in�x status.(356) The side-condition n � 1 means that the rule applies to all let-expressions.Applications C ` appexp) expC ` appexp) exp C ` atexp) atexp 0C ` appexp atexp) (exp) atexp 0 (357)

B.4 Inference Rules 129In�x Expressions C; n; �x ` infexp) expC ` appexp) expC;n;�x ` appexp) exp (358)[VE of C](id) = (n0; l) n < n0 _ (n = n0 ^ �x = l)[StE of E of C](id) = stC;n0; l ` infexp1) exp1 C;n0; n ` infexp2) exp2C;n;�x ` infexp1 id infexp2) id st f1=exp1,2=exp2g (359)[VE of C](id) = (n0; r) n < n0 _ (n = n0 ^ �x = r)[StE of E of C](id) = stC;n0; n ` infexp1) exp1 C;n0; r ` infexp2) exp2C;n;�x ` infexp1 id infexp2) id st f1=exp1,2=exp2g (360)Comments:(360) The SML de�nition makes two di�erent right-associative operators of thesame precedence associate to the left. This rule makes them associate to theright.Expressions C ` exp) exp 0Not all of the parentheses these rules generate are really necessary; many of themare here only for uniformity of presentation.C; 0;�x ` infexp) expC ` infexp) (exp) (361)C ` not(exp�1 == exp�2)) expC ` exp�1 =/= exp�2) (exp) (362)C ` (exp� terminates) andalso not(exp� raises)) expC ` exp� proper) (exp) (363)C ` if exp1 then exp2 else false) expC ` exp1 andalso exp2) (exp) (364)C ` if exp1 then true else exp2) expC ` exp1 orelse exp2) (exp) (365)C ` if exp1 then exp2 else true) expC ` exp1 implies exp2) (exp) (366)C ` ((exp ; false) handle match) handle => false) exp 0C ` exp raises match) (exp 0) (367)

130 B APPENDIX: DERIVED FORMSC ` exp raises pat => true) exp 0C ` exp raises pat) (exp 0) (368)C ` case exp1 of true => (exp2) | false => (exp3)) expC ` if exp1 then exp2 else exp3) (exp) (369)C ` (fn match)(exp)) exp 0C ` case exp of match) (exp 0) (370)Comments:(361) The �xity �x can be chosen arbitrarily. If it were �xed, then either left- orright-associative or all operators of precedence 0 would be ruled out.(362),(363) It is assumed here that not has not been rebound, neither in StE norin VE.(364){(369) It is assumed here that true and false have not been rebound.Match Rules C ` mrule) mrule 0C ` pat) pat 0;StE C + StE ` exp) exp 0C ` pat => exp) pat 0 => exp 0 (371)Declarations C ` dec) dec0; C 0C ` valbind) valbind 0;StEC ` val valbind) val valbind 0; StE in Env in Context (372)C + StE ` fvalbind) valbind ;StEC ` fun fvalbind) val rec valbind ; StE in Env in Context (373)C ` typbind) typbind 0; TE; TE 0C ` type typbind) type typbind 0; TE 0 in Env in Context (374)C ` typbind) typbind 0; TE; TE 0C ` eqtype typbind) eqtype typbind 0; TE 0 in Env in Context (375)hC + E ` typbind�) typbind 0; TE; TE 0iC + Eh +TEi ` datbind) datbind 0; EC ` datatype datbind hwithtype typbind�i)datatype datbind 0 h ; type typbind 0i; Eh+TE 0i in Context (376)

B.4 Inference Rules 131hC + E ` typbind �) typbind 0; TE; TE 0C + Eh +TEi ` datbind) datbind 0; EC + Eh+TE 0i ` dec) dec 0; C 0C ` abstype datbind hwithtype typbind�i with dec end)abstype datbind 0 with htype typbind 0 ;i dec 0 end;hTE 0 in Context +iC0 (377)C ` exbind) exbind 0;StEC ` exception exbind) exception exbind 0; StE in Env in Context (378)C ` dec1) dec 01; C1 C + C1 ` dec2) dec02; C2C ` local dec1 in dec2 end) local dec01 in dec 02 end; C2 (379)C;SE of E of ; s ` longid 1) longid 01; E1���C;SE of E of ; s ` longidn) longid 0n; EnC ` open longid 1���longidn) open longid 01���longid 0n; E1 + ���+ En in Context(380)C `) ; fg in Context (381)C ` dec1) dec 01; C1 C + C1 ` dec2) dec02; C2C ` dec1 h;i dec2) dec 01 h;i dec 02; C1 + C2 (382)n � 1 VE = fid 7! (0h+di; l) ; id 2 fid1; ���; idnggC ` infix hdi id1 ��� idn) ; VE in Context (383)n � 1 VE = fid 7! (0h+di; r) ; id 2 fid1; ���; idnggC ` infixr hdi id1 ��� idn) ; VE in Context (384)n � 1 VE = fid 7! (0; n) ; id 2 fid1; ���; idnggC ` nonfix id1 ��� idn) ; VE in Context (385)Comments:(376),(377) Type declarations of these forms are mutually recursive.(383){(385) In�x directives are replaced by the empty declaration. The digit dis treated in the premise as the corresponding natural number.

132 B APPENDIX: DERIVED FORMSValue Bindings C ` valbind) valbind 0; StEC ` pat) pat 0;StE C ` exp) exp 0hC ` valbind) valbind 0;StE 0iC ` pat = exp hand valbind i) pat 0 = exp 0 hand valbind 0i; StE h+StE 0i (386)C + StE ` valbind) valbind 0;StEC ` rec valbind) rec valbind 0;StE (387)Comments:(387) The recursive binding of StE allows constructor status to be overwritten.This is not possible in SML (although the SML semantics is not entirelyclear about this).Function Value Bindings C ` fvalbind) valbind ; StEA function value binding does not make \holes" in the scope of constructors, butwe need to make it produce a status environment in order to correctly generatefresh identi�ers.C ` funcbind) match; var ; n var = idv8i; j: 1 � i; j � n ^ i 6= j =) id i 6= id j8i: 1 � i � n =) C;StE of E of ; v ` id i) var i;FAILC ` case (id1; ���; idn) of match) exphC ` fvalbind) valbind ;StE iC ` funcbind hand fvalbind i)var = fn var1 => ��� fn varn => exp hand valbind i; fid 7! vgh+StE i (388)Single Function Bindings C ` funcbind) match; var ; nC ` fpat) pat; var ; n;StE hC ` ty) ty 0iC + StE ` exp) exp 0 hhC ` funcbind) match; var ; niiC ` fpat h:tyi = exp hh| funcbind ii)pat => exp 0 h:ty 0i hh| matchii; var ; n (389)Comment: Notice that the function name and the number of parameters have tobe the same throughout a funcbind .Type Bindings C ` typbind) typbind 0; TE; TE 0A type binding produces two type environments, the �rst for expansion of typeabbreviations (for withtype types), the second for declaring the type constructorsto be irreducible within type expressions, see rule 423.

B.4 Inference Rules 133tyvarseq = �(k) C ` ty) ty 0 hC ` typbind) typbind 0; TE; TE 0iC ` tyvarseq id = ty hand typbindi)tyvarseq idt = ty 0 hand typbind 0i;fid 7! ��(k):ty 0gh+TEi; fid 7! FAILgh+TE 0i (390)tyvarseq = �(k) hC ` typbind) typbind 0; TE; TE 0iC ` tyvarseq id = ? hand typbind i)tyvarseq idt = ? hand typbind 0i;fid 7! FAILgh+TEi; fid 7! FAILgh+TE 0i (391)Data Type Bindings C ` datbind) datbind 0; EC ` conbind) conbind 0;StE hC ` datbind) datbind 0; EiC ` tyvarseq id = conbind hand datbind i)tyvarseq idt = conbind 0 hand datbind 0i;(fid 7! FAILg;StE) in Env h+Ei (392)Constructor Bindings C ` conbind) conbind 0; StEhC ` conbind) conbind 0;StE iC ` id h | conbind i) idc h | conbind 0i; fid 7! cg h+StE i (393)C ` ty) ty 0 hC ` conbind) conbind 0;StE iC ` id of ty h | conbind i) idc of ty 0 h | conbind 0i; fid 7! cg h+StE i (394)Exception Bindings C ` exbind) exbind 0; StEhC ` ty) ty 0i hhC ` exbind) exbind 0;StE iiC ` id hof tyi hhand exbind ii)ide hof ty 0i hhand exbind 0ii; fid 7! eghh+StE ii (395)C;StE of E of ; e ` longid) longexcon ; ehC ` exbind) exbind 0;StE iC ` id = longid hand exbind i)ide = longexcon hand exbind 0i; fid 7! egh+StE i (396)

134 B APPENDIX: DERIVED FORMSAtomic Patterns C ` atpat) atpat 0; StEC `) ; fg (397)C ` scon) scon; fg (398)C ` hopi id) var ; vC ` hopi id) var ; fid 7! vg (399)C ` hopi longid) longid 0; st st 6= vC ` hopi longid) longid 0; fg (400)hC ` patrow) patrow 0;StE iC ` f hpatrowi g) f hpatrow 0i g; fgh+StE i (401)C ` ()) fg; fg (402)n � 2 C ` pat1) pat 01;StE 1 ��� C ` patn) pat 0n;StEnC ` (pat1,���,patn)) f1=pat1,���,n=patng; StE 1 + ���+ StE n (403)n � 0 C ` (pat1)::���::(patn)::nil) pat;StEC ` [pat1,���,patn]) (pat);StE (404)C ` pat) pat 0;StEC ` (pat)) (pat 0);StE (405)Comments:(404) It is assumed here that neither nil nor :: has been rebound, and :: stillhas right-associative in�x status.Pattern Rows C ` patrow) patrow 0; StEC ` ...) ...; fg (406)C ` pat) pat 0;StE hC ` patrow) patrow 0;StE 0iC ` lab = pat h , patrowi) lab = pat 0 h , patrow 0i; StE h+StE 0i (407)lab = id in Lab C ` lab = idh:tyi hh, patrowii) patrow 0;StEC ` idh:tyi hh, patrowii) patrow 0;StE (408)lab = id in Lab C ` lab = idh:tyi as pat hh, patrowii) patrow 0;StEC ` idh:tyi as pat hh, patrowii) patrow 0;StE (409)

B.4 Inference Rules 135Application Patterns C ` apppat) pat ; StEC ` hopilongid) longid 0; st st 6= v C ` atpat) atpat 0;StEC ` hopilongid atpat) longid 0 atpat 0;StE (410)C ` atpat) atpat 0;StEC ` atpat) atpat 0;StE (411)In�x Patterns C; n; �x ` infpat) pat ; StEC ` apppat) pat ;StEC;n;�x ` apppat) pat;StE (412)[VE of C](id) = (n0; l) n < n0 _ (n = n0 ^ �x = l)[StE of E of C](id) = st 2 fc; egC;n0; l ` infpat1) pat1;StE 1 C;n0; n ` infpat2) pat2;StE 2C;n;�x ` infpat1 id infpat2) id st f1=pat1,2=pat2g; StE 1 + StE 2 (413)[VE of C](id) = (n0; r) n < n0 _ (n = n0 ^ �x = r)[StE of E of C](id) = st 2 fc; egC;n0; n ` infpat1) pat1;StE 1 C;n0; r ` infpat2) pat2;StE 2C;n;�x ` infpat1 id infpat2) id st f1=pat1,2=pat2g; StE 1 + StE 2 (414)Patterns C ` pat) pat 0; StEC; 0;�x ` infpat) pat;StEC ` infpat) pat;StE (415)C ` ty) ty 0 C ` pat) pat 0;StEC ` pat : ty) pat 0 : ty 0;StE (416)C ` hopiid) var ; v hhC ` ty) ty 0ii C ` pat) pat 0;StEC ` hopiidhh: tyii as pat) varhh: ty 0ii as pat 0; fid 7! vg+ StE (417)Function Patterns C ` fpat) pat ; var ; n; StEn � 1 C ` (atpat1,���,atpatn)) pat ;StEC ` op id atpat1���atpatn) pat; idv; n;StE (418)n � 1 [VE of C](id) = (n0; n) C ` (atpat1,���,atpatn)) pat;StEC ` id atpat1���atpatn) pat; idv; n;StE (419)

136 B APPENDIX: DERIVED FORMSC ` ((atpat1,atpat 01),atpat2,���,atpatn)) pat;StE[VE of C](id) = (n0;�x) �x 6= n n � 1C ` (atpat1 id atpat 01) atpat2���atpatn) pat; idv; n;StE (420)[VE of C](id) = (n0;�x) �x 6= n C ` (atpat1,atpat 01)) pat;StEC ` atpat1 id atpat 01) pat; idv; 1;StE (421)Type Expressions C ` ty) ty 0tyseq = ty1���tyk C ` ty1) ty 01 ��� C ` tyk) ty 0kC;TE of E of ; t ` longid) longtycon ;��1����k:tyC ` tyseq longid) tyfty 01=�1; : : : ; ty 0k=�kg (422)C;TE of E of ; t ` longid) longtycon ;FAIL tyseq = ty1���tykC ` ty1) ty 01 ��� C ` tyk) ty 0k tyseq 0 = ty 01���ty 0kC ` tyseq longid) tyseq 0 longtycon (423)n � 2 C ` f1:ty1,���,n:tyng) tyC ` ty1* ��� *tyn) ty (424)Comments:(422) This rule replaces type constructors de�ned in a withtype clause of a typedeclaration. The replacement of withtype types of the current context Cdoes not apply to type constructors in ty | ty is a type expression for whichwithtype types have already been replaced.Structure Expressions C ` strexp) strexp 0; EC ` strdec) strdec 0; C 0C ` struct strdec end) struct strdec0 end; E of C 0 (425)C;SE of E of ; s ` longid) longstrid ; EC ` longid) longstrid ; E (426)C;F of ; f ` id) funid ; (E1; E2) C ` strexp) strexp 0; E E � E1C ` id (strexp) ` funid (strexp 0); E2 (427)C ` id (struct strdec end)) strexp 0; EC ` id (strdec)) strexp 0; E (428)C ` strdec) strdec0; C 0 C + C 0 ` strexp) strexp 0; EC ` let strdec in strexp end) let strdec0 in strexp 0 end; E (429)

B.4 Inference Rules 137Structure-level Declarations C ` strdec) strdec0; C 0C ` dec) dec 0; C 0C ` dec) dec 0; C 0 (430)C ` ax) ax 0C ` axiom ax) axiom ax 0; fg in Context (431)C ` strbind) strbind 0; SEC ` structure strbind) structure strbind 0; SE in Env in Context (432)C ` strdec1) strdec01; C1 C + C1 ` strdec2) strdec02; C2C ` local strdec1 in strdec2 end) local strdec01 in strdec02 end; C2 (433)C `) ; fg in Context (434)C ` strdec1) strdec01; C1 C + C1 ` strdec2) strdec02; C2C ` strdec1 h;i strdec2) strdec01 h;i strdec02; C1 + C2 (435)Structure Bindings C ` strbind) SEC ` sglstrbind) sglstrbind 0; SE1 hC ` strbind) strbind 0; SE2iC ` sglstrbind hand strbindi) sglstrbind 0 hand strbind 0i; SE1 h+SE2i (436)Single Structure Bindings C ` sglstrbind) sglstrbind 0; SEC ` psigexp) psigexp 0; E1 C ` strexp) strexp 0; E2 E2 � E1C ` id : psigexp = strexp) ids : psigexp 0 = strexp 0; fid 7! E1g (437)C ` psigexp) psigexp 0; EC ` id : psigexp = ?) ids : psigexp 0 = ?; fid 7! Eg (438)C ` strexp) strexp 0; EC ` id = strexp) ids = strexp 0; fid 7! Eg (439)Signature Expressions C ` sigexp) sigexp0; EC ` spec) spec0; EC ` sig spec end) sig spec0 end; E (440)C;G of ; g ` id) sigid ; EC ` id) sigid ; E (441)

138 B APPENDIX: DERIVED FORMSPrincipal Signatures C ` psigexp) psigexp0; EC ` sigexp) sigexp 0; EC ` sigexp) sigexp 0; E (442)Signature Declarations C ` sigdec) sigdec0; GC ` sigbind) sigbind 0; GC ` signature sigbind) signature sigbind 0; G (443)C `) ; fg (444)C ` sigdec1) sigdec01; G1 C +G1 ` sigdec2) sigdec 02; G2C ` sigdec1 h;i sigdec2) sigdec 01 h;i sigdec 02; G1 +G2 (445)Signature Bindings C ` sigbind) sigbind 0; GC ` psigexp) psigexp 0; E hC ` sigbind) sigbind 0; GiC ` id = psigexp hand sigbind i)idg = psigexp 0 hand sigbind 0i; fid 7! Eg h+Gi (446)Speci�cations C ` spec) spec0; EC ` valdesc) valdesc 0; EC ` val valdesc) val valdesc0; E (447)C ` typdesc) typdesc 0; TEC ` type typdesc) type typdesc0; TE in Env (448)C ` typdesc) typdesc 0; TEC ` eqtype typdesc) eqtype typdesc 0; TE in Env (449)C ` datdesc) datdesc 0; EC ` datatype datdesc) datatype datdesc 0; E (450)C ` exdesc) exdesc 0;StEC ` exception exdesc) exception exdesc 0; StE in Env (451)C ` axdesc) axdesc 0C ` axiom axdesc) axiom axdesc 0; fg in Env (452)C ` strdesc) strdesc0; SEC ` structure strdesc) structure strdesc0; SE in Env (453)

B.4 Inference Rules 139C ` shareq) shareq 0C ` sharing shareq) sharing shareq 0; fg in Env (454)C ` spec1) spec01; E1 C + E1 ` spec2) spec02; E2C ` local spec1 in spec2 end) local spec 01 in spec 02 end; E2 (455)C;SE of E of ; s ` longid 1) longstrid 1; E1���C;SE of E of ; s ` longidn) longstridn; EnC ` open longid 1���longidn)open longstrid 1 ��� longstridn; E1 + ���+ En (456)C;G of ; g ` id1) sigid1; E1���C;G of ; g ` idn) sigidn; EnC ` include id1���idn) include sigid 1 ��� sigidn; E1 + ���+ En (457)C `) ; fg in Env (458)C ` spec1) spec 01; E1 C + E1 ` spec2) spec 02; E2C ` spec1 h;i spec2) spec01 h;i spec 02; E1 + E2 (459)Value Descriptions C ` valdesc) valdesc0; StEC ` ty) ty 0 hC ` valdesc) valdesc 0;StE iC ` id : ty hand valdesci) idv : ty 0 hand valdesc 0i; fid 7! vgh+StE i (460)Type Descriptions C ` typdesc) typdesc 0; TEhC ` typdesc) typdesc 0; TEiC ` tyvarseq id hand typdesci)tyvarseq idt hand typdesc 0i; fid 7! FAILgh+TEi (461)Datatype Description C ` datdesc) datdesc 0; EC ` condesc) condesc 0;StE hC ` datdesc) datdesc 0; EiC ` tyvarseq id = condesc hand datdesci)tyvarseq idt = condesc 0 hand datdesc 0i;(fid 7! FAILg;StE) in Env h+Ei (462)

140 B APPENDIX: DERIVED FORMSConstructor Descriptions C ` condesc) condesc0; StEhC ` ty) ty 0i hhC ` condesc) condesc 0;StE iiC ` id hof tyi hh| condescii)idc hof ty 0i hh| condesc 0ii; fid 7! cghh+StE ii (463)Exception Descriptions C ` exdesc) exdesc0; StEhC ` ty) ty 0i hhC ` exdesc) exdesc 0;StE iiC ` id hof tyi hhand exdescii)ide hof ty 0i hhand exdesc 0ii; fid 7! eg hh+StE ii (464)Speci�cation Expressions C ` specexp) specexp0C ` strdec) strdec0; E C + E ` axexp) expC ` let strdec in axexp end) let strdec 0 in exp end (465)C ` let in axexp end) specexpC ` axexp) specexp (466)Axiomatic Expressions C ` axexp) expC ` exp�) expC ` exp�) exp (467)Structure Descriptions C ` strdesc) strdesc0; SEC ` sigexp) sigexp 0; E hC ` strdesc) strdesc 0; SEiC ` id : sigexp hand strdesci)ids : sigexp 0 hand strdesc 0i; fid 7! Eg h+SEi (468)Functor Declarations C ` fundec) fundec0; FC ` funbind) funbind 0; FC ` functor funbind) functor funbind 0; F (469)C `) ; fg (470)C ` fundec1) fundec 01; F1 C + F1 ` fundec2) fundec 02; F2C ` fundec1 h;i fundec2) fundec 01 h;i fundec 02; F1 + F2 (471)

B.4 Inference Rules 141Functor Bindings C ` funbind) funbind 0; FC;SE of E of ; s ` id 00) strid;FAILC ` id (id 00 : sig spec end) : id 0 =let open id 00 in strexp end hand funbind i) funbind 0; FC ` id (spec) : id 0 = strexp hand funbind i) funbind 0; F (472)C;SE of E of ; s ` id 0) strid ;FAILC ` id (id 0 : sig spec end) : sig local open id 0 in spec 0 end end= let open id 0 in strexp end hand funbind i) funbind 0; FC ` id (spec) : sig spec 0 end = strexp hand funbind i) funbind 0; F (473)C;SE of E of ; s ` id 00) strid;FAILC ` id (id 00 : sig spec end) : id 0 = ? hand funbind i) funbind 0; FC ` id (spec) : id 0 = ? hand funbind i) funbind 0; F (474)C;SE of E of ; s ` id 0) strid ;FAILC ` id (id 0 : sig spec end) : sig local open id 0 in spec 0 end end= ? hand funbind i) funbind 0; FC ` id (spec) : sig spec0 end = ? hand funbind i) funbind 0; F (475)C ` psigexp1) psigexp 01; E1C + (fid2 7! E1g in Env) ` psigexp2) psigexp 02; E2C + (fid2 7! E1g in Env) ` strexp) strexp 0; E E � E2hC ` funbind) funbind 0; F iC ` id1 (id2 : psigexp1) :psigexp2 = strexp hand funbind i)idf1 (ids2 : psigexp 01) :psigexp 02 = strexp0 hand funbind 0i;ffunid 7! (E1; E2)g h+F i (476)C ` psigexp1) psigexp 01; E1C + (fid2 7! E1g in Env) ` psigexp2) psigexp 02; E2hC ` funbind) funbind 0; F iC ` id1 (id2 : psigexp1) :psigexp2 = ? hand funbind i)idf1 (ids2 : psigexp 01) :psigexp 02 = ? hand funbind 0i;ffunid 7! (E1; E2)g h+F i (477)

142 B APPENDIX: DERIVED FORMSTop-level Declarations C ` topdec) topdec 0; C 0C ` val it = exp) topdec; C 0C ` exp) topdec; C 0 (478)C ` strdec) strdec 0; C 0C ` strdec) strdec 0; C 0 (479)C ` sigdec) sigdec 0; GC ` sigdec) sigdec 0; G in Context (480)C ` fundec) fundec 0; FC ` fundec) fundec 0; F in Context (481)

143C Appendix: The Initial BasisFor the veri�cation of full programs, see rule 343, we have to specify the initial(veri�cation) basis B0, an initial context C0DER for deriving phrases of the Barelanguage from phrases of the Full language, and an initial (veri�cation) state s0.The subscript \DER" refers to the semantics of derived forms in Appendix B.C.1 The Initial StateThe initial state s0 has the forms0 = (BasExName; fg; fg; CT0 [ET 0; 0)where BasExName can be found in section 6.5 on page 57. CT 0 and ET 0 arede�ned below in �gure 27. Setting nof s0 to 0 is insigni�cant; any natural numberwould do. The reason for this arbitrariness is rule 299, which allows an arbitrarychoice of question mark interpretation.CT 0 = f (true, bool), (false, bool), (nil, 8'a:'a list),(::, 8�:f1 7! 'a,2 7! 'a listg ! 'a list) gET 0 = f(excon; exn) j excon 2 BasExName n fNoCode; AbuseggFigure 27: Initial Value TemplatesThe set ET 0 does not contain the corresponding pairs for NoCode and Abuse,because they are not ordinary exceptions. We use the exception mechanism topropagate certain information, but we do not want quanti�ed variables of typeexn to range over these special exceptions.C.2 The Initial Context for Derived FormsThe initial context for the derived forms C0DER has the formC0DER = ((SEDER; TEDER;StE 0); VE0DER; FDER; SEDER)where all components except VE0DER and StE 0 are the empty map fg. VE0DER isde�ned in �gure 28, StE 0 in �gure 29. The set BasVal is de�ned in section 6.4,page 57. PredFun is the set containing the identi�erso @ ^ map rev notThe initial status environment StE 0 assigns identi�er status to all prede�nedidenti�ers. Although the status v is the default status for identi�ers in the se-mantics for derived forms, we still have to include value variables in StE 0, becausethe rules in the semantics for derived forms that require the generation of freshvariables take the condition id =2 DomStE as an indication of freshness.

144 C APPENDIX: THE INITIAL BASIS
id 7! (n,�x) conditiono 7! (3,l)id 7! (4,l) id 2 f=; <>; <; >; <=; >=g@ 7! (5,l):: 7! (5,r)id 7! (6,l) id 2 f+; -; ^gid 7! (7,l) id 2 fdiv; mod; /; *gFigure 28: Initial In�x Status VE0DER
id 7! st conditionid 7! e id 2 BasExName n fNoCodegid 7! c id 2 ftrue; false; ::; nilgid 7! v id 2 BasVal [PredFunFigure 29: Initial Status Environment StE 0

C.3 The Initial Veri�cation Basis 145C.3 The Initial Veri�cation BasisThe initial veri�cation basis B0 has the formB0 = ((M0; T0); F0; G0; E0)where� M0 = ;� T0 = fbool; int; real; string; list; exng� F0 = fg� G0 = fg� E0 = (SE0; TE0; VE0)� SE0 = fgAll type names in T0 have arity 0, except list which has arity 1. All type namesin T0 except exn admit equality.The initial type environment TE0 is shown in �gure 30. The initial variableenvironment VE0 consists of two parts, VE0 = VE 00 [VE 000 with DomVE 00 =BasVal[ftrue; false; ::; nilg[(BasExNamenfNoCode; Abuseg) and DomVE 000 =PredFun. All identi�ers id in the domain of VE 00 are mapped to typed values tv.The type schemes Stat tv of the prede�ned identi�ers are given in �gure 31; thebasic exceptions (not listed there) have all type exn.tycon 7! f �, fcon1 7! �1; : : : ; conn 7! �ng g (n � 0)unit 7! f �():fg, fg gbool 7! f bool, ftrue 7! bool; false 7! boolg gint 7! f int, fg greal 7! f real, fg gstring 7! f string, fg glist 7! f list, fnil 7! 8'a : 'a list,:: 7! 8'a :f1 7! 'a; 2 7! 'a listg ! 'a listg gexn 7! f exn, fg gFigure 30: Static TE0

146 C APPENDIX: THE INITIAL BASISNONFIX INFIXvar 7! � var 7! �map 7! 8'a 'b: ('a! 'b)! Precedence 7 :'a list! 'b list / 7! real � real! realrev 7! 8'a: 'a list! 'a list div 7! int � int! intnot 7! bool! bool mod 7! int � int! int~ 7! 8num: num! num * 7! 8num: num � num! numabs 7! 8num: num! num Precedence 6 :floor 7! real! int + 7! 8num: num � num! numreal 7! int! real - 7! 8num: num � num! numsqrt 7! real! real ^ 7! string � string! stringsin 7! real! real Precedence 5 :cos 7! real! real :: 7! 8'a:'a � 'a list! 'a listarctan 7! real! real @ 7! 8'a: 'a listexp 7! real! real � 'a list! 'a listln 7! real! real Precedence 4 :size 7! string! int = 7! 8''a: ''a � ''a! boolchr 7! int! string <> 7! 8''a: ''a � ''a! boolord 7! string! int < 7! 8num: num � num! boolexplode 7! string! string list > 7! 8num: num � num! boolimplode 7! string list! string <= 7! 8num: num � num! booltrue 7! bool >= 7! 8num: num � num! boolfalse 7! bool Precedence 3 :nil 7! 8'a: 'a list o 7! 8'a 'b 'c: ('b! 'c)� ('a! 'b)! ('a! 'c)Notes:� In type schemes we have taken the liberty of writing ty1 � ty2 in place off1 7! ty1; 2 7! ty2g.� Recall that the special type variable num can be replaced by either real orint, see Section 4.5.Figure 31: Static Variable Environment StatVE0 (without exceptions)

C.4 Prede�ned Functions 147C.4 Prede�ned FunctionsNote that DynVE 00 is the identity function; this is because we have chosen todenote basic values by the names of variables to which they are initially bound. Weassume that we can always distinguish basic values from constructors | therefore,the bare identi�ers are not values, but these identi�ers attributed with their status.The semantics of these basic values (most of which are functions) lies princip-ally in their behaviour under APPLY, which we describe below.VE 000 contains initial variable bindings which, unlike BasVal, are de�nablein ML; it is obtained as follows: the following top declaration topdec is veri-�cated with the program semantics (page 116) in the initial state and basis ass0; B 00; C0DER ` topdec) B; C 0DER where B 00 is the same as B0 but without VE 000.B = f(s;B)g is a singleton set with s = s0 and we get VE 000 by removing allbindings in VE of E of B 00 from VE of E of B.fun (F o G)x = F(G x)fun nil @ M = M| (x::L) @ M = x::(L @ M)fun s ^ s' = implode((explode s) @ (explode s'))fun map F nil = nil| map F (x::L) = (F x)::(map F L)fun rev nil = nil| rev (x::L) = (rev L) @ [x]fun not true = false| not false = trueWe now describe the e�ect of APPLY upon each value b 2 BasVal. For specialvalues, we shall normally use i, r, n, s to range over integers, reals, numbers(integer or real), strings respectively. We also take the liberty of abbreviating\APPLY(abs, r)" to \abs(r)", \APPLY(mod, f1 7! i; 2 7! dg)" to \i mod d", etc.. � ~(n) returns the negation of n, or the packet [Neg] if the result is out ofrange.� abs(n) returns the absolute value of n, or the packet [Abs] if the result isout of range.� floor(r) returns the largest integer i not greater than r; it returns thepacket [Floor] if i is out of range.� real(i) returns the real value equal to i.� sqrt(r) returns the square root of r, or the packet [Sqrt] if r is negative.

148 C APPENDIX: THE INITIAL BASIS� sin(r) , cos(r) return the result of the appropriate trigonometric functions.� arctan(r) returns the result of the appropriate trigonometric function inthe range +�=2.� exp(r) , ln(r) return respectively the exponential and the natural logarithmof r, or an exception packet [Exp] or [Ln] if the result is out of range.� size(s) returns the number of characters in s.� chr(i) returns the character numbered i (see Section 2.2) if i is in the interval[0; 255], and the packet [Chr] otherwise.� ord(s) returns the number of the �rst character in s (an integer in theinterval [0; 255], see Section 2.2), or the packet [Ord] if s is empty.� explode(s) returns the list of characters (as single-character strings) ofwhich s consists.� implode(L) returns the string formed by concatenating all members of thelist L of strings.� The arithmetic functions /,*,+,- all return the results of the usual arith-metic operations, or exception packets respectively [Quot], [Prod], [Sum],[Diff] if the result is unde�ned or out of range.� i mod d , i div d return integers r; q (remainder, quotient) determined bythe equation d � q + r = i, where either 0 � r < d or d < r � 0. Thus theremainder has the same sign as the divisor d. The packet [Mod] or [Div] isreturned if d = 0.� The order relations <,>,<=,>= return boolean values in accord with theirusual meanings.� v1 = v2 returns true or false according as the values v1 and v2 are, orare not, identical. The type discipline (in particular, the fact that functiontypes do not admit equality) ensures that equality is only ever applied tospecial values, nullary constructors, and values built out of such by recordformation and constructor application.� v1 <> v2 returns the opposite boolean value to v1 = v2.

REFERENCES 149References[BHW94] M. Bidoit, R. Hennicker and M. Wirsing. Characterizing behavi-oural semantics and abstractor semantics. Proc. 5th European Sym-posium on Programming, Edinburgh. Springer LNCS 788, 105{119(1994).[Gol84] R. Goldblatt. Topoi | The Categorical Analysis of Logic. North-Holland (1984).[Han93] J. Hannan. Extended natural semantics. Journal of Functional Pro-gramming, 3(2), 123{152 (1993).[Kah88] G. Kahn. Natural Semantics. In: K. Fuchi and M. Nivat, edit-ors, Programming of Future Generation Computers, pages 237{258.North-Holland (1988).[Kah93] S. Kahrs. Mistakes and ambiguities in the de�nition of StandardML. Report ECS-LFCS-93-257, Univ. of Edinburgh (1993).[Kah94] S. Kahrs. Mistakes and ambiguities in the de�nition of StandardML { Addenda. Univ. of Edinburgh (1994).[KST94] S. Kahrs and D. Sannella and A. Tarlecki. The semantics of Ex-tended ML: a gentle introduction. Proc. Workshop on Semanticsof Speci�cation Languages, Utrecht, 1993. Springer Workshops inComputing, 186{215 (1994).[MacQ86] D. MacQueen. Modules for Standard ML. In: R. Harper, D.MacQueen and R. Milner. Standard ML. Report ECS-LFCS-86-2,Univ. of Edinburgh (1986).[MT91] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press(1991).[MTH90] R. Milner, M. Tofte and R. Harper. The De�nition of Standard ML.MIT Press (1990).[San90] D. Sannella. Formal program development in Extended ML for theworking programmer. Proc. 3rd BCS/FACS Workshop on Re�ne-ment, Hursley Park, 1990. Springer Workshops in Computing, 99{130 (1991).[ST85] D. Sannella and A. Tarlecki. Program speci�cation and developmentin Standard ML. Proc. 12th ACM Symp. on Principles of Program-ming Languages, New Orleans, 67{77 (1985).

150 REFERENCES[ST86] D. Sannella and A. Tarlecki. Extended ML: an institution-inde-pendent framework for formal program development. Proc. Work-shop on Category Theory and Computer Programming, Guildford.Springer LNCS 240, 364{389 (1986).[ST89] D. Sannella and A. Tarlecki. Toward formal development of MLprograms: foundations and methodology. Proc. Joint Conf. onTheory and Practice of Software Development, Barcelona. SpringerLNCS 352, 375{389 (1989).[ST91] D. Sannella and A. Tarlecki. Extended ML: past, present and fu-ture. Proc. 7th Workshop on Speci�cation of Abstract Data Types,Wusterhausen. Springer LNCS 534, 297{322 (1991).

